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Abstract

Susceptibility of a particular species to prion disease is affected by small differences in the sequence of PrP and correlates
with the propensity of its PrP to assume the b-state. A helix-cap motif in the b22a2-loop of native a-helical rabbit PrP, a
resistant species, contains sequence differences that influence intra- and interspecies transmission. To determine the effect
the helix-cap motif on b-state refolding propensity, we mutated S170N, S174N, and S170N/S174N of the rabbit PrP helix-cap
to resemble that of hamster PrP and conversely, N170S, N174S, and N170S/N174S of hamster PrP to resemble the helix-cap
of rabbit PrP. High-resolution crystal structures (1.45–1.6 Å) revealed that these mutations ablate hydrogen-bonding
interactions within the helix-cap motif in rabbit PrPC. They also alter the b-state-misfolding propensity of PrP; the serine
mutations in hamster PrP decrease the propensity up to 35%, whereas the asparagine mutations in rabbit PrP increase it up
to 42%. Rapid dilution of rabbit and hamster into b-state buffer conditions causes quick conversion to b-state monomers.
Kinetic monitoring using size-exclusion chromatography showed that the monomer population decreases exponentially
mirrored by an increase in an octameric species. The monomer-octamer transition rates are faster for hamster than for
rabbit PrP. The N170S/N174S mutant of hamster PrP has a smaller octamer component at the endpoint compared to the
wild-type, whereas the kinetics of octamer formation in mutant and wild-type rabbit PrP are comparable. These findings
demonstrate that the sequence of the b22a2 helix-cap affects refolding to the b-state and subsequently, may influence
susceptibility to prion disease.
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Introduction

Pathogenesis in prion disease involves refolding of the host

protein, PrP, from the monomeric, primarily a-helical cellular

form (PrPC) to a b-sheet enriched, aggregated infectious form

(PrPSc) [1]. Susceptibility to prion disease varies depending on the

donor species and strain of infectious prion as well as the species

and genotype of the recipient. However, some species appear to be

susceptible to prions from multiple sources (e.g. bank voles and

hamsters [2–5]), whereas others show a lower susceptibility to

prion disease (e.g. rabbits, dogs, and horses) [6], [7] or are even

completely unaffected (birds) [8]. The determining factor in

interspecies prion transmission appears to be intrinsic to the amino

acid sequence of PrP [9]. Even single amino acid differences

between donor and recipient can give rise to a species barrier [10]

or confer resistance to conversion of the recipient PrPC to the

infectious form PrPSc [11].

The sequence of PrP is highly conserved among mammals.

Mutations in PrP could affect susceptibility and transmission of

prion disease by causing changes in the structure of PrPC and/or

the mechanism of its conversion to PrPSc. The structure of PrPC

from many different species has been determined by X-ray

crystallography and NMR spectroscopy [12–17], revealing that it

is highly conserved between species and the differences in amino

acid sequence have little effect on the overall fold. The loop

between the second b-strand and the second a-helix (the b22a2

loop) is one region of sequence diversity among species (Fig. 1) and

has been often cited as a region of interest in the conversion of

PrPC to PrPSc as well as in its interactions with other proteins [18].

NMR measurements have shown that single amino acid changes

in this loop can cause differential backbone mobility. Of more

functional importance, they can also lead to the spontaneous onset

of disease when expressed in an in vivo model [16,19]. These latter

observations suggest that interactions within the b22a2 loop may

play a key role in the conversion to the infectious form.

The investigation of the effect of PrP sequence differences on

the mechanism of PrP conversion has been severely hampered by

the great difficulty of obtaining samples of purified infectious PrPSc

suitable for high resolution structural studies. Using recombinant

PrP, several groups have been able to generate PrP refolded into a

b-sheet enriched, oligomeric state under low pH and mild

denaturing conditions (b-oligomer or b-state) [20–24]. For some
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of those constructs, toxicity and infectivity could be established

[25,26]. Recent work in our laboratories has shown that the

propensity of PrP to form the b-state correlates with the

susceptibility of that species to prion disease. Additionally we

found that rabbits, a species with low susceptibility to prion disease

possess PrP with a helix-capping motif in the b22a2 loop, which

appears to hamper the formation of the b-state.

In this paper we now demonstrate that the presence of either

serine (rabbit) or asparagine (hamster) residues in positions 170

and 174 of PrP not only affect the secondary structure of the

b22a2 loop but also the propensity with which the prion protein

misfolds into b-state-rich octamers.

Materials and Methods

Molecular Biology
The construction of the expression vector has been published

[27]. Site-directed mutagenesis was performed using QuikChange

mutagenesis kits (Stratagene, La Jolla, CA, USA) as per

manufacturer’s instructions.

Protein Expression and Purification
All wild-type and mutant constructs of hamster and rabbit PrP

121–231 were expressed using a pET28a vector (Novagen,

Gibbstown, NJ, USA). Proteins were expressed as inclusion bodies

in the E. coli BL21 AI strain (Invitrogen, Carlsbad, CA, USA).

PrPC was then refolded and purified using a method adopted from

Zahn et al. [28].

Crystallization
Purified mutant rabbit proteins were crystallized using micro-

seeding techniques. Seeds were produced from crystals of wild-

type rabbit PrPC grown as described in Kahn et al. [27]. The

resultant crystals of the mutant rabbit proteins were crushed,

diluted 104–106 fold and used for an additional round of

microseeding. Crystals were then grown using the hanging drop

vapour diffusion method in a solution of sodium cacodylate

pH 6.5 with 2.0–3.0 M sodium chloride as precipitant. The

crystals grew as large flat plates in space group P212121 and their

unit cell axes did not differ by more than 0.1 Å from a= 29.6 Å,

b = 86.2 Å, and c= 87.1 Å. The crystals were flash-frozen at

100 K using 30% (v/v) glycerol as cryoprotectant.

Crystal Structure Determination
Each diffraction data set was collected from a single crystal at

beamline 08ID-1 at the Canadian Macromolecular Crystallogra-

phy Facility (Canadian Light Source, Saskatoon, SK, Canada).

The diffraction data were processed using XDS [29] and the phase

problem was solved with the help of molecular replacement

techniques using Phaser [30] and employing the wild-type rabbit

PrPC structure (PDB ID: 3O79) as search model. The structure

was refined using a combination of the program packages RefMac

[31], PHENIX [32] and Coot [33]. Statistics for data collection

and refinement are given in Table 1. Coordinates and structure

factors have been deposited in the Research Collaboratory for

Structural Bioinformatics PDB under accession codes 4 HMR,

4 HMM and 4 HLS.

Unfolding Curves
Purified PrPC protein stocks of 100 mM were dialyzed into

50 mM sodium phosphate pH 7.0, 80 mM NaCl, 0.5 mM EDTA

for urea denaturation experiments at pH 7.0. PrP stocks were

dialyzed in 50 mM sodium acetate pH 5.0 or pH 4.5, 80 mM,

0.5 mM EDTA for b-state propensity measurements. Stocks were

then diluted 10-fold to a final concentration of 10 mM into

increasing concentrations of urea from 0–9 M in buffer solutions

identical to their respective dialysis buffers, followed by incubation

at room temperature for a minimum of 3 days to allow them to

reach equilibrium.

Circular dichroism ellipticity was then measured using a 1 mm

path length in a quartz cuvette on a Jasco J-815 CD Spectrometer

(Easton, MD, USA). Ellipticity values were measured at 220 nm

and 229 nm every 0.5 s for 120 s and averaged. The free energy of

unfolding (DGunfolding) of wild-type and mutant PrP at pH 7 were

computed by fitting the data to a 2–state (NRU) transition model.

The proportion of b-state was determined using the method

described by Khan et al. [27].

Time-resolved Size Exclusion Chromatography and
Circular Dichroism
Concentrated stocks (100 mM) of wild-type rabbit and hamster

PrPC and the double mutants S170N/S174N rabbit PrPC and

N170S/N174S hamster PrPC were dialyzed into 50 mM sodium

acetate pH 4.0, 80 mM NaCl, 0.5 mM EDTA. At t=0, the

concentrated protein stock was diluted to 10 mM and a final

concentration of 4 M urea. A 200 mL sample was immediately

injected onto a Superdex S200 10/30 column equilibrated in

identical buffer and run at 0.5 ml/min while monitored using the

absorbance at 280 nm. Additional samples of 200 mL were

injected at indicated time intervals. At t = 0 and t = 4 hrs, CD

wavelength scans were performed on the urea diluted samples

using a 1 mm path length in a quartz cuvette between 205–

250 nm.

Results

Crystal Structures of S174N, S170N and S170N/S174N
Mutants of Rabbit PrPC 121–230
PrP from hamsters, a species quite susceptible to prion disease,

has asparagines at residues 170 and 174 of its amino acid

sequence, whereas rabbits, which are less susceptible to prion

disease, incorporate serine at the equivalent positions. In the

previously determined structure of wild-type rabbit PrPC 121–230

[27], the sidechain of S174 forms a hydrogen bond with the

backbone of N171 and vice versa, creating a hydrophobic staple

helix cap motif [34]. We hypothesized that these sequence

differences affect the formation of the helix-cap and consequently

Figure 1. Alignment of Hamster and Rabbit PrP 121–231 Amino Acid Sequences. The b22a2 helix cap is highlighted in blue and the
secondary structure locations are shown below.
doi:10.1371/journal.pone.0063047.g001
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the folding behavior of PrP, its refolding to the b-state, and thereby

its conversion to the infectious form.

To test this hypothesis, we introduced the single mutations

S170N and S174N as well as the double mutation S170N/S174N

into rabbit PrPC 121–230, successively changing the rabbit

sequence in the b22a2 loop to that of wild-type hamster PrPC.

Similarly, the single mutants N170S and N174S as well as the

double mutant N170S/N174S of hamster PrPC 121–231 were

constructed, to stepwise transform its b22a2 loop to the wild-type

rabbit PrPC sequence.

The structures of the S170N, S174N and S170N/S174N

mutants of rabbit PrPC 121–230 were solved by x-ray crystallog-

raphy to resolutions of 1.4 Å, 1.6 Å and 1.5 Å, respectively.

Unfortunately, exhaustive attempts to crystallize wild-type hamster

PrPC 121–231 and its three helix-cap mutants did not meet with

success.

The structures of the three rabbit PrPC 121–230 mutants show

the same dimeric arrangement of PrP in the asymmetric unit that

was observed in the wild-type structure published previously.

Electron density was observed for residues 126–230 in one chain,

whereas only residues 126–220 were visible in the other, most

likely the result of differences in crystal packing. The dimer

interface buries 1620 Å2 of surface area and involves 17

intermolecular hydrogen bonds and 6 salt bridges. Although a

dimeric PrP has not been unequivocally identified under ‘‘native’’

solution conditions, the crystallographic arrangement is predicted

to be stable by PISA [35]. The overall folds of the three rabbit

PrPC 121–230 mutants (S170N, S174N and S170N/S174N) are

very similar to the wild-type structure. They all adopt the classic

PrPC-fold with three a-helices encompassing residues 143–157

(helix-1), 171–193 (helix-2), and 199–230 (helix 3) as well as a

small two-stranded, anti-parallel b-sheet consisting of residues

128–130 (b-strand 1) and 162–164 (b-strand 2). Comparing the

wild-type rabbit PrPC 121–230 and the S170N, S174N and

S170N/S174N mutants, the r.m.s.d. between all four structures is

0.51Å for all backbone atoms.

The b22a2 loops in the three mutant structures consist of

residues P165–N171 and are followed by the first turn of helix-2

Table 1. Data collection and refinement statistics for the crystal structures of S170N, S174N and S170N/S174N mutants of rabbit
PrPC 121–230

Data Statistics S174N S170N DBL

Space group P212121 P212121 P212121

Cell constants

a (Å) 29.6 29.5 29.5

b (Å) 86.3 86.1 86.4

c (Å) 87.1 87.0 87.1

Resolution (Å) 30–1.5 (1.60–1.50) 60–1.45 (1.50–1.45) 60–1.60 (1.70–1.60)

Overall reflections 174,057 (30,353) 300,690 (8,742) 216 428 (35,877)

Unique reflections 36,582 (6,321) 39,174 (2,798) 30,243 (4,938)

Redundancy 4.8 (4.8) 7.7 (3.1) 7.2 (7.3)

Completeness (%) 99.8 (99.9) 97.3 (73.2) 99.7 (99.4)

R mergeb 11.6 (46.0) 5.9 (53.8) 7.9 (37.2)

,I./sI 17.6 (4.6) 24.3 (3.6) 23.0 (5.3)

Refinement Statistics

Final Rcryst (%) 14.7 14.6 15.5

Rfree (%) 19.3 18.0 20.7

Solvent (%) 40.1 39.9 40.1

No. of protein molecules 2 2 2

No. of all atoms 1888 1954 1892

No. of water molecules 148 186 126

No. of sodium ions 3 6 2

No. of chloride ions 2 2 3

Average B-factor (Å2) 15.8 18.2 20.8

Ramachandran plot

Most favorable 99.5% 99.5% 98.9%

R.M.S.D. from ideal geometry

Lengths (Å) 0.016 0.016 0.013

Angles (u) 1.532 1.731 1.505

aValues in parenthesis are for the outer shell.
b
R=ghklgi|Ii(hkl) – [I(hkl)]|//ghklgiI(hkl), where I(hkl) is the intensity of reflection hkl, ghkl is the sum over all reflections and gi is the sum over i measurements of
reflection hkl.
c
R=ghkl||Fobs| – |Fcalc||/ghkl|Fobs|, where Fobs and Fcalc are the observed and calculated structure-factor amplitutes, respectively.
Rfree is calculated for a randomly chosen 5% of reflections that were not used for structure refinement and Rwork is calculated for the remaining reflections.
doi:10.1371/journal.pone.0063047.t001
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formed by residues Q172–F175. Similar to the wild-type, residues

N167–169 form a 310-helical turn in all three mutants. In wild-

type rabbit PrP, the side chain carbonyl oxygen of N171 hydrogen

bonds to the backbone amide of S174 and the side chain hydroxyl

of S174 interacts with the backbone carbonyl oxygen of N171.

These reciprocal interactions, flanked by the hydrophobic

interactions of Y169 and F175, form the basis for the hydrophobic

staple helix-cap. This arrangement is altered in the S170N rabbit

PrPC structure with the side-chains of the mutant N170 and S174

no longer interacting with N171 to form the helix-cap. The

electron density surrounding the N170 sidechain is fairly weak

suggesting it may be disordered (Fig. 2 and Fig. S1B). The

sidechain amide and backbone carbonyl of N171 can hydrogen

bond with the sidechain hydroxyl oxygen and backbone amide of

S174, respectively. In the crystal structure of the rabbit S174N

mutant PrPC, the mutated N174 no longer hydrogen bonds with

the backbone of N171, ablating the reciprocal interactions forming

the helix cap and leaving the backbone of N171 exposed to solvent

(Fig. 2 and Fig. S1C). The structure of the rabbit S170N/S174N

double mutant PrPC shows the features of both mutants with N170

remaining disordered as it is in the S170N mutant and N174 no

longer hydrogen bonding to N171 (Fig. 2 and Fig. S1D), adding

up to the same loss of helix cap-forming interactions found in the

single S174N rabbit PrPC mutant. Changing residues in the

b22a2 loop in rabbit PrPC to those of hamster PrPC causes key

interactions in the helix-cap to be lost. Our inability to crystallize

hamster PrP carrying mutations to the corresponding rabbit

amino acids prevented us from testing whether a helix-cap could

be introduced into hamster PrPC. However, we did seek to

determine if these N170S, N174S, and N170S/N174 mutations

would affect the stability and b-state refolding behavior of hamster

PrP.

Urea Induced Unfolding of Wild-type and Mutants of
Rabbit and Hamster PrPC

The presence of helix-caps at the N-termini of a-helices

compensates for the decreased stability caused by exposure of

backbone amide groups to solvent. Therefore, we hypothesized

that the presence or absence of the helix-cap in rabbit and hamster

PrPC 121–231 would have a corresponding effect on their free

energies of unfolding. We performed urea melts on the wild-type

PrPC 121–231 of rabbit and hamster as well as on the three helix-

cap mutants of each of the two proteins (Fig. 3). We found that

wild-type rabbit PrPC 121–230 is significantly more stable than

hamster PrPC with free energies of unfolding of 6.51 and 5.6 kJ/

mol, respectively (Table 2). The S170N single mutation reduced

the rabbit PrPC DG of unfolding to 5.9 kJ/mol, while the S174N

change and the S170N/S174N double mutant displayed DGs of

5.45 and 5.7 kJ/mol, respectively (Fig. 3A). Conversely, aspara-

gine to serine mutations in the hamster PrPC sequence (Fig. 3B)

increased the free energies of unfolding to 5.9 and 6.5 kJ/mol for

mutants N170S and N174S, respectively. The N170S/N174S

double mutant showed an additive effect with a DG of 6.8 kJ/mol

(Table 2). These data support our hypothesis that introducing

serine residues into positions 170 and 174 of hamster PrPC,

residues that are involved in the helix-cap motif in rabbit PrPC,

increase the protein’s stability; conversely, their replacement with

Figure 2. Representative structure of S170N, S174N and S170/S174N mutants of rabbit PrPC 121–230. All three structures have the
typical PrP fold of three a-helices and a small two-stranded b-sheet. All three structures displayed only 0.5 Å2 root-mean-squared deviation between
equivalent Ca positions when compared to each other and to wild-type. Insets: close-up views of the residues forming the helix-cap in the wild-type
and their equivalents in the three mutant structures of rabbit PrPC 121–231. The reciprocal interactions between the backbone and side chains of
S170 and S174 in the wild-type are ablated in the S174N and S170N/S174N mutant structures. The side chain of the mutant S170N is solvent exposed
and disordered, but may weakly interact with the neighboring N171.
doi:10.1371/journal.pone.0063047.g002
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Figure 3. Urea-induced unfolding curves of wild-type and helix-cap mutants of rabbit and hamster PrPC 121–230. Samples of wild-
type and helix-cap mutants of hamster and rabbit PrPC 121–230 were diluted to 10 mM in 50 mM sodium phosphate pH 7.0 with indicated
concentrations of urea and incubated at room temperature for 72 hours. The proportion folded was then determined by measuring ellipticity by
circular dichroism at 220 nm and normalizing between folded and unfolded baselines. A) In Hamster PrPC, the mutations of N170S and N174S caused
a moderate increase in the free energy of unfolding of hamster PrPC whereas the N170S/N174S double mutation showed an additive effect. B) In
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asparagine residues in the rabbit PrPC sequence will decrease the

stability of this protein.

b-State Propensity Measurements
Previous work in our lab has shown that species differences in

the sequence of PrP can affect the propensity of PrP to populate

the b-state upon incubation at low pH in the presence of urea. We

decided to test whether the mutations we had made in the b2–a2

helix-cap also had these effects in rabbit and hamster PrP (121–

231).

We find that wild-type rabbit PrP (121–230) does not form the

b-state at pH 5.0 (Fig. 4A) and forms a maximum of 42.8% b-state

at pH 4.5 (Fig. 4B); compared to wild-type hamster PrP, which

reaches 96% and 100% b-state at pH 5.0 and 4.5, respectively

(Fig. 4C and D).

Introduction of the single mutations S170N and S174N and the

double mutation S170N/S174N into rabbit PrP each cause

respective increases in the b-state propensity of PrP. At pH 5.0, no

b-state forms in the S170N mutant, whereas the S174N rabbit PrP

begins to form the b-state to a maximum of 12.6% and the

S170N/S174N double mutant forms a maximum of 37% (Fig. 4A).

At pH 4.5, the S170N and S174N single mutants form 54% and

66.6% b-state and the double mutant sees a larger increase to

84.9% b-state (Fig. 4B).

Conversely, introduction of mutations into hamster PrP cause a

decrease in the population of b-state PrP at low pH. While the wild

type hamster PrP displays 100% b-state at pH 5, the single N170S

and N174S mutations show a decrease to 76.4% and 66.9% b-

state respectively, whereas the double mutant N170S/N174S

reaches a maximum of 61.3% (Fig. 4C). At pH 4.5, all three

hamster PrP mutants reach 100% b-state but there are slight

differences in the urea concentration at which the b-state begins to

form indicating differences in the stability of the PrPC state of these

mutants or their ability to form the b-state (Fig. 4D). These results

demonstrate that single site mutations in this helix cap motif in PrP

affect the b-state propensity PrP, and the mutations have an

additive effect.

Time-resolved Size-exclusion and Circular Dichroism
Previously we showed that the b-state of PrP consists of a

mixture of b-state monomers and b-state octamers [27]. In order

to determine whether species differences and mutations in PrP

have an effect on the formation of b-state monomers and

octamers, we monitored their proportions kinetically using circular

dichroism and size-exclusion chromatography (SEC). Proteins at

100 mM concentration were dialyzed into their respective buffers

at pH 4.0 without urea. At t=0, they were diluted to 10 mM in

identical buffer but with 4M urea and injected onto the columns at

the indicated intervals.

Upon diluting the concentrated stock into 4 M urea at pH 4.0,

CD wavelength scans of both the hamster wild-type and N170S/

N174S double mutant show them converting immediately to

primarily b-sheet secondary structure (Fig. 5). SEC elution profiles

of both show nearly 100% monomer at t=0 which converts to a

maximum 78% octamer in the wild-type and 65% octamer in the

hamster double mutant after 4 hours; no intermediate species were

detected (Fig. 6A). The extent of octamer assembly is slightly lower

in the double mutant compared to the wild-type hamster PrP. The

CD-signals for both the wild-type hamster and double mutant do

not change significantly over the course of 4 hours, indicating

constant b-structure (Fig. 5).

Similar to hamster PrP, both the wild-type and S170N/S174N

rabbit PrP convert to primarily b-sheet secondary structure

immediately after dilution to 10 mm PrP in 4 M urea (Fig. 5).

However, the SEC elution profiles indicate that the assembly of b-

state monomers into b-octamers is significantly slower in rabbit

wild-type and double mutant compared to the hamster constructs

(Fig. 6B). Both rabbit wild-type and double mutant at t=0

remained monomeric, indicating that initially these both exist as b-

state monomers. Over time the proportion of octamers in both the

wild-type and double mutant increases, to a maximum of 33%

after 4 hours; again no intermediate species were detected. In

contrast to what had been seen with wild-type and mutant hamster

PrP, rates and extent of b-octamer formation did not differ for

wild-type and S170N/S174N rabbit PrP.

These results confirm our earlier observation that the b-state of

PrP consists of mixtures of b-sheet-rich monomer and octamer. In

addition, we observed that the extent of assembly of b-state

monomers into octamers differs between species and that

mutations in the sequence of PrP can influence these transforma-

tions.

Discussion and Conclusions

Comparison of Rabbit PrP 121–231 Crystal Structures to
other PrPC Structures
The crystal structures of the S170N, S174N, and S170N/

S174N mutants of rabbit PrPC (121–231) show that hydrogen

bonding interactions observed in the helix-cap of wild-type rabbit

PrPC can be removed by mutating the serine residues involved.

Few mammalian species have serine at position 174 of their PrP

sequence; pigs are one of them and, interestingly, also display a

low susceptibility to prion disease. Many susceptible species have

asparagine at positions 170 and 174; by mutating the rabbit PrPC

serines to asparagines we have shown that interactions involving

serine-174 in the rabbit PrPC helix-cap are disrupted suggesting

that this motif may be absent in PrPC from species that are more

susceptible to prion disease. In support of this idea, Vorberg et al.

Rabbit PrPC, the mutation of S170N caused a small drop in the free energy of unfolding whereas for the mutations of S174N and S170N/S174N the
decrease was more significant.
doi:10.1371/journal.pone.0063047.g003

Table 2. Free energy of unfolding of wild-type rabbit and
hamster PrPC 121–231 as well as S170N, S174N, S170N/S174N
mutants of rabbit PrPC 121–230 and N170S, N174S, and
N170S/N174S mutants of hamster PrPC.

Species/Mutation DGunfolding DDG vs. WT m Urea K

Hamster WT 5.6860.12 – 21.1260.02 5.0960.15

Hamster N170S 6.0860.20 +0.4 21.1160.04 5.5060.26

Hamster N174S 6.4160.22 +0.7 21.1060.04 5.7760.29

Hamster DBL 6.8460.21 +1.1 21.1360.03 6.0560.26

Rabbit WT 6.1860.22 – 21.0260.04 6.0460.31

Rabbit S170N 6.0560.21 20.2 21.0660.04 5.7360.28

Rabbit S174N 5.6060.13 20.6 21.0860.02 5.1660.17

Rabbit DBL 5.8960.15 20.3 21.1360.03 5.2360.19

doi:10.1371/journal.pone.0063047.t002
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showed that the N173S mutation in mouse PrP (equivalent to

rabbit residue 174) imparts resistance against the RML strain of

scrapie prions in a neuroblastoma cell culture model [11].

However, the PrP sequence from elk, a species susceptible to

chronic wasting disease, incorporates N170 and T174. Expression

of the S170N/N174T mutant using a mouse model showed an

increase in prion disease susceptibility [19]. This indicates that the

presence or absence of S174 and its role in the helix cap may play

a role in infectivity.

Structural differences within the b2–a2 loop of various PrPC

proteins had already been observed when their first structures

were determined. Differences in the mobility involving the b2–a2

loop were described comparing the NMR structures of mouse and

hamster PrP [13,36], which contained mobile and rigid b2–a2

loops, respectively. Gossert et al. showed that the structure of elk

PrPC incorporated a rigid b22a2 loop, which could be introduced

into mouse PrP by mutating the mouse N173 to threonine

(equivalent to 174 in other species) [16]. It was hypothesized that

the differences in mobility could be caused by differences in

hydrogen bonding within the b22a2, loop but no specific bonds

could be assigned. Subsequent structural work has suggested that

the mobile or rigid loop may be a determinant in a species’

susceptibility to prion disease [17,37]. A recent NMR structure of

rabbit PrPC showed differences in stability and hydrogen bonding

Figure 4. b-state propensity measurements of wild-type and helix-cap mutants of rabbit and hamster PrPC 121–230. Samples were
diluted to 10 mM in sodium acetate buffer at pH 5.0 or pH 4.5 with indicated concentrations of urea. After 72 hr incubation, the proportion of b-state
was determined using the two-wavelength CD method (see Materials and Methods). (A) In hamster PrP at pH 5.0, the helix-cap mutations cause a
decrease in the b-state population from 96% in the wild-type to 76%, 67%and 61% in the N170S, N174S and the N170S/N174S mutants, respectively.
(B) At pH 4.5, the wild-type and helix-cap mutants all eventually populate the b-state to 100%, but to reach it they require increased urea
concentrations. (C) In Rabbit PrP at pH 5.0, only the S174N and S170N/S174N mutants begin to populate the b-state to 15% and 35%, respectively.
(D) At pH 4.5, the helix-cap mutations S170N, S174N and S170N/S174N cause an increase in the maximum b-state populations to 54%, 67%, and 85%,
respectively, compared to 43% in the wild-type. Overall error of 4.5% was estimated from the difference between observed and fitted values.
doi:10.1371/journal.pone.0063047.g004
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throughout the molecule when Ser 174 is mutated to Asn, but no

specific change in interactions involving the residue where

detected [38].

Our structures and biophysical characterization of the wild-type

and helix cap mutants of rabbit and hamster PrP have identified a

structural motif that clearly affects the folding behavior of PrP.

Other recent studies have found additional features of rabbit PrP

that may also contribute to the reduced susceptibility of rabbits to

prion disease. Amino acid differences present in the C-terminus of

rabbit PrP have also been shown to interfere with PrPSc formation

[39] and molecular dynamics simulations have suggested that salt

bridges between D177-R163 and D201-R155 may increase global

stability, preventing conversion to PrPSc [40,41]. Further under-

standing of the relationship between these features and species

susceptibility in vivo would provide insight into a biophysical

mechanism of the convesion of PrP to the infectious form and the

pathogenesis of prion disease.

Figure 5. Circular dichroism wavelength scans of (A) wild-type hamster PrP 121–231, (C) hamster PrP 121–231 N170S/N174S, (B)
wild-type rabbit PrP 121–230, (D) rabbit PrP 121–230 S170N/S174N. At t= 0, samples of 100 mM PrP in 50 mM sodium acetate pH 4.0,
80 mM NaCl were diluted to a final PrP concentration of 10 mM and 4 M urea in identical buffer. Circular dichroism wavelength scans were then
performed at t = 0 and t= 4 hrs between 205–250 nm at 0.1 nm intervals. The CD spectrum of a-helical PrPC is included for comparison.
doi:10.1371/journal.pone.0063047.g005
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Effect of Mutations on b-state Propensity
The result of our urea denaturation experiments involving wild-

type rabbit PrP and several of its mutants show that disruption of

the helix-cap reduces the folding stability of PrPC. Conversely,

introduction of serine residues involved in the rabbit PrPC helix-

cap into hamster PrPC increases the latter’s stability. Although the

helix-cap could not be directly observed in the hamster PrP

mutants due to our inability to crystallize it, the observed increase

in stability similar to that of the wild-type rabbit protein makes its

presence probable. Interestingly, the scale of DDG caused by the

mutations (Table 2) is approximately the scale expected by the

gain or loss of a hydrogen bond, giving further weight to the idea

that this helix cap motif contributes to global stability. In addition,

the presence of residues involved in the helix-cap also affects the

propensity of rabbit and hamster PrPC (121-230) to populate the

b-state. Under conditions that promote b-state formation, amino

acid changes in the S170N, S174N and S170N/S174N mutants of

rabbit PrPC cause successive increases in the population of the b-

state at equilibrium, whereas the reverse mutations in hamster PrP

(N170S, N174S and N170S/N174S) cause successive decreases in

b-state population. This indicates that the helix-cap plays a role in

preserving the a-helical fold of PrPC and limits misfolding to the b-

state. Without a detailed structure of the b-state it is difficult to

speculate on how the helix-cap would affect its structure and

formation. However, it has been shown that in the urea induced

unfolding of PrP from various species, the b-sheet portion of PrPC

unfolds first, followed by helix-2 and 3 [42]. The helix-cap is

present at the junction between these two potions of PrPC and it

may in some inhibit their dissociation and formation of the b-state.

Our data provide clues into how sequence differences affect the

biophysical behavior of PrP. Determining the effects of mutations

and species differences on prion infectivity has been hampered by

the lack of detailed structural information regarding the infectious

form, PrPSc. To circumvent this, many groups have studied the

misfolding of PrP in vitro using the recombinant b-state of PrP. To

date, b-state PrP has not been shown to be infectious on its own

although complex procedures have been published that achieve

infectivity but require additional cofactors [43,44]. So, it is still

unclear how the b-state relates to the infectious form in vivo.

However, several similarities between the b-state and the

infectious form have been observed: The b-state is b-sheet rich

and oligomeric [20,21,23,24] as is the most infectious form of

PrPSc. It can also be protease resistant and toxic to cells in vitro

[22,25]. Previous work in our lab has shown that the propensity to

refold into the b-state also correlates to prion disease susceptibility

between species and we have now linked this finding to single

amino acid differences in the sequence of PrP, similar to what was

observed in vivo [9,10]. Although the b-state probably does not

represent an absolute replica of PrPSc, the observed similarities

argue that the b-state is well suited for study of PrP folding

behavior in vitro providing a basis to decide which observations are

the most promising candidates for testing in in vivo models.

Kinetics of Formation of the b-State and the Transmission
Barrier
Previous work has shown that the b-state of PrP proteins

consists of b-sheet-rich monomers that assemble into octamers

[27]. We also found that under b-state forming conditions both

PrPC 121–230 proteins from rabbit and hamster rapidly convert to

the b-state monomeric form. However, the rate and extent of

assembly of b-state monomers into octamers differs between

species and is also affected by single amino acid changes in the

helix-cap. This suggests that PrP from susceptible species

assembles into octamers more quickly and to a greater extent

than PrP from a resistant species, further supporting a connection

between the b-state propensity and the susceptibility of a given

species to prion disease.

Hypotheses regarding the transmission barrier have proposed

that the rate of conversion of PrPC to PrPSc plays an important

role in prion disease pathogenesis. In a recent publication,

Sandberg et al. report that prion disease pathogenesis occurs in

two stages, an accumulation of prion titer to a plateau phase

Figure 6. Time-resolved size exclusion chromatography analysis of wild-type and double helix-cap mutants of rabbit and hamster
PrP. At t=0, samples were diluted to a final PrP concentration of 10 mM in target buffer and immediately injected onto an S200 10/30 column.
Fractional concentrations of monomer and octamer were calculated; no intermediate species were detected.
doi:10.1371/journal.pone.0063047.g006
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followed by the onset of clinical symptoms [45]. Our data now

demonstrate that the PrP sequence from a given species can affect

the rate and extent of misfolding of PrP to the b-state and its

assembly into oligomers. This suggests that not only the level of

expression but also the rate of conversion of PrPC to PrPSc and the

latter’s accumulation may also affect the pathogenesis of prion

disease. PrPC from less susceptible species may have sequence and

structural features, such as the helix cap motif we have observed,

that reduce the rate and extent to which conversion occurs,

allowing the cell to compensate through proteolysis and clearance.

While PrPC from susceptible species, lacking such structural

motifs, may convert rapidly and efficiently to PrPSc, reaching

concentrations that bring about clinical symptoms.

Additional factors must also be taken into consideration. A

recent publication has demonstrated that although rabbits are less

susceptible to infection with PrPSc from other species, they are still

susceptible to prion disease albeit with a much lower attack rate

and longer initial pre-symptomatic incubation periods [46].

Additionally, infectious material isolated from infected rabbits is

able to re-infect other rabbits with a much higher attack rate and

shorter incubation time in an example of prion adaptation. This

demonstrates that although the sequence and structural features of

PrP can lower prion disease susceptibility, they may not lead to

complete immunity.

The effect of altered interactions within the helix-cap region on

the conversion of PrPC to the b-state suggests that this region plays

an important role in the mechanism of conversion of PrPC to

PrPSc. In the search for therapeutics and methods to prevent the

conversion of PrPC to PrPSc it should be beneficial to focus efforts

on regions such as the b22a2 loop that have been shown to affect

susceptibility to disease transmission.
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