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N6-methyladenosine links RNA metabolism
to cancer progression
Dongjun Dai1, Hanying Wang1, Liyuan Zhu2, Hongchuan Jin2 and Xian Wang1

Abstract
N6-methyladenosine (m6A) is the most abundant mRNA modification. With the development of antibody-based
sequencing technologies and the findings of m6A-related “writers”, “erasers”, and “readers”, the relationships between
m6A and mRNA metabolism are emerging. The m6A modification influences almost every step of RNA metabolism
that comprises mRNA processing, mRNA exporting from nucleus to cytoplasm, mRNA translation, mRNA decay, and
the biogenesis of long-non-coding RNA (lncRNA) and microRNA (miRNA). Recently, more and more studies have
found m6A is associated with cancer, contributing to the self-renewal of cancer stem cell, promotion of cancer cell
proliferation, and resistance to radiotherapy or chemotherapy. Inhibitors of m6A-related factors have been explored,
and some of them were identified to inhibit cancer progression, indicating that m6A could be a target for cancer
therapy. In this review, we are trying to summarize the regulation and function of m6A in human carcinogenesis.

Facts

● N6-methyladenosine influences almost every step of
RNA metabolism;

● N6-methyladenosine plays important roles in cancer
progression;

● Chemicals targeting N6-methyladenosine might be a
new method of cancer therapy.

Open questions

● Are there more “writers”, “erasers”, and “readers” in
the regulation of N6-methyladenosine? Are they
having additional functions?

● Could N6-methyladenosine be an effective target for
cancer therapy?

● What is the potential connection of other RNA
modifications with N6-methyladenosine? Could they
be likewise reversible?

Introduction
N6-methyladenosine (m6A) is the most abundant mes-

senger RNA (mRNA) modification in mammals. It is now
being pushed to the front of the biology science for the
discovery of its “writers”, “erasers”, and “readers” that can
add, remove, or preferentially bind to the m6A site and alter
important biological functions1. m6A in isolated RNA is
estimated to be 0.1–0.4% in adenines (3–5 m6A sites per
mRNA)2,3. The m6A occurs mostly in DRACH sequence
(where D denotes A/G/U, R denotes A/G, and H denotes
A/C/U), which is the m6A consensus motif4–6. The m6A is
enriched around stop codons, in 3ʹ untranslated regions
(3ʹ UTRs) and within internal long exons, and m6A occurs
more in precursor mRNAs (pre-mRNAs)7,8.
m6A is involved in various aspects of mRNA metabolism

including mRNA translation and mRNA decay9. Accumu-
lating evidences support the importance of RNA biology in
the hallmarks of cancer10–16. However, the associations
between RNA modification and cancers are rarely reviewed.
While there are increasing evidences showing m6A plays
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diverse roles in cancer development and progression17–24,
we try to overview the regulation and function of RNAm6A
in the process of cancer progression.

How m6A is regulated
m6A is catalyzed by a RNA methyltransferase complex

(Fig. 1; Table 1). Methyltransferase-like 3 (METTL3) was
identified as the first S-adenosylmethionine (SAM)-bind-
ing subunit of the RNA methyltransferase complex25.
METTL3 and methyltransferase-like 14 (METTL14)
colocalize in nuclear speckles and form a stable complex
with a stoichiometric ratio of 1:126. METTL3 was the
active site to bind to SAM while METTL14 plays a
structural role critical for substrate recognition27. Occa-
sionally, the METTL3–METTL14 heterodimer needs an
adaptor protein. Wilms tumor 1-associated protein
(WTAP) is the first adaptor identified to interact with
both METTL3 and METTL1426. Additionally, WTAP
interacts with many proteins and long-non-coding RNA
(lncRNAs)28, indicating that WTAP may recruit other
factors to methyltransferase complex. Moreover, other
adaptor proteins such as KIAA142929, RNA-binding motif

protein 15 (RBM15), and its paralogue RBM15B30 were
found to be interacted with METTL3 complex and
depletion of these adaptors also decreased the cellular
m6A level. METTL16 is a newly found m6A methyl-
transferase, which methylates m6A sites mainly in
3ʹ UTRs, and knockdown of METTL16 led to a ~20%
decrease of m6A31. Fat mass and obesity-associated (FTO)
and AlkB homolog 5 (ALKBH5) are the only two identi-
fied m6A demethylases. They are Fe(ii) and α-
ketoglutarate dependent, employing ferrous iron as co-
factor and α-ketoglutarate as co-substrate to oxidize the
N-methyl group of m6A site to a hydroxymethyl group32.
Either deficiency or overexpression of FTO33 or
ALKBH534 altered the m6A level in cells.
Similar to DNA methylation, the biological function of

m6A is mediated through the recognition of m6A site by
m6A “readers”1,35. m6A “readers” bind to RNAs by two
different patterns, direct reading or indirect reading. Direct
reading refers to selective binding of m6A “readers” to m6A
site of RNAs. Indirect reading means that m6A modification
alters RNA secondary structures and thereby renders the
RNA accessible to RNA-binding proteins (termed as “m6A

Fig. 1 m6A regulation by m6A “writers”, “erasers”, and “readers”. m6A modification is conducted by its “writers”, “erasers”, and “readers” to add,
remove, or preferentially bind to m6A. The metyltransferase-like 3 (METTL3) and METTL14 form a stable complex with a stoichiometric ratio of 1:1,
METTL14 helps METTL3 for substrate recognition. Adapt proteins such as Wilms tumor 1-assocated protein (WTAP), KIAA1429, RNA-binding motif
protein 15 (RBM15), and its paralogue RBM15B lead the METTL3–METTL14 complex to certain mRNAs; Fat mass and obesity-associated (FTO) and AlkB
homologue 5 (ALKBH5) use O2, Fe(ii), α-ketoglutarate as substrates to demethylate the m6A site. YT521-B homology (YTH) domain-containing
protein, eukaryotic initiation factor 3 (EIF3), and the heterogeneous nuclear ribonucleoprotein (HNRNP) protein families recognize the m6A site and
bind to it, and function differently in RNA metabolism
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switch”). YTH (YT521-B homology) family proteins
YTHDF1-3 and nuclear member YTHDC1 could directly
bind to m6A containing RNA. Heterogeneous nuclear
ribonucleoprotein A2/B1 (HNRNPA2B1) and hetero-
geneous nuclear ribonucleoprotein C (HNRNPC) are two
abundant nuclear RNA-binding proteins responsible for
pre-mRNA processing36. m6A site of pre-mRNA indirectly
alters the binding of HNRNPC to its U-tract motifs37.
HNRNPA2B1 directly binds to m6A site of RNA and
was identified to be a regulator in microRNA (miRNA)
processing38. Eukaryotic initiation factor 3 (EIF3) was
identified as a direct m6A-binding protein to promote
cap-independent translation39.

The biological function of m6A in mRNA
metabolism
RNA metabolism comprises the entire mRNA life

from birth to death that includes RNA processing,
RNA transporting from nucleus to cytoplasm, RNA

translation, and RNA decay. As shown in Fig. 2, the m6A
modification affects many aspects of RNA metabolism.
RNA processing promotes pre-mRNA to become
mature mRNA through three steps, namely 5ʹ capping, 3ʹ
polyadenylation, and splicing. m6A was found to be more
abundant in pre-mRNA than in mature mRNA40. More
m6A were found in introns7,41. Many m6A “writers”,
“erasers”, and “readers” localize predominantly in nuclear
speckles33,34,41,42, the sub-nuclear structures enriched
with pre-mRNA splicing factors. The splicing factor
serine and arginine-rich splicing factors (SRSFs) play
important roles in mRNA splicing. FTO depletion or
METTL3 overexpression increased m6A levels and sub-
sequently promoted SRSF2 binding to facilitate the
inclusion of target exons43. m6A “reader” nuclear YTH
family member YTHDC1 could function as a recruiter to
bring SRSF3 to its mRNA-binding regions near m6A. In
contrast, SRSF10 might bind to its target mRNAs
regions and modulate exon skipping in the absence of

Fig. 2 m6A plays important roles in RNA metabolism. m6A participates in almost every step in RNA metabolism, after transcription,
methyltransferase-like 3 (METTL3) or METTL16 methylate the pre-mRNA, while splicing factor splicing factor, arginine/serine-rich 2 (SRSF2) would be
recruited to promote the exon inclusion, in the contrary, if fat mass and obesity-associated (FTO) demethylates the m6A site, there would be an exon
skipping. m6A “reader” YTH domain-containing 1 (YTHDC1) binds to m6A site and brings SRSF3 to splice RNA. m6A “reader” heterogeneous nuclear
ribonucleoprotein A2/B1 (HNRNPA2B1) induces the recognition of DGCR8 (microprocessor complex subunit) to primary microRNAs (pri-miRNA) and
stimulates pri-miRNA processing. AlkB homologue 5 (ALKBH5) can promote the exporting of mRNA from nuclear to cytoplasm. In cytoplasm, YTH
m6A-binding protein 1 (YTHDF1) and YTH m6A-binding protein 3 (YTHDF3) would enhance the translation of m6A-modified mRNA. And the m6A-
modified mRNA can be recognized by YTH m6A-binding protein 2 (YTHDF2), which binds to SH domain of CCR4–NOT transcription complex subunit
1 (CNOT1). The carbon catabolite repression 4–negative on TATA-less (CCR4–NOT) complex would induce the deadenylation of mRNA and process
the decay of mRNA in processing bodies (P-bodies)
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m6A modification or YTHDC142. Splicing regulators
and m6A “reader” HNRNPC could affect the abundance
as well as alternative splicing of target mRNAs in an “m6A
switch” regulated manner38. And HNRNPA2B1 could
regulate alternative splicing of miRNA38. U6 small nuclear
RNA (snRNA), a component of U6 small nuclear ribo-
nucleoprotein (snRNP) that functions in mRNA splicing,
was found to be methylated by METTL1644. METTL16
was found to methylate the first hairpin of the six hairpin
structures in the 3ʹ UTR of methionine adenosyl-
transferase 2A (MAT2A) and led to splicing of retained
introns to produce more mRNA of MAT2A31.
Nuclear export of mRNAs is a crucial step in the reg-

ulation of gene expression. m6A was found to promote
RNA export from nucleus to cytoplasm. METTL3
knockdown delayed mRNA export45 while inhibition of
ALKBH5 enhanced mRNA export to the cytoplasm34.
m6A also facilitates mRNA translation. YTHDF1 inter-
acted with EIF3 to promote the rate-limiting step of
translation for m6A-modified mRNAs. After knockdown
of YTHDF1, the m6A-modified mRNAs would be less
associated with polysomes46. After knockdown of
YTHDF3 in HeLa cells, the ratio of ribosome-bound
fragments and input RNA was downregulated47. Further
knockdown of METTL3 also downregulated this ratio of
the YTHDF3 bounded mRNA targets, suggesting that
YTHDF3 promotes mRNA translation in an m6A-
dependent manner. In addition, METTL3 can recruit
EIF3 to interact with translation initiation machinery and
promoted translation of m6A-modified mRNAs inde-
pendent of its methyltransferase activity23. Furthermore,
under cellular stresses, m6A occurred at 5ʹ UTR facili-
tated cap-independent translation, mediating stress-
induced translational responses39.
RNA decay refers to the degradation of mRNA in decay

sites, such as processing bodies. There are different
degradation pathways including deadenylation-dependent
decay pathway, which starts with shortening of poly-
adenylation tail by deadenylases such as carbon catabolite
repression 4–negative on TATA-less (CCR4–NOT)
complex. m6A modification was found to promote
deadenylation of RNAs. YTHDF2 directly interacted with
the SH domain of CCR4–NOT transcription complex
subunit 1 (CNOT1), a scaffolding subunit of CCR4–NOT
complex, mediating RNA deadenylation and RNA
degradations48. YTHDF2 knockdown prolonged lifetimes
of its mRNA targets. After YTHDF2 knockdown, a 21%
increase of the m6A/A ratio of the total mRNA was
observed49. Furthermore, YTHDF1 and YTHDF3 can
potentially affect the partitioning of methylated tran-
scripts to YTHDF2 for decay. Inhibition of METTL3 or
METTL14 had also been shown to increase the expres-
sion of target mRNAs26,49.

As shown above, m6A “writers” give methyl group to
RNAs and different “readers” recognize those m6A-
modified RNAs for different functions. m6A-modified
RNAs experience a faster journal for RNA processing,
export, translation, and decay. This fast-tracking model
allows cells to generate enough proteins to cope with
different situations. For example, EIF3 could recognize
m6A-modified RNAs and promoted the cap-independent
translation under stress condition39, which is associated
with cancer progression50.

m6A in the regulation of non-coding RNAs
Besides mRNA, non-coding RNAs are also regulated by

m6A51. LncRNA and miRNA are two major classes of
non-coding RNAs. LncRNA plays important parts in
chromatin organization, transcriptional, and post-
transcriptional regulation52,53. HNRNPC was found to
bind 2577-m6A hairpin compared to the unmethylated
hairpin of the lncRNA metastasis-associated lung adeno-
carcinoma transcript (MALAT1) in an “m6A switch”-
regulated manner, which indicated m6A modification
acted as a trigger to disrupt lncRNA structure38. Inhibi-
tion of MALAT1 suppressed cancer cells proliferation
and invasion54. Accordingly, the alteration of
MALAT1 splicing by m6A “reader” might associate with
cancer progression. LncRNA X-inactive-specific tran-
script (XIST) mediated the transcriptional silencing of
genes on the X chromosome. RBM15 and RBM15B
recruited METTL3 to methylate XIST. Knockdown of
RBM15 and RBM15B, or METTL3 was shown to impair
XIST-mediated gene silencing both in intro and in vivo30.
miRNA could target specific mRNA sites and promote

degradation or translation inhibition of mRNA14. m6A
sites and miRNAs-targeted sites are sometime overlapped
at the 5ʹ end and 3ʹ end of 3ʹ UTRs55. Primary miRNA
(pri-miRNA) transcript is cleaved in the nucleus by
Drosha and DGCR8, (microprocessor complex subunit),
forming the precursor miRNA (pre-miRNA)14. METTL3
methylated pri-miRNAs56, marking them for recognition
and processing by DGCR8. Consistently, METTL3
depletion reduced the binding of DGCR8 to pri-miRNAs
and led to reduction of mature miRNAs and accumula-
tion of unprocessed pri-miRNAs. METTL3 and
METTL14 methylated developmental-related RNA and
m6A methylation blocked ELAV-like RNA-binding pro-
tein 1 (HUR) binding49, resulting in transcript destabili-
zation. Knockdown of METTL3 or METTL14 reduced
m6A to increase HuR–mRNA interaction and prevent
miRNA binding.

m6A and stem cell differentiation
By mapping the m6A methylome in embryonic stem

cells, thousands of mRNAs and lncRNAs including
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transcripts encoding core pluripotency transcription fac-
tors, were found to show conserved m6A modification57.
Knockdown of METTL3 or METTL14 in mouse
embryonic stem cells (mESC) led to loss of m6A and self-
renewal capability, with most pluripotent factors being
downregulated while some developmental regulators sig-
nificantly upregulated49. In contrast, m6A seems to be
required for embryonic stem cells to rapidly exit the
pluripotent state upon differentiation57. In fact, mESC
with METTL3 depletion renewed at an improved rate.
Zinc-finger protein 217 (ZFP217) interacted with
METTL3 to inhibit m6A deposition on transcripts of
pluripotency genes58. ZFP217 depletion impaired ESC
self-renewal and somatic cell reprogramming by increas-
ing m6A RNA levels and promoting degradation of m6A-
modified mRNAs of pluripotency factors such as
homeobox transcription factor Nanog (NANOG), tran-
scripts POU domain, class 5, transcription factor 1
(POU5F1), Krueppel-like factor 4 (KLF4), SRY-box 2
(SOX2), and MYC proto-oncogene (C-MYC). This dis-
crepancy could potentially be explained by different
dependencies of pluripotent factors and developmental
regulators on m6A modification. The influence of m6A
upon cell fate transition in stem cells also seems to exist in
cancer stem cells (CSC)22,24.

The biological function of m6A in cancer
progression
Cancer has many potential links with m6A modifica-

tions. For example, alternative pre-mRNA splicing often
presents in cancer, which was found to be regulated by
m6A59,60. After silencing of METTL3, a noteworthy
enrichment of the P53 signaling pathway was found, and
gene expression and alternative splicing patterns related
to this pathway were changed51. HUR is highly expressed
in many cancers and is found as an RNA stabilizer pro-
tein61–64. Two hallmarks of m6A were concluded that it
serves as a marker to group and synchronize cohorts of
transcripts for fast-tracking mRNA processing and
metabolism; and that it considerably affects cell-state
transition during cell differentiation9. Both hallmarks are
related to cancer progression. Besides, m6A is considered
to influence miRNA processing55 and lncRNA splicing38

that might alter cancer progression65,66. And next we will
review the relationships between m6A and cancer in line
with different cancer types (Table 2).

m6A and breast cancer
Breast cancer stem cells (BCSCs) is a group of sub-

population cells capable of infinite proliferation through
self-renewal. Only BCSCs can form recurrent or meta-
static tumor67,68. BCSCs phenotype is caused by core
pluripotency factors69–73. Hypoxia could induce the
expression of ALKBH5 and decrease m6A modification in

breast cancer cells24, in a HIF-dependent manner.
NANOG was found to be upregulated because the
demethylation stabilizes NANOG mRNA. Depletion of
ALKBH5 impaired hypoxia-induced BCSCs enrichment,
while ALKBH5 overexpression phenocopied the effect of
hypoxia. Hence, HIF-dependent ALKBH5 expression
mediated enrichment of BCSCs in hypoxic tumor
microenvironment24. Similarly, hypoxia induced ZFP217-
dependent inhibition of m6A methylation of mRNAs
encoding pluripotency factors that mediated BCSCs spe-
cification in breast cancer cells22. In addition, METTL14
was significantly decreased in breast cancer and lower
METTL14 of breast cancer was associated with a shorter
survival (RFS) of breast cancer patients21.

METTL3 promotes translation of oncogenes in human lung
cancer
Knockdown of METTL3 downregulated epidermal

growth factor receptor (EGFR) protein level23. Polysome
profiling assay found METTL3 enhanced the translation
of oncogenes. However, tethering reporter assay showed
tethering METTL3 to a luciferase mRNA-enhanced
translation independent of its methyltransferase activity.
In fact, METTL3 interacted with translation initiation
factors such as nuclear cap-binding protein subunit 1
(CBP80) and eukaryotic translation initiation factor
4E (EIF4E) in an RNA-independent manner, and
METTL3 specifically promoted translation of initiation
factor-dependent reporter mRNAs. By doing so, METTL3
promoted growth, survival, and invasion in lung cancer
cells. Another study found that miR-33a attenuated non-
small-cell lung cancer (NSCLC) cell proliferation via tar-
geting the 3ʹ UTR of METTL3 mRNA74. Those studies
suggested that METTL3 plays an oncogenic role in lung
cancer.

FTO plays an oncogenic role in acute myeloid leukemia
Acute myeloid leukemia (AML) is one of the most

common type of hematopoietic malignancies with various
genetic and molecular changes that shows different
responses to treatment75. FTO was highly expressed in
AMLs with MLL rearrangements and FLT3-ITD and/or
NPM1 mutations21. Knockdown of FTO in MLL-
rearranged AML inhibited cell growth. The comparison
between overexpression of wild-type FTO and mutated
FTO (H231A and D233A) in MLL-rearranged AML cells
showed that only overexpression of wild-type FTO could
promote cancer cell growth. Meanwhile, the m6A level
was upregulated upon FTO knockdown, and was down-
regulated by overexpression of wild-type FTO rather than
mutated FTO, indicating that FTO might regulate those
phenotypes through modulating m6A modification.
Similar results were obtained in AMLs with PML-RARA
and FLT3-ITD/NPM1 mutations. Further in vivo
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experiments using bone marrow transplantation (BMT)
assays showed that overexpression of FTO accelerated
MLL-AF9-induced leukemogenesis. The mRNA tran-
scripts of ankyrin repeat and SOCS box protein 2 (ASB2)
and retinoic acid receptor-a (RARA) were confirmed to be
significantly downregulated in accordance with hypo-
methylated m6A peaks in FTO-overexpressing AML cells.
ASB2 and RARA were two proteins found to be upregu-
lated in all-trans-retinoic acid (ATRA)-induced differ-
entiation of leukemia cells76,77. Further analysis confirmed
that FTO inhibited ATRA-induced AML cell differentia-
tion through regulating transcription of ASB2 and RARA.
These data thus established a critical oncogenic role of
FTO to promote leukemogenesis, and highlighted the
contribution of FTO to ARTA-induced drug response in
AML cells.

Downregulation of m6A RNA methylation promotes
glioblastoma
Glioblastoma is the deadliest primary brain tumor. The

median survival time of glioblastoma patients is
<15 months after diagnosis78. Glioblastoma stem cells
(GSCs) are resistant to chemotherapy and radiotherapy,
and promote the growth and invasion of cancer79. Dif-
ferentiated GSC cell lines had an elevated m6A level while
primary GSC cell lines exhibited lower m6A level19.
Knockdown of METTL3 or METTL14 promoted the
growth and self-renewal of GSCs, while overexpression of
wild-type METTL3 rather than catalytically inactive
METTL3 inhibited the growth and self-renewal of GSCs,
indicating that METTL3 regulates GSCs’ self-renewal
through its methyltransferase catalytic activity. Further-
more, knockdown of either METTL3 or METTL14
increased the growth of transplanted PBT003 cells in
mice. MA2, an inhibitor of FTO, was shown to increase
the m6A level and successfully reduced GSC-initiated
tumor growth. These data shed lights on the m6A as a
promising therapeutic target for glioblastoma and prob-
ably other cancers.
High ALKBH5 expression in GSCs was associated with

a worse outcome17. Knockdown of ALKBH5 impaired
the growth of GSCs, which can be rescued only by wild-
type ALKBH5, but not the catalytic inactive mutant
ALKBH5 H204A. After performing m6A sequencing and
mRNA sequencing followed by ALKBH5 knockdown in
GSCs, fork head box M1 (FOXM1) was found to be a
candidate for ALKBH5-mediated GSCs growth. HUR
increased its binding to pre-mRNA of FOXM1 because
of the reduced m6A level, which resulted from ALKBH5
overexpression, thus increasing the stability of FOXM1
pre-mRNA49. Furthermore, the nuclear lncRNA
FOXM1-AS was found to facilitate the interaction
between ALKBH5 and FOXM1 nascent transcripts to

promote the HUR binding. FOXM1-AS knockdown
impaired the GSCs growth similar to ALKBH5 knock-
down, and rescue of tumor growth of GSCs by FOXM1
overexpression after depletion of ALKBH5 or FOXM1-
AS further proved the critical role of FOXM1 in GSC
tumorigenesis.

METTL14 inhibits hepatocellular carcinoma metastasis
m6A was reduced in hepatocellular carcinoma (HCC)

tissue when compared with adjacent non-tumor or normal
hepatic tissues21. After testing the mRNA expression of
m6A-related factors between HCC and para-tumor
tissue or normal tissue, METTL14 was found to be sig-
nificantly lowered in HCC tissue. Downregulation of
METTL14 showed a worse outcome in HCC patients and
METTL14 mRNA expression was found to be further
lower in metastatic tumors or portal vein tumor thrombus.
METTL14 staining was negatively correlated with survival
rates of HCC patients. Depletion of METTL14 revealed
high metastatic capacity of HCC both in vitro and in vivo
while overexpression of METTL14 suppressed tumor
metastasis. As mentioned above, m6A promoted the
miRNA processing by marking miRNA for recognition and
processing by DGCR856. Immunoprecipitation assay
showed that METTL14 indeed coprecipitated with
DGCR8. Different expressed miRNAs were selected
between metastatic HCC and non-metastatic HCC.
Downregulated miRNAs with m6A site in their pri-
miRNAs in metastatic HCC might be targets of
METTL14. As a result, miRNA 126 was found to be
decreased while unprocessed pri-miR126 accumulated in
METTL14-depleted cells. Consistently, forced expression
of METTL14 resulted in an increased level of mature
miR126 and pri-miR126 bound to DGCR8. Trans-well and
invasion assay showed that METTL14 depletion-induced
metastasis could be reversed by miR126 mimic while
miR126 inhibitor increased the metastasis when METTL14
was forced overexpression, indicating that
METTL14 suppressed the metastasis of HCC by increasing
the miR126 level in an m6A-dependent manner.
miR145 is downregulated in various cancers including

HCC80–83. YTHDF2 was highly expressed in HCC tissue
while the expression level of miR145 was negatively cor-
related with YTHDF217. Luciferase assay showed that
miR145 directly targeted 3ʹ UTR of YTHDF2 mRNA.
Overexpression of miRNA145 downregulated the mRNA
and protein levels of YTHDF2 in HepG2 cells. YTHDF2
could recognize mRNA m6A site to mediate mRNA
degradation and overexpression of YTHDF2 decreased
the m6A level. Overexpression of miR145 increased the
m6A levels of mRNAs and this could be blocked by
YTHDF2 overexpression, while miR145 inhibitor
decreased the m6A levels of mRNAs and rescued by
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siYTHDF2, suggesting that miRNA145 increased the
m6A level through modulating YTHDF2.

m6A facilitates DNA damage response secondary to
radio- or chemotherapy
Targeted therapy based on inhibiting the DNA damage

response in cancers offers the potential for a greater
therapeutic window of radiotherapy or DNA-damaging
chemotherapy84. Interestingly, m6A antibody stained
DNA damage sites generated by UV laser micro-
irradiation in U2OS bone osteosarcoma cells in a dose-
dependent manner18. A time course experiment showed
the response peaked at 2 min after irradiation and
diminished over the following 8 min. RNase A treatment
of cells removed m6A stains accumulation at damage
sites, indicating that most of the signal is derived from
polyadenylated RNA. METTL3 and METTL14 were
stained in damage sites and knockdown of METTL3
decreased the m6A level in damage sites, which was
rescued by overexpression of METTL3 with catalytic
activity but not the mutated non-catalytic METTL3.
Depletion of m6A demethylase FTO but not ALKBH5
increased the intensity of m6A RNA in damage sites. By
using PARP inhibitors BYK, PJ-34, or olaparib, the m6A
level was eliminated in U2OS cells, indicating that early
DNA damage regulator PARP was required for the for-
mation of m6A in response to UV. METTL3 knockout
impaired the removal of cyclobutane pyrimidine dimers,
delayed timely transcription re-initiation, increased the
cell death, and decreased colony numbers in colony-
formation assay after DNA damage. The overexpression
of methylation catalytic METTL3 but not non-catalytic
METTL3 rescued cell death in UV-treated U2OS cells
with METTL3 knockout. DNA polymerases κ (Pol κ)
localized to damage sites simultaneously with m6A RNA.
And Pol κ overexpression rescued the defect in the
removal of cyclobutane pyrimidine dimers associated
with METTL3 loss, suggesting that Pol κ was a key
effector of METTL3 in cyclobutane pyrimidine dimers
repair. Therefore, PARPs, METTL3–METTL14 complex,
FTO, and Pol κ formed a new DNA repair pathway in
early UV-induced damage and m6A might be a pro-
mising target for combined therapy with radiotherapy or
chemotherapy.

Association between metabolism and m6A demethylase in
cancer
FTO and ALKBH5 are α-ketoglutarate-dependent

dioxygenases, which are competitively inhibited by the
structurally related metabolite D-2-hydroxyglutarate
(D2-HG). Isocitrate dehydrogenase 1 or 2 (IDH1/2) is
frequently mutated in multiple types of human cancers
such as glioblastoma85 and AML86. IDH1/2 catalyzes the

NADP+-dependent oxidative decarboxylation of isocitrate
into α-ketoglutarate, while mutant IDH1 and IDH2 lose
their normal activity to produce α-ketoglutarate but gain a
new activity to produce D2-HG, thus resulting in
increased D2-HG and decreased α-ketoglutarate. Stable
expression of IDH2 R140Q mutant and IDH2 R172K
mutant in HEK293T cells resulted in a significantly higher
m6A level and D2-HG level than wild-type IDH287. The
increase of D2-HG in R140Q- and R172K-expressing cells
could be effectively inhibited by IDH2-mutant selective
inhibitor AG-221, with global m6A levels downregulated
to levels comparable with those of the isogenic IDH2-
WT-expressing cells. Knockdown of FTO raised the m6A
level in HEK293T expressed with IDH2 wild-type but not
the mutated IDH2. Similar results were also obtained
from IDH1/2-mutant and IDH1/2-WT AML cells that
depletion of FTO only increased the m6A level in IDH1/
2-WT AMLs but not IDH1/2-mutant AMLs. Therefore,
IDH1/2 mutation increased m6A level by producing more
D2-HG to competitively inhibit RNA demethylase FTO.
Besides, other enzymes involved in D2-HG metabolism,
such as 2-hydroxyglutarate dehydrogenase (2-HGDH),
hydroxyacid-oxoacid transhydrogenase (HOT), and
L-malate dehydroxygenase (L-malDH), might also influ-
ence FTO or ALKBH5 function and m6A level88–91.
Furthermore, as FTO and ALKBH5 are both α-ketoglu-
tarate-dependent, other metabolic pathways that produce
α-ketoglutarate might also be involved in m6A regula-
tion92. Besides, FTO and ALKBH5 also need employ
ferrous iron as co-factor32. Iron is found to contribute to
both tumor initiation and tumor growth. And cancer-
related pathway, such as HIF and WNT pathways, may
contribute to altered iron metabolism in cancer93. Iron
metabolism and α-ketoglutarate metabolism in cancers
need to be further addressed for their relationships with
m6A.
SAM provides methyl for nearly all methylation reac-

tion. MAT2A gene encodes the SAM synthetase that is
expressed in all cells except liver cells94. SAM depletion
leads to increased expression of MAT2A mRNA and
overexpression of MAT2A promotes intron retention of
MAT2A pre-mRNA31. METTL16 was found to methy-
late the fourth adenine of UACAGAGAA sequence of a
hairpin in MAT2A 3ʹ UTR and promote the splicing of
MAT2A pre-mRNA. In contrast, the F187G mutant
METTL16, which did not bind MAT2A, had no effects
on intron retention. MS2 tethering assay further revealed
that METTL16 promotes splicing of MAT2A through
vertebrate conserved regions (VCRs), but not methyl-
transferase activity domain. Notably, METTL16 was
immunoprecipitated with MAT2A more efficiently after
SAM depletion. Therefore, in Met-rich conditions (SAM
is rich), METTL16 briefly occupied MAT2A due to
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enzyme turnover, and in Met-deprived conditions (SAM
is limited), lack of methylation prolonged METTL16
occupation of MAT2A, which then drives splicing of
MAT2A intron and produced more mRNA. In summary,
m6A contributed to SAM homeostasis and on the other
hand SAM homeostasis also regulated m6A
modification.

Inhibitors for m6A-related factors
Crystal structure of FTO95 and ALKBH596 was deter-

mined, which would facilitate the understanding of sub-
strate recognition and subsequent drug development.
Linking 2OG derivatives with the substrate analogs has
successfully developed selective inhibitors of histone
demethylases containing a jumonji domain97–99. Similar
strategy has applied to both FTO and ALKBH5100.
However, these inhibitors are derivatives of 2OG, and
therefore cellular 2OG might compete with them and
weaken the inhibition. Rheinis the first potent FTO
inhibitor101, which was found to inhibit FTO by
competitively binding the catalytic domain against single-
stranded RNA (ssRNA) substrate, and Rhein also effec-
tively inhibited m6A demethylation in vitro and increased
cellular levels of m6A. Despite the ability to inhibit FTO,
the selectivity of Rhein was poor. Meclofenamic acid
(MA) was found to be a more selective inhibitor of FTO,
for it could bind and stabilize FTO but had minimal
influence on ALKBH5. It was because the first loop in the
FTO nucleotide recognition lid (NRL) provided hydro-
phobic interactions with MA, whereas ALKBH5 lacked
this loop96. MA2 is the ethyl ester derivative of MA, which
achieved better cell penetration. MA2 treatment increased
the cellular levels of m6A and had no significant effects in
cells with FTO depletion and ALKBH5 overexpression102.
In addition to MA, other FTO inhibitors with special
structural binding site of FTO were identified, such
as N-(5-chloro-2,4-dihydroxyphenyl)-1-phenylcyclobuta-
necarboxamide (NCDPCB) and 4-chloro-6-(6′-chloro-
7′-hydroxy-2′,4′,4′-trimethyl-chroman-2′-yl) benzene-1,
3-diol (CHTB) (Table 3). However, it remains unknown
whether those inhibitors influence ALKBH5.
IOX3 is an inhibitor of the HIF prolyl hydroxylases,

which was found to bind non-covalently to the active site
of FTO and decrease cellular protein expression of
FTO103,104. However, this inhibitor failed to alter the m6A
level inside of cells. IOX3 also could bind to ALKBH5 in a
covalent attachment96. The citrate competed out 2OGs
and Mn(ii) in the active site of ALKBH5 under the crys-
tallization conditions105, which could be a modest inhi-
bitor of ALKHB5. Though many kinds of inhibitors
targeting m6A demethylases were identified, their effects
were rarely validated in vivo. We expect to see more
inhibitors targeting m6A-related factors both in vitro and
in vivo.Ta
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Conclusions and perspective
Being precisely regulated by various “writers”, “erasers”,

and “readers”, m6A modification involves in almost every
step in mRNA metabolism. In addition, it influences the
processing of lncRNA and miRNA as well. m6A-
modified RNAs experience a fast journal from RNA
processing to degradation, and m6A controls cellular
differentiation and pluripotency, both of which are
associated with cancer progression. m6A plays important
roles in metabolism, stem cell self-renewal, and metas-
tasis in various cancers, indicating that m6A modifica-
tion could be targeted for the prevention and treatment
of human cancers. Indeed, FTO-specific inhibitor
MA2 suppresses GSC-initiated tumor development in an
m6A-dependent manner. However, more selective and
powerful drugs targeting m6A-related factors are
expected to be explored. The side effects of those inhi-
bitors should also be considered, for m6A influences
gene expression in many aspects. Moreover, the forma-
tion of m6A is affected by the level of methyl group from
SAMs, and m6A demethylases FTO and ALKBH5 are Fe
(ii) and α-ketoglutarate dependent. Therefore, the reg-
ulation of metabolism in cancer cells would have a
profound impact on the dynamic regulation of m6A.
Further studies are also needed to evaluate the biological
relevance and diagnostic value of m6A in human
cancers.
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