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1. Introduction

Fuzzy integral is an important tool to study fuzzy differential equations. In-
tegration on time scales was studied by (see [3]). Recently, Fard and Bidgoli
(see [2]) introduced and studied Henstock-Kurzweil integrals of fuzzy valued
functions on time scales, using generalized Hukuhara difference. Vasavi et. al.
(see [9, 10, 11]) introduced Hukuhara delta integrals using Hukuhara difference
and studied fuzzy dynamic equations on time scales. With the importance and
advantages of nabla derivatives in recent applications, we proposed to develop
the theory of fuzzy nabla dynamic equations on time scales. In this context, we
introduce Hukuhara nabla integrals for fuzzy valued functions on time scales
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and study their properties. We organized this paper as follows. In Section
2, we present some definitions, properties basic results relating to fuzzy sets,
calculus of fuzzy functions and time scales calculus. Finally in Section 3, we
introduces Fuzzy nabla integrals of fuzzy functions on time scales and establish
some fundamental properties. We refer (see [5, 1, 6]) for basic results in fuzzy
differential equations and time scales.

2. Nabla-Hukuhara Integrability

In this section we introduce and study the properties of ∇-integrals for fuzzy
functions on time scales.

Definition 1. A mapping g : T[a,b] → ℜn is said to be measurable nabla-
sector of a fuzzy function G : T[a,b] → En if to each θ ∈ T

[a,b], g(θ) ∈ G(θ).

Definition 2. If a regulated measurable nabla-sectors exists, then the
fuzzy function G : T

[a,b] → En is said to be regulated. If a ld-continuous
measurable nabla-sectors exists, then the fuzzy function G is said to be ld-
continuous.

Definition 3. If G has a ld-continuous measurable nabla-sector on T
[a,b]

then the fuzzy function G : T[a,b] → En is ∇-integrable on T
[a,b]. We define the

nabla integral of G on T
[a,b], by

∫

T[a,b] G(τ)∇τ and is defined levelwise by the
equation

[
∫

T[a,b]

G(τ)∇τ

]λ

=

∫

T[a,b]

Gλ(τ)∇τ

=

{
∫

T[a,b]
g(τ)∇τ : g ∈ SGλ

(T[a,b])

}

,

where the set of all nabla integrable sectors of Gλ on T
[a,b] is denoted by

SGλ
(T[a,b]).

Theorem 4. Suppose G,H : T[a,b] → En is nabla integrable, then we
have:

(a)
∫ b

a
[G(τ) ⊕H(τ)]∇τ =

∫ b

a
G(τ)∇τ ⊕

∫ b

a
H(τ)∇τ .

(b)
∫ b

a
αG(τ)∇τ = α

∫ b

a
G(τ)∇τ , α ∈ R.
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(c)
∫ b

a
G(τ)∇τ =

∫ c

a
G(τ)∇τ ⊕

∫ b

c
G(τ)∇τ .

(d)
∫ a

a
G(τ)∇τ = {0}.

(e) If g ∈ SG(T
[a,b]), then DH(G(.), 0̂) : T[a,b] → R+ is nabla integrable and

DH

(
∫ b

a

G(τ)∇τ, 0̂

)

≤

∫ b

a

DH(G(τ), 0̂)∇τ.

(f) If g ∈ SG(T
[a,b]) and h ∈ SH(T[a,b]) implies that g, h ∈ Cld(T

[a,b]) respec-
tively, then DH(G(.),H(.)) : T[a,b] → ℜ+ is nabla integrable and

DH

(
∫ b

a

G(τ)∇τ,

∫ b

a

H(τ)∇τ

)

≤

∫ b

a

DH (G(τ),H(τ))∇τ,

where the set of all fuzzy ld-continuous functions G : T[a,b] → En is defined
by

Cld = Cld(T
[a,b]) = Cld(T

[a,b],En).

Proof. Suppose that G,H : T[a,b] → En and a, b ∈ T
[a,b] is nabla integrable.

(a) Since G, H are nabla integrable and for λ ∈ [0, 1], then Gλ and Hλ have

measurable nabla-sectors. Thus, for every p ∈
∫ b

a
[G(τ) ⊕ H(τ)]λ∇τ, ∃ g ∈

SG(T
[a,b]), h ∈ SH(T[a,b]) such that

p =

∫ b

a

[g(τ) + h(τ)]∇τ

=

∫ b

a

g(τ)∇τ +

∫ b

a

h(τ)∇τ ∈

∫ b

a

Gλ(τ)∇τ ⊕

∫ b

a

Hλ(τ)∇τ,

it implies
∫ b

a
[G(τ) ⊕ H(τ)]λ∇τ ⊂

∫ b

a
[Gλ(τ)]∇τ ⊕

∫ b

a
[Hλ(τ)]∇τ . In the same

way, it is easy to prove
∫ b

a
[Gλ(τ)]∇τ ⊕

∫ b

a
[Hλ(τ)]∇τ ⊂

∫ b

a
[G(τ) ⊕ H(τ)]λ∇τ .

Therefore,
∫ b

a

[G(τ)⊕H(τ)]∇τ =

∫ b

a

G(τ)∇τ ⊕

∫ b

a

H(τ)∇τ.

(b) Let p ∈
∫ b

a
[αG(τ)]λ∇τ , ∃ g ∈ SG(T

[a,b]), ∋

p =

∫ b

a

[αg(τ)∇τ ] = α

∫ b

a

g(τ)∇τ ∈ α

∫ b

a

Gλ(τ)∇τ,
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it implies
∫ b

a
[αG(τ)]λ∇τ ⊂ α

∫ b

a
[G(τ)]λ∇τ . In the same manner, it is easy to

prove α
∫ b

a
[G(τ)]λ∇τ ⊂

∫ b

a
[αG(τ)]λ∇τ Hence,

∫ b

a
αG(τ)∇τ = α

∫ b

a
G(τ)∇τ, α ∈

R.

(c) Let λ ∈ [0, 1] and g be a measurable∇-sector forGλ.
∫ b

a
g(τ)∇τ =

∫ c

a
g(τ)∇τ+

∫ b

c
g(τ)∇τ , then

∫ b

a

Gλ(τ)∇τ ⊂

∫ c

a

Gλ(τ)∇τ ⊕

∫ b

c

Gλ(τ)∇τ. (1)

Now, let z =
∫ c

a
g1(τ)∇τ +

∫ b

c
g2(τ)∇τ , where g1 is a measurable ∇-sector for

Gλ in [a, c] and g2 is a measurable ∇-sector for Gλ in [c, b]. Then g defined by

g(θ) =

{

g1(θ), if θ ∈ [a, c]

g2(θ), if θ ∈ [c, b],
is a measurable ∇-sector for Gλ in T

[a,b] and
∫ b

a

g(θ)∇τ =

∫ c

a

g1(τ)∇τ +

∫ b

c

g2(τ)∇τ = z .

Thus,
∫ c

a

Gλ(τ)∇τ ⊕

∫ b

c

Gλ(τ)∇τ ⊂

∫ b

a

Gλ(τ)∇τ. (2)

From (1) and (2), we have
∫ b

a

G(τ)∇τ =

∫ c

a

G(τ)∇τ ⊕

∫ b

c

G(τ)∇τ.

(d) Suppose λ ∈ [0, 1] and g be a measurable ∇-sector for Gλ. From Theorem
1.77 in [1], we have

∫ a

a
g(τ)∇τ = {0}, then we have
∫ a

a

Gλ(τ)∇τ =

∫ a

a

g(τ)∇τ = 0.

(e) It is enough to show (f) because (e) is a trivial case when H(θ) = 0̂ in (e).
For given any g ∈ Cld, we have

d(g(τ),H(τ)) ≤ d(g(τ), h(τ)) ≤ d(g(τ), g(s)) + d(g(s), h(τ))

Taking infimum over h(τ) ∈ Hλ(τ), we get

d(g(τ),Hλ(τ)) ≤ d(g(τ), g(s)) + d(g(s),Hλ(τ)).

It implies that,

d(g(τ),Hλ(τ))− d(g(s),Hλ(τ)) ≤ d(g(τ), g(s)).

Further more, if we interchange s and τ then the inequality holds and ld-
continuity of d(g(.),Hλ(τ)) at τ ∈ T

[a,b] follows for every g ∈ Cld. Hence,

DH [G(.),H(.)] is ld-continuous and the integral
∫ b

a
DH [G(τ),H(τ)]∇τ is well

defined.
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Thus for every p ∈
∫ b

a
G(τ)∇τ , ∃ a measurable ∇-sector g ∈ SG(T

[a,b]])

and for any q ∈
∫ b

a
H(τ)∇τ , ∃ a measurable nabla-sector h ∈ SH(T[a,b]) ∋

p =
∫ b

a
g(τ)∇τ, q =

∫ b

a
h(τ)∇τ.

d(p, q) = d

(
∫ b

a

g(τ)∇τ,

∫ b

a

h(τ)∇τ

)

=

∥

∥

∥

∥

∫ b

a

g(τ)∇τ −

∫ b

a

h(τ)∇τ

∥

∥

∥

∥

≤

∫ b

a

‖g(τ) − h(τ)‖∇τ ≤

∫ b

a

d(g(τ), h(τ))∇τ.

Since g(τ), h(τ) are arbitrary measurable sectors of Gλ(τ), Hλ(τ), we have

dH

(
∫ b

a

Gλ(τ)∇τ,

∫ b

a

Hλ(τ)∇τ

)

≤

∫ b

a

dH (Gλ(τ),Hλ(τ))∇τ

And hence,

DH

(
∫ b

a

G(τ)∇τ,

∫ b

a

H(τ)∇τ

)

≤

∫ b

a

DH (G(τ),H(τ))∇τ.

Now we discuss the relation between nabla differentiation and integration.

Definition 5. ([7]) Suppose G : T
[a,b] → En is a fuzzy function and

θ ∈ T
[a,b]
k . Let G∇h(θ) be an element of En exists provided for any given

ǫ > 0, ∃ a neighbourhood N
T[a,b] of θ and for some δ > 0 such that

DH [(G(θ + ~)⊖h G(ρ(θ)), (~ + ν(θ))⊙G∇h(θ)] ≤ ǫ|~+ ν(θ)|,

DH [(G(ρ(θ)) ⊖h G(θ − ~), (~− ν(θ))⊙G∇h(θ)] ≤ ǫ|~− ν(θ)|,

for all θ − ~, θ + ~ ∈ N
T[a,b] with 0 < h < δ where ν(θ) = θ − ρ(θ). Then G is

called nabla Hukuhara form-I differentiable (nabla-h differentiable) at θ and is
denoted by G∇h(θ).

Definition 6. ([8]) Let G : T[a,b] → En is a fuzzy function and θ ∈ T
[a,b]
k .

Let G∇sh

(θ) be an element of En exists provided for any given ǫ > 0, ∃ a
neighbourhood N

T[a,b] of θ and for some δ > 0 such that

DH [(G(ρ(θ)) ⊖G(θ + ~)),−(~+ ν(θ))⊙G∇sh

(θ)] ≤ ǫ| − (~+ ν(θ))|,

DH [(G(θ − ~)⊖h G(ρ(θ)),−(~ − ν(θ))⊙G∇sh

(θ)] ≤ ǫ| − (~− ν(θ))|,
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for all θ − ~, θ + ~ ∈ N
T[a,b] with 0 < h < δ where ν(θ) = θ − ρ(θ). Then G

is called second type nabla Hukuhara form-II differentiable (∇sh-differentiable)

at θ and is denoted by G∇sh

(θ).

We consider only right limit at left scattered points and one-sided limit at

the end points of T
[a,b]
k .

Note. If both T-limits exists at left scattered point, then the nabla-h or
nabla-sh derivative is in ℜn (crisp). It will restrict the nabla-h or nabla-sh
differentiability of fuzzy functions on time scales having left scattered points.
To avoid this, we consider only right limit at left scattered points.

From the above definitions, we can easily prove the following lemma.

Lemma 2.1. Let G : T[a,b] → En be a fuzzy function. If G : T[a,b] → En is
continuous at θ and θ is left scattered, then:,

(a) G : T[a,b] → En is nabla-h differentiable at θ ∈ T
[a,b]
k with

G∇h(θ) =
G(θ)⊖h G(ρ(θ))

ν(θ)
,

provided G(θ)⊖h G(ρ(θ)) exists,

or

(b) G : T[a,b] → En is nabla-sh differentiable at θ ∈ T
[a,b]
k with

G∇sh

(θ) =
−1

ν(θ)
⊙ (G(ρ(θ))⊖h G(θ)) ,

provided G(ρ(θ)) ⊖h G(θ) exists,

or

(c) G : T[a,b] → En is nabla differentiable at θ ∈ T
[a,b]
k with

G∇(θ) =
G(θ)⊖h G(ρ(θ))

ν(θ)
=

−1

ν(θ)
⊙ (G(ρ(θ)) ⊖h G(θ)) ∈ ℜn.

provided G(ρ(θ)) ⊖h G(θ) and G(θ)⊖h G(ρ(θ)) both exists.

Theorem 7. Suppose G : T[a,b] → En is ld-continuous and if θ0 ∈ T, then:
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(a) G defined by

G(θ) = X0 ⊕

∫ θ

θ0

G(τ)∇τ, for θ ∈ T
[a,b] and X0 ∈ En,

is nabla-h differentiable and G∇h(θ) = G(θ) a.e. on T
[a,b].

(b) G defined by

G(θ) = X0 ⊖h (−1)

∫ θ

θ0

G(τ)∇τ, for θ ∈ T
[a,b] and X0 ∈ En,

is nabla-sh differentiable and G∇sh

(θ) = G(θ) a.e. on T
[a,b].

Proof. (a) If θ is left scattered. Clearly G : T[a,b] → En is continuous and
from Lemma 2.1(a), we have G is ∇h-differentiable at θ and

G∇h =
1

ν(θ)
⊙ (G(θ)⊖h G(ρ(θ)))

=
1

ν(θ)
⊙

[

∫ θ

θ0

G(τ)∇τ ⊖h

∫ ρ(θ)

θ0

G(τ)∇τ

]

=
1

ν(θ)
⊙

(

∫ θ

ρ(θ)
G(τ)∇τ

)

= G(θ).

If θ is ld-point, since G is ld-continuous at θ. For every 0 < ~ < δ with
θ − ~, θ + ~ ∈ N

T
[a,b]
k

, we have

G(ρ(θ))⊖h G(θ − ~) =

∫ ρ(θ)

θ0

G(τ)∇τ ⊖h

∫ θ−~

θ0

G(τ)∇τ

=

∫ ρ(θ)

θ−~

G(τ)∇τ.

Let ǫ1 > 0 be arbitrary,

DH

(

G(θ),
G(ρ(θ))⊖h G(θ − ~)

~− ν(θ)

)

=
1

~− ν(θ)
⊙ [DH((~− ν(θ))⊙G(θ),G(ρ(θ)) ⊖h G(θ − ~))]

=
1

~− ν(θ)
⊙DH

(

∫ ρ(θ)

θ−~

G(θ)∇τ,

∫ ρ(θ)

θ−~

G(τ)∇τ

)
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≤
1

~− ν(θ)
⊙

∫ ρ(θ)

θ−~

DH(G(θ), G(τ))∇τ < ǫ1.

Therefore,

T− lim
~→0

G(ρ(θ)) ⊖h G(θ − ~)

~− ν(θ)
= lim

~→0

G(θ)⊖h G(θ − ~)

~
= G(θ).

Similarly, we can prove

T− lim
~→0

G(θ + ~)⊖h G(ρ(θ))

~+ ν(θ)
= lim

~→0

G(θ + ~)⊖h G(θ)

~
= G(θ).

and hence G∇h(θ) = G(θ) a.e on T
[a,b]
k .

(b) If θ is left scattered. Clearly G : T
[a,b] → En is continuous and from

Lemma 2.1(b), we have G is ∇sh-differentiable at θ and

G∇sh

=
−1

ν(θ)
⊙ (G(ρ(θ))⊖h G(θ))

=
−1

ν(θ)
⊙

[

∫ ρ(θ)

θ0

G(τ)∇τ ⊖h

∫ θ

θ0

G(τ)∇τ

]

=
−1

ν(θ)
⊙

(

∫ ρ(θ)

θ

G(τ)∇τ

)

=
−1

ν(θ)
⊙ (−1)

(

∫ θ

ρ(θ)
G(τ)∇τ

)

= G(θ).

If θ is ld-point, since G is ld-continuous at θ. For every 0 < ~ < δ with
θ − ~, θ + ~ ∈ N

T
[a,b]
k

, we have

G(θ − ~)⊖h G(ρ(θ)) =

∫ θ−~

θ0

G(τ)∇τ ⊖h

∫ ρ(θ)

θ0

G(τ)∇τ

=

∫ θ−~

ρ(θ)
G(τ)∇τ.

Let ǫ1 > 0 be arbitrary,

DH

(

G(θ),
G(θ − ~)⊖h G(ρ(θ))

−(~− ν(θ))

)

=
−1

~− ν(θ)
⊙ [DH(−(~− ν(θ))⊙G(θ),G(θ − ~)⊖h G(ρ(θ))]
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=
−1

~− ν(θ)
⊙DH

(

∫ θ−~

ρ(θ)
G(θ)∇τ,

∫ θ−~

ρ(θ)
G(τ)∇τ

)

≤
−1

~− ν(θ)
⊙

∫ θ−~

ρ(θ)
DH(G(θ), G(τ))∇τ < ǫ1.

Therefore,

T− lim
~→0

G(θ − ~)⊖h G(ρ(θ))

−(~− ν(θ))
= lim

~→0

G(θ − ~)⊖h G(θ)

−~
= G(θ).

Similarly, we can prove

T− lim
~→0

G(ρ(θ)) ⊖h G(θ + ~)

−(~+ ν(θ))
= lim

~→0

G(θ)⊖h G(θ + ~)

−~
= G(θ).

and hence G∇sh

(θ) = G(θ) a.e on T
[a,b]
k .

Remark 3.2. If G : T[a,b] → En is ∇h-differentiable and its derivative
(G∇

h -derivative) is nabla-integrable over T[a,b], then to each θ ∈ T
[a,b]
k , we have

G(θ) = G(θ0)⊕

∫ θ

θ0

G(τ)∇τ for θ ∈ T
[a,b]
k ,

(or)

ifG is∇sh-differentiable and its derivative (G∇sh

-derivative) is nabla-integrable

over T[a,b], then to each θ ∈ T
[a,b]
k , we have

G(θ) = G(θ0)⊖h (−1)

∫ θ

θ0

G(τ)∇τ for θ ∈ T
[a,b]
k .

3. Conclusions

In this paper, we develop and study the properties of Hukuhara nabla integral
for fuzzy functions on time scales. In the future, we will introduce and study
generalizations of Hukuhara nabla differentials and integrals for fuzzy functions
on time scales. Further, these concepts can apply to study the fuzzy dynamic
equations on time scales.
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