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Abbreviations:  

PARP, poly(ADP-ribose) polymerase; PAR, poly(ADP-ribose); FLIM, fluorescence lifetime 

imaging microscopy; NAD, nicotinamide adenine dinucleotide; oxphos, oxidative 

phosphorylation; R+A, rotenone and antimycin A; 2DG, 2-Deoxy-D-glucose; NAM, 

nicotinamide; NMN, nicotinamide mononucleotide; OCR, oxygen consumption rate; ECAR, 

extracellular acidification rate 
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Abstract  

 

DNA damage signaling is critical for the maintenance of genome integrity and cell fate decision.  

Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor rapidly activated in a 

damage dose- and complexity-dependent manner playing a critical role in the initial chromatin 

organization and DNA repair pathway choice at damage sites.  However, our understanding of a 

cell-wide consequence of its activation in damaged cells is still limited.  Using the phasor 

approach to fluorescence lifetime imaging microscopy (FLIM) and fluorescence-based 

biosensors in combination with laser microirradiation, we found a rapid cell-wide increase of the 

bound NADH fraction in response to nuclear DNA damage, which is triggered by PARP-

dependent NAD+ depletion.  This change is linked to the metabolic balance shift to oxidative 

phosphorylation (oxphos) over glycolysis.  Inhibition of oxphos, but not glycolysis, resulted in 

parthanatos due to rapid PARP-dependent ATP deprivation, indicating that oxphos becomes 

critical for damaged cell survival.  The results reveal the novel pro-survival response to PARP 

activation through a change in cellular metabolism, and demonstrate how unique applications of 

advanced fluorescence imaging and laser microirradiation-induced DNA damage can be a 

powerful tool to interrogate damage-induced metabolic changes at high spatiotemporal resolution 

in a live cell.  
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Introduction 

 

Poly(ADP-ribose) polymerase 1 (PARP1) functions as a DNA damage sensor whose 

enzymatic activity is rapidly activated in response to DNA damage (Gupte et al., 2017).  PARP1 

uses oxidized nicotinamide adenine dinucleotide (NAD+) as a substrate to ADP(ribosyl)ate itself 

and various target proteins.  Although initially recognized as a base excision repair (BER) factor, 

it is now known that PARP1 is involved in multiple DNA repair pathways.  Rapid poly(ADP-

ribose) (PAR) accumulation at damage sites controls damage site accessibility through the 

recruitment of various chromatin modifiers and dictates DNA repair pathway choice (Ahel et al., 

2009; Gottschalk et al., 2009; Sun et al., 2009; Bouwman et al., 2010; Chou et al., 2010; Larsen 

et al., 2010; Polo et al., 2010; Smeenk et al., 2010; Ball and Yokomori, 2011; Jaspers et al., 

2013; Ayrapetov et al., 2014; Khoury-Haddad et al., 2014; Altmeyer et al., 2015; Izhar et al., 

2015; Gupte et al., 2017).  We also demonstrated that PARP1 activation suppresses the 53BP1 

recruitment to damage sites, providing another explanation for 53BP1- and NHEJ-dependent 

cytotoxicity by PARP inhibition (Cruz et al., 2016).  

 In addition to promoting efficient repair and thus cell survival, PARP was also shown to 

affect metabolism and mediate senescence and cell death (both apoptosis and necrosis) when 

hyperactivated (Gupte et al., 2017).  Since the oxidized and reduced forms of NAD (NAD+ and 

NADH, respectively) are metabolic cofactors critical for cellular energy production (Heikal, 

2010), consumption of NAD+ by damage-induced PARP activation was expected to hinder 

cellular energy metabolism.  In addition, PARP1 was reported to inhibit hexokinase (HK), a 

critical enzyme in the glycolysis pathway through PARylation (Andrabi et al., 2014; Fouquerel 

et al., 2014; Feng et al., 2015), resulting in ATP deprivation and subsequent cell death termed 
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parthanatos (Andrabi et al., 2008).  Parthanatos was shown to require PAR-dependent nuclear 

translocation of apoptosis-inducing factor (AIF) from mitochondria (Fatokun et al., 2014), but 

AIF-independent parthanatos was also reported (Jang et al., 2017).  In addition, PARP activation 

causes intracellular acidification, which appears to promote necrosis (Affar et al., 2002).  Thus, 

the downstream effects of PARP activation is complex, and the precise relationship between the 

DNA damage dosage and the strength of PARP signaling that affects energy metabolism and/or 

triggers cell death are not well delineated.   

 Because NADH is an essential cofactor for oxidation-reduction (redox) reactions and 

production of ATP, multiphoton microscopy techniques to capture NADH autofluorescence and 

measure metabolic dynamics in living cells have recently garnered attention for their broad 

applicability in studies ranging from development to cancer and aging (Skala and Ramanujam, 

2010; Stringari et al., 2012a; Stringari et al., 2012b).  The free and protein-bound states of 

NADH were shown to reflect glycolysis and oxidative phosphorylation (oxphos), respectively, 

which can be differentiated using fluorescence lifetime imaging microscopy (FLIM) 

(Schneckenburger et al., 2004; Skala et al., 2007a; Skala et al., 2007b; Heikal, 2010; 

Georgakoudi and Quinn, 2012; Stringari et al., 2012a).  One of the major challenges of FLIM is 

the fitting routine required to dissect the possible lifetime contributions of different fluorescent 

species in a single pixel. In our approach, we apply the fit-free phasor approach to FLIM analysis 

that provides a graphical representation of the fluorescence decay at each pixel (Digman et al., 

2008).  Pixels that have multiple contributions of fluorophore lifetimes can be resolved as a 

linear combination of the individual species.  Furthermore, the absolute concentration of NADH 

can be measured using the phasor-FLIM method (Ma et al., 2016), which is expected to 

sensitively respond to the changes of NAD+ (Nakamura et al., 2003).  Here, using the phasor-
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FLIM approach in conjunction with fluorescent biosensors and laser microirradiation, we 

examined the real time metabolic changes in response to both nucleus-restricted and 

conventional DNA damage with high spatiotemporal resolution and interrogated the contribution 

of differential PARP signaling in response to different dosage/complexity of DNA damage.  

Using this comprehensive approach, we observed rapid reduction of NADH (correlating with the 

decrease of NAD+) and ATP in both the nucleus and cytoplasm in a PARP1 activity-dependent 

manner.  Interestingly, PARP1 activation also triggers a rapid increase of protein-bound NADH 

species over free NADH, which correlates with the net increase of oxphos over glycolysis.  

Importantly, this shift appears to reflect the increased metabolic dependence of damaged cells on 

oxphos.  Inhibitors of oxphos, but not glycolysis, specifically sensitized cells to DNA damage 

with exacerbated ATP deprivation, resulting in PARP-dependent, caspase-independent, cell 

death.  The increased dependence on oxphos is rescued by NAD+ replenishment, suggesting that 

it is distinct from the effect of PAR-dependent inhibition of HK in glycolysis.  Taken together, 

the phasor approach to FLIM and fluorescence biosensors in combination with laser 

microirradiation provides valuable tools to capture high-resolution single cell dynamics of 

metabolic changes in response to DNA damage and uncovered the key downstream consequence 

of NAD+ consumption by PARP1 that promotes cell survival in DNA damaged cells. 
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Results 

Phasor-approach to FLIM reveals ratiometric increase of protein-bound NADH over free 

NADH in response to DNA damage 

 Using laser microirradiation, DNA damage-induced changes of the free and bound fractions 

of NADH were measured by FLIM in the cytoplasm and nucleus in HeLa cells.  Laser 

microirradiation can be used to induce DNA damage in a highly controlled fashion (Kong et al., 

2009; Gomez-Godinez et al., 2010; Kong et al., 2011; Silva et al., 2014; Cruz et al., 2016).  In 

particular, titration of the input power of near-infrared (NIR) laser allows differential DNA 

damage induction, from relatively simple strand breaks to complex DNA damage (i.e. single and 

double strand breaks (SSBs and DSBs), thymine dimer formation and base damage) with 

differential H2AX phosphorylation (γH2AX) and PARP activation as previously reported 

(Supplemental Fig. S1A; Fig. 2A) (Kong et al., 2011; Cruz et al., 2016).  With high input power, 

complex DNA damage induces pan-nuclear γH2AX (Fig. 2A), which we previously 

demonstrated to be ATM and DNA-PK-dependent (Cruz et al., 2016).  Similar spreading of 

γH2AX was observed with localized heavy ion irradiation (Meyer et al., 2013).  Over 90% of 

cells were viable at 24 hr after microirradiation with medium input power whereas cells actually 

recovered and proliferated with low input power irradiation (Supplemental Fig. S1B).   With 

high input power, over 70% of irradiated cells were viable after 24 hr and surviving cells were 

arrested in interphase with no evidence for senescence at least up to 60 hr post irradiation 

(Supplemental Fig. S1B and C).  

Using these varying laser input powers, we examined the effect of nuclear DNA damage on 

cellular metabolism in real time.  Clusters of pixels were detected on the phasor plot and used to 

pseudo-color the intensity images according to fluorescence lifetime (Fig. 1A and B).  We also 
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measured both NADH intensity and concentration (Ma et al., 2016), which are largely 

comparable and are reduced in a damage dose-dependent manner (Supplemental Fig. S2A).  The 

major source of cytoplasmic NADH signal is in the mitochondria (Fig. 1A, fluorescence 

intensity).  Comparison of NAD+ in the mitochondria and cytoplasm using the NAD+-specific 

biosensor (Cambronne et al., 2016) also showed largely concordant reduction in response to 

DNA damage (Supplemental Fig. S2C).  Interestingly, FLIM analyses revealed the increase in 

the ratio of the bound NADH fraction over free NADH within the first 120 min post damage 

induction in both the cytoplasm and nucleus in a damage-dose-dependent manner (Fig. 1C and 

E).  Treatment with alkylating (MMS) and oxidizing (H2O2) damaging agents also exhibited 

transient shifts toward a high fraction of bound NADH in addition to transient NADH decrease 

(Fig. 1D and E; Supplemental Fig. S2B).  Thus, the increase of bound NADH is a general 

response to DNA damage, not restricted to laser damage.   

While an increase of bound NADH was transient for low and medium laser damage 

conditions, the fraction of bound NADH remained significantly high for over 12 hr with high 

input power damage in both cytoplasm and nucleus (Figs. 1C; Supplemental Fig. S3A; also see 

Fig. 2B, DMSO control).  There is a significant correlation between cytoplasmic and nuclear 

increase of bound NADH in each cell (R
2
=0.849) (Supplemental Fig. S3B).  In contrast, decrease 

of NADH intensity/concentration and increase of bound NADH fraction are discordant in both 

cytoplasm (R
2
=0.373) and nucleus (R

2
=0.005).  Furthermore, we found that NADH recovery 

following its transient decrease by damage induction is highly variable with no significant 

correlation between the cytoplasmic and nuclear compartments within each cell (R
2
=0.028).  

Taken together, the results indicate that the shift to bound NADH persists at high damage, and is 

not the mere reflection of NADH depletion.  
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Increase of the bound NADH fraction is entirely dependent on PARP1 activity 

 What regulates the damage-induced increase of bound NADH fraction?  Two major damage 

signaling pathways are the PARP and PIKK pathways, which are both activated in a damage 

dose/complexity-dependent manner (Cruz et al., 2016).  ATM is a member of the PIKK family, 

specifically activated by DNA damage to govern cell cycle checkpoint as well as DNA repair 

through target protein phosphorylation (Shiloh, 2003).  ATM and another PIKK member DNA-

PK, which mediates non-homologous end joining of DSBs, are both involved in the spreading of 

nuclear-wide γH2AX in response to high-dose complex DNA damage (Burma et al., 2001; 

Meyer et al., 2013; Cruz et al., 2016).  Accordingly, PAR and γH2AX were induced initially at 

damage sites and spread to the whole nucleus in a damage dose-dependent manner (Fig. 2A).  

Thus, we examined the effect of inhibition of PARP or ATM/DNA-PK on the increase of the 

bound NADH fraction (Fig. 2 and Supplemental Fig. S4).  The combination of ATM and DNA-

PK inhibitors (AiDi) had no significant effect on either the bound NADH fraction or NADH 

intensity (Fig. 2B and C).  In contrast, inhibition of PARP by olaparib (PARPi) blocked the 

transient decrease of NADH intensity in both cytoplasm and nucleus, suggesting that the 

decrease of NADH in response to damage reflects deprivation of NAD+ by PARP, and 

confirmed that PARP activation originating in the nucleus affects NAD+/NADH concentration 

in the whole cell (Fig. 2B and C).  PARPi also dramatically suppressed the damage-induced 

increase of the bound NADH fraction (Fig. 2B and C).  Similar results were obtained with 

another PARP inhibitor NU1025 (data not shown).  Importantly, comparable results were 

obtained with depletion of PARP1 by siRNA, indicating that PARP1, among the multiple PARP 

family members, is primarily responsible for the observed NADH dynamics (Fig. 2D).  Taken 
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together, the results indicate that the change in the NADH state is dependent on PARP1 and not 

ATM or DNA-PK signaling.   

 

Increase of bound NADH is sensitive to oxphos inhibitors and NAD+ replenishment 

Previous studies indicated that the increase and decrease in protein-bound NADH in the cell 

reflect the oxphos and glycolytic pathways of energy metabolism, respectively (Schneckenburger 

et al., 2004; Skala et al., 2007a; Skala et al., 2007b; Heikal, 2010; Georgakoudi and Quinn, 

2012; Stringari et al., 2012a).  Thus, we examined the effect of the mitochondrial complex I and 

III respiratory (electron transport) chain inhibitors (rotenone and antimycin A, respectively) 

(R+A).  The inhibitor treatment suppressed the damage-induced long-term increase of the 

protein-bound NADH fraction, strongly suggesting that the observed increase of NADH reflects 

oxphos (Fig. 3A and B (left panels) and Supplemental Fig. S5A).  Interestingly, under our 

condition, there is an initial increase of the bound species in response to R+A treatment with 

high input power laser even though the initial decrease of NADH intensity was effectively 

inhibited (Fig. 3 left panels and Supplemental Fig. S5A).  This suggests that the initial increase 

(within 2 hr of damage induction) and subsequent maintenance of the high bound/free NADH 

ratio may represent distinct phenomena.  

Our analyses revealed that the increase of the bound NADH fraction was suppressed by 

PARP1 depletion or PARP inhibition (Fig. 2B and D).  The observed effect of PARP inhibition 

can be due to suppression of target protein PARylation and/or blocking the deprivation of 

intracellular NAD+ (the substrate used by PARP).  To test the latter hypothesis, we examined 

whether supplementing NAD+ would reverse the effect.  Addition of nicotinamide 

mononucleotide (NMN) and nicotinamide (NAM), precursors of NAD+ in the salvage pathway, 
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not only inhibited the decrease of NADH, but also suppressed the shift to a high bound NADH 

fraction both in both the nucleus and cytoplasm (Fig. 3 right panels, and Supplemental Fig. S5B-

D).  The increase of bound NADH was completely suppressed during the first 4 hr comparable to 

PARPi or PARP1 depletion (Fig. 2B and D).  The results demonstrate that NAD+ consumption 

by PARP is the trigger to induce the shift to bound NADH.  Failure to suppress the initial 

increase of bound NADH by R+A may represent compensatory increase of NADH binding to the 

Complex I enzyme whose catalytic activity is inhibited by rotenone. 

 

The increase of bound NADH fraction reflects the increased metabolic reliance on oxphos 

The observed reduction of bound NADH by the respiratory chain inhibitors strongly suggests 

that damage-induced change of NADH state reflects the change in energy metabolism.  To 

substantiate this result, metabolic flux analysis by the Seahorse XF Analyzer was performed in 

control and MMS-treated cells.  The FLIM analyses indicate that the respiratory inhibitors have 

similar effects on MMS-treated cells compared to the laser-damaged cells (Figs. 3 and 4A; 

Supplemental Fig. S5).  Under this damaging condition, both oxphos as measured by the oxygen 

consumption rate (OCR) and glycolysis by the extracellular acidification rate (ECAR) were 

reduced compared to the undamaged cells, with suppression of ECAR more severe (Fig. 4B).  

While PARPi has no significant effect on either basal OCR or ECAR in damaged cells, damage-

induced inhibition of peak OCR and ECAR are strongly alleviated by PARPi.  Cellular reliance 

on oxidative metabolism (OCR/ECAR) was also calculated.  The results indicate the 

significantly elevated maximum, but not basal, oxidative reliance in MMS-treated cells 

compared to the control undamaged cells, which is suppressed by PARPi (Fig. 4B).  Importantly, 

NAD+ replenishment (by addition of NMN) had a similar effect (Fig. 4C).  We found that at 1 hr 
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post damage release, inhibition of glycolysis (ECAR) is less pronounced than at 2 hr.  

Nevertheless, both were rescued by NMN, though less complete than by PARP inhibition (Fig. 

4B and C).  The difference between PARP inhibition and NMN addition may be due to the 

contribution of PAR-dependent HK inhibition in glycolysis (Andrabi et al., 2014).  Our results 

indicate that NAD+ consumption significantly contributes to inhibition of glycolysis as well as 

oxphos, and that differential inhibition of the two pathways results in an apparent increase of the 

OCR/ECAR ratio.  Taken together, these results demonstrate that complex DNA damage that 

induces robust PARP activation and NAD+ deprivation triggers a metabolic shift resulting in 

greater reliance on oxphos over glycolysis. 

 

Oxidative phosphorylation is critical for damaged cell survival  

 To assess the biological significance of the observed metabolic shift, we examined cellular 

damage sensitivity to oxphos inhibition by the R+A treatment.  While the R+A treatment had no 

significant effect on undamaged cells, cells treated with MMS or H2O2 became significantly 

more sensitive to the inhibitors (Fig. 5A).  This increased cytotoxicity was alleviated by PARP 

inhibition or PARP1 depletion, indicating that the cytotoxic effect of oxphos inhibition is 

PARP1-mediated (Fig. 5A, B and C).  Furthermore, the increased damage sensitivity by oxphos 

inhibition can also be rescued by the addition of NAM or NMN (Fig. 5B).  The NAM rescue 

effect is blocked by the inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), the rate-

limiting enzyme for NAD+ synthesis from NAM in the salvage pathway, confirming that the 

NAM conversion to NAD+ is required for the rescue effect (Fig. 5B and D).  As expected, 

NAMPT inhibition does not block the rescue effect of PARPi (Fig. 5D).  Importantly, similar 

results were obtained with laser damage strictly inflicted in the nucleus, demonstrating that DNA 
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damage in the nucleus (and not in mitochondria) is sufficient to induce this response, which can 

be suppressed by NAM (Fig. 5E and F).  Staining for PAR revealed that the amount of NAM 

used (1 mM) is not sufficient to inhibit PARylation at laser damage sites, further confirming that 

the rescue effect of NAM is not due to PARP inhibition (Supplemental Fig. S6A).  Taken 

together, oxphos inhibition in the presence of DNA damage leads to cell death triggered by 

PARP1-dependent NAD+ deprivation. 

 Cell death caused by respiratory inhibition of damaged cells is associated with the 

translocation of phosphatidylserine (a marker for apoptosis), but is resistant to the caspase 

inhibitor, indicating that this is not a typical apoptosis (Fig. 6A and Supplemental Fig. S6B).  

Since this cell death is PARP-dependent (Fig. 5A, B and C), it is considered to be parthanatos.  

No clear AIF relocalization to the nucleus was observed with laser damage while some diffusion 

of AIF to the whole cell was observed with MMS (Supplemental Fig. S6C).  Thus, the observed 

cell death is parthanatos with variable AIF responses depending on the damaging agents.  AIF-

independent parthanatos was recently reported (Jang et al., 2017).  Importantly, this is 

specifically associated with oxphos inhibition in conjunction with DNA damage as inhibition of 

glycolysis by 2DG failed to show similar damage-coupled cytotoxic effect (Fig. 6A).  This is 

possibly because the glycolysis pathway (and HK) is already significantly inhibited by PARP in 

response to damage, further confirming the significance of oxphos in damaged cell survival (Fig. 

5B and C).  The results indicate that the oxphos pathway becomes critical for cell survival in 

damaged cells specifically to antagonize NAD+ depletion by PARP activation.  

To determine whether the observed damage-induced sensitivity to oxphos inhibition is a 

HeLa cell-specific phenomenon, additional normal and cancer cell lines were examined (Fig. 

6B).  Two normal human cells, HFF-1 primary foreskin fibroblasts and ARPE-19 retinal 
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pigmented epithelial cells, showed significant resistance to 3 mM MMS and no increased 

sensitivity to oxphos inhibition (R+A treatment).  Similar resistance to oxphos inhibition was 

observed with laser damage in HFF-1 cells (Supplemental Fig. S7C).  Increased concentration of 

MMS to 7 mM revealed similar tendency of R+A sensitivity, which was partially alleviated by 

PARP inhibition.  In contrast, MCF7 human breast adenocarcinoma cells exhibited high 

sensitivity to 3 mM MMS unlike HeLa (Fig. 6A) or two normal cells, which was further 

exacerbated by R+A (Fig. 6B).   Damage-induced R+A sensitivity was almost completely 

reversed by PARP inhibition.  We also observed increase of bound NADH fraction and decrease 

of NADH concentration in response to high input power laser damage in HFF-1, ARPE-19, and 

MCF-7 cells but to a different extent, which was nevertheless all suppressed by PARP inhibition 

(Supplemental Fig. S7A, B, D and E).  Thus, PARP-dependent NADH responses and increased 

metabolic reliance on oxphos in response to DNA damage are not unique to HeLa cells, but there 

is a significant cell type variability.  

 

NAM rescues damage-induced PARP-dependent ATP depletion, but not intracellular 

acidification, in oxphos-inhibited cells  

 The above results demonstrated that damaged cells are sensitized to oxphos inhibition and 

either PARP1 inhibition or replenishment of NAD+ can rescue them.  To address the 

mechanism, we determined ATP dynamics.  DNA damage signaling and repair processes were 

expected to increase ATP consumption, thus reducing the intracellular ATP level.  ATP would 

also be consumed by the NAD+ salvage pathway, and was also thought to be depleted as a result 

of PARP-mediated HK inhibition in glycolysis leading to cell death (Andrabi et al., 2014; 

Fouquerel et al., 2014).  Using the FRET-based ATP sensors that are specifically targeted to the 
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cytoplasm and nucleus (Imamura et al., 2009), we observed the rapid reduction of ATP in the 

first 20 min following laser damage, which persists over 6 hr (Fig. 7A).  ATM and DNA-PK 

inhibitors had a subtle effect on the initial ATP decrease within the first 20 min in both the 

nucleus and cytoplasm and partially reduced ATP consumption up to 6 hr in the nucleus, but not 

in the cytoplasm (Fig. 7A).  This nuclear effect may reflect ATP consumption by DNA damage 

signaling and repair.  In contrast, PARP inhibition completely suppressed ATP consumption in 

the cytoplasm and had a partial but major effect in the nucleus.  The results indicate that ATP 

concentration in the whole cell is affected by the damage inflicted in the nucleus, and that the 

cytoplasmic ATP level is dictated by PARP activity.  

 We next tested the effect of oxphos inhibition on the cytoplasmic ATP level in MMS-treated 

cells, and how PARP inhibition or addition of NAM modulates this to see if ATP deprivation can 

explain the oxphos inhibition-induced cytotoxicity (Fig. 7B).   In undamaged cells, neither 

respiratory inhibition (R+A), PARPi, nor addition of NAM had any effect on the ATP level (Fig. 

7B, right “no MMS”).  Cytoplasmic ATP is decreased in MMS-treated cells, which is reversed 

by PARPi or NAM (Fig. 7B, left “MMS”).  Notably, the combination of respiratory inhibition 

and MMS treatment resulted in significant decrease of ATP, which was also effectively 

alleviated by PARPi and NAM (Fig. 7B, middle “MMS/R+A”).  The results reveal the damage-

specific role of oxphos in ATP replenishment and confirmed that PARP activation is the major 

cause of cytoplasmic ATP reduction in damaged cells (Fig. 7B).  The fact that addition of NAM 

was sufficient to also restore the ATP level strongly suggest that NAD+ is central to the 

maintenance of intracellular ATP in damaged cells (Fig. 7B).  PARP was also shown to promote 

intracellular acidification, which was thought to promote cell death (Affar et al., 2002).  This 

may possibly be due to proton production during the PARylation reaction.  Thus, we also 



 16 

monitored intracellular pH (pHi) using the pHrodo indicator (see Methods).  While we observed 

a slight, but significant change in pH by MMS treatment only, we found that oxphos inhibition 

led to severe acidification (Supplemental Fig. S8).  As expected, PARP inhibition reversed this 

phenomenon.  Interestingly, however, NAM treatment had no significant effect on pHi, 

indicating that sensitivity to oxphos inhibition and intracellular acidification are separate 

phenomena induced by PARP (Supplemental Fig. S8).  Taken together, our results uncovered the 

novel PARP1-activated cell survival response to sustain the intracellular ATP level. 
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Discussion 

 

 PARP1 action at damage sites promotes DNA repair whereas its cell-wide hyperactivation 

depletes ATP and is thought to be cytotoxic.  In the current study, however, we found that NAD+ 

consumption by PARP1 activation shifts the metabolic reliance to oxphos, which is critical for 

damaged cell survival, uncovering a novel pro-survival metabolic response to DNA damage 

regulated by PARP1 (Fig. 8).  PARP signaling locally dictates the chromatin structural 

organization and DNA repair pathway choice, which is rapid and transient (Fig. 8, orange box) 

(Ball and Yokomori, 2011; Polo and Jackson, 2011; Altmeyer et al., 2015; Cruz et al., 2016; 

Kong et al., 2018).  Indeed the PARP1 protein initially localizes at laser-damage sites but 

disappears within 2 hr post damage induction (Kim et al., 2005).  In addition to the localized 

response at damage sites, our results demonstrate that NAD+ consumption by PARP1 alters both 

NADH concentration and the free to bound NADH ratio in both the nucleus and cytoplasm.  The 

latter reflects the change of the metabolic reliance from glycolysis to oxphos (Fig. 8, blue box).  

Our results demonstrate that this shift is important to compensate for the decrease of ATP caused 

by PARP1-dependent NAD+ deprivation (Fig. 8, gray box) and to support cell survival (Fig. 8, 

yellow box).   

 

The relationship between NADH and NAD+ in damaged cells 

Intracellular concentration of NADH was previously used as a surrogate indicator for NAD+ 

consumption by PARP to assess the single-strand break (SSB) repair capacity, using a 

colorimetric assay of the media of a cell population (Nakamura et al., 2003; Yoshimura et al., 

2006).  Our results demonstrate that the phasor-FLIM approach is a powerful tool to follow the 
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subcellular NADH dynamics in response to DNA damage in real time at a single cell level.  

Using this strategy, we confirmed that NADH depletion and the increase of the bound NADH 

was entirely dependent on PARP1 activity in damaged cells.  Interestingly, respiratory chain 

inhibition also blocked the NADH reduction despite intact PARP activation, suggesting that 

NADH reduction in damaged cells is not simply a reflection of NAD+ consumption by PARP1, 

but indicative of mitochondrial complex activity (consistent with the observed increase of 

oxphos).  We attempted to measure NAD+ directly in these cells using the recently developed 

NAD+ sensor (Cambronne et al., 2016) (Supplemental Fig. S2C).  However, we were unable to 

monitor NAD+ using this sensor in the respiratory chain inhibitor-treated cells because the 

sensor activity is skewed by acidic pHi (Supplemental Fig. S8; data not shown).  The addition of 

NAD+ precursors in the salvage pathway abolished these changes without suppressing PARP 

activation, demonstrating that NADH reduction and the shift to the bound form is due to NAD+ 

consumption by PARP1, rather than by the effect of PARylation.  

 

 Transient and persistent increase of bound NADH by differential PARP activation  

Our results clearly demonstrate that NADH depletion is transient even with the high input 

power damage induction.  However, its duration and extent are damage dose-dependent with 

significant cell-to-cell variability in recovery.  NADH concentration in the cytoplasm and 

nucleus are discordant, revealing that they are not regulated by concentration-driven diffusion 

alone.  The shift from free to bound NADH fraction is also transient in a damage dosage-

dependent fashion for lower input power damage.  However, the shift becomes stabilized at high 

input power damage that induces complex damage and robust PARP activation (Cruz et al., 

2016).  Since this shift is entirely PARP-dependent, our results strongly suggest that there is a 
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threshold PARP activation, above which the metabolic change becomes persistent.  This is not 

associated with cell death under our conditions.  Furthermore, there is no distinct correlation 

between NADH concentration recovery and persistence of bound NADH, suggesting that they 

are two distinct events.  

 

The effects of PARylation and NAD+ depletion on metabolism 

Our results indicate that NAD+ consumption by PARP1 is the major driver of the metabolic 

shift important for ATP replenishment and survival of the cell with DNA damage.  Interestingly, 

PARP activation was previously shown to suppress glycolysis through PAR-mediated inhibition 

of the critical enzyme hexokinases resulting in energy depletion and parthanatos (Andrabi et al., 

2014).  In contrast to our current study, it was argued that PARylation, and not NAD+ 

consumption, drives this effect, and suggested the major role of glycolysis in cell survival 

(Andrabi et al., 2014).  This apparent discrepancy may be explained by how the NAD+ 

requirement was assessed in the two studies.  In the study by Andrabi et al., NAD+ was reduced 

by FK866 (NAMPT inhibitor) that blocks the salvage pathway, but experiments were performed 

in the absence of DNA damage (without PARP activation), to show that NAD+ reduction alone 

does not affect ATP or glycolysis (Andrabi et al., 2014).  Our analyses, however, were carried 

out in the presence of DNA damage, which increased the demand for NAD+ and ATP (due to 

PARP activation) relative to undamaged cells and rendered the damaged cells specifically 

sensitive to oxphos inhibition.  It should be noted that in our Seahorse metabolic flux analyses, 

recovery of glycolysis by NMN was not as complete as PARPi, suggesting that both PARylation 

and NAD+ consumption contribute to the inhibition of glycolysis.  Replenishment of NAD+, 

however, fully restored the balance between the two pathways, emphasizing the significance of 
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NAD+ in the change of metabolic reliance.  Importantly, inhibition of glycolysis by 2DG had no 

significant effect on damaged cell viability in contrast to the oxphos inhibition in our study.  It is 

formally possible that the observation by Andrabi et al. may be specific to MNNG, the only 

damaging agent they have tested (Andrabi et al., 2014).  We have tested laser, MMS and H2O2, 

and confirmed comparable effects.  Metabolic responses may be sensitive to the differences in 

damaging agents as we also observed parthanatos with and without AIF relocalization by oxphos 

inhibition with MMS and laser damage, respectively.  

 

Cell type variability of R+A sensitivity 

Our results indicate that PARP-dependent increased metabolic reliance on oxphos in 

response to DNA damage is not unique to HeLa cells, but exhibits cell type-specific variability.  

Primary human fibroblasts (HFF-1) with high basal level oxphos were insensitive to the dose of 

respiratory inhibitors that effectively killed HeLa in our study.  Thus, the basal respiratory 

activity may dictate the metabolic response to DNA damage.  It was also reported that metabolic 

responses to NAD depletion are highly variable across different cell lines (Xiao et al., 2016).  

Furthermore, recent metabolomic profiling studies revealed complex changes of multiple 

metabolic pathways/components in response to DNA damage and PARP inhibition, which are 

highly variable across different cell lines (Bhute and Palecek, 2015; Bhute et al., 2016).  In 

addition, we observed that two non-cancer cells tested (HFF-1 and ARPE-19 cells) are relatively 

resistant to MMS.  With a higher amount of MMS, PARP-dependent R+A-induced cytotoxicity 

was observed in ARPE-19 cells though the effect was not as drastic as HeLa or MCF-7 cells.  

Cell type-specific variability of metabolic reliance to oxphos, therefore, may be the result of a 

combination of multiple factors.   



 21 

Although there are distinct metabolic changes associated with cancers, i.e. high rates of 

aerobic glycolysis (‘‘Warburg effect’’), accumulating evidence indicates that oxidative 

phosphorylation (oxphos) remains critical for cancer cells (Vlashi et al., 2011; Zheng, 2012; 

Viale et al., 2014; Viale et al., 2015; Snyder et al., 2018).  Many glycolytic cancer cells retain 

their ability for oxphos and exhibit metabolic flexibility to shift back to oxphos (“reverse 

Warburg effect”) to balance two pathways as needed (Robinson et al., 2012; Lee and Yoon, 

2015).  Subtypes of multiple cancers (e.g., breast, lung, pancreatic cancers as well as melanoma) 

heavily rely on oxphos and are more sensitive to oxphos inhibitors (Ashton et al., 2018).  Thus, 

our study provides one plausible mechanistic explanation as to why (cancer) cells need to utilize 

oxphos for survival.  The combination of differential PARP1 signaling and basal and inducible 

oxphos capabilities may serve as a critical determinant for cell type-specific sensitivity to 

genotoxic stresses. 

 

Conclusion 

In summary, our results demonstrate that the phasor-FLIM method is effective in real-time 

visualization of dynamic single cell metabolic changes in response to DNA damage.  In 

conjunction with the use of laser microirradiation and fluorescence biosensors, the method was 

highly instrumental in uncovering the previously unrecognized long-term metabolic effect of 

NAD+ depletion by activated PARP1 and damage-specific role of oxphos to promote ATP 

production and cell survival.  Our study provides an important paradigm for the mechanism of an 

inducible metabolic switch critical for cell survival against complex DNA damage. 
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Materials and Methods 

Cell culture 

HeLa adenocarcinoma cells and MCF-7 cells were cultured in DMEM (Invitrogen, Carlsbad, 

CA) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamate, and 1% penicillin-

streptomycin. HeLa cells were tested and shown to be free of mycoplasma contamination. HFF-1 

human foreskin fibroblast cells were cultured in DMEM (ATCC 30-2002) supplemented with 

15% FBS and 1% penicillin-streptomycin.  ARPE-19 cells were cultured in MEM:F12 Medium 

(ATCC 30-2006), supplemented with 10% FBS, and 1% penicillin-streptomycin.  

 

Chemical treatment 

Cells were treated with 1 mM, 2 mM, or 3 mM MMS (Sigma, 129925) for 1 hr or 500 µM H2O2 

(Ricca Chemical, 381916) for 30 min.  Metabolic and cytotoxic analyses were performed at 

indicated time points after MMS or H2O2 release.  Cells were treated for 1 hr before damage 

induction with PARP inhibitor (PARPi or Pi) (100 µM NU1025 (Sigma, N7287) or 20 µM 

olaparib (Apexbio Technology, A4154)) in 0.1% DMSO (Sigma, D2650), or ATM inhibitor and 

DNA-PK inhibitor (10 µM KU55933 (Millipore, 118500) and 10 µM NU7026 (Sigma, N1537), 

respectively), in 0.2% DMSO.  The effects of these inhibitors have been confirmed by 

suppression of target protein modifications under our conditions (Cruz et al., 2016).  For 

respiration inhibition, cells were treated for 1 hr before damage induction with the mitochondrial 

complex I inhibitor rotenone (Sigma, R8875) (1 µM for laser damage and 0.25 µM for MMS or 

H2O2-induced damage) and complex III inhibitor antimycin A (Sigma, A8672) (1 µM for laser 

damage and 0.25 µM for MMS or H2O2-induced damage) in 0.2% DMSO.  For glycolysis 

inhibition, 25 mM 2DG (Sigma, D6134) was added into cell media 1 hr before damage 
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induction.  For NAM treatment, cells were treated 1 hr before damage induction with 1 mM 

NAM (Sigma, 72340).  For NAMPT inhibition, cells were treated with 10 nM FK866 (Sigma, 

F8557) for 6 hr before damage induction.   For NMN treatment, 1 mM NMN (Sigma, N3501)  

was added to the cell culture media 8-10 hr before damage induction.  For caspase inhibition, 

cells were treated with 50µM Z-VAD-FMK. For actinomycin D-induced apoptosis, cells were 

treated for 18 hr with 10 µM actinomycin D.  

 

Immunofluorescent staining 

Immunofluorescent staining (IFA) was performed essentially as described previously (34).  

Antibodies used are mouse monoclonal antibodies specific for γH2AX (Millipore, 05-636), PAR 

polymers (Enzo Life Sciences, Inc., BML-SA216-0100), Mre11 (Gene Tex, Inc., GTX70212), 

Actin (Sigma, A4700) or cyclobutane pyrimidine dimer (CPD) (Kamiya Biomedical Company, 

MC-062,) as well as rabbit polyclonal antibodies specific for AIF antibody (Gene Tex, Inc., 

GTX113306).  Affinity-purified rabbit anti-PARP1 antibody was previously described (Heale et 

al., 2006; Cruz et al., 2016).  

 

Confocal fluorescence microscope 

All fluorescence experiments were performed on an inverted confocal Zeiss LSM710 (Carl Zeiss, 

Jena, Germany).  A 40x 1.2NA water-immersion objective (Zeiss, Korr C-Apochromat) was 

used. Brightfield images were acquired using a CCD camera (Olympus, FVII) coupled to an 

Olympus IX81 with a 100X objective (UPlanFI, oil Ph3, NA 1.3). 

 

NIR laser microirradiation 
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A pulsed titanium-sapphire 100 femtosecond laser (Spectra-Physics, Santa Clara, CA) at 80 MHz 

tuned for 780 nm two-photon microirradiation was used at the input power of 17.7 mW, 19.9 

mW, and 24.6 mW measured after the objective for low, medium, and high damage conditions, 

respectively.  Image sizes of 512x512 pixels were obtained with defined regions of 45x5 pixels 

for microirradiation. Microirradiated regions were scanned once with a scan speed of 12.61 µs 

per pixel for damage induction.   

 

Phasor approach to FLIM and NADH intensity/concentration measurement 

Following DNA damage induction, either by laser microirradiation or chemical agents (MMS or 

H2O2), 40 frames of FLIM data were acquired with 740 nm two-photon excitation at 

approximately 2 mW by an ISS A320 FastFLIM box (ISS, Champaign, IL) with image sizes of 

256x256 pixels and a scan speed of 25.21 µs per pixel.  Fluorescence excitation signal was 

separated with a dichroic filter (690 nm) and fluorescence was detected by photomultiplier tubes 

(H7422P-40, Hamamatsu, Japan) with a blue emission filter (495LP) of 420-500 nm to capture 

NADH auto-fluorescence.  FLIM data was transformed into pixels on the phasor plot using the 

SimFCS software developed at the Laboratory for Fluorescence Dynamics, University of 

California, Irvine as described previously (Digman et al., 2008).  Coumarin-6, which has a 

known single exponential lifetime of 2.5 ns, was used as a reference for the instrument response 

time.  Nuclear and cytoplasmic compartments were analyzed separately based on the intensity of 

NADH signal as previously reported (Wright et al., 2012).  The concentration of NADH was 

calculated by calibrating with a known concentration of free NADH and correcting for the 

difference in quantum yield between the free and bound forms of NADH as described previously 

(Ma et al., 2016).  Because the emission spectra, extinction coefficient, and quantum yield of 
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NADH overlay that of NADPH, these fluorophores are often designated together as NAD(P)H in 

fluorescence-based investigations (Patterson et al., 2000; Huang et al., 2002).  Intracellular 

levels of NAD, however, have been reported to be significantly greater than those of NADP and 

so changes in the fluorescence lifetime measurements herein are presumed to reflect changes in 

NADH (Klaidman et al., 1995; Pollak et al., 2007; Ying, 2008).  The ratio of the photons emitted 

by the free and protein-bound states of NADH to total photons absorbed, known as the quantum 

yield, depends on the binding substrate.  The protein-bound forms of NADH have a much greater 

quantum yield than the free form due to a decreased probability of non-radiative decay of an 

excited molecule while the radiative emitting pathway is largely unaffected (Scott et al., 1970; 

Vishwasrao et al., 2005).  Thus, it is possible that typical calibrating procedures comparing 

intensities of known concentrations of the fluorophore to those measured in the cell may 

overestimate the bound NADH species.  Thus, the changes of intensity and concentration of 

NADH were compared to confirm that they follow similar kinetics in response to DNA damage.     

 

NAD+ measurement 

The HeLa cell lines stably expressing either the cytoplasm- or mitochondria-targeted NAD+ 

sensor, or the corresponding cpVenus controls were kindly provided by Dr. Xiaolu Cambronne 

(the Oregon Health and Science University) (Cambronne et al., 2016).  Cells were plated on a 

glass-bottomed imaging dish and were incubated at 37
o
C for approximately 40 hr until they 

reached 60-80 % confluency.  Live cell images were captured before and 1 hr after indicated 

treatment. The fluorescence ratios (488 nm/405 nm) were measured and analyzed as previously 

described (Cambronne et al., 2016).    
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ATP measurement 

HeLa cells were transfected using Lipofectamine 3000 (Invitrogen) with either AT1.03 

(cytoplasm-localized) or Nuc AT1.03  (nucleus-localized) plasmids (Kioka et al., 2014).  After 

18-24 hr, cells were subjected to laser microirradiation or MMS treatment in the presence of 

DMSO or indicated inhibitors, and the YFP/CFP fluorescence ratios were measured as 

previously described (Imamura et al., 2009). 

 

Intracellular pH (pHi) measurement 

Changes in intracellular pH were measured using the commercial pHrodo Green AM 

Intracellular pH Indicator kit (ThermoFisher, P35373) according to manufacturer’s instructions.  

 

Agilent Seahorse Metabolic Flux Analyzer 

HeLa cells were plated in a 24-well Seahorse XF-24 assay plate at 1 X 10
5
 cells/well and grown 

for approximately 20 hr.  DMSO, PARP inhibitor, or NMN was added to the media before 

damage induction. Cells were then incubated with MMS for 1 hr.  At 1 or 2 hr after release from 

MMS treatment, metabolic flux analysis was performed using an Agilent Seahorse XF24 

Extracellular Flux Analyzer following the manufacturer's protocol and normalized by the cell 

numbers as described previously (Chen et al., 2015).  Briefly, cells were first washed once with 

unbuffered, serum-free DMEM (1g/L glucose [pH 7.2]) and incubated with unbuffered media at 

37°C in a non-CO2 incubator for 1 hour before load onto the analyzer. Three baseline 

measurements of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) 

were taken before sequential injection of the following mitochondrial inhibitors (final 

concentration): oligomycin (1 μg/mL), carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone 
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(FCCP) (0.3μM), and rotenone (0.1 μM).  Three measurements were taken after the addition of 

each inhibitor. OCR, ECAR, and OCR/ECAR values were automatically calculated and recorded 

by the Seahorse XF24 software. The basal respiration was calculated by averaging the 3 

measurements of OCR before injecting the inhibitors. The maximum respiration capacity was 

calculated by using the OCR measurement after addition of FCCP. The maximum glycolytic 

capacity was calculated by the ECAR measurement after oligomycin addition. 

  

Detection of senescence, apoptosis and necrosis and assessment of cytotoxicity 

Cellular senescence was determined by -gal staining as described previously (Gey and Seeger, 

2013).  Apoptosis/necrosis was detected using the commercial kit (AB176749, Abcam, 

Cambridge, England) following manufacturer’s instruction.  Apoptosis/Necrosis Detection Kit is 

designed to simultaneously monitor apoptotic, necrotic and healthy cells with a flow cytometer 

or fluorescence microscope. In apoptotic cells, phosphatidylserine (PS) is transferred to the outer 

side of the plasma membrane, and can be detected by its sensor, Apopxin Green (green 

fluorescence). 7-aminoactinomycin D (7-AAD, red fluorescence), a membrane impermeable dye, 

will label the nucleus of damaged cells, including both late apoptotic and necrotic cells.  Live 

cells can be detected as blue fluorescence by CytoCalcein Violet 450 staining.  Cytotoxicity was 

also examined by propidium iodide permeability assay. After damage induction and inhibitors 

treatment, propidium iodide and Hoechst 33342 were added into the medium to achieve final 

concentrations of 0.8 µg/mL and 0.5 µg/mL, respectively. The cells were then incubated at 37 °C 

for 5-15 min and visualized for the total cells (blue, Hoechst 33342) and dead cells (red, 

propidium iodide) under a fluorescence microscope. 
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Statistical Analysis 

Experiments were replicated at least three times and the number of cells examined for each 

damage condition were as indicated. Statistical significance was determined using the two-tailed 

student’s t-test where * p < 0.05, ** p < 0.01, and *** p < 0.001 unless otherwise indicated. 

Error bars indicate the standard deviation from the mean. 
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Figure Legends 

 

Figure 1. DNA damage induces rapid shift from free to bound NADH. 

(A) Intensity (top) and pseudo-colored FLIM (bottom) images of undamaged HeLa cells (no 

dmg) and HeLa cells damaged at low, medium, and high input laser power. In intensity images, 

the line color from blue to red corresponds to the normalized intensity. Damage sites are 

indicated by white arrows. The FLIM images are pseudo-colored according to the clusters 

selected on the phasor plot in (B). Scale bar = 5 µm.   

(B) Phasor histogram of fluorescence lifetimes on the phasor plot. Each pixel from the intensity 

image is transformed and plotted on the phasor diagram. Pixels are pseudo-colored based on the 

position along the line generated by the linear combination of short lifetime free NADH and 

longer lifetime protein-bound NADH.  

(C) The fraction of bound NADH in the cytoplasmic and nuclear compartments calculated from 

the position of the phasor in (B) and plotted over time. N=25.   

(D) The fraction of bound NADH over time in the cytoplasmic and nuclear compartments of 

HeLa cells treated with either 1 mM MMS or 500 µM H2O2. N=25.  

(E) The percent change in the fraction of bound NADH at 2 hr post damage relative to basal 

conditions. N=25. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Figure 2. Damage-induced increase of the bound to free NADH ratio is PARP1-dependent. 

(A) Immunofluorescent staining for PAR (left) and γH2AX (right) in HeLa cells fixed at various 

time points up to 12 hr post damage following low, medium, and high input laser power. Scale 

bar = 5 µm.  
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(B) The fraction of bound NADH and intensity of NADH over time in the cytoplasmic and 

nuclear compartments of HeLa cells treated with either 0.1% DMSO (top), 20 µM PARP 

inhibitor (olaparib) (middle), or 10 µM ATM inhibitor (KU55933) and 10 µM DNA-PK 

inhibitor (NU7026) (bottom).  

(C) The percent change in the fraction of bound NADH (top) and the intensity of NADH 

(bottom) at 2 hr (left) and 12 hr (right) post damage relative to basal conditions. N=20. * p < 

0.05, ** p < 0.01, *** p < 0.001. 

(D) The change in fraction of bound NADH over time in the cytoplasmic (left) and nuclear 

(middle) compartments of HeLa cells with siPARP1 or control siRNA. N=15. Western blot 

analysis (right) of siControl and siPARP1 transfected HeLa cells. The whole cell extracts were 

run on SDS-PAGE and blotted with anti-PARP1 antibody. Anti-actin antibody served as loading 

control. 

 

Figure 3. Increase of the bound NADH fraction is suppressed by the respiratory chain 

inhibitors 

(A) The change in fraction of bound NADH in the cytoplasm plotted over time in cells damaged 

with low, medium, and high input laser power in the presence of control (0.1% DMSO) and 1 

µM rotenone and 1 µM antimycin A (R+A) (left panels) and control (water) and 1 mM NMN 

(right panels) as indicated. N=20 for each. 

(B) The change in the fraction of bound NADH at 1 hr, 2 hr and 8 hr post damage in cells 

damaged with high input laser power in control cells and cells treated for 1 hr with R+A (left) or 

1 mM NMN (right) as indicated.  Data was normalized to initial value before damage.  N=25. * p 

< 0.05, *** p < 0.001. 
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Figure 4. Seahorse analysis of MMS-treated cells reveal PARP-dependent increase of 

oxphos over glycolysis. 

(A) The percent change in the fraction of bound NADH (left) and intensity of NADH (right) in 

the cytoplasmic and nuclear compartments calculated from the position of the phasor in (Fig. 1B) 

and plotted over time in control undamaged cells or cells damaged with 3 mM MMS and with or 

without R+A (0.25 µM each). N=20. ** p < 0.001. 

(B) The oxygen consumption rate (OCR, left) and extracellular acidification rate (ECAR, right) 

for untreated cells or cells treated with 3 mM MMS and 0.1% DMSO or 20 µM PARP inhibitor 

(olaparib) as analyzed by the Agilent Seahorse XF Analyzer.  The ratio of OCR to ECAR 

(oxidative reliance) evaluated at basal conditions (OCR/ECAR (basal)) or at maximum 

metabolic capacities calculated following FCCP for OCR and following oligomycin for ECAR 

(OCR/ECAR (Max.)). ** p < 0.001. 

(C) Cells were treated with 2mM MMS for 1hr in the presence or absence of 1 mM NMN. The 

OCR and ECAR were measured by the Agilent Seahorse XF Analyzer 1 hr or 2 hr after release 

from MMS. Untreated cells served as control. The ratios of maximum OCR (after FCCP 

treatment) to maximum ECAR (after oligomycin treatment) are shown. * p<0.01.  ** p < 0.001.  

n.s. not significant (p >0.05). 

 

Figure 5. Oxphos inhibition results in increased DNA damage sensitivity, which is 

alleviated by PARP inhibition or NAD replenishment 

(A) Cells were either undamaged or treated with MMS or H2O2 and released from damage for 20 

hr in the presence of DMSO only, R+A (as in Fig. 3A), or R+A with PARP inhibitor (Pi).  In 
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DMSO-treated cells, no significant cytotoxicity is observed while R+A treatment resulted in 

significant cell death (as detected by trypan blue) only in MMS- and H2O2-treated cells.  This 

cytotoxicity is suppressed by PARP inhibitor treatment. Scale bar = 100 µm.  Quantification 

of % surviving cells is shown on the right. N=600. * p < 0.05, ** p < 0.01, **** p < 0.0001. 

(B) Cytotoxic effect of R+A on MMS-treated cells (left) as in (A) is alleviated by PARPi, NAM, 

or NMN. Scale bar = 100 µm. Quantification of % surviving cells is shown on the right. N=600.  

**** p < 0.0001. 

(C) The effect of control siRNA or PARP1-specific siRNA treatment in cells treated with MMS 

and R+A.  Depletion of PARP1 (as shown in western blot in Fig. 2D) was sufficient to promote 

cell survival in MMS/R+A-treated cells. N=600. Scale bar = 100 µm.  **** p < 0.0001. 

(D) NAM effect is NAMPT-dependent.  In the presence of NAMPT inhibitor, addition of NAM 

failed to suppress the cytotoxicity in MMS/R+A-treated cells.  PARPi-treated cells are shown for 

comparison. Scale bar = 100 µm.  Quantification of % surviving cells is shown on the right. 

N=600.  **** p < 0.0001 

(E) Cytotoxic effect of R+A treatment in laser damage cells was suppressed by NAM or PARPi 

treatment. Scale bar = 20 µm.  

(F) Cell survival at 4 and 8 hr after laser damage induction in cells treated with DMSO, R+A, 

R+A with PARPi, R+A with NAM.  N=50. 

 

Figure 6. Caspase-independent, oxphos-specific cytotoxicity is cell type-dependent  

(A) Damaged HeLa cells were more sensitive to oxphos inhibition (R+A) (as in Fig. 3A) than 

glycolysis inhibition (2DG) and failed to be rescued by caspase inhibitor (Z-VAD-FMK). Cells 

were treated with DMSO, 25 mM 2DG, or R+A. With each treatment, cells were either 
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undamaged or damaged with 3 mM MMS for 1 hr and released from damage for 8 hr in the 

presence of DMSO only (MMS), PARP inhibitor (MMS+PARPi), or Z-VAD-FMK (MMS+Z-

VAD-FMK) as indicated.  Cells were also treated with both R+A and 2DG in the absence of 

MMS but with DMSO, PARPi, or Z-VAD-FMK+PARPi (Pi).  To confirm whether Z-VAD-

FMK properly worked as a caspase inhibitor, cells were treated for 18 hr with 10 µM 

Actinomycin D (ActD) with either DMSO or Z-VAD-FMK.  Quantification of % surviving cells 

is shown. N=600. 

(B) Differential sensitivity of HFF-1, ARPE-19, and MCF-7 to oxphos inhibition (R+A) in 3 

mM MMS-treated cells. Undamaged or 3 mM MMS damaged cells were treated with or without 

R+A and/or PARPi as indicated. For ARPE-19 cells, 7 mM MMS was also used as indicated.  

Quantification of % surviving cells is shown. N=600. * p< 0.05, ** p < 0.01, *** p < 0.001. 

 

Figure 7. Analysis of cellular ATP and intracellular pH dynamics following DNA damage 

induction using ATP and pH biosensors. 

(A) Monitoring of relative ATP levels of HeLa cells expressing cytoplasmic (top) or nuclear 

(bottom) localized ATeam FRET biosensor. Cells were treated with either 0.1% DMSO (left), 20 

µM PARP inhibitor (olaparib) (middle), or 10 µM ATM inhibitor (KU55933) and 10 µM DNA-

PK inhibitor (NU7026) (right). Average YFP/CFP intensity was normalized with undamaged 

control cells at each time point. N=30. 

(B) Monitoring of relative cytoplasmic ATP levels of HeLa cells. Cells expressing cytoplasmic 

ATP sensor were cultured with medium containing with DMSO, PARPi or NAM at 1 hr before 

damage induction. 3 mM MMS was added at time -60 min and removed at 0 min. Averaged 
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YFP/CFP ratio of cells was normalized with undamaged DMSO control cells at each time point. 

N=15.  

 

Figure 8. Consequences of PARP1 activation critical for damaged cell survival 

DNA damage complexity/dose-dependent PARP1 activation results in PARylation of target 

proteins and the decrease of NAD+ and ATP.   PARylation at DNA damage sites dictates the 

recruitment of chromatin modifiers and DNA repair pathway choice, and facilitates DNA repair.  

While PARylation also suppresses glycolysis through inhibition of hexokinase, our results 

indicate that NAD+ consumption by PARylation also inhibits glycolysis.  As a result, NAD+ 

consumption by PARP1 triggers an overall shift of metabolic reliance to oxphos.  This 

contributes to the decrease of NADH.  Importantly, in response to DNA damage and PARP1 

activation, the oxphos pathway becomes critical for replenishment of ATP.  Taken together, 

damage-induced PARP1 activation results in modulation of DNA repair and metabolic switch 

that together promote damaged cell survival.  
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Supplemental Figure S1. Characterization of DNA damage and cell fate following laser 

microirradiation using different input power.

(A) Immuno-fluorescent staining for Mre11 (top) and CPD (bottom) in HeLa cells fixed at 

1 hr post damage following low, medium, and high input laser power. Fluorescent images 

for HeLa cells expressing GFP-Neil2 (middle) at approximately 2 min following low, 

medium, and high input laser power. Scale bar = 5 μm.

(B) The fraction change in the total number of HeLa cells over time following low, medium, 

and high input laser power. N=50. 

(C) ȕ�JDODFWRVLGDVH�VWDLQLQJ�RI�XQGDPDJHG�+H/D�FHOOV�DQG�FHOOV�DW����KU�SRVW�ODVHU�
microirradiation at high input-power. Primary myoblasts were stained as a positive control. 

N=15. Scale bar = 20 μm.
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Supplemental Figure S2. Laser Damage Induces Dose-Dependent Decrease in NADH Intensity 

and Concentration.

(A) The intensity of NADH and concentration of NADH over time in the cytoplasmic and nuclear 

compartments of HeLa cells following low, medium, and high input laser power. N=25.

(B) The intensity of NADH and concentration of NADH over time in the cytoplasmic and nuclear 

compartments of HeLa cells treated with either 1 mM MMS or 500 μM H2O2. N=25.

(C) The change in the ratiometric fluorescence intensity of the cytoplasmic or mitochondrial 

NAD+ biosensor at 1 hr post damage following low, medium, and high laser microirradiation or 

3 mM MMS treatment for 1 hr.  Cells were treated with either 0.1% DMSO or 20 μM PARP 

inhibitor (olaparib). An increased fluorescence ratio reflects decreased NAD+ binding. N=25. 

* p < 0.05, ** p < 0.01, *** p < 0.001.
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Supplemental Figure S3. Correlation between cytoplasmic and nuclear NADH concentrations 

and bound NADH fractions.

(A) At 12 hr post damage, the percent change of the fraction of bound NADH (left) and the 

concentration of NADH (right) in the cytoplasm and nucleus of undamaged HeLa cells (Control) 

or HeLa cells damaged with high input power laser microirradiation (High). The data was 

normalized with that of the undamaged control cells.  N=15.  * p<0.05, ** p< 0.01, n.s. p>0.05.

(B) Scatter plots examining the correlation between the percent changes of the NADH 

concentration and bound NADH in the cytoplasm and nucleus of the individual damaged cell 

from (A). The line represents the trendline, and the R-squared value was calculated in Excel and 

measures the strength of the relationship between data and trendline.



Before 5 min 2 hr 4 hr

N
o

 d
a
m

a
g

e
L

o
w

Before 5 min 2 hr 4 hr Before 5 min 2 hr 4 hr

H
ig

h
M

e
d

iu
m

Supplemental Figure S4

DMSO PARPi ATMi/DNA-PKi

Supplemental Figure S4. Damage-induced changes in NADH intensity and FLIM images are 

PARP, but not ATM/DNA-PK,-dependent.

Intensity (top) and pseudo-colored FLIM (bottom) images of undamaged HeLa cells and HeLa 

cells damaged at low, medium, and high input laser power and treated with either 0.1% DMSO 

(left), 20 μM PARP inhibitor (olaparib) (middle), or 10 μM ATM inhibitor (KU55933) and 10 μM 

DNA-PK inhibitor (NU7026) (right). In intensity images, the line color from blue to red 

corresponds to the normalized intensity. Damage sites are indicated by white arrows. 

The FLIM images are pseudo-colored according to the clusters selected on the phasor plot in 

(Figure 1B). Scale bar = 5 μm.
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Supplemental Figure S5. Laser damage-induced increase of bound NADH and decrease of 

NADH intensity are suppressed by the respiratory chain inhibitors and NAD 

replenishment. 

(A) The change in fraction of bound NADH (left) and intensity of NADH (right) in the 

cytoplasmic (top) and nuclear (bottom) compartments plotted over time in cells damaged with 

low, medium, and high input laser power in the presence of control (0.1% DMSO) or 1 µM 

rotenone and 1 µM antimycin A (R+A) as indicated.  Comparison of bound NADH in the 

cytoplasm (Left top) is same as Figure 3A left.  N=20. 

(B) The change in the fraction of bound NADH (left) and intensity of NADH (right) over time in 

cells damaged with low, medium, and high input laser power in control cells and cells pre-treated 

for 1 hr with 1 mM NAM.  Data was normalized to initial value before damage.  N=20. 

(C) The change in the fraction of bound NADH (left) and the intensity of NADH (right) at 1 hr 

and 2 hr post damage with 1 mM NAM relative to basal conditions. N=15. * p < 0.05, ** p < 

0.01, *** p < 0.001. 

(D) The percent change in the fraction of bound NADH (left) and the intensity of NADH (right) 

at 2 hr post damage with 1 mM NMN relative to basal conditions. N=10. * p < 0.05, ** p < 

0.01,*** p < 0.001. 
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Supplemental Figure S6. Damage-specific cell death induced by R+A treatment is AIF-

independent apoptosis.

(A) Immuno-fluorescent staining for PAR (green) in HeLa cells pre-treated with or without 1 mM 

NAM for 1 hr and fixed 5 min post damage following low, medium, and high input laser power. 

Scale bar = 20 μm.

(B) Brightfield images of HeLa cells treated with either 0.2 % DMSO or 1 μM rotenone and 1 μM 

antimycin A before damage and 8 hr post damage. Apoptosis and necrosis was detected using a 

commercial kit (AB176749) for live cells (cytocalcein violet 450, blue), phosphatidylserine 

exposure (apopxin green, green), and loss of plasma integrity (7-aminoactinomycin D, red). 

Scale bar = 20 μm.

(C) Immuno-fluorescent staining for apoptosis inducing factor (AIF) and DAPI in HeLa cells at 8 

hr post damage induced by high input power laser or 3 mM MMS, with DMSO or rotenone and 

antimycin (R+A) treatment. As a positive control, human adult retinal pigmented epithelial 

(ARPE-19) cells were treated for 24 hr with 120 μM 5-(N,N-hexamethylene)amiloride (HMA) 

(the left panel). The ARPE-19 cells became rounded and AIF appeared to move to the nucleus in 

response to MMS (the right panel), but not by laser damage (the middle panel). Scale bar = 10 μm.
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Supplemental Figure S7. Differential free to bound NADH shift in different cell types  

(A) The fraction of bound NADH in the cytoplasmic and nuclear compartments in primary HFF-

1 cells following laser damage induction.  Corresponding NADH concentration measurement is 

shown underneath. N=15. 

(B) The percent change in the fraction of bound NADH in HeLa and HFF-1 cells at 2 hr post 

damage relative to basal conditions. N=15. * p < 0.05, ** p < 0.01, *** p < 0.001. 

(C) Differential sensitivity of HeLa and HFF-1 to oxphos inhibition in laser-damaged cells. 

Following high input power damage, HFF-1 cells failed to show any increase in sensitivity to 

respiratory inhibition. N=50. 

(D) Phasor-FLIM analysis of PARPi sensitivity of bound NADH increase in HFF-1, ARPE-19, 

MCF7 cells in response to high power laser induced damage.  N=10  * p < 0.05, ** p < 0.01, *** 

p < 0.001, n.s. p>0.05. 

(E) Phasor-FLIM analysis of NADH concentration changes in the same cells as in (D) in 

response to high power laser induced damage with DMSO or PARPi.  * p < 0.05, ** p < 0.01, 

*** p < 0.001, n.s. p>0.05. 
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Supplemental Figure S8

Supplemental Figure S8. Intracellular pH (pHi) measurement using pHrodo Green AM 

reveal significant damage-specific acidification by R+A, which is alleviated by PARPi 

but not by NAM.

(A) Fluorescence images of HeLa cells HeLa cells that were treated with indicated chemicals 

with or without MMS damage induction for 1 hr. After 2 hr, pHrodo Green AM was then added 

for 30 min and fluorescence intensities were measured by confocal microscopy. Scale bar = 10 μm.

(B) Relative fluorescence intensities were quantified where higher intensities correspond to 

lower pH. The pHi changes were compared to cells treated with DMSO only. N=25. 

* p < 0.01, ** p < 0.001, *** p < 0.000001. 
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