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Uterine corpus endometrial carcinoma (UCEC) is a malignant disease that, at present, has no well-characterised prognostic
biomarker. In this study, two clusters were identified based on 28 N1-methyladenosine- (m1A-) related long noncoding RNAs
(lncRNAs), of which cluster 1 was related to immune pathways according to the results of an enrichment analysis. We further
observed better prognosis in patients with higher levels of immune cell infiltration, tumor mutation burden, microsatellite
instability, and immune checkpoint gene expression. In addition, through Cox regression analysis and least absolute shrinkage
and selection operator regression analysis, 10 m1A-related lncRNAs (mRLs) were employed to build a prognosis model. We
found that people in higher risk categories had a poorer survival probability than those in lower risk. Low-risk samples were
enriched with immune-related pathways, while the high-risk group was similar to the definition of the “immune desert”
phenotype, which was associated with decreased immune infiltration, T cell failure, and decreased tumor mutation burden,
while also being insensitive to immunotherapy and chemotherapy. This mRL-based model has the ability to accurately predict
the prognosis of UCEC patients, and the mRLs could become promising therapeutic targets in enhancing the response of
immunotherapy.

1. Introduction

The morbidity and mortality of UCEC are continually rising,
as there were 417367 new cases and 97370 deaths in 2020
[1]. The prognosis of most patients is good in early stages
[2]; however, once metastasis occurs, the survival rate is sig-
nificantly reduced [3]. Traditional prediction methods for
assessing the progress and prognosis of UCEC have proven
to be inaccurate [4]; therefore, establishing a prediction
model to provide a new prognostic signature for UCEC is
required urgently. “Cold tumor” is an immune failure type
associated with T cell failure and poor immunotherapeutic
effect [5]. Effectively identifying a hot tumor and altering

cold tumor to hot tumor will improve the effect of immuno-
therapy [6].

RNA methylation involves widely taking part in RNA
post transcriptional modification, and its imbalance is asso-
ciated with the genesis of malignant cancers [7]. m1A is a
new RNA post transcriptional modification [8]. We know
little about its impact on tumor development and its biologic
mechanisms, although a previous study has observed the
imbalance of m1A-related enzymes in gastrointestinal tumor
samples [9]. lncRNAs are a new encoding RNA, which are
widely involved in the development of cancer, cardiovascu-
lar disease, and diabetes [10]. lncRNAs can take part in
tumor growth and metastasis through transcriptional and
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post transcriptional mechanisms [11]. Recently, it has been
found that lncRNAs may feature an abnormal expression
in UCEC and many other cancers [12, 13].

In this study, we identified 10 m1A-related lncRNAs
(mRLs) that can be used as prognostic signatures of UCEC,
verifying that this model can judge the prognosis of UCEC
and offer a rationale for their therapy.

2. Materials and Methods

2.1. Data Acquisition. RNA sequencing transcription data,
somatic mutation (VarScan version), and clinical data of
UCEC patients were gathered from The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/)
[14]. Samples with missing overall survival (OS) values and
no clinical follow-up information were excluded. A total of
511 UCEC samples and corresponding clinical profiles, such
as age, stage, grade, and histological type, were applied for
further study (Table S1). All the samples were separated
into a training and testing set by the 1 : 1 ratio randomly
through the “Caret” package. The information of
clinicopathological features is shown in Table S1.

2.2. Identification of m1A-Related Genes (mRGs) and mRLs.
Ten mRGs (TRMT10C, TRMT61B, TRMT6, TRMT61A,
ALKBH1, ALKBH3, YTHDF1, YTHDF2, YTHDF3,
YTHDC1) were obtained from previous studies [9]. The
expression data of mRGs and mRLs was gathered from the
TCGA database. In light of the Pearson analysis, we identi-
fied 621 mRLs which correlated with mRGs. The inclusion
criteria was |r|>0.4 and P < 0:001. Then, univariate regres-
sion analysis was used to find mRLs with a potential prog-
nostic value of UCEC (Table S2). The heat map showed
the expression of 28 mRLs, and the box plot showed the
distinctions in their expression between tumors and
normal samples.

2.3. Unsupervised Consensus Clustering Analysis. Through
the “ConsensusClusterPlus,” package we constructed a con-
sistency cluster consisting of 28 mRLs [15]. The clustering
divided the samples into multiple different groups according
to the provided characteristics. The number of possible clus-
ters (k) was defined in the range of 2 to 9 in order to avoid
excessive numbers of groupings that would not be clinically
useful.

2.4. Establishment of the mRL-Based Model (MRLM). The
entire TCGA set was randomly assigned into two subtypes,
and the MRLM was constructed in light of the training
group, with the entire set and testing set being employed
to test the MRLM. The R package “glmnet” was employed
to conduct least absolute shrinkage and selection operator
(LASSO) regression, which showed that the expression level
of 10 mRLs had correlation with OS in UCEC patients. A
prognostic model in light of the 10 mRLs was then estab-
lished. The risk score was achieved in line with the formula
as follows: risk score = β1 × lncRNA1 + β2 × lncRNA2 +⋯+
βn × lncRNAn, where βn represents the coefficient of
lncRNAs related to survival.

2.5. Quantitative Real-Time Reverse Transcription-
Polymerase Chain Reaction (qRT-PCR). lncRNAs from
UCEC and normal tissues were extracted using the TRIzol
reagent (Invitrogen). Before, with regard to reverse tran-
scription to cDNA, a 4x GDNA wiper mix (vazymer323-
01) was applied to remove residual genomic DNA from
the total lncRNA. Complementary lncRNA was synthesised
through a PrimeScript RT reagent kit. Real-time quantifica-
tion was conducted through the SYBR Premix Ex Taq Kit
(TaKaRa DRR041). The relative expression level of the target
gene was standardised by the GAPDH and 2-△△Ct method.
The qRT-PCR primers are listed in Table S3.

2.6. Analysis of Protein Expression.We used the Pearson cor-
relation analysis method to find m1A RNA corresponding to
the 10 mRLs before downloading the expression files of m1A
methylated proteins from UALCAN (http://ualcan.path.uab
.edu). UALCAN is an open platform that contains cancer
genomics, transcriptomics, and proteomics data [16, 17].

2.7. Evaluation of Predictive Ability of the MLRM. In the
light of the median value of the risk score, the samples were
separated into two subgroups: a high-risk group and a low-
risk group [18]. Kaplan-Meier was used to evaluate OS [19,
20]. The principal component analysis (PCA) showed the
ability of our model to distinguish patients into different
UCEC subtypes [21].The distribution of clinical characteris-
tics between the subtypes was displayed by the “pheatmap”
R package. Univariate and multivariate Cox regression anal-
yses were employed to evaluate whether the risk score was
an independent predict factor of UCEC. Other models were
built based on a multivariate Cox regression analysis, while
ours was constructed through a LASSO regression analysis.
In order to make them comparable, we employed a multi-
variate Cox regression analysis to calculate the risk score of
each sample. The corresponding genes were incorporated
into the four models, and the ROC curve was then drawn.
The samples were divided into a high-risk group and a
low-risk group according to the median risk score.

2.8. Constructing and Verifying a Predictive Nomogram. In
light of the risk score and clinicopathological characteristics,
a nomogram was established. A correction curve, calculated
through a Hosmer-Lemeshow test, verified that the actual
results were consistent with the predicted results [22]. The
area under the curve (AUC) and the receiver operating char-
acteristic (ROC) curve were employed to calculate the diag-
nosis and prognosis value of clinical characteristics [23].

2.9. Enrichment Analysis. Gene set enrichment analysis
(GSEA) was employed to conduct an enrichment analysis
of two clusters and two risk groups. By aggregating gene
expression changes into gene sets, users can achieve enrich-
ment scores which allow them to deeply understand how
biological pathways and processes have been influenced
[24]. Here, we showed the first five terms of the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis.

2.10. Analysis of Immune Cell Features. CIBERSORT can
quantitatively evaluate immune cell components from
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complex gene expression data in tissues [25]. Via CIBER-
SORT (http://cibersort.stanford.edu/), our study analysed
the composition and infiltration level of 21 invasive
immune cells.

2.11. Assessment of Tumor Microenvironment (TME). “ESTI-
MATE” is a new algorithm that utilises the features of the
tumor tissue transcription spectrum to infer stromal cells
and immune cells in malignant tumor tissues [26]. This
exploration was conducted using the R package “estimate,”
and the score reflected the ratio of immune and stromal
components in TME [27]. Single-sample gene set enrich-
ment analysis (ssGSEA) was used to verify the differences
of immune cells and immune function between the groups.
ssGSEA worked at the single sample level and was an exten-
sion of the GSEA method [28].

2.12. Comparison of Cancer Stem Cells (CSCs). CSCs have
the potential for self-renewal and differentiation, making
them crucial in the occurrence and treatment of cancers.
The mRNA expression-based stemness index (mRNAsi)
describes the similarity between tumors and stem cells,
which is a quantitative form of CSC. UCEC samples
achieved from TCGA were used for comprehensive analysis
to obtain the differences in mRNAsi among groups [29].

2.13. Prediction of Immunotherapy Response. Induced plu-
ripotent stem cells (IPS), ranging from 0 to 10, were evalu-
ated in the light of the gene expression Z score, with
higher IPS representing higher immunogenicity [30]. The
results were downloaded from The Cancer Imaging Archive
(TCIA) database [31]. Tumor mutation burden (TMB) indi-
cates the number of somatic mutations in the genome
sequence, which can be employed to screen patients who
have a higher probability of response to immune checkpoint
inhibitors (ICIs) [32]. Microsatellite instability (MSI) refers
to the change of allele size between tumor tissue and its
corresponding normal tissue. Profiles of MSI were also
downloaded from the TCIA database, while genomic muta-
tion data was gathered from the TCGA database. We used
GISTIC_2.0 to identify significant amplification and deletion
on chromosomes and to obtain the GISTIC score. The bur-
den of copy number variation (CNV) gain or loss was eval-
uated by GenePattern (https://cloud.genepattern.org) [33].

2.14. Analysis of Drug Sensitivity. The R package
“PRROPHIC” was applied to evaluate the half maximum
inhibitory concentration (IC50) of four chemotherapeutics
in two risk groups [34]. The connectivity map is an impor-
tant database in the field of pharmacogenomics which is
aimed at finding the functional relationship between drugs,
genes, and diseases through gene expression [35]. In order
to explore the mechanism of action (MoA) and drug targets
in more detail, we used a connectivity map (CMap) to con-
duct further analysis (https://clue.io/) [36].

2.15. Statistical Analysis. Statistical tests were conducted in
light of R version 4.1.0. Statistical significance was defined
as P < 0:05. The distinction between the two subgroups
was calculated by a Student t-test and variance analysis. A

Kaplan-Meier analysis was applied to compare the OS differ-
ences between the groups.

3. Results

3.1. Identification of Prognostic mRLs. Figure S1 shows the
flow chart of our study. The expressed information of 10
mRGs and lncRNAs were downloaded from the TCGA
database. lncRNAs closely related to at least one of the 10
mRGs were considered to be mRLs, with 621 mRLs being
identified (Figure S1B shows the network of 10 mRGs and
621 mRLs). Finally, the Sankey diagram in Figure S1C
visualises the m1A-lncRNA coexpression network.
Figure S1D performs the correlation between m1A genes
and mRLs in TCGA.

Combined with clinical information, 511 samples were
obtained and distributed to training and testing sets. Through
univariate regression analysis on the training set, we identified
28 mRLs with a potential prognostic value of UCEC (BOLA3-
AS1, AC078883.1, AC093227.1, AC027319.1, AL078644.1,
AL049539.1, HM13-IT1, AL645568.1, NBAT1, FMR1-IT1,
LRRC8C-DT, AL133243.2, HMGN3-AS1, TPM1-AS,
AC006329.1, AP003096.1, NNT-AS1, AC074117.1, SOS1-
IT1, LINC01126, AL606763.1, AC092953.2, AL031667.3,
AL035530.2, AC114947.2, AC244517.7, AC244517.1, and
AC011466.1) (Figure S1B). The expression levels of these 28
mRLs were different between the UCEC and normal tissues
(Figures 1(a) and 1(b)).

3.2. Consistency Clustering Analysis. According to the simi-
larity ratio and fuzzy clustering measure, we identified that
the clustering stability will be best when k = 2. Figure S2A-
S2B visualise the change of consistency clustering and
cumulative distribution function (CDF) of AUC from k = 2
to k = 9. Consistency cluster and tracking plot also
performed that when k = 2, the clustering result is
satisfactory (Figure S2C-S2D). In light of k = 2, 511
samples were separated into two subtypes: cluster 1
(n = 409) and cluster 2 (n = 102).

3.3. Clinical Characteristics and Prognosis of the Two
Subtypes. The heat map showed the expressed level of 28
mRLs and the distribution of clinical characteristics in
the two subtypes (Figure 1(c)). Patients in cluster 2 are
older and at a more advanced stage, grade, and histologi-
cal type. In cluster 1, age ≤ 60 accounted for 42% and
age > 60 accounted for 58%, grade 1 and grade 2
accounted for 21% and grade 3 and grade 4 accounted
for 79%, patients belonging to the essential histological
type accounted for 81% and 19% belonged to the mixed
and serous type, and stage I and stage II accounted for
78% and stage III and stage IV accounted for 22%. Alter-
natively, in cluster 2, age ≤ 60 accounted for 28% and
age > 60 accounted for 72%; grade 1 and grade 2
accounted for 4% and grade 3 and grade 4 accounted for
96%; patients belonging to the endogenous histological
type accounted for 51%, while patients belonging to the
mixed and serial type accounted for 49%; and stage I
and stage II accounted for 52% and stage III and stage
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Figure 1: Continued.
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IV accounted for 48% (Figures 1(d)–1(g)). At the same
time, patients in cluster 2 had lower OS and disease-free
survival (DFS) than those in cluster 1 (P < 0:001)
(Figures 1(h) and 1(i)).

3.4. Cluster 1 Had Higher Infiltration Level of Immune Cells.
Cluster 1 was enriched with a chemokine signaling pathway,
complement and coagulation cascades, a cytokine, a cyto-
kine receptor interaction, and an intestinal immune network
for IGA production and natural killer cell-mediated cytotox-
icity (Figure 2(a)). Cluster 2 was enriched with a cell cycle,
DNA replication, homologous recombination, mismatch
repair, and P53 signaling pathway (Figure 2(b)). We then
evaluated the fraction of 21 tumor immune infiltration cells

in the two clusters (Figure 2(c)). Regulatory T cells (Tregs)
and neutrophils had a higher fraction in cluster 1 than in
cluster 2, while memory-activated CD4 T cells, follicular
helper T cells, gamma delta T cells, and M1 macrophages
had a higher fraction in cluster 2. Immune score, stromal
score, and ESTIMATE score were all higher in cluster 1
(Figures 2(d)–2(f)), while the tumor purity of samples in
cluster 1 was lower than that of samples in cluster 2
(Figure 2(g)). The score of immune cells and immune func-
tion in cluster 1 was significantly higher than that in cluster
2 (Figures 2(h) and 2(i)). Both mRNAsi and EREG-mRNAsi
were higher in cluster 2, indicating that the degree of cell dif-
ferentiation was low and the characteristic of stem cells was
strong (Figures 2(j) and 2(k)). We then assessed the
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Figure 1: Different clinicopathological features and survival probability of the two UCEC subtypes. (a) Box plot of 28 mRL expressions in
normal and tumor tissues. (b) Heat map of 28 mRL expressions in normal and tumor tissues. (c) The different expressions of mRLs and their
clinicopathological features between the two clusters are shown by heat map. The proportions of age (d), grade (e), histological type (f), and
stage (g) between the two clusters were compared. (h) The OS rate of UCEC patients in the two groups was calculated by the Kaplan-Meier
curve. (i) Kaplan-Meier curves of disease-free survival for patients with UCEC in two clusters (cluster 1/2).
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expressed level of immune checkpoints between different
groups. The levels of PD1 and CLAT4 in tumors were signif-
icantly higher than those in normal tissues, and it was also
higher in cluster 1 than in cluster 2 (Figures 2(l) and
2(m)). After that, we further analysed the association
between PD1 and mRLs (Figure 2(n)). The association
between CTLA4 and mRLs was also assessed (Figure 2(o)).
In the TCGA cohort, the expressed level of PD1 was closely
correlated with BOLA3–AS1, AC078883.1, FMR1–IT1,
NNT–AS1, AC074117.1, LINC01126, AL606763.1,
AC244517.7, and AC244517.1. The result achieved from
IPS analysis showed that the score of IPS (P = 0:011), IPS_

ctla4 (P = 0:022), IPS_pdl1_pd1_pdl2 (P = 0:019), and IPS_
pdl1_pd1_pdl2_ctla4 (P = 0:002) was higher in cluster 1,
which meant that cluster 1 had higher immunogenicity
(Figure 2(p)).

3.5. Prediction of Immunotherapy Response. The survival
probability of cluster 2 was lower than that of cluster 1
(P < 0:001) (Figure 3(a)), while the survival probability of
patients with L-TMB in cluster 2 was lower than that of
other patients (P < 0:001) (Figure 3(b)), although there was
no statistical distinguishing factors in TMB and somatic
mutation nut between the subtypes (Figures 3(c) and 3(d)).
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MSI, another index to judge the effect of immunotherapy,
was lower in cluster 1 than in cluster 2 (P = 0:026)
(Figure 3(e)). The expression levels of mismatch repair
genes, MSH2, MSH6, and PMS2, which were involved in
the occurrence of MSI, were higher in cluster 2 than in clus-
ter 1 (P < 0:001) (Figures 3(f)–3(h)). The mutations of
PTEN, ARID1A, PIK3CA, POLE, TP53, and TTN can influ-
ence the OS of UCEC patients, while the survivability of
cluster 2 was lower (P < 0:001) (Figures 3(i)–3(n)).

3.6. Drug Sensitivity Analysis. Four common chemothera-
peutic drugs, cisplatin, doxorubicin, etoposide, and pacli-
taxel, showed higher etoposide sensitivity in cluster 1,
meaning that this cluster may be effective in the treatment
of chemotherapeutic drugs (Figures 3(o)–3(r)).

3.7. Establishment and Validation of the MRLM. A LASSO
Cox analysis was performed on 28 mRLs screened through
a univariate regression analysis (Figure S3A-3B), and 10
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Figure 3: Prediction of immunotherapy response and drug sensitivity. (a) The different survival probability of patients with different TMB.
(b) The survival probability of patients with different TMB in different clusters. The difference of TMB (c) and stochastic mutation nut (d)
between the clusters. Comparison of MSI (e), MSH2 (f), MSH6 (g), and PMS2 (h) between the clusters. The influence of mutations of PTEN
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mRLs with independent prognostic values were identified to
establish the model (Table S4). Figures 4(a)–4(c) show the
distribution of risk level between different risk subtypes.
The survival status and survival time of patients in the
groups are indicated in Figures 4(d)–4(f). Figures 4(g)–4(i)
show the relative expression criteria of 10 mRLs for every

patient. After that, qRT-PCR was used to compare the
difference of the mRL expression between normal and
tumor tissue (Figure S4). The results showed that
AC006329.1 and AC027319.1 had higher expression levels
in tumor tissues, while the expressions of AC011466.1,
AC093227.1, and BOLA3–AS1 were significantly higher in
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Figure 4: Predictive value of risk model constructed by mRL-indifferent patient sets. Training set (a), testing set (b), and entire set (c) were
divided into high- and low-risk groups according to the median risk score. Distribution of survival time and survival status between high-
risk group and low-risk group in training set (d), testing set (e), and entire set (f). The heat map of cluster analysis shows the expression
levels of ten mRLs in the training set (g), testing set (h), and entire set (i). Kaplan-Meier survival curve of OS in the low-risk group and
high-risk group in the training set (j), testing set (k), and entire set (l). Prediction sensitivity in the training set (m), testing set (n), and
entire set (o) in 1-3 and 5 years.
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normal tissues. Pearson correlation analysis found that 10
mRGs (TRMT10C, TRMT61B, TRMT6, TRMT61A,
ALKBH1, ALKBH3, YTHDF1, YTHDF2, YTHDF3, and
YTHDC1) had a strong correlation with at least one
lncRNA, which we used to build the model. Then,
expression profiles of m1A methylated proteins were
downloaded, with the results being shown in Figure S5. It
was noted that the protein expression of most of these
genes was different in normal tissues and UCEC tissues.
The results obtained from PCA indicated that the risk
score had greater discrimination for UCEC patients
(Figure S6). Survival analysis identified that the OS of low-
risk people was higher than that of high-risk patients
(P < 0:001) (Figures 4(j)–4(l)). As shown in Figures 4(m)–
4(o), the model had high prediction sensitivity, whether in
the testing set or training set. In the two clusters, the
expression of 10 mRLs was different, and the
corresponding survival probability was also significantly
different (P < 0:001).

3.8. The High-Risk Group Had More Advanced Symptoms
and Poorer Prognoses.We calculated the differences in clin-
ical characteristics between groups and plotted a heat map
(Figure S7A). Most cases in cluster 2 were at high risk.
Higher risk scores were correlated with older age, as well
as a more advanced stage, grade, histological type, and
lower immunity score (Figure S7B-S7C). The survival
probabilities of different clinicopathological characteristics
patients between the two groups were then compared
(Figure S7D). With different clinical characteristics, the
survival probability of the low-risk group was higher
than that of the high-risk group (P < 0:05), except in
patients with mixed and serous histological types. Lower

expression in AC027319.1 and AC078883.1 corresponded
to lower OS, while lower expression levels of BOLA3-
AS1, HMGN3-AS1, HM13-IT1, AC006329.1,
AC093227.1, and AL645568.1, AP003096.1 corresponded
to higher OS (Figure S7E).

3.9. Construction and Verification of Nomogram. A Cox
regression analysis of the testing, training, and entire set
showed that the risk score was an independent predicting
factor of UCEC (Table 1). For the purpose of evaluating
the prediction accuracy of MRLM, we compared the true
positive rates predicted by MRLM, clinical factors, and
the model in combination with the clinical factors, respec-
tively. The ROC curves of 1, 3, and 5 years have been per-
formed in Figures 5(a)–5(c). The AUCs of MRLM in the
three different years were 0.656, 0.749, and 0.769, respec-
tively, making them higher than the clinical characteristic
as a whole. It is worth mentioning that the prediction
effect of combining MRLM with clinical factors was better
(Figures 5(d)–5(f)). In order to verify the performance of
our model, we chose four other reported models to com-
pare, namely, a 5-gene signature [37], a 13-gene signature
[38], a 5-gene signature [39], and an 11-gene signature
[40]. To make the models comparable, we assessed the risk
score of each sample in all TCGA cohorts via a multivar-
iable Cox regression analysis. We then included the corre-
sponding genes in these four models and drew the ROC
curves. In all, the AUC of these models was lower than
that of MRLM (Figures 5(g)–5(k)). There were significant
differences between the prognosis of the high- and low-
risk groups of the models (Figures 5(l)–5(p)), and RMS
could evaluate the prediction effect at different time
points. Compared with other models, ours performed

Table 1: Univariate and multivariate Cox regression analyses of the prognosis-related factors.

Variable
Univariable model Multivariable model

HR HR.95L HR.95H P value HR HR.95L HR.95H P value

Training set

Age 2.2793 1.1469 4.5295 0.0187 1.4265 0.6649 3.0608 0.3618

Histological type 3.8830 2.1109 7.1428 0.0000 1.8967 0.9135 3.9380 0.0859

Grade 1.8751 0.7365 4.7743 0.1874

Stage 3.2663 1.7902 5.9595 0.0001 2.3633 1.2505 4.4661 0.0081

Risk score 1.3711 1.2493 1.5047 0.0000 1.2498 1.1156 1.4001 0.0001

Testing set

Age 1.4056 0.7379 2.6775 0.3004

Histological type 2.4898 1.3938 4.4478 0.0021 1.0610 0.5520 2.0393 0.8591

Grade 10.5898 1.4590 76.8649 0.0196 5.2309 0.6895 39.6869 0.1095

Stage 5.2467 2.8787 9.5624 0.0000 3.8063 1.9836 7.3039 0.0001

Risk score 1.1496 1.0695 1.2357 0.0002 1.0850 1.0042 1.1722 0.0388

Entire set

Age 1.7782 1.1121 2.8432 0.0162 1.5813 0.9755 2.5636 0.0630

Histological type 3.0435 2.0032 4.6242 0.0000 1.4812 0.9172 2.3921 0.1081

Grade 3.3631 1.4671 7.7097 0.0042 1.5113 0.6245 3.6574 0.3597

Stage 4.1162 2.7000 6.2754 0.0000 3.0580 1.9229 4.8634 0.0000

Risk score 1.2032 1.1424 1.2671 0.0000 1.1235 1.0563 1.1949 0.0002
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Figure 5: Construction and evaluation of a prognostic nomogram. The area under the ROC curve (AUC) of risk score and single clinical
characteristics in 1 year (a), 3 years (b), and 5 years (c). The AUCs of risk score combine with clinical characteristics in 1 year (d), 3 years (e),
and 5 years (f). ROC (g–k) and Kaplan-Meier curve (l–p) of our model and the other four published prediction models. (q) Restricted mean
survival time curves for all five prognostic risk models. (r) The C-index of our model is higher than other clinical features. (s) The
consistency index of 5 prognostic factors including risk score. (t–v) The calibration plot of the nomogram predicts the probability of the
1-, 3-, and 5-year OS.

17Oxidative Medicine and Cellular Longevity



0.0

0.2

0.4

0.6

En
ric

hm
en

t s
co

re

High risk Low risk

KEGG_CELL_CYCLE

KEGG_DNA_REPLICATION

KEGG_ERBB_SIGNALING_PATHWAY

KEGG_HOMOLOGOUS_RECOMBINATION

KEGG_MISMATCH_REPAIR

(a)

–0.50

–0.25

0.00

En
ric

hm
en

t s
co

re

High risk Loww risk

KEGG_ALLOGRAFT_REJECTION

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY

(b)

High Low

Clinical

–1
00

0
0

10
00

20
00

Im
m

un
e s

co
re

p<0.001

(c)

High Low

Clinical

–2
00

0
–1

00
0–

50
0

0
50

0

St
ro

m
al

 sc
or

e

p<0.001

(d)

High Low

Clinical

–3
00

0
–1

00
0

0
10

00
30

00

Es
tim

at
e s

co
re

p<0.001

(e)

High Low

Clinical

0.
6

0.
7

0.
8

0.
9

1.
0

1.
2

1.
1

Tu
m

or
 p

ur
ity

p<0.001

(f)

0.00

0.25

0.50

0.75

1.00

Sc
or

e

aD
Cs

B_cel
ls

CDB+_T_cel
ls

DCs
iD

Cs

Marc
rophage

s

Mast
_cel

ls

Neu
tro

phils

NK_cel
ls

pDCs

T_help
er_

cel
ls Tfh

Th
1_

cel
ls

Th
2_

cel
ls TIL

Treg

⁎⁎ ⁎⁎ ⁎⁎⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎nsns

(g)

0.25

0.50

0.75

1.00

Sc
or

e

APC_c
o_

inhibi
tio

n
APC_c

o_
sti

mulat
ion

Check
-po

int
Cyto

lyt
ic_

act
ivi

ty

HLA

In
flam

mati
on

-pr
om

oti
ng

M
HC_c

las
s_I

Para
inflam

mati
on

T_c
ell

_c
o-i

nhibi
tio

n
T_c

ell
_c

o-s
tim

ulat
ion

Typ
e_

I_I
FN

_re
sp

on
se

Typ
e_

II_
IFN

_re
sp

on
se

CCR

Risk

Low

High

⁎⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ns ns

(h)

High Low

Clinical

0.
4

0.
5

0.
6

0.
7

0.
8

1.
0

0.
9

ER
EG

-m
RN

A
si

p=0.07

(i)

High Low

Clinical

0.
2

0.
3

0.
4

0.
5

0.
7

0.
6

m
RN

A
si

p<0.001

(j)

Figure 6: The results of ESTIMATE, ssGSEA, and drug sensitivity analysis. (a) High-risk group was enriched with some tumor-related
pathways. (b) Low-risk group was enriched with immune-related pathways. The difference of immune score (c), stromal score (d),
ESTIMATE score (e), and tumor purity (f) in high- and low-risk groups. The difference of immune cells (g) and immune functions (h)
between the two risk groups. EREG-mRNAsi (i) and mRNAsi (j) expression in two clusters.
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fairly well (Figure 5(q)). The limited mean survival soft-
ware package was used to calculate the C-index of all
prognostic features, and the C-index of our model was
higher than that of other clinical features (Figure 5(r)).
According to the above results, we inferred that the risk
score evaluated by 10 mRLs had an accurate prognosis
ability. Through comparison with clinical characteristics,
the risk level of the MRLM performed an outstanding pre-
dicted value through a nomogram (Figure 5(s)). The cor-
relation diagram showed that the observed OS ratios in
1, 3, and 5 years were consistent with the predicted ratios
(Figures 5(t)–5(v)).

3.10. Estimation of TME and Response to ICI on the Base of
the PRLs. Through GSEA, it was found that the high-risk
group was enriched in some tumor-related pathways
(Figure 6(a)), while the low-risk group was mainly enriched
in some immune-related pathways (Figure 6(b)). Immune
cells and stromal cells are two crucial compositions of
TME. We assessed the immune cell (Figure 6(c)) and stro-
mal cell (Figure 6(d)) score in the two groups and added
them to obtain an ESTIMATE score (Figure 6(e)). The score
of patients at low risk was higher than that of patients at
high risk (P < 0:01). A higher ESTIMATE score indicated
lower tumor purity, which was consistent with our results
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Figure 7: The correlation between tumor-infiltrating immune cells and the model. (a) Violin plot shows the difference of the fraction of
each immune cells between the two risk groups. (b) The correlations between 21 tumor-infiltrating cells and mRLs. (c–k) The correlation
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(Figure 6(f)). There was also a distinction in immune cells
and immune function between the groups. The score of
immune cell and immune function in high-risk groups was
usually lower than that in low-risk groups (Figures 6(g)
and 6(h)). Both mRNAsi (P < 0:001) and EREG-mRNAsi

(P = 0:07) were higher in patients with a high-risk score,
indicating that the degree of cell differentiation was low
and the characteristics of stem cells was strong
(Figures 6(i) and 6(j)). We then compared the relative per-
centage of 21 tumor immune infiltrating cells in the two risk
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Figure 8: The correlations between immune checkpoint and risk score. The correlations between PD1 and risk score in the training set (a),
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groups (Figure 7(a)). There was a statistical distinction in
the expression of multiple immune infiltrating cells
between the two groups. Naive B cells (P = 0:005), follicu-
lar helper T cells (P = 0:003), M1 macrophages (P < 0:001),
and M2 macrophages (P = 0:006) had higher expression in
the high risk group, while CD8 T cells (P = 0:005), regula-
tory T cells (Tregs) (P = 0:001), gamma delta T cells
(P < 0:001) and activated NK cells (P = 0:004) had higher
expression levels in patients with low-risk scores. The
expression of these immune infiltrating cells was closely
related to mRLs (Figure 7(b)). After that, we assessed the
relationships between the MRLM risk score and immune
infiltrating cells. The risk score had positive relationships
with naive B cells (R = 0:17, P = 0:0081), M1 macrophages
(R = 0:26, P < 0:001), M2 macrophages (R = 0:22, P =
0:00063), follicular helper T cells (R = 0:2, P = 0:0016),
and gamma delta T cells (R = 0:27, P < 0:001), while it
had negative relationships with neutrophils (R = −0:2, P
= 0:0024), activated NK cells (R = −0:18, P = 0:0072),
CD8 T cells (R = −0:14, P = 0:036), and regulatory T cells
(Tregs) (R = −0:24, P = 0:00022), which showed that the
level of T cell infiltration was lower in the high-risk group
(Figures 7(c)–7(k)). The results suggested that the score of
MRLM could identify different features of immune cells.
We then calculated the relationships between the immune
checkpoint genes PDCD1 and CTLA4 and risk score
(Figures 8(a)–8(l)). In the three sets, PDCD1 and CTLA4
were negatively related to the risk. There were expression
differences between the risk groups, except in the training
set. The expression level of immune checkpoints in
patients with high-risk scores was low, and there may exist
T cell failure. IPS analysis showed that scores of IPS, IPS-
CTLA4, IPS-PD1-PD-L1-PD-L2, and IPS-PD1-PD-L1-PD-
L2-CTLA4 (P < 0:05) were higher in patients at low risk,
which also meant that low-risk patients were associated

with higher immunogenicity (Figures 8(m)–8(p)). In light
of the above results, we inferred that the high-risk UCEC
belonged to cold tumor and may have had a poor
response to immunotherapy.

3.11. Prediction of Immunotherapy Effect. Figure 9(a) shows
the distribution of risk score and survival status of the two
clusters. There were significant differences in TMB
between different risk groups (P = 0:00044), and it was
higher in low-risk patients (Figure 9(b)). TMB was nega-
tively correlated with the risk (Figure 9(c)). The OS of
the L-TMB group was low (Figure 9(d)). Meanwhile,
under different TMB, the high-risk group had a signifi-
cantly lower survival probability than the low-risk group
(Figure 9(e)). The waterfall plot indicated the mutation
information of genes with high mutation frequency in
the high- (Figure 9(f)) and low-risk groups (Figure 9(g)).
Microsatellite instability (MSI) was another tumor
immune marker reflecting on the effect of immunother-
apy. The expression levels of mismatch repair genes
MLH1, MSH2, MSH6, and PMS2 were lower in the low-
risk group (P < 0:001) (Figures 9(h)–9(k)). Figure 9(l)
shows the distribution of GISTIC scores calculated in light
of the frequency and amplitude of gain and loss on all
chromosomes in the high- and low-risk groups. Focal
amplification and deletion of different chromosome
regions was detected in both groups (Figures 9(m) and
9(n)). These results showed that the low-risk group had
relatively high immunogenicity, while the high-risk group
had relatively low immunogenicity. This meant that the
stability of MSI in patients with a low-risk score was
worse and the immunotherapy was effective. The somatic
mutation count was higher in the low-risk group, whether
in the training set, testing set, or entire set (Figure S8A-
S8C). Among the three sets, PTEN, ARID1A, PIK3CA,
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Figure 9: The relationship between immunotherapy response and survival. (a) The distribution of risk score and survival status of the two
clusters. (b) The differences of TMB between the two groups. (c) There were significant differences in TMB between the two groups. (d) The
survival probability of patients with different TMB. (e) The survival probability of patients with different TMB and risk scores. The mutation
information of genes with high mutation frequency in the high- (f) and low-risk groups (g). Comparison of MSI (h), MSH2 (i), MSH6 (j),
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POLE, and TTN had a higher mutation proportion of
patients with a low-risk score, while TP53 was the
opposite (Figure S8D-S8U).

3.12. Chemotherapy Drugs May Be More Effective in Low-
Risk Patients. Sensitivity analysis of four common chemo-
therapeutic drugs showed that cisplatin (P = 0:00014), doxo-
rubicin (P = 0:00017), and etoposide (P < 0:001) had higher
sensitivity in people with a low-risk score (Figures 10(a)–
10(d)). This meant that the effect of chemotherapy drugs
may cause better therapeutic efficacy in the low-risk group.

CMap identified potential compounds on the basis of differ-
entially expressed genes. Table S5 shows the top 20 drugs
that were identified. Through MoA analysis of 20
compounds, it was found that the above compounds had
11 action mechanisms (Figure 10(e)).

4. Discussion

Although the study of UCEC treatment has made some
progress [41], the mortality continues to rise, seriously
threatening women’s health. Many markers that can predict
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the prognosis of UCEC have been found [42]; however, so
far, there is no unified index. lncRNAs have the potential
to become immunotherapeutic targets and biomarkers for
a UCEC prognosis due to the characteristics of its high effi-
ciency, high tissue specificity, and high stability. More and
more evidence indicates that the uncommon expression of
lncRNAs may be associated with the occurrence and pro-
gression of a variety of kinks in tumors [43–48]. m1A is a
common form of RNA modification, and it has a crucial
effect on a variety of diseases, particularly in cancer [49]. It
has been observed that there were disorders of m1A-
related enzymes and a variety of genetic alterations in tumor
samples [9], and so it could be applied as a prognostic signa-
ture for gastrointestinal cancer and pancreatic cancer [50].
At the same time, m1A has an important effect on maintain-
ing the structure and function of noncoding RNAs
(ncRNAs) [51].

In order to explore whether m1A can be employed as a
sensitive molecular prognostic and diagnostic signature of
UCEC, the prognostic characteristics based on mRLs were
constructed and verified in this study.

Firstly, 10 mRGS were obtained from published articles,
all of which were related to RNA metabolism [9]. The role of
10 mRGS in UCEC has not been reported, but they were
related to the occurrence and development of some other
tumors to varying degrees [52–61]. We identified 28 mRLs
with a potential prognostic value of UCEC based on 10
mRGS combined with clinical data and statistical analysis.
There were significant expression differences between nor-
mal tissues and UCEC patients which had the potential to
distinguish the prognosis of UCEC patients.

Among the two subtypes divided by consistent cluster
analysis, the clinicopathological characteristics of patients
in cluster 2 were more serious: older, more advanced
stages, more serious histological types, and worse survival
probabilities. The outcomes of GSEA indicated that cluster
1 was enriched with immune-related pathways and cluster
2 was enriched with some tumor-related pathways.
Immune desert tumors usually have poor immune infiltra-
tion and lack preexisting antitumor immunity [62]. The
fraction of Tregs was lower in cluster 2, while the fraction
of macrophase M1 was higher than in cluster 1, in line
with the definition of the immune desert. Through further
analyses, we found that the immune infiltration level of
cluster 2 was lower than that of cluster 1, and the response
ability to PD1 and CLAT4 was weak. This may explain
why TMB and MSI, which reflect the effect of immuno-
therapy, suggested that cluster 2 had a poor response to
the treatment. Therefore, other methods would be required
for cluster 2 patients in clinical therapy. In addition, che-
motherapy was more suitable for patients in cluster 1. Cis-
platin, adriamycin, etoposide, and paclitaxel could be used
for patients in cluster 1, as these drugs have shown higher
sensitivity there and the therapeutic effect may be better.

Through LASSO regression of 28 mRLs, 10 mRLs with
independent prediction values were screened and applied
to build a prognostic model. There were statistical distinc-
tions in the 10 mRL-expressed levels between normal and
tumor tissues. The outcomes of qRT-PCR were similar to

the trends found in the TCGA dataset, which confirmed
the prediction ability of the MRLM to a certain degree.
The significant difference in the protein expression levels
of m1A that exists between normal tissues and UCEC tissues
once again illustrates the discrimination ability of the model,
while the survival probability corresponding to high expres-
sion and low expression was also different (except
AC011466.1). Beyond the testing set, training set, or entire
set, the OS of patients at low risk was better than that of
the high-risk group, which meant this MRLM had the
potential to predict the prognosis of UCEC patients. With
different clinical characteristics, the survival rate of patients
in the high-risk group was also lower than that of patients
in the low-risk group. Univariate and multivariate Cox
regression analyses indicated that risk score was an impor-
tant independent prediction factor for UCEC. The AUC
value of our model ranged from 0.66 to 0.86, indicating that
the prediction accuracy of the presented model was accept-
able. After combining clinical features, the prediction was
more accurate, suggesting that, in clinical practice, combin-
ing this model with clinical features can predict the progno-
sis of UCEC patients. The nomogram also suggested that
MRLM had better accuracy, and the prediction ability com-
bined with clinical factors would be superior.

GSEA indicated that low-risk samples were enriched
with immune-related pathways, while high-risk samples
were enriched with some tumor-related pathway. Immune
cell infiltration expression in UCEC was related to clinical
prognosis. In the high-risk group, the expressions of CD8
T cells, regulatory T cells (Tregs), gamma delta T cells,
and activated NK cells were low, and the expressions of
M1 macrophages and M2 macrophages were high. After
that, the analysis of the relationship between MLRM score
and immune infiltrating cells also indicated consistent
results. On the one hand, MLRM could distinguish differ-
ent characteristics of immune cells. The tumors of high-
risk patients had less T cell infiltration, indicating T cell
failure. Poor T cell infiltration in tumors was associated
with immune escape [63]. Decreased immune infiltration
and T cell failure met the definition of the “immune
desert” phenotype [64]. This phenotype reflects a lacking
of antitumor immunity and less response to ICI therapy
[65]. In other words, the immune monitoring function of
patients with high-risk score and cluster 2 was weakened,
which is conducive to immune escape, meaning the effect
of immunotherapy would be poor. Several studies have
indicated that TME, which tumor cell growth and survival
depend on, has had a crucial effect on tumor development.
The ESTIMATE scores, immune cells, and immune func-
tion scores of low-risk patients were high, which meant
better immune status and better prognosis. CSCs (cancer
stem cells) take part in tumor progression, treatment resis-
tance, and recurrence [50]. The low degree of cell differen-
tiation and the strong characteristics of stem cells indicate
that the disease may be more serious. In the future, we
can try to explore therapeutic targets with stem cell
characteristics.

Evaluating the response of ICI in terms of the character-
istics of TME cell infiltration was a crucial step in improving
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the reaction rate of ICI treatment and developing new
immunotherapy methods [66]. For the most part, the
expressed level of immune checkpoints in the low-risk group
was high, indicating that immunosuppressants acting on
immune checkpoints, such as PD1, can be employed to carry
out immunotherapy on low-risk groups. The above results
indicated that immunosuppressants acting on immune
checkpoints, such as PD1, could also be used for immuno-
therapy in patients who were low risk. In addition, such
patients had higher IPS, indicating higher immunogenicity.
The above results once again showed that the UCEC of
patients at high risk belonged to cold tumor and might have
a poor response to immunotherapy.

High TMB indicates a great curative effect of the PD-1/
PD-L1 blockade in tumors [67]. The TMB of the low-risk
group was higher than that of the high-risk group, and better
curative effects could be obtained through immunotherapy.
Not surprisingly, the results showed that the OS of UCEC
patients with L-TMB was low, similar to the conclusion of
previous studies [68]. MSI is another tumor marker reflect-
ing the therapeutic effect of ICIs. In comparison with MSS/
MSI-L samples, MSI-H samples had more immune cell infil-
tration and higher immunogenicity, significantly benefiting
from ICI treatment [69]. MSI in low-risk groups had poor
stability and a better effect on immunotherapy. In 2020,
the National Comprehensive Cancer Network clinical prac-
tice guidelines in oncology pointed out that pembrolizumab
was recommended for the second-line treatment of
advanced endometrial cancer with MSI-H/dMMR [70].
CNV is an important source of human genetic diversity that
is closely associated with many diseases through various
molecular mechanisms [71]. It often appears in many RNA
regulatory genes (such as genes related to m6A, m5C,
m1A, m3C, and m7G) [72]. Previous studies found that
CNV in m6A regulatory genes had a significant negative
impact on patient survival [73]. Our genomic analysis indi-
cated that patients in the low-risk group had more gene
mutations and CNV load, which was the immune activation
group.

In addition to the application of ICIS immunotherapy,
chemotherapeutic drugs are also commonly used in the
treatment of tumors. Cisplatin, doxorubicin, etoposide, and
paclitaxel are four common chemotherapeutic drugs that
can be utilised to treat many types of cancer [74–77].
Although there is no study verifying that these drugs can
be applied to treat UCEC, this study has shown that low-
risk groups had high sensitivity to cisplatin, doxorubicin,
and etoposide, meaning chemotherapy for low-risk people
may obtain better results. Recently, a study found that plum-
bagin played an anti-UCEC role through anti-inflammatory,
immune regulation, and regulation of some crucial pathways
related to anti-inflammatory and immune regulation [78].
CMap accurately screened drugs that have had specific
effects on cancer stem cells, which might eventually help
the clinical practice of UCEC treatment. However, up to
now, there has been no report on the application of these
drugs in UCEC.

Our study identified 10 mRLs to establish a prognostic sig-
nature: AC078883.1, AC027319.1, BOLA3–AS1, AC093227.1,

HM13–IT1, AL645568.1, HMGN3–AS1, AC006329.1,
AP003096.1, and AC011466.1. There are few articles reporting
on the effect of these lncRNAs in UCEC and other tumors.
Researchers once constructed a signature that had the prognosis
ability of UCEC in light of five glycolysis-related lncRNAs,
including BOLA3-AS1 [37]. BOLA3-AS1 could also participate
in the construction of models to predict the prognosis of gastric
cancer, as well as left-sided and right-sided colon cancers [79,
80]. AC006329.1 has great potential for assessing risk and sup-
plying personal treatment for colon cancer patients [81].

At present, there is no unified prognostic biomarker for
UCEC. UCEC patients at the same clinicopathological stage
may have different prognoses, and it is inaccurate to judge
the prognosis only by clinical characteristics. Therefore,
potential and more effective biomarkers for prediction and
treatment should be explored. According to the above
results, we conclude that the prognosis signature may offer
a reliable immune biomarker for UCEC.

Nevertheless, there are also several limitations to this
study. Our research has only utilised a public database, and
more prospective real data should be included to verify the
clinical practicability of this signature. In addition, except
for in vitro experiments, more in vivo experiments should
be conducted to comprehensively explore the regulatory
mechanism of these lncRNAs. In the future, we will continue
to collect clinical samples and expand the sample size.

5. Conclusion

MRLM is an accurate and reliable biomarker for predicting
the prognosis of UCEC. In this study, we constructed a prog-
nostic model of UCEC based on mRLs. It can be used to
identify potential UCEC patients at an early stage, judge
the prognosis of patients, and select more effective immuno-
therapy or chemotherapy for patients, helping to realise
individualised and accurate treatments. These results also
promote the future study of the modification process and
mechanism of mRLs.
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