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Research Group on Signals, Telematics and Communications
Department of Electronics and Computer Technology

University of Granada
{tapiador, pgteodor, jedv}@ugr.es

Abstract. In this work, a novel approach for the purpose of anomaly-
based network intrusion detection at the application layer is presented.
The problem of identifying anomalous payloads is addressed by using a
technique based on the modelling of short sequences of adjoining bytes
in the requests destined to a given service. Upon this theoretical frame-
work, we propose an algorithm that assigns an anomaly score to each
service request on the basis of its similarity with a previously estab-
lished model of normality. The introduced approach has been evaluated
by considering datasets composed of HTTP and DNS traffic. Thus, a
large amount of attacks related with such services has been gathered,
and detailed experimental results concerning the detection capability of
the proposed system are shown. The experiments demonstrate that our
approach yields a very high detection rate with a low level of false alarms.

1 Introduction

As Carl Landwehr brilliantly indicates in his introductory article to the field of
computer security [1], several paradigms have configured the research scene in
this area from the early days of modern computing to date. What can be des-
ignated as the first generation of security technologies defines a broad spectrum
of defense techniques oriented to prevent the occurrence of successful intrusions
or violations of the security policy. Due to various reasons that fall out of the
scope of this discussion, the security research community started to develop
procedures and mechanisms intended to detect and limit attacks that are very
difficult to prevent because of the nature of our current technologies. Firewalls
and Intrusion Detection Systems (henceforth referred to as IDS) are surely the
maximum exponent of this paradigm. Nowadays, and although many relevant
problems still remain unsolved within the two previous paradigms, intrusion
tolerant schemes constitute a new and challenging research topic. Projects like
OASIS (Organically Assured and Survivable Information System) [2] and MAF-
TIA (Malicious-and Accidental-Fault Tolerance for Internet Applications) [3],
among others, have developed concepts, architectures, and prototypes within
the intrusion tolerance approach.
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Even though a number of open problems still remain unsolved, research in
IDS constitutes a relatively mature field. Interested readers can find good intro-
ductions to IDS in [4], [5], [6], and [7], among others. The two key methodologies
that have traditionally been used to detect intrusions in network systems are
related to how the collected data from the sensors are analyzed. In the so-called
misuse-based detection, each known attack is described through an specific pat-
tern, commonly referred to as its signature, which identifies it without ambiguity.
The core of the detection engine is basically a pattern-matching algorithm, in
such a way that incoming activities that match a pattern in the library of sig-
natures cause an alarm raise. On the other hand, the basic principle supporting
anomaly-based detection systems is the hypothesis that every anomalous event is
suspicious from a security point of view. An event can be catalogued as anoma-
lous because its degree of deviation with respect to the profile of characteristic
system behavior. Although current intrusion detection technology mainly relies
on misuse detection mechanisms, anomaly detection has been typically conceived
as a more powerful mechanism due to its theoretical potential for addressing
novel or unforeseen attacks.

In this work, we deal with the problem of anomaly detection at the appli-
cation layer for network-based IDS. A theoretical framework is introduced and
applied to HTTP and DNS protocols. Section 2 serves to the purpose of pre-
senting the core of the approach proposed in this work, which relies on the
modelling of short sequences of adjoining bytes in specific service requests. A
detection algorithm based on this principle of operation is then introduced. The
experimental results presented in Section 3 confirm that short sequences are ex-
cellent features for distinguishing between normal requests and those containing
several forms of attack. Finally, a performance analysis of the developed system
is introduced in Section 4, and Section 5 concludes the paper summarizing the
benefits of the introduced work as well as future research objectives.

2 N3: A Geometrical Method for Intrusion Detection at
the Application Layer

As the vast majority of the proposals developed in the field of anomaly-based
network IDS, the technique introduced in this article tries to model the network
traffic with the aim of obtaining a representation of normal behavior ([8], [9],
[10], [11], [12]). In this case, the objects we intend to model within the proposed
approach are application-level payloads from a number of traffic sources (clients),
specifically those containing requests destined to a given service. In the case of
HTTP, this application-layer protocol is defined by RFC 2068, albeit certain
elements like URIs (Uniform Resource Identifiers) are defined in other standard
documents (RFC 2396 for the mentioned identifiers). In its basic form, HTTP
payloads are human-readable strings enclosing elements like the version of the
protocol, the identifier of the requested object, several parameters related to the
request, etc. As just exposed, some works in this field have established that,
due precisely to the nature of the contents transported by the protocol, HTTP
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requests destined to a server share a common structure, in such a way that it
is possible to measure certain degree of similarity among the normal payloads
received by a given server.

The analysis for the DNS system is similar. DNS queries and responses are
carried in a standard message format (see Internet Standard 13 or, equivalently,
RFC 1034). Each message is composed of a header with a number of fixed
fields and four sections (Question, Answer, Authority, and Additional) contain-
ing query parameters and resource registers. Although the contents carried over
this fixed format can vary according to the header options, they always enclose a
number of readable strings with values for the different fields. Interested readers
can find in the above mentioned standard various examples that illustrate this
fact in detail.

In what follows, we introduce a formal background intended to manipulate
and model the type of short sequences previously referred.

2.1 Sequence Analysis

Let Σ = {s1, s2, . . . , sn} be a finite set of size n, namely alphabet and composed
by elements which we refer to as symbols. In this discussion, we shall assume that
Σ is the ASCII code, in such a way that |Σ| = 256. Therefore, each complete
payload (i.e., a transaction destined to a server) can be represented as an element
p = si1si2si3 · · · si|p| ∈ Σ∗, where Σ∗ is the set of all possible sequences generated
by concatenating a finite number of symbols inΣ.

Since Σ is a finite set, it is possible to compute and enumerate all the different
sequences of a fixed length, k, that can be generated from it. To be precise, given
that |Σ| = n, there are nk different sequences of length k, which can be ordered
from 1 to nk. Once fixed a given order, we shall denote by σi the i-th sequence.

As stated, a payload p is easily conceived as a sequence of symbols. Let
us consider the following transformation λk, according to which each complete
payload p is mapped to a nk-dimensional vector space, Θk, as follows:

λk : Σ∗ → Θk

λk(p) = (t1, t2, . . . , tnk) (1)

where each component of the image vector, ti, is the number of times that the
sequence σi, of length k, appears in the complete sequence p.

Our objective is to measure similarities between payloads once transformed
into the new space of representation. Since Θk is a Hilbert space, for every pair
of points xa = (ta1 , . . . , tank), xb = (tb1, . . . , t

b
nk) ∈ Θk, their dot product, denoted

〈xa, xb〉, is defined. Given a dot product, we can also define the distance between
two points x1, x2 ∈ Θk as:

d(x1, x2) = ‖x1 − x2‖ =
(

〈x1, x1〉 − 2〈x1, x2〉 + 〈x2, x2〉
) 1

2

(2)

Likewise, given two payloads p1, p2 ∈ Σ∗, and a fixed k, we can define the
distance between them as d(λk(p1), λk(p2)). In many cases, it is computation-
ally very expensive to explicitly obtain the representation exposed above for
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each payload. For instance, the ASCII code contains 256 different symbols, and
assuming that we take short sequences of length k = 5, each payload is mapped
to a vector of 2565 = 1099511627776 components. We are interested, however,
in the distances between payloads and, therefore, in establishing a procedure for
computing them without an explicit mapping of the payloads to their images.

Fortunately, the field of algorithms on sequences is a relatively well-known
and studied discipline. There exists a dynamic programming-based algorithm
that computes in O(n2) operations the number of subsequences of length k
shared by two input sequences (where n is the length of the input sequences). The
precise description of that algorithm is out of the scope of this paper, although
interested readers can found a deep description of it in [13]. In any case, note
that, by the very definition of λk(p), it is easy to compute the dot products
involved in the distance calculation given by the expression (2) by using this
algorithm.

2.2 The N3 Anomaly Detector

The analysis of sequences presented allows us to develop a novel anomaly-based
intrusion detection approach. For that, let us make the following initial defini-
tions.

Definition 1. A mathematical model of an application-layer protocol L, de-
noted ML, is defined as a representative set of the normal payloads of such a
protocol; that is, ML = {p1, p2, . . . , pN}

Definition 2. The distance from a payload p to a model of the correspond-
ing service, denoted D(p, ML), is defined as the distance from p to its nearest
neighbor element in the model, using for this purpose the similarity function d
defined in expression (2). This distance will be termed the anomaly score of
the payload p, denoted As(p).

Considering these definitions, it is possible to construct an anomaly detector
based on the distance within the context of the introduced framework. Thus,
assuming that the model of normal behavior is given by the set ML of normal
payloads observed for the selected service, deciding whether a captured payload,
p, is labelled as anomalous or not is performed by calculating its anomaly score:

As(p) = D(p, ML) = min
∀m∈ML

d(p, m) (3)

Once computed the previous score, the detection rule is straightforward:

Detection Rule: A payload p is designated as anomalous if As(p) ≥ θ,
where θ is a threshold which acts as a tuning parameter.

Since the model of application-layer traffic is exclusively composed of normal
payloads, we will refer to this detection algorithm as Nearest Normal Neighbor
(N3 for shorthand). The essence of the detection procedure allows us to designate
this technique as a geometrical method.
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Table 1. Test-bed of normal and attack traffic used for the evaluation.

Dataset Information Size (No. of service requests)
Protocol Class Total Distinct Training Test
HTTP Normal, host hume 12154 2271 1590 681
HTTP Normal, host marx 16539 2388 1672 716
HTTP Attack 1500 119 – 119
DNS Normal 193083 66783 46849 19934
DNS Attack 6 6 – 6

3 Experimental Results

In order to evaluate the detection capabilities of the proposed method N3, several
experiments have been carried out. The evaluation framework considered and the
results obtained are discussed in this section.

3.1 Test-Bed of HTTP and DNS Traffic

An important aspect of any evaluation process is the dataset to use. The DARPA
1999 IDS Evaluation Program [14] has been considered in this work for this
purpose. Although it is not free of drawbacks (see [15] for an excellent critique), it
is undeniable that this has been the only remarkable effort to provide a public and
common facility for the evaluation of IDSs. The framework is basically composed
of several off-line test sets, each one consisting of traffic captured during 5 weeks
on a network with hundreds of hosts and a connection to Internet. The training
data consists of the first 3 weeks, while the remaining 2 weeks constitute test
traffic.

In our approach of tackling the problem of anomaly detection at the applica-
tion layer, complete data sets of both normal traffic and anomalous connections
are required. We have collected normal traffic from the DARPA’99 IDS Evalua-
tion data sets, specifically from weeks 1 and 3, which are attack-free. Since our
purpose is studying HTTP and DNS traffic, we have extracted packets destined
to two different servers: hume (NT Server with IP address 172.16.112.100) and
marx (Linux Server with IP address 172.16.114.50). The total amount of re-
quests extracted and reassembled, if needed, has been 12154 for hume and 16539
for marx. Please note that there is a large amount of redundancy within the
data, i.e. the same request originated from distinct clients. Table 1 summarizes
the most important information concerning these datasets. In the case of DNS
traffic, the gathering task has been similar to that just described for HTTP. A
total amount of 193083 requests have been extracted from the traffic files. After
processing them with the aim of removing duplicate elements, the useful dataset
is composed of 66783 different service payloads.

Additionally, we have collected several well-known vulnerabilities in the
HTTP and DNS services. The attack datasets used include several variants of
86 HTTP exploits based on vulnerabilities listed in arachNIDS database [16].
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Table 2. Attacks against the DNS service used in the experimentation.

ID Attack name Category ArachNIDS Ref.
A1DNS PROBE-IQUERY Information Gathering Ref. IDS277
A2DNS EXPLOIT-TSIG-LSD System Integrity Ref. IDS489
A3DNS EXPLOIT-TSIG-LUCYSOFT System Integrity Ref. IDS490
A4DNS EXPLOIT-TSIG-LUCYSOFT2 System Integrity Ref. IDS490
A5DNS EXPOIT-TSIG-TSIG0WN System Integrity Ref. IDS491
A6DNS EXPLOIT-INFOLEAK-LSD System Integrity Ref. IDS482

Attack payloads are generated by means of programs that implement the cor-
responding exploit for each attack. For evaluation purposes, a total amount of
1500 malicious payloads were generated, captured and recorded in the same way
that was done for normal traffic. The number of known attacks against the DNS
system is more reduced. Table 2 lists the 6 attacks against a name server that
have been used in this work.

3.2 Evaluation and Detection Results

With the aim of evaluating the introduced N3 approach, we have performed the
following experiments. Given a specific protocol L (HTTP or DNS), the total
amount of normal traffic available is divided into two subsets. The first of them,
denoted ML as stated in Section 2.1, is composed of 70% of randomly chosen
payloads and constitutes the model of normality. The remaining 30% is devoted
to a different subset, namely NL, for evaluation purposes. Our experimental
scenario is thus composed of three sets of payloads for each protocol:

• The models, MHTTP and MDNS , of normal traffic for each protocol.
• NHTTP and NDNS , containing payloads of normal traffic for each protocol.

These will be used for the evaluation of the detection performance.
• AHTTP and ADNS , containing the datasets of attack traffic described in

Section 3.1. These will be used for the evaluation, together with the datasets
of normal traffic.

For each payload p in the datasets used for the evaluation, the anomaly
score As(p) is computed by using the N3 algorithm. The key results of this
experiment for the HTTP protocol are graphically shown in Fig. 1 for different
values of the parameter k involved in the distance computation (short-sequence
length). In order to distinguish between normal and anomalous traffic, some
parameters related to the frontiers of each region in the decision surface are of the
utmost importance. With the aim of illustrating this fact, the mentioned figure
shows the range (minimum and maximum) and the average distance among
all the evaluated payloads. For instance, in the case of HTTP payloads and
using a length k = 8, normal payloads present an anomaly score within the
interval [3.464, 11.533], with an average value of 6.496. On the other hand, attack
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Fig. 1. Ranges and average value corresponding to the distance from each evaluated
HTTP payload within the test data set to its nearest neighbor in the model. For
each value of the window length k, the minimum, maximum and average distances are
represented for normal traffic. In the case of attacks, however, only the minimum is
shown due to limit problems (average values are around 270 and maximums around
1500).

payloads obtain scores within the interval [13.229, 1501.232], with an average
value of 263.472.

It is easily observed a clear separation between both types of traffic for values
in the range 2 ≤ k ≤ 17, reaching the maximum difference at k = 5. For these
values of k, it would be possible to distinguish payloads carrying an attack
from normal traffic with potentially no false alarms. Considering these results,
a threshold θ � 12 for k = 5 seems adequate for an accurate detection. To be
precise, for values of k ∈ [2, 17], all the attacks considered during the evaluation
were successfully detected without false alarms.

This is not, however, the case for DNS traffic, in which some overlapping
exists between both regions. For instance, the anomaly score for normal DNS
payloads ranges between 1.414 and 16.912 for a value of k = 5, with an aver-
age value of 2.034. The following table shows the anomaly score (As) obtained
by each of the six attacks used in the evaluation with the same value of the
parameter k:

Attack A1DNS A2DNS A3DNS A4DNS A5DNS A6DNS

As 4.472 35.972 41.061 28.775 254.790 4.000

According to this, it is clearly observed that attacks A1DNS and A6DNS are
not correctly classified as anomalous, whilst the remainder four attacks yield
anomaly scores easily recognizable as unusual. A brief analysis of the nature of
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these two attacks reveals the cause for such an unsuccessful detection. In the
case of A1DNS (usually known as PROBE-IQUERY), it is basically a request
attempting to determine if a name server supports inverse queries. Even though
this action constitutes a usual pre-attack probe and, hence, it should be restricted
by the site security policy, it does not involve elements that can be designated
as out of the ordinary. A similar rationale can be provided for the A6DNS attack
(EXPLOIT-INFOLEAK-LSD).

4 Performance Considerations and Improvements

The detection process is performed through a nearest neighbor (NN) search and
a subsequent comparison with an established threshold. Since the computation
of each of the N required distances (one per pattern in the model) involves O(n2)
operations, the time required to decide whether a given payload is anomalous or
not can be approximated by the following expression:

tDetection ≈ C · τ(n2) · N (4)

where C is a constant factor that includes further operations involved in the
decision as well as implementation-dependant details.

According to Table 1, the model sizes have been, respectively, N = 3262
payloads for HTTP traffic, and N = 46849 for DNS. Concerning the factor
corresponding to the distance algorithm, the time required to carry out the
computation has been estimated during the experiments in a computer with a
Pentium 4 processor at 2.4 GHz with 1 GB of RAM. The obtained times, which
obviously depend on the length of the input payloads, range between 0.000298
ms for shorter requests and 0.0579 ms for the largest, with an average value of
0.00483 ms.

Taking into consideration the average value, it is possible to derive an ap-
proximation for the number of service requests per second that is possible to
process under these conditions. In the case of HTTP with the current model,
the average time required for reaching a decision about the anomalous nature
of a request is tDetection = 0.00483 · 3262 = 15.76 ms. This value implies that,
in a computer similar to that used in our laboratory, the system will be able to
process around 63 HTTP requests per second. In the case of DNS, this value
is around 5 requests per second. Considering the typical load of a server, these
results could sternly limit the application in a real-time environment. Despite
this undeniable fact, it is necessary to remember that most of the currently pro-
posed anomaly methods involve detection mechanisms much more complex and
inefficient than that exposed here.

As established in expression (4), the two major factors involved in the system
operation and capable of being improved are the distance computation algorithm
and the model size (i.e., the number of prototypes that define the notion of nor-
mal traffic). The second of them could be easily reduced by means of a clustering
algorithm. In this sense, we have obtained some preliminary results through the
application of a k − means-like procedure to the HTTP and DNS models used



N3: A Geometrical Approach for Network Intrusion Detection 849

in Section 3. Although a complete discussion is not shown here due to space
reasons, in both cases a reduction in the number of prototypes up to 98% has
been obtained without affecting the detection capabilities. Thus, considering a
reduced model composed of 25 HTTP prototypes and using the same time values
for distance processing provided below, the detection time is reduced from the
original tDetection = 15.76 ms to tDetection = 0.00483 · 25 = 0.121 ms. With this
value, the detector can handle around 8264 requests per second, which clearly
outperforms the 63 requests per second of the original model. In the case of
DNS, this improvement is still higher: With a model of Np = 107 prototypes,
the system can handle around 1937 requests per second, in contrast with the
limited 5 requests per second corresponding to the original complete model.

5 Conclusions and Future Work

In this article, a new approach for detecting anomalies in network traffic at the
application layer has been presented, together with some experimental results
that confirm its efficacy. The proposed method has been applied to HTTP and
DNS traffic, and it models each service request, p, through its structural com-
ponents provided by mapping it to a defined feature space Θk. Due to the very
nature of the attacks at the application layer, the introduced distance function
seems to separate accurately between normal and anomalous payloads, allowing
thus to detect suspicious traffic. Despite the undoubted benefits of the intro-
duced work, there exist a number of features that can be improved in order to
construct more efficient and effective detection devices based on the proposed
technique.

An important objective is that of reducing the computational complexity of
the algorithms involved in the distance calculation. As stated in the previous
discussion, this is currently a limiting factor in the detection performance. On
the other hand, there exist more efficient algorithms for performing the NN
search than that used during our experiments, which can be used in a real
application. Likewise, the use of alternative, and perhaps more sophisticated
distances can yield better results than those obtained in our experimentation
and exposed in this article. By using the proposed framework as a basis, one of
the most promising research lines is that of developing less coarse models that
make use of the knowledge provided by the well-known message formats. We
firmly believe that the inclusion of protocol-dependant information of a semantic
nature, coupled with the use of more complex algorithms on sequences, will
provide enhanced detection mechanisms.
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