UNCLASSIFIED

Defense Technical Information Center Compilation Part Notice ADP010707

TITLE: NACA 0012 Oscillatory and Transient Pitching

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:
TITLE: Verification and Validation Data for Computational Unsteady Aerodynamics [Donnees de verification et de valadation pour I'aerodynamique instationnaire numerique]

To order the complete compilation report, use: ADA390566

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, ect. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP010704 thru ADP010735

3E3. NACA 0012 OSCILLATORY AND TRANSIENT PITCHING

R. H. Landon, ARA

INTRODUCTION

These results are extracted from tabulations of wing pressures resulting from the 3 rd series of pitching tests about 0.25 c axis made in the ARA 2-dimensional tunnel, using the pitching and heaving rig, Ref 1.

The main purpose of these tests was to examine the conditions of dynamic stall and recovery at scaled time rates similar to those of a typical helicopter application. Dynamic similarity was maintained also in Reynolds number; the approximately quarter scale blade section was therefore run, for all the cases reported here, at a tunnel stagnation pressure of 4 bar to match low altitude flight of the helicopter. Consequently, no artificial boundary layer transition trips were applied to the test wing.
The output of dynamic pressure transducers was sampled at fixed intervals, the instantaneous pressures and reference conditions having a matched and filtered response within 3 dB up to 460 Hz .

The results represent one specific cycle, and are not averaged over a number of cycles. The data bank at ARA contains at least 4 cycles of each dynamic condition. Ramp motions have only a single transient.

Up to 6 increments of mean incidence and amplitude, singly or in combination, could be run: the present programme called for 3 increments (called programme steps or PSTEP) of mean incidence α_{m}.

The time-dependent results are presented without harmonic or spectral analysis. Note that the harmonic content of the pitching motion is relatively high, due to the intrusion of other modes of the drive system:

AGARD Case	$\mathrm{f}(\mathrm{Hz})$	Harmonic content and phase angle relative to the fundamental			
		First	Second	Third	Fourth
$1,2,3$		$2.44 \%,-100$	$2.45 \%,-30^{\circ}$	$0.5 \%,-510$	$0.38 \%, 00$
5		$0.22 \%,-130$	$2.60 \%,-440$	$0.37 \%,-610$	$0.07 \%,-760$

The instantaneous Mach number varies in sympathy with the drag of the wing: the flow momentum loss changes the effective area of the choked throat that controls the flow down-stream of the model, thus making speed dependent on drag. Mach number is thus given for each data point in the results.

The heave mode (no results presented here) allowed the wing to be placed up to 63.5 mm (2.5 in) above and below the tunnel centre line. Some pitching tests are reported in Ref 2 to show possible effects on dynamic readings of wall proximity: there has been no analysis of unsteady tunnel interference, but corrections appropriate to steady interference have been applied to some of the measured quantities.

Notes on the data

The ordinates of the NACA 0012 airfoil are given in Table 1 . The chordwise and spanwise locations of the 30 pressure holes and their channel numbers are given in Table 2, and the arrangement of the data is explained in Table 3.

Ten data sets are presented in tables 4 to 13 which provide experimental comparison with AGARD CT Cases. For the priority CT Case 1 the tabulated data are presented as 32 sets of pressure coefficients at equal time intervals during a cycle of oscillation, extracted from 64 sets in the original data. For the other CT Cases of oscillatory pitch the number is reduced to 8 sets. The ramp motion and quasi-steady data have 16 points, chosen to give approximately equal incidence increments, again taken from more closely spaced original data. Tables 4 to 7 include a pitch damping factor which is irrelevant for the present purpose and its value is also shown in each of the oscillatory plots. Note also that the ramp incidence rate is an approximate or nominal value: the incidence rate $d \alpha / d t$ is not constant, and when calculated from different ranges of incidences, will give different values. Approximate representations of the motions in Ref 6 are recommended for comparative calculations at given α. No measurements were made for strictly steady conditions, but instantaneous pressures were measured for very slow oscillations of incidence. The results of three of these quasi-steady tests are given in Tables 11 to 13.

Oscillatory pitch about 0.25 c :

Related	Run No.	Experimental conditions							
AGARD CT case	and P step	M	α_{m} (deg)	$\alpha_{0}(\mathrm{deg})$	$\mathrm{f}(\mathrm{Hz})$	k	$\operatorname{Re} \times 10^{-}$ 6	Sets	Data table
1	$87-1$	0.600	2.89	2.41	50.32	0.0808	4.8	32	4
2	$89-1$	0.600	3.16	4.59	50.32	0.0811	4.8	8	5
3	$87-3$	0.600	4.86	2.44	50.32	0.0810	4.8	8	6
5	$128-1$	0.755	0.016	2.51	62.5	0.0814	5.5	8	7

Ramp motion about 0.25 c :

Related	Run No.	Experimental conditions					
AGARD CT case		M	α range (deg)	$\operatorname{Re} \times 10^{-}$	Approx d $\alpha / \mathrm{dt}(\mathrm{deg} / \mathrm{s})$	Sets	Data table
6	218	0.30	-0.03 to 15.54	2.7	1280	16	8
7	227	0.57	-0.01 to 14.80	4.6	425	16	9
8	230	0.56	-0.01 to 14.97	4.5	1380	16	10

Quasi-steady:

Run No.	M	α range in table (deg)	Re $\times 10^{-6}$	Sets	Data table
6	0.30	-0.12 to 15.55	2.6	16	11
11	0.58	-0.13 to 11.56	4.6	16	12
151	0.75	-3.27 to 3.35	5.5	16	13

Figs 2 to 4 show typical results extracted from Ref 2 for oscillatory pitching at $M=0.6$ and 0.75 , showing the effect of reduced frequency parameter on normal force, pitching moment and a damping factor DF. The related AGARD CT cases 1, 2, 3 and 5 are included in these figures. Figs 2 and 3 are for respective amplitudes $\alpha_{0}=2.5^{\circ}$ and 5.0°.
Fig 5 shows curves of C_{N} against α from the quasi-steady data and for the two ramp rates at $\mathrm{M}=0.57$ to illustrate the lag in the growth of C_{N} and the delayed stall under dynamic conditions.

LIST OF SYMBOLS AND DEFINITIONS

b	airfoil span and tunnel width
c	chord
C_{N}	normal force coefficient
C_{m}	pitching moment coefficient (about 0.25 c)
f	frequency (Hz)
h	tunnel height
k	reduced frequency, $\omega \mathrm{c} / 2 \mathrm{~V}$
M	Mach number
q	dynamic pressure
$R, \mathrm{R}_{\mathrm{e}}$	Reynolds number
t	time (seconds)
V	velocity

$\mathrm{x}, \mathrm{y}, \mathrm{z}$	airfoil coordinates
α	incidence
α_{m}	mean incidence
α_{0}	pitch amplitude
δ^{*}	displacement thickness of boundary layer
ω	frequency $(\mathrm{rad} / \mathrm{sec})$

For each chosen case, experimental dat are presented as sets of instantaneous values of the quantities $\mathrm{C}_{\mathrm{P}} \mathrm{C}_{\mathrm{N}} \mathrm{C}_{\mathrm{m}} \alpha$ and M for particular times t (in seconds) in tables 4 to 13 .

Uncorrected coefficients $\mathrm{C}^{\prime} \mathrm{N}$ and $\mathrm{C}^{\prime} \mathrm{m}$ are evaluated by a curve fitting procedure from the integrals

$$
\begin{aligned}
& C^{\prime} \mathrm{N}=\int_{0}^{1}\left(\mathrm{C}_{\mathrm{pL}}-\mathrm{C}_{\mathrm{pU}}\right) \mathrm{d}(\mathrm{x} / \mathrm{c}) \\
& \\
& \mathrm{C}_{\mathrm{m}}^{\prime}=\int_{0}^{1}\left(\mathrm{C}_{\mathrm{pL}}-\mathrm{C}_{\mathrm{pU}}\right)(0.25-(\mathrm{x} / \mathrm{c})) \mathrm{d}(\mathrm{x} / \mathrm{c})
\end{aligned}
$$

where $C_{p}=\left(p-p_{\infty}\right) / q$ is uncorrected and the suffices L and U denote lower and upper surfaces respectively.
Oscillatory motion is defined by

$$
\alpha=\alpha_{m}+\alpha_{0} \sin (\omega t+\varepsilon)
$$

where ε is a phase angle dependent on the time datum.
The quantities $\alpha \alpha_{m} \alpha_{0} C_{N}$ and C_{m} (but not C_{p}) have each been corrected for tunnel constraint effects. The corrections, as derived for steady conditions in refs 3,4 and 5 , are applied to each instantaneous condition as if it were steady.

PRESENTATION OF DATA

The data were presented in tables 4 to 13 of the original AGARD R702 report. In this document the first part of table 4 is supplied as a sample and the remaining tables are supplied in an ASCII data file SET3.DAT. A FORTRAN program (SET3.FOR) is provided which demonstrates the extraction of the data. The program includes a sample main segment which reproduces the data of a table via a call to subroutine SET3SEL, with output either onlinc or to a formatted file. This subroutine may be employed in a user's code to extract the data for a single table or to serve as a model for other data extraction codes.

SET3SEL subroutine

A description of the subroutine call and arguments follows:

> SUBROUTINE SET3SEL (NCH, ITAB, MAXP, MAXT, RMACH 1, VMACH, TIM, ALPHA, CN, CM, Q, CPST, NUMP, STN, NTIM)
C-- This routine reads and selects tables from the data file SET3.DAT
C which contains the data of tables 4 to 13 of R 702 data set 3 (ARA).
C-- Arguments are as defined below (all except NCH, ITAB, MAXP, MAXT must be
c variables):
C Input values
$\mathrm{NCH} \quad$ channel number to be used for reading the input file
ITAB Specifies the required table number.
MAXP The declared dimension in the calling routine of the
array STN and leading dimension of CPST (must be >=30)
MAXT The declared dimension in the calling routine of the
time variation arrays VMACH...
Returned values:
RMACH The nominal Mach number for this run
Time variable arrays of instantaneous values:
VMACH Mach number
TIM Time (sec)
ALPHA Incidence (deg)
CN Normal force coefficient

```
C
C
Time and location array:
    CPST Instantaneous pressure coefficient [CPST(i,j,k) is the
    value of CP at transducer i,and time value j and
    surface k (1=upper, 2=lower)]
    NUMP The number of chordwise locations, 2-element integer array
    with NUMP(1) the number of upper surface points
    and NUMP(2) the number of lower surface points
    STN 2-dimensional array of locations of transducers (X/C)
        STN(i,j) is the i-th transducer on the upper (j=1) or
        lower (j=2) surface
    NTIM The number of times at which data is given
    REAL CPST(MAXP,MAXT, 2),VMACH (MAXT),TIM(MAXT),ALPHA(MAXT)
    REAL CN (MAXT), CM(MAXT),Q(MAXT),STN(MAXP, 2)
    INTEGER NUMP(2)
```


FORMULARY

1 General Description of model

1.1 Designation
1.2 Type
1.3 Derivation
1.4 Additional remarks
1.5 References

NACA 0012
Symmetrical 12\% thick

Ordinates given in table 1
6, 7

2 Model Geometry
2.1 Planform
2.2 Aspect ratio
2.3 Leading edge sweep
2.4 Trailing edge sweep
2.5 Taper ratio
2.6 Twist
2.7 Wing centreline chord
2.8 Span of model
2.9 Area of planform
2.10 Location of reference sections and definition of profiles
2.11 Lofting procedure between reference sections
2.12 Form of wing-body junction NA
2.13 Form of wing tip NA
2.14 Control surface details NA
2.15 Additional remarks
2.16 References

NA
NA
NA
NA
None

NA
NA
NA

None

Two-dimensional airfoil
0.1016 m
0.2032 m
$0.0206 \mathrm{~m}^{2}$

Accuracy of profile see fig.1. Trailing edge thickness 0.383 mm , approximately 0.127 mm too thick

3 Wind Tunnel

3.1 Designation
3.2 Type of tunnel
3.3 Test section dimensions
3.4 Type of roof and floor
3.5 Type of side walls
3.6 Ventilation geometry
3.7 Thickness of side wall boundary layer
3.8 Thickness of boundary layers at roof and floor
3.9 Method of measuring Mach number
3.10 Flow angularity
3.11 Uniformity of Mach number over test section
3.12 Sources and levels of noise or turbulence in empty tunnel
3.13 Tunnel resonances
3.14 Additional remarks
3.15 References on tunnel

ARA 2-dimensional tunnel
Intermittent blow down
$\mathrm{h}=0.4572, \mathrm{~b}=0.2032$, length $=1.251 \mathrm{~m}$
Slotted, 3.2% open area ratio
Solid
Roof and floor each have 6 slots and 2 half slots at comers. Plenum chambers 133 mm deep connected by large ducts. Top and bottom walls diverge.
$2 \delta^{*} / \mathrm{b}=0.015$
Not known

Static hole in side wall 5 chords ahead of model NA

Centre line distribution within $\pm 0.038 \mathrm{~mm}$ in region of model

No serious disturbances

No evidence
None
Ref. 8

4 Model motion

4.1 General description
4.2 Natural frequencies and normal modes of model and support system

Pitching about 0.25 c , oscillation or ramp.
Lowest frequency is bending at 600 Hz
5.1 Model chord/tunnel width
0.222
5.2 Model chord/tunnel height 0.5
5.3 Blockage
-
5.4 Position of model in tunnel
5.5 Range of Mach numbers
0.3 to 0.87
5.6 Range of tunnel total pressure
5.7 Range of tunnel total temperature
5.8 Range of model steady or mean incidence
5.9 Definition of model incidence
5.10 Position of transition, if free
5.11 Position and type of trip, if transition fixed
5.12 Flow instabilities during tests
5.13 Changes to mean shape of model due to steady aerodynamic load
5.14 Additional remarks

None
5.15 References describing tests

6 Measurements and Observations

6.1 Steady pressures for the mean conditions N
6.2 Steady pressures for small changes from the N mean conditions
6.3 Quasi-steady pressures Y
6.4 Unsteady pressures Y
6.5 Steady section forces for the mean Nconditions by integration of pressures
6.6 Steady section forces for small changes Nfrom the mean conditions by integration
6.7 Quasi-steady section forces by integration Y
6.8 Unsteady section forces by integration Y
6.9 Measurement of actual motion at points of N model
6.10 Observation or measurement of boundary N layer properties
6.11 Visualisation of surface flow N
6.12 Visualisation of shock wave movements N
6.13 Aditional remarks None
7 Instrumentation
7.1 Steady pressure

Pressures for quasi-steady conditions measured with same system
7.1.1 Position of orifices spanwise and chordwise
7.1.2 Type of measuring system See 7.2
7.2 Unsteady pressure
7.2.1 Position of orifices spanwise and chordwise
7.2.2 Diameter of orifices
7.2.3 Type of measuring system
7.2.4 Type of transducers
7.2.5 Principle and accuracy of calibration Calibrated under steady conditions against calibration Texas
7.3 Model motion
7.3.1 Method of measuring motion reference coordinate
7.3.2 Method of determining spatial mode NA of motion

Shaft encoder

A
7.4 Processing of unsteady measurements
7.4.1 Method of acquiring and processing measurements
7.4.2 Type of analysis
7.4.3 Unsteady pressure quantities obtainedand accuracies achieved
7.4.4 Method of integration to obtain forces
7.5 Additional remarks
7.6 References on techniques
See table 2
0.25 mm
30 transducers in model (see ref. 1)
Kulite XCQL absoluteQuartz Pressure Test Set. Accuracy: $\mathbf{+ 2 . 7 \mathrm { mb }}$
Resolution +0.1 deg

Resolution $\pm 0.1 \mathrm{deg}$ used for unsteady pressures

See 7.2

$$
\text { Quartz Pressure Test Set. Accuracy: } \pm 2.7 \mathrm{mb}
$$

Signals sampled at known time intervals, same points in cycle

Instantancous pressures reduced to non-dimensional coefficients
Approximately ± 0.01 in C_{p}
Standard curve fitting procedure
Tabulated C_{N} and C_{m} are corrected for wall constraint
1,9,10

8 Data presentation

8.1 Test cases for which data could be made
available
8.2 Test cases for which data are included in this document
8.3 Steady pressures
8.4 Quasi-steady or steady perturbation pressures
8.5 Unsteady pressures
8.6 Steady forces or moments
8.7 Quasi-steady or unsteady perturbation forces
8.8 Unsteady forces and moments
8.9 Other forms in which data could be made available
8.10 Reference giving other representations of data

9 Comments on data

9.1 Accuracy
9.1.1 Mach number
9.1.2 Steady incidence
9.1.3 Reduced frequency
9.1.4 Steady pressure coefficients
9.1.5 Steady pressure derivatives
9.1.6 Unsteady pressure coefficients
9.2 Sensitivity to small changes of parameter
9.3 Non-linearities
9.4 Influence of tunnel total pressure
9.5 Effects on data of uncertainty, or variation, in mode of model motion
9.6 Wall interference corrections
9.7 Other relevant tests on same model
9.8 Relevant tests on other models of nominally the same shapes
9.9 Any remarks relevant to comparison
between experiment and theory
9.10 Additional remarks
9.11 References on discussion of data

None. The test cases covered in the original test were listed in tables in AGARD R702. However, since the publication of the original report, this data has become unavailable from ARA.
See Introduction

No
Tables 11, 12, 13

Tables 4 to 10
No
Tables 11, 12, 13
Tables 4 to 10
None
1
None

1

11 List of references

1 R H Landon. A description of the ARA 2-dimensional pitch and heave rig and some results from the NACA 0012 wing. ARA Memo 199, September 1977
2 Mrs M.E. Wood. Results of oscillatory pitch and ramp tests on the NACA 0012 blade section. ARA Memo 220, December 1979
3 A Harris. Calibration of ARA's 2-dimensional facility using 2.8% open area liners. April 1971, unpublished Memorandum
4 A Harris, A B Haines. Evidence on wall interference effects in the ARA 2-dimensional tunnel. ARA Memo 147, 1972
5 A B Haines. An evaluation of wall interference effects in ARA's 2-dimensional tunnel. Item 5, Tech Comm, June 1973

6 Ed. S R Bland. AGARD two-dimensional aeroelastic configurations. AGARD-AR-156, 1979
7 I H Abbott, A E Von Doenhoff. Theory of wing sections: including a summary of airfoil data. McGraw-Hill, New York 1949

8 B L F Hammond. Some notes on model testing in the ARA 2-dimensional facility. ARA Memo 170, 1975
9 R H Landon, Mrs M E Wood. Some sources of error with Kulite pressure transducers in the ARA pitch/heave rig. ARA Memo 204, 1978
10 R H Landon, Mrs M E Wood. The pitch/heave rig data selection and reduction program, and Corrigendum. ARA Memo 182, 1976
11 Mrs J Sawyer. Results of tests on aerofoil M. 102/9 (NACA 0012 (in the ARA 2-dimensional tunnel. ARA Model Test Note M.102/9, 1978

Table 1 NACA 0012 Section Ordinates

x / c	z / c	0.2000	± 0.05738	0.6500	± 0.04132
0	0	0.2500	± 0.05941	0.7000	± 0.03664
0.0050	± 0.01221	0.3000	± 0.06002	0.7500	± 0.03160
0.0125	± 0.01894	0.3500	± 0.05949	0.8000	± 0.02623
0.0250	± 0.02615	0.4000	± 0.05803	0.8500	± 0.02053
0.0500	± 0.03555	0.4500	± 0.05581	0.9000	± 0.01448
0.0750	± 0.04200	0.5000	± 0.05294	0.9500	± 0.00807
0.1000	± 0.04683	0.5500	± 0.04952	1.0000	± 0.00126
0.1500	± 0.05345	0.6000	± 0.04563		

Table 2 NACA 0012 Wing Pressure Locations And Channel Number Identities

Upper surface			Lower surface		
Channel No.	x / c	y / b	Channel No.	x / c	y / b
1	1.0 TE	0.52	21	0 LE	0.44
2	0.9	0.51	22	0.01	0.46
3	0.8	0.48	23	0.02	0.48
4	0.7	0.49	24	0.04	0.48
5	0.6	0.5	25	0.10	0.48
6	0.5	0.5	26	0.22	0.5
7	0.4	0.5	27	0.34	0.5
8	0.3	0.5	28	0.46	0.5
9	0.2	0.51	29	0.57	0.5
10	0.15	0.48	30	0.68	0.5
11	0.125	0.48	31	0.79	0.54
12	0.1	0.49	32	0.90	0.55
13	0.075	0.5			
14	0.05	0.51			
15	0.03	0.52			
16	0.02	0.53			
17	0.01	0.55			
18	0.005	0.56			

Table 3 Layout of Results in Tables 4 to 13.
Note the layout differs from that in AGARD R702.

$\mathrm{t}(\mathrm{sec})$	M	α (deg)	C_{N}	C_{m}	$\mathrm{q}\left(\mathrm{lb} / \mathrm{f}^{2}\right)$				
$\mathrm{C}_{\mathrm{p}+1}$	$\mathrm{C}_{\mathrm{p}+2}$	$\mathrm{C}_{\mathrm{p}+3}$	$\mathrm{C}_{\mathrm{p}+4}$	$\mathrm{C}_{\mathrm{p}+5}$	$\mathrm{C}_{\mathrm{p}+6}$	$\mathrm{C}_{\mathrm{p}+7}$	$\mathrm{C}_{\mathrm{p}+8}$	$\mathrm{C}_{\mathrm{p}+9}$	$\mathrm{C}_{\mathrm{p}+10}$
$\mathrm{C}_{\mathrm{p}+11}$	$\mathrm{C}_{\mathrm{p}+12}$	$\mathrm{C}_{\mathrm{p}+13}$	$\mathrm{C}_{\mathrm{p}+14}$	$\mathrm{C}_{\mathrm{p}+15}$	$\mathrm{C}_{\mathrm{p}+16}$	$\mathrm{C}_{\mathrm{p}+17}$	$\mathrm{C}_{\mathrm{p}+18}$	$\mathrm{C}_{\mathrm{p}-1}$	$\mathrm{C}_{\mathrm{p}-2}$
$\mathrm{C}_{\mathrm{p}-3}$	$\mathrm{C}_{\mathrm{p}-4}$	$\mathrm{C}_{\mathrm{p}-5}$	$\mathrm{C}_{\mathrm{p}-6}$	$\mathrm{C}_{\mathrm{p}-7}$	$\mathrm{C}_{\mathrm{p}-8}$	$\mathrm{C}_{\mathrm{p}-9}$	$\mathrm{C}_{\mathrm{p}-10}$	$\mathrm{C}_{\mathrm{p}-11}$	$\mathrm{C}_{\mathrm{p}-12}$

where, in the arrangement above, $\mathrm{C}_{\mathrm{p}+\mathrm{n}}$ is the instantaneous value of C_{p} for channel n on the upper surface and $\mathrm{C}_{\mathrm{p}-\mathrm{n}}$ is the instantaneous value of C_{p} for channel n on the lower surface. Chordwise locations can be identified from the following key:

Upper									
1.00	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.10	0.15
Upper								Lower	
0.125	0.10	0.075	0.05	0.03	0.02	0.01	0.005	0	0.01
Lower									
0.02	0.04	0.10	0.22	0.34	0.46	0.57	0.68	0.79	0.90

Table 4 AGARD Case 1 - oscillatory pitch. Sample showing first part of data
$\mathrm{M}=0.600 \mathrm{NT}=31 \mathrm{Re}=8 * 10^{6} \omega \mathrm{c} / 2 \mathrm{~V}=0.0808 \alpha_{\mathrm{m}}=2.89 \alpha_{0}=2.41$ Damping=0.06708

Fig. 1 Profile inspection of NACA 0012 wing $Z_{m}-Z_{t}$

Fig. $2 C_{N}, C_{m} v$ incidence over range of $\alpha_{m}=3^{\circ}, 4^{0}, 5^{\circ} ; \alpha_{0}=2.5^{\circ}$.
Effect of frequency $k=0.05,0.08,0.12 ; M=0.6$

PSTEP 1
$\alpha=3+5 \sin \omega t$

PSTEP 2
$\alpha=4.5 \sin \omega t$

PSTEP 3 $\alpha=5+5 \sin \omega t$

Fig. $3 C_{\mathrm{N}}, \mathrm{C}_{\mathrm{m}} \mathrm{v}$ incidence over range of $\alpha_{\mathrm{m}}=3^{\circ}, 4^{\circ}, 5^{\circ} ; \alpha_{0}=5^{\circ}$.
Effect of frequency $k=0.05,0.08,0.12 ; M=0.6$

Fig. $4 \mathrm{C}_{\mathrm{N}}, \mathrm{C}_{\mathrm{m}} \mathrm{v}$ incidence over range of $\alpha_{\mathrm{m}}=0^{\circ}, 1^{\circ}, 2^{\circ} ; \alpha_{0}=2.5^{\circ}$.
Effect of frequency $k=0.05,0.08,0.12 ; M=0.6$

Fig. 5 Lift \mathbf{v} incidence for different rates of change

