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NAD+ metabolism: pathophysiologic mechanisms and

therapeutic potential
Na Xie1, Lu Zhang2, Wei Gao1, Canhua Huang 1,3, Peter Ernst Huber4, Xiaobo Zhou5, Changlong Li6, Guobo Shen2 and

Bingwen Zou 1,4,7

Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes,

enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder,

infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as

enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved

in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-

ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in

diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent

advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the

contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new

avenues for therapeutic intervention.
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INTRODUCTION
NAD+ was first described in 1906 as a component that could
increase the fermentation rate in yeast.1 Years later, NAD+ was
determined to play a vital role for hydrogen transfer in redox
reaction.2 As an essential redox carrier, NAD+ receives hydride
from metabolic processes including glycolysis, the TCA cycle, and
fatty acid oxidation (FAO) to form NADH. NADH, therefore, serves
as a central hydride donor to ATP synthesis through mitochondrial
OXPHOS, along with the generation of ROS. Beyond its vital role as
a coenzyme in energy metabolism, the important role of NAD+

has expanded to be a co-substrate for various enzymes including
sirtuins, PARPs, CD157, CD73, CD38 and SARM1.3–6 Recently, it has
been found that NAD+ serves as a nucleotide analog in DNA
ligation and RNA capping.7,8 Therefore, the dynamic NAD+ and its
metabolites levels, in response to diverse cellular stress and
physiological stimuli, rewire biological processes via post-synthesis
modification of fundamental biomolecules, including DNA, RNA
and proteins.9–13 Through these activities, NAD+ impact energy
metabolism, DNA repair, epigenetic modification, inflammation,
circadian rhythm and stress resistance. NAD+ deficiency, however,
contributes to a spectrum of diseases including metabolic
diseases, cancer, aging and neurodegeneration disorders.
Here, we summarize recent advances in our understanding of

the NAD+ homeostasis in response to growth conditions or

environmental stimuli, highlighting the actions of NAD+ in
coordinating metabolic reprogramming and maintaining cellular
physiologic biology, which enables the plastic cells to adapt to
environmental changes. Furthermore, we will discuss the NAD+

and its metabolites serving as an essential hub in both
physiological and pathophysiological processes and explore the
potential of NAD+modulation in the clinical treatment of diseases.

NAD+ HOMEOSTASIS
NAD+, one of the most common metabolites in the human body,
is in a homeostatic status of biosynthesis, consumption, recycling
and degradation at both cellular and systemic levels.14

NAD+ biosynthesis
De novo pathway. Mammalian cells can generate NAD+ de novo
from dietary tryptophan (Trp) by the kynurenine pathway (KP),
which is initialized by either TDO or IDO. The intermediate ACMS
can cyclize spontaneously to QA. However, ACMSD converts ACMS
to picolinic acid, limiting the flux from tryptophan to NAD+.15

Another critical step catalyzes the conversion of QA to NAMN by
QPRT, which commits the pathway to NAD+ biosynthesis.16,17 The
Preiss-Handler pathway can convert dietary NA to NAMN by
NAPRT.18 NAMN derived from both the tryptophan and NA is
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catalyzed by NMNATs to yield NAAD, which is then amidated to
NAD+ by NAD synthase (NADSYN) using glutamine as nitrogen
donor (Fig. 1).19,20

Salvage pathway. Rather than generated de novo, most NAD+ is
recycled from NAM, NA, NR and NMN in the salvage pathway to
maintain the cellular NAD+ levels.21 Among these precursors, NAM
could be recycled from NAD+ consumption reactions, including
both NAD+-dependent deacylation and ADP-ribosylation, into
NMN by NAMPT, which catalyzes the rate-limiting reaction in the
salvage pathway.22 The precursor NR is imported by ENTs and
transformed to NMN by NRK1/2.23 Ultimately, NMN is adenylylated
by NMNAT to yield NAD+24,25 (Fig. 1).

NAD+ degradation
NAD+ consumption. As a co-substrate important to various
postsynthesis modifications of fundamental macromolecules,
NAD+ can be cleaved by NAD+-consuming enzymes including
PARPs, sirtuins, CD38 and SARM1 to generate NAM and ADP-
ribose (ADPR) (Fig. 1). The sirtuins are NAD+-dependent deacety-
lases that are distributed in the nucleus (e.g., SIRT1, SIRT6,
and SIRT7), the cytoplasm (e.g., SIRT2) and mitochondria (e.g.,
SIRT3-5), respectively.26 Through mediating the post-translational

modification dependent on NAD+, sirtuins modulate the adapta-
tion to the altered cellular energetic status, especially the
activation of oxidative metabolism and stress resistance in
mitochondria in various physiological or pathological conditions.26

PARPs catalyze reversible ADP-ribosylation of macromolecular
targets including proteins, DNA and RNA, utilizing NAD+ as a
cofactor to provide monomer or polymers of ADP-ribose
nucleotide.27,28 PARP members can be categorized into several
groups, the poly-ADP-ribosyl transferases (e.g., PARP1, 2, and 5),
the mono-ADP-ribosyl transferases (e.g., including PARP 3, 4, 6–8,
and 10–16) and RBPs (e.g., PARP7, 10, and 12–14).27,29 PARPs-
mediated ADP-ribosylation (ADPr) plays an essential role in cellular
physiological processes in response to stimuli, particularly
oxidative stress-induced DNA damage. Sustained PARP activation
triggered by intense insults can cause NAD+ depletion and
subsequent cell death.30 CD38 consumes NAD+ to make the
calcium-releasing second messengers including ADPR (major
product), 20-deoxy-ADPR (2dADPR), NAADP and cADPR, contribut-
ing to age-related NAD+ decline.31,32 SARM1 is an important
NAD+ consumer in neurons. The dimerization of TIR domain
cleaves NAD+ into ADP-ribose, cADPR, and nicotinamide.33–35

NAD+-consuming enzymes seem to have a different Michaelis
constant (Km) value for NAD+. The Km of SIRT1 and SIRT3 ranges

Fig. 1 Overview of the NAD+ metabolism and its physiological function. Mammalian cells can synthesize NAD+ de novo from tryptophan by
the kynurenine pathway or from NA by the Preiss‐Handler pathway, while most NAD+ is recycled via salvage pathways from nicotinamide
(NAM), a by-production of NAD+-consuming reactions. NAD+ can be reduced into NADH in the metabolic processes, including glycolysis, fatty
acid oxidation and the TCA cycle. NADH, in turn, drives the generation of ATP via OXPHOS, the production of lactic acid from pyruvate, and
the desaturation of PUFAs. NADPH plays an essential role in antioxidant defense and regulates cellular signaling via NADPH oxidases (NOXs).
Moreover, NAD+ is found to decorate various RNAs in different organisms as nucleotide analog and serves as an alternative adenylation donor
for DNA ligation in NHEJ repair. NAD+ also acts as a co-substrate for a wide variety of enzymes, including PARPs, sirtuins, CD38/CD157 and
SARM1, impacting metabolism, genomic stability, gene expression, inflammation, circadian rhythm and stress resistance. Using NAD+ as a co-
substrate, both PARPs and sirtuins regulate their target molecules, generating NAM as a by-product. The CD38/CD157 and SARM1 also
catalyze NAD+ to NAM, producing ADPR and cADPR. Abbreviations: IDOs, indoleamine 2,3-dioxygenase; QA, quinolinic acid; NAMN,
nicotinate mononucleotide; QPRT, quinolinate phosphoribosyl-transferase; NAPRT, nicotinic acid phosphoribosyltransferase; NMNATs,
nicotinamide mononucleotide adenylyl transferases; NADSYN, NAD synthase; NR, nicotinamide riboside; Trp, tryptophan; NADKs, NAD+

kinases; PARPs, poly (ADP-ribose) polymerases; NNT, nicotinamide nucleotide transhydrogenase; TDO, tryptophan 2,3-dioxygenase; SARM1,
sterile alpha and TIR motif containing 1; NNMT, Nicotinamide N-methyltransferase; NMN, nicotinamide mononucleotide; PUFAs,
polyunsaturated fatty acids; NAM, nicotinamide
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from 94 to 888 μM, which renders their activity tightly fluctuating
with the dynamic physiological cellular NAD+ levels. Other
sirtuins, including SIRT2, SIRT4, SIRT5 and SIRT6, have a Km for
NAD+ below the physiological range, implying that NAD+ might
not necessarily be the rate-limiting of their activity.5,36–46 PARP-1,
accounting for approximately 90% of the NAD+ used by the PARP
family, has a lower Km for NAD+ in the range of 20–97 μM.47–49 Of
note, the CD38 and SARM1 display Km for NAD+ in a markedly low
micromolar range (15–25 μM).50 Based on their different Km
values, NAD+-consuming enzymes display various potential of
reducing NAD+. Under normal homeostatic conditions, CD38 is
expressed at low levels, whereas rising expression of CD38 with
aging plays a vital role in age-associated NAD+ reduction.51,52 78c,
a highly potent and specific CD38 inhibitor, increases NAD+ levels,
leading to activation of sirtuins and PARPs.53 Generally, the
reported Km of PARP1 and CD38 for NAD+ are lower than those of
the sirtuins, suggesting that elevated activation of PARP1 or CD38
may limit endogenous SIRT activation by reducing NAD+ content.
This notion is confirmed by the observation that PARP1 and CD38
inhibition effectively increases total NAD+ availability, leading to
SIRT1 activation.54

NAD+ methylation. Excess NAM that is not recycled is metabo-
lized through two enzymatic systems and eventually excreted
from the body.55 The first system methylates the NAM into MNAM
by NNMT, which utilizes the SAM as methyl donor.56 The MNAM
together with their oxidized compounds, 4py and 2py, are
eventually eliminated in the urine.57 This methylation system is
quantitatively by far the predominant NAM scavenging pathway
under most conditions. While an acute pharmacological dose of
NAM can be converted by CYP2E1 to nicotinamide N-oxide, which
is then excreted to the urine.55,58,59 Therefore, NNMT and CYP2E1
divert NAM from recycling to NAD+, restraining NAM accumula-
tion and inhibition of NAD+-dependent signaling.60 The Km of the
human NNMT enzyme for NAM (approximately 430 μM) is much
higher than the affinity of NAMPT for NAM (<1 μM), suggesting an
unsaturated NNMT under normal conditions. Increasing dietary
NAM intake can lead to a proportional increase in NAM
methylation.61,62 Further, elevated NNMT expression or increased
MNAM levels in the liver can stabilize SIRT 1, which in turn
promotes glucose and cholesterol metabolism (Fig. 1).63

Subcellular distribution of NAD+

NAD+/NADH. Both the oxidized NAD(P)+ and the reduced NAD
(P)H have redox and signaling functions with an uneven
subcellular distribution. As listed in Box 1, a portfolio of
approaches is developed to map the total quantification or
cellular concentrations of the four NAD+ coenzymes. Semisyn-
thetic fluorescent biosensor-based analysis of U2OS cells exhibits
around 70 μM for cytoplasmic NAD+, ~110 μM for nuclear NAD+

and ~90 μM for mitochondrial NAD+, respectively. Meanwhile, the
concentration of free cytosolic NAD+ detected in cell lines
including U2OS, HEK293T, NIH/3T3 and HeLa is ranging from 40
to 70 µM.64–67 The similar depletion rate of free NAD+ in the
cytoplasm and nucleus supports the notion regarding a probable
exchange of NAD+ between these compartments, while a slower
rate of free NAD+ depletion in mitochondrial suggests that the
mitochondrial NAD+ pool is segregated from the cytosolic and
nuclear pools.65,68 In agreement with these reports, mounting
evidence implies that the distinct fluctuation of NAD+ in
mitochondria may be attributed to the membrane impermeability
of NAD(H).69,70 Controversially, isotope-tracer method analysis
shows that mammalian mitochondria are capable of taking up
intact NAD+ as well as its precursors, such as NMN and NR.37,71–73

Although NAD+ transporter has been identified in bacteria, yeast
and plants, no mammalian homolog has been discovered so far to
validate the import of NAD+ into mitochondria.74–78

The NAD+ pool in each cellular compartment can also be
maintained independently via recycling the NAD+ from NAM,
dependent on various forms of NMNATs, e.g., the nucleic
NMNAT1, cytosolic NMNAT2 and mitochondrial NMNAT3.79 Never-
theless, the independent mechanism for maintaining NAD+

through salvaging NMN in mitochondria is challenged by the
controversy around the presence or absence of NAMPT and
NMNAT3 in mitochondria.80,81 The electrons of NADH, rather than
NADH itself, generated from glycolysis in the cytoplasm could be
transferred across the mitochondrial membrane through the
NADH shuttle systems.66,82 The glycerol-3-phosphate (G-3-P)
shuttle and malate-aspartate shuttle transfer the electrons from

BOX 1 NAD(P)+/ NAD(P)H detection assays
Biochemical analysis
The biochemical analysis uses enzymatic cycling assays, capillary electrophoresis
(CE), or high‐performance liquid chromatography (HPLC) coupled with mass
spectrometry (LC/MS/MS), to detect the NAD+ and NADH contents and the
NAD+/NADH ratio.80,654–658

The enzymatic cycling assays is based on a multi-step NAD+/NADH enzyme
cycling reactions that convert WST-1 to WST-1 formazan, which can be easily
detected at OD 450 nm. This assay is recommended to evaluate the effect of
activators and inhibitors on NAMPT activity using purified protein and to check
for contamination and interference for NAD+ present in the sample, such as
immunoprecipitated cell lysates. However, this approach measures the total
quantity of cellular NAD+ or NADH, regardless of the free and protein‐bound
forms or the differentiated subcellular compartmentation. Additionally, the
requirement of tissue biopsy and extraction renders the enzymatic cycling assays
incompatible with longitudinal studies in intact organs.654–656

Based on the enzymatic cycling reaction, a CE approach is established to
measure NAD+ and NADH in a single cell in a single run with a capillary
electrophoresis laser-induced fluorescence (CE-LIF) setup. This method shows
good reproducibility and specificity with a detection capability as low as 0.2 amol
of NAD+ and 1 amol of NADH.659,660

HPLC coupled MS can simultaneously analyze the four coenzymes including
NAD+, NADH, NADP+, and NADPH, and the related metabolites. This approach
provides accurate, sensitive, reliable, rapid, and reproducible results, which
enables us to map various pathophysiological alterations in NAD+ metabo-
lism.661–665

Autofluorescence approach
The autofluorescence approach is a less invasive optical approach. Under
ultraviolet excitation, NADH/NADPH exhibits identical autofluorescence signals,
whereas the related oxidized forms NAD+/NADP+ are not fluorescent. The
autofluorescence intensity has often been microscopic determined as the
quantification of NAD(P)H. Additionally, fluorescence lifetime imaging micro-
scopy (FLIM) is capable of differentiating the quantitative of free and protein‐
bound NAD(P)H independent on intensity, interpreting as an indirect readout of
cellular metabolism. Collectively, this method based on intensity and decay times
of the autofluorescence allows the analysis of cellular redox state and
metabolism in cells and tissues. However, the application of this marker-free
approach is limited by its signal ambiguity, limited penetration and trouble in
monitoring the autofluorescence signal from deep tissue or organs.654,666

Genetically encoded fluorescent redox sensors
The highly responsive, genetically encoded fluorescent sensors, including Frex,
LigA-cpVenus, SoNar, Peredox, RexYFP for NAD+/NADH, iNap1-4 and Apollo-
NADP+ for NADP+/NADPH, can image and monitor NAD(P)+/NAD(P)H redox
state in living cells and in vivo. Advantages of the fluorescent redox sensors are
able to determine subtle perturbations of the cellular energy metabolism in real-
time. Meanwhile, it can be adapted to high-throughput chemical screening of
potential compounds targeting cellular metabolism in a variety of analytical
platforms, including microplate readers, flow cytometry, fluorescence microscopy
and high-content imaging systems.97,654,667–674

31P-magnetic resonance spectroscopy (31P-MRS) methods
31P-MRS based NAD+ assay is a noninvasive method that could quantitatively
measure intracellular NAD+ contents and redox state in animal and human
tissues, such as brains. It provides new approach to investigate intracellular NAD+

redox state and metabolism in the human tissues with the potential for
translation to human application.654,675–678

Isotope-tracer methods
Isotope labeling metabolites, including [2,4,5,6-2H] NAM, [U-13C] Trp, [U-13C] NA,
and NR (nicotinamide 7-13C, ribose 2-2H), can be intravenous infused into mice or
added into the media of cell culture. The labeled metabolites in cells, serum and
tissues are analyzed by LC-MS. Isotope-tracer methods are applied in quantitative
analysis of NAD+ synthesis-breakdown fluxes, including NAD+ synthesis and
consumption fluxes in cell lines, as well as NAD+ fluxes in vivo.91
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cytosolic NADH to mitochondrial FADH2 or NADH, respectively.
Then, the electrons are finally transferred to the ETC83–90 (Fig. 2).

NADP+/NADPH. Approximately 10% of cellular NAD+ may be
phosphorylated by NAD+ kinases into NADP+, which can be
dephosphorylated to NAD+ by NADP+ phosphatases.91,92 Cyto-
solic NADPH, the reduced form of NADP+, is mainly generated in
the pentose phosphate pathway (PPP) involving G6PD and 6PGD.
The mitochondrial NADPH can be produced by ME3 that converts
pyruvate to malate and by IDH2 that catalyzes isocitrate to α-
ketoglutarate.93,94 Additionally, NADP+ can also receive the
electrons from NADH to form NADPH by NNT that locates in the
mitochondrial inner membrane.95 These distinct synthesis path-
ways might contribute to the differential subcellular NADPH/
NADP+ ratio, such as a significantly higher ratio in mitochondria
(~170) than that of the cytosol and the nucleus (40~50) in U2OS
cells.64 NADPH is required for both the reductive biosynthetic
reactions of cholesterol and palmitate and the oxidative reactions
catalyzed by NADPH oxidases (NOXs), nitric oxide synthases (NOS),
cytochrome P-450, and so on.95,96 Most importantly, NADPH

provides the primary reducing power for the thioredoxin (Trx) and
glutathione (GSH) systems to eliminate ROS (Fig. 2). In line with
that, the free NADPH/NADP+ ratio that indicates the reduction
potential is normally sustained at a high level inside cells and is
significantly reduced following pro-oxidant agents or H2O2

exposure.64,96,97 Given its essential role in metabolism and
antioxidant defense, NADPH/NADP+ ratio in cancer cells exhibit-
ing high metabolic rate and ROS contents (50-70) is much higher
than that in the embryonic kidney immortalized cell line HEK293
(~20).64 Albeit further research is needed, quantification of
NADPH/NADP+ ratios provides an effort to map metabolic and
redox state of different cell types and organelles.

NAD+ homeostasis at the systemic level
The NAD+ and its metabolites systemically flux and exchange
across tissues, with a tissue-specific distribution of NAD+

biosynthetic enzymes and a tissue-specific preference for specific
NAD+ precursors. It is reported that the de novo biosynthesis of
NAD+ from tryptophan mainly occur in the liver and, to a lesser
extent, kidney, which is attributed to the exclusively expressed

Fig. 2 Subcellular equilibrium of NAD+. The NAD+ homeostasis is maintained by the biosynthesis, consumption and recycling in differentiate
subcellular compartments including the cytosol, the nucleus and the mitochondria. NAD+ precursors including Trp, NA, NR, NMN and NAM
are metabolized into NAD+ via Preiss-Handler pathway, de novo pathway and salvage pathway, respectively. NAD+ can receive hydride to
yield the reduced form NADH in the metabolic processes including glycolysis, FAO, and the TCA cycle. NADH provides an electron pair to drive
the mitochondrial OXPHOS for the generation of ATP and the conversion of lactic acid to pyruvate. The cytosolic and mitochondrial NADH is
exchanged through the malate-aspartate shuttle and glycerol-3-phosphate shuttle, while the cytosolic and mitochondrial NADPH is
exchanged by the isocitrate-a-KG shuttle. NAD+ can also be phosphorylated into NADP+ by NAD+ kinases including nicotinamide nucleotide
transhydrogenase (NNT) and NAD kinases (NADKs). Cytosolic NADP+ is reduced into NADPH by G6PD and 6PGD in the pentose phosphate
pathway, and by ME1 in the conversion of malate to pyruvate. Mitochondrial NADPH is produced by IDH2, GLUD, NNT and ME3. The NADPH is
required for the activation of NOXs and the synthesis of palmitate. Abbreviation: α-KGDH, alpha-ketoglutarate dehydrogenase; GLUD,
glutamate dehydrogenase; NNT, nicotinamide nucleotide transhydrogenase; G3PDH, glyceraldehyde 3-phosphate dehydrogenase; 6PGD, 6-
phosphogluconate dehydrogenase; G6PD, glucose-6-phosphate dehydrogenase; GPx, glutathione peroxidases; IDH1/2, isocitrate dehydro-
genase 1 and 2; MDH, malate dehydrogenase; ME1/3, malic enzyme; NADK, NAD+ kinase; NOXs, NADPH oxidases; OXPHOS, oxidative
phosphorylation; PPP, pentose phosphate pathway; PRx, peroxiredoxin; SDH, succinate dehydrogenase; SOD1-3, superoxide dismutase type 1-
3; TCA cycle, tricarboxylic acid cycle; GSH, Glutathione; LDH, Lactate dehydrogenase
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enzymes involved in de novo NAD+ synthesis in these tissues.
Therefore, the concentration of tryptophan in the diet affects the
liver NAD+ levels. Tryptophan also compensates the NAD+

biosynthesis when the salvage pathway is blocked.35,69,91 NAM is
the main NAD+ source in both cell lines and most murine tissues.
The circulating NAM, 95% of which is released by the liver, is the
main NAD+ source for the rest of the body. The NAM uptake
preference differs dramatically, ranging from the highest 70 μM in
spleen and small intestine to the lowest 2–9 μM in the white
adipose and skeletal muscle. Besides tryptophan and NAM, NA is
the third NAD+ precursor with concentrations >0.1 mM in
mammalian plasma, which can only be used by spleen, small
intestine, pancreas, kidney and liver.91 Accordingly, these tissues
have been observed with a remarkable expression of NAPRT that
guides NA into NAD+ biosynthesis.
Additionally, NMN and NR are capable of efficiently elevating

tissue NAD+ concentrations. Given that NMN itself is a non-cell
penetrating biosynthetic intermediates, NMN or its metabolites may
be actively transported across the membrane. The solute carrier
family 12 member 8 (Slc12a8) has been reported as a specific NMN
transporter that is responsible for the uptake of NMN and
maintenance of NAD+ level in the murine small intestine.98,99

However, it has been reported that the dephosphorylation of NMN
into NR by extracellular 5’-nucleotidases is required for the uptake
and utilization of NMN in cellular NAD+ synthesis.98 Similarly, the
modification of the phosphate group in NMN allows its transporta-
tion to activate SARM1 in cells.100 Therefore, whether NMN is directly
transported by Slc12a8 remains unclear, which needs further
investigation. NR, which can cross the cell membrane through a
dypiridamole-inhibitable nucleoside transporter, is preferentially
used by muscle to synthesize NAD+.98 Accordingly, the NR-using
enzyme, NRK2, is usually specifically expressed in the skeletal muscle.
Beyond the systemic regulation of NAD+ homeostasis across

various tissues, it has recently been described that bacteria
contribute to mammalian host NAD+ biosynthesis, especially
following oral intake of the amidated precursors. The oral NAM
and NR can be deamidated by gut microbiota into NA, NAR, NAAD
and NAMN in the small intestine and the colon. These deamidated
NAD+ metabolites are circulated to the liver and kidney,
significantly contributing to the bulk of NAD+ biosynthesis.101

Despite major advances in the acknowledgment of tissue-
specific NAD+ homeostasis, further work will be needed to fully
characterize the subcellular and systemic modulation of NAD+

metabolism, which can improve the preventive and therapeutic
strategies based on maintaining healthy NAD+ homeostasis.

NAD+ METABOLISM IN PHYSIOLOGICAL FUNCTION
Serving as crucial co-enzymes for redox reactions and co-
substrates for NAD+-dependent enzymes, NAD+ and its metabo-
lites function as a regulatory hub controlling a broad range of
physiological processes, including redox homeostasis, genomic
stability, gene expression, RNA processing, energy metabolism,
immunity and inflammation, and circadian clock.

NAD+ metabolism maintains the redox homeostasis
Cells continuously generate oxidants and produce antioxidants.
An imbalance between the oxidant formation and the antioxidant
capacity in favor of the former causes oxidative stress.102

Maintenance of a physiological (low-level) oxidative stress, also
denoted as oxidative eustress, is pivotal for governing biological
processes and physiological functions including cell cycle and
proliferation, circadian clock, innate immunity, self-renewal of
stem cells and neurogenesis.103–106 However, a variety of stimuli,
including nutrient perturbation, genotoxic stress, infection,
pollutants and xenobiotics, trigger ROS overproduction, resulting
in excessive oxidant challenge (oxidative distress). Oxidative
distress causes damage to fundamental macromolecules including

proteins, lipids, RNA and DNA at a cellular level, which promotes
abnormal cell death and inflammation, often culminating in
additional oxidative stress at a systemic level.95,107 Through giving
rise to fast, barrier-less and non-selective oxidation reactions that
are responsible for a severe insult of both cell and systematic
tissues, oxidative stress is involved in a myriad of pathologies. Of
note, NAD+ deficiency exerts effects on the emergence of
oxidative stress in multiple diseases, while boosting NAD+ has
protective effects due to enhancement of antioxidant capacity via
increasing the GSH levels and the activity of antioxidant
enzymes.108 To counteract the detrimental effects of oxidants,
cells can heighten the production of reducing equivalents such as
NADPH.109 Moreover, NAD+-consuming enzymes, such as SIRT3,
can also manipulate the cellular redox status via regulating the
activity of enzymes for ROS generation and antioxidant factors for
ROS eradication.110–112 Therefore, NAD(P)+/NAD(P)H represents
the switching hub that controls prooxidant-antioxidant balance
and determines the redox biology (Fig. 3).

NADH/NADPH as the electron donor in ROS generation. Major
endogenous ROS via superoxide radicals is constantly produced
by both non-enzymatic reactions such as the mitochondrial
respiration that needs NADH and enzyme-catalyzed reactions
including NOXs that require NADPH.113

In a physiological context, the vast majority of cellular ROS is
produced in mitochondria using NADH as electron donor.114,115

Mitochondrial NADH supplies NADH dehydrogenase (complex I)
with electrons, which along with the electrons obtained from
FADH2 via complex II drive the mitochondrial ETC to generate a
proton (H+) gradient across the IMM for the production of ATP. The
complex I and complex III of ETC are able to produce the
superoxide anion radical (O2

–) and release it to both the matrix and
the intermembrane space.114–116 Additionally, NADH or FADH2 is
the electron carrier for the mitochondrial membrane proteins, such
as GPDM and FQR, and the metabolic enzymes in matrix, such as
OGDH and PDH, all of which contribute to ROS production.115

Another significant intracellular source of ROS is the NOXs,
especially in response to physiological stimuli, including growth
factors, hormones and cytokines, and pathological impulse, such as
bacterial and viral infections.114 Rather than generating ROS as a
by-product, NOXs produce superoxide as a primary product using
NADPH as the electron donor.117 The NOX proteins, including
NOX1-5 and DUOX1/2, have the conserved NADPH-binding site at
the C-terminus, which extracts electrons from NADPH. The
presence of FAD-binding region and transmembrane hemes
enable NOXs to act as an electron-transportation chain that
transfers two electrons from cytosolic NADPH to extracellular O2,
resulting in the generation of O2

–.95,116

Beyond mitochondria and the NOX family, a variety of enzymes
including xanthine oxidase (XO), NOS, lipoxygenase and cyto-
chromes P450 (CYP) can all produce ROS using NAD(P)H as electron
donor.115 Mammalian xanthine oxidoreductase (XOR), one enzyme
in purine catabolism, can exist in both dehydrogenase (XDH) form,
which prefers NAD+ as the electron acceptor, and XO form, which
transfers the electrons directly to O2, leading to the formation of O2

–

and H2O2.
118,119 Receiving electrons from NADPH, NOS catalyzes the

production of NO from L-arginine participating in a number of
biological processes, including neurotransmission, vasodilation and
immune response.120,121 ROS are also produced via the metabolism
of arachidonic acid by lipoxygenases in the presence of NADH or
NADPH.122–124 Mammalian CYPs are a family of heme-containing
NAD(P)H-dependent monooxygenases that metabolize numerous
endogenous metabolites, including fatty acids and steroids, and
exogenous substrates, including carcinogens, pesticides and drugs,
resulting in continuous production of ROS.115,125,126

NADPH as the final reducing power for antioxidant defense.
Besides functioning as the electron donor for ROS production,
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NADPH also supplies the reducing power for antioxidant defense.
To fine-tune the redox homeostasis that can either prohibit the
damage by oxidative distress or maintain the physiologic ROS to
sustain normal cellular processes, organisms have evolved a
complex antioxidant defense system consisting of both enzymatic
and non-enzymatic scavengers.106,127,128 Intriguingly, both enzy-
matic and non-enzymatic antioxidant system components exhibit
their effects in coordination with each other to contribute to redox
homeostasis and cell fate using NADPH as the ultimate donor of
reductive power.116,129,130 Two classes of enzymatic components,
glutathione reductases (GRs) and thioredoxin reductases (TrxRs),
are homologous flavoenzymes that use electrons from NADPH to
reduce a disulfide to a dithiol. Then, the active site dithiol in GRs
reduces the oxidized GSH (the disulfide GSSG) into reduced GSH,
the most important non-enzymatic scavenger. GSH is able to
reduce the disulfide bonds and hydroperoxides by glutathione
peroxidases (GPxs) or promote the glutathionylation at cysteine
residues by Glutathione S‐Transferase (GST) to protect protein
from oxidation.107,131–133 Similarly, mammalian TrxRs maintain the
reduced thioredoxin (Trx) concentration that supports peroxir-
edoxin (Prx) to remove H2O2.

94,134 Therefore, through supplying
electrons for bioreductive synthesis and the regeneration of GSH
and reduced thioredoxin, NADPH plays critical roles in the
maintenance of redox homeostasis and modulating redox
signaling.133

NAD+-dependent enzymes control redox homeostasis. SIRT3 acts
as an essential modulator of oxidative stress via deacetylation of
substrates associated with both ROS generation and

detoxification. SIRT3 deacetylates and activates the multiple
components of ETC including NDUFA9 of Complex I, SDHA of
Complex II and core I subunit of complex III. The alteration of ETC,
therefore, might contribute to an increased ROS generation.135–137

SIRT3 also enhances cellular antioxidant capacity through
augmenting the reducing power, NADPH, and increasing the
activity of antioxidant enzymes, such as SOD2 and catalase. SIRT3-
mediated deacetylation of IDH2 increases the generation of
mitochondrial NADPH, which elevates the reduced GSH levels.138

Simultaneously, SIRT3 can not only induce the expression of
antioxidant enzymes by activating the FOXO3a, but also enhance
the activation of SOD2 and catalase via NAD+-dependent
deacetylation.139,140 Besides SIRT3-mediated deacetylation, SIRT5-
dependent desuccinylation improves ROS detoxification via
increasing SOD1 activity.141 These findings reveal a new redox
regulation of NAD+ by SIRT3‐dependent deacetylation in response
to oxidative stress, improving the resistance to the detrimental
effects of oxidative damage.

NAD+ sustains genomic stability
The constant challenges from endogenous ROS/RNS or exogenous
insults, such as radiation, chemical mutagens and carcinogens,
render the DNA damage a relatively common cellular event.
Notably, DNA damage and subsequent genome instability are
major driving forces for tumorigenesis and aging via driving
mutation. To sustain the genome stability, cells have evolved a
complicated fine-tuning mechanism, termed as DNA-damage
response (DDR), to detect and repair DNA lesions.142–145 As key
regulators of multiple DNA repair pathways, PARPs and sirtuins

Fig. 3 NAD+ metabolism controls the redox homeostasis. ROS could be produced from either metabolic reaction in mitochondria, such as
OXPHOS, or from a range of cytosolic enzymes, including NOXs, XO, LOX, CYPs, all of which need the NADH/NADPH serving as the electron
donor. To maintain the redox homeostasis, both enzymatic and non-enzymatic antioxidant system components exhibit their effects in
coordination with each other to contract with the ROS. GSH, the most abundant of non-enzymatic antioxidants, is synthesized from
glutamate, cysteine and glycine catalyzed by two consecutive cytosolic enzymes, GCL and GS. Importantly, NADPH serves as the reductive
power for ROS-detoxifying enzymes including glutathione reductases (GR) and thioredoxin reductases (TrxR) to maintain the reduced forms
of GSH and Trx (SH)2 in response to ROS produced from mitochondria or NOXs. Abbreviations: 6PGD, 6-phosphogluconate dehydrogenase;
CYPs, Cytochromes P450; G6PD, glucose-6-phosphate dehydrogenase; GCL; GR, glutathione reductases; GS; LOX; NAD, nicotinamide adenine
dinucleotide; NOXs, NADPH oxidases; NADPH, nicotinamide adenine dinucleotide phosphate; OXPHOS, oxidative phosphorylation; PRx,
peroxiredoxin; GPx, glutathione peroxidases; SOD1/2, superoxide dismutase 1 and 2; Trx, thioredoxin; TrxR, thioredoxin reductases; XO,
xanthine oxidase
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modulate the post-modification of repair components using NAD+

as co-substrate (Fig. 4). Consistently, NAD+ deficiency leads to an
impaired DDR and an increased genomic instability, suggesting an
interplay between genomic stability and NAD+ metabolism.145–147

DNA ligation. The pathological DSBs are primarily repaired by the
NHEJ, a process involves synapsis, end-processing and liga-
tion.148,149 DNA ligases-mediated DNA end ligation is initialized
by adenylating the ligase with an AMP moiety. In prokaryotes, both
ATP and NAD+ are adenylation donor for DNA ligases, while in
eukaryotes, only ATP is known to be used by DNA ligases for the
adenylation.150 Recently, it has been reported that human DNA
ligase IV, a crucial enzyme in NHEJ, can acquire AMP moiety from
NAD+ for DNA end ligation. The BRCA1 C-terminal (BRCT) domain
of ligase IV is required to recognize of NAD+ for subsequently
ligation in NHEJ.7 Although future studies will be required to fully
characterize the structure of NAD+-associated human DNA Ligase
IV, these findings reveal that like ATP, NAD+ can serve as a provider
of adenylation for DNA ligation in the NHEJ DNA repair pathway.

DNA repair. Beyond regulating the NHEJ pathway acting as an
adenylation donor, NAD+ also modulates other DNA repair
pathways via activating NAD+-consuming enzymes, PARPs and
sirtuins.151,152 As sensitive DNA damage sensors, PAPRs are
recruited and immediately activated by DNA breaks. The DNA-
bound PARPs, such as PARP1-3, can attach the mono-ADP-ribose
(MAR) or poly-ADP-ribose (PAR) moieties directly to the DNA
breaks.153–156 Meanwhile, PARPs also catalyze the ADP-
ribosylation of various proteins that facilitate the chromatin
relaxation and the recruitment of repair factors.157–162 The effect
of PARPs to stimulate chromatin decompaction might be exerted

via the steric hindrance of PAR chain, the negative charge of DNA
and PAR, or the displacement of core histones.162,163 Simulta-
neously, the accumulated PARs at DNA break sites are required for
the recruitment of DNA repairs, including XRCC1, DDB2, ALC1,
RECQ1, CHD2, BRCA1, Ligase V, MRE11 and NBS1, to initiate DNA
repair.164–167 Similarly, DNA damage induces the relocalization of
NAD+-dependent deacetylase SIRT1 to DNA breaks, which
promotes DNA repair via opening the chromatin and recruiting
the main DNA repair factors including KU70, NBS1, WRN, KAP1,
XPA and APEX1.168–177 Additionally, PARPs and sirtuins also
simulate genomic damage-signaling kinases, including ATM, p53,
DNA-PK, CIRBP and FOXOs, to accelerate DNA repair.178–182

Given that DNA damage-activated PARPs account for up to 90%
of cellular NAD+ consumption, the DNA repair activity is highly
dependent on the cellular NAD+ concentration.133,183,184 As
expected, decreased NAD+ levels induce the accumulation of
DNA damage, whereas replenishing intracellular NAD+ stimulates
the DNA repair.185–187 In contrast to the positive effect of NAD+ on
DNA repair, NADP+ suppresses the ADP-ribosylation-mediated
DNA damage repair via functioning as an endogenous inhibitor of
PARPs. The structure of NADP+ similar to that of NAD+ renders its
binding to PARPs. However, NADP+ has an additional phosphate
group on the 2’ position of the ribose ring, which abolishes the
formation of linear PAR chain.184

NAD+ manipulates the gene expression
Cellular metabolism, such as NAD+ metabolism, is directly
connected to gene expression through regulating the post-
translational modifications (PTMs) of histones, the covalent
chemical modifications of DNA, the activity of transcription factor
and RNA processing.188,189

Fig. 4 NAD+ serves as a pivotal regulator of gene expression. NAD+ and its metabolites are used as substrates and cofactors for reactions that
coordinate genomic stability, epigenetic status and RNA processing through NAD+-dependent enzymes. NAD+-dependent histone-
deacetylases, especially SIRT1, possess deacetylase activities on multiple transcription coactivators as well as histones, resulting in epigenome
remodeling. The lower activity of sirtuins upon lower level of NAD+ may contribute to histone hyperacetylation and aberrant gene
transcription. Using NAD+ as a (ADP)-ribose donor, PARPs mediate ADP-ribosylation on itself or on a variety of nuclear target proteins such as
topoisomerases, DNA polymerases, histones and DNA ligases, playing roles in genome stability and gene regulation, from chromatin to RNA
biology. Recently, it has been found that NAD+ can also serve as a nucleotide analog in DNA ligation and RNA capping in response to stresses.
Abbreviations: CTCF, CCCTC-binding factor
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Histone modification. Histone modification is one of the most
crucial epigenetic modification that affects DNA structure and
gene expression. The post-translational modifications of histones
include acetylation, ADP-ribosylation, phosphorylation and methy-
lation. Among these modifications, the acetylation and ADP-
ribosylation are regulated by NAD+-dependent enzymes, sirtuins
and PARPs, respectively. Sirtuins, also known as NAD+-dependent
class III HDACs, remove the acetyl groups from histone, which
restores the electrostatic affinity between DNA and histones to
stabilize the chromatin architecture.190,191 SIRT1-3 maintain the
chromatin structure via deacetylation of a crucial histone residue,
H4K16. The reduced intracellular NAD+ concentration limits the
deacetylase activity of SIRT1, resulting in elevated H4K16Ac and
gene expression.192,193 SIRT6 can coordinate NF-κB to deacetylate
the H3K9Ac, sequestering the expression of glucocorticoid
receptors (GRs).194 SIRT7 is able to selectively deacetylate the
H3K18Ac, which represses the expression of a specific set of gene
targets that is linked to oncogenic transformation.195 Histones also
serve as acceptors of ADP-ribose upon DNA damage to initiate
DNA repair.183 The ADP-ribosylation of histones by PARP-1 induces
the dissociation of nucleosomes, leading to the decompaction of
chromatin. Furthermore, PARP-1-mediated PARylation of KDM5B
prevents the demethylation of H3K4me3, rendering the exclusion
of H1 and the opening of chromatin. The decompensation of
chromatin structure, therefore, allows the loading of the
transcriptional machinery and facilitates gene transcription.

DNA modification. DNA methylation is another widely studied
epigenetic modification that is often involved in the regulation of
gene expression. NAD+ deficiency can promote the DNA
methylation, resulting in gene silencing. NAD+ depletion elevates
the methylation of BDNF promoter, triggering the dissociation of
the DNA methylation-sensitive nuclear factor CCCTC-binding
factor (CTCF) and cohesin from the BDNF locus. The detachment
of these factors causes the altered methylation and acetylation of
histone at this locus, leading to chromatin compaction and gene
silencing.196 The NAD+-consuming enzymes, PARPs, are asso-
ciated with the regulation of DNA modification. Inhibition of the
PARPs-mediated ADP-ribosylation causes a chromatin compaction
DNA hypermethylation.197 PARP-1 can be activated by the
chromatin insulator CTCF even without niched DNA and efficiently
automodified, dependent on NAD+. The PARs of PARP‐1 compete
with DNA for the noncovalently binding DNMT1, causing
suppression of its methyltransferase activity.198,199 Therefore, the
NAD+-dependent enzymatic activity of PARP-1 is a crucial
regulator of gene expression via protecting the genome from
aberrant hypermethylation.
Another evidence linking the NAD+ metabolism with DNA

methylation is the NNMT, which transfers the methyl group from
SAM to NAM, producing S-adenosylhomocysteine (SAH) and a
stable metabolites 1-methylnicotinamide (MNA). Given that the
SAM is the universal methyl donor for methylation of substrates
including proteins, nucleotide acids and lipids, the NNMT induced
methyl sink in the form of MNA impairs the genome methyla-
tion.200,201 Moreover, the methionine metabolism catalyzed by
NNMT diverts the NAM from the NAD+ salvage pathway. As a
consequence, the reduced cellular NAD+ content restricts the
PARP1-catalyzed ADP-ribosylation and the following DNA methy-
lation. Collectively, increased NNMT expression inhibits the DNA
methylation through not only decreasing the cellular NAD+, the
donor for ADP-ribosylation required for methylation, but also
reducing the level of SAM, the methyl donor for methylation.

NAD+ modulates RNA processing
Decorating of RNA as a nucleotide analog. Chemical modifica-
tions of the RNA 5’-end play a pivotal role in various biological
functions including the protection of RNA from exonuclease
cleavage, the recruitment of proteins for pre-mRNA processing

and nuclear export and the initiation of protein synthesis.
Recently, NAD+ has been found to be incorporated into RNAs as
an initiating nucleotide during transcription to form NAD+ cap in
different organisms including bacterial, yeast, human and virus.8–
12,202 Unlike the well-characterized m7G-capped mRNA, which
maintains highly stability of mRNA for translation, the
NAD+-capped RNAs are vulnerable to decay and are inefficiently
translated in cells.9,10,203

NAD+ capping can be catalyzed by eukaryotic nuclear RNAP II
using NAD+ and NADH as non-canonical initiating nucleotides
(NCINs) in de novo transcription initiation.8 Besides the RNAs
produced by nuclear RNAP II, RNAs synthesized by mitochondrial
RNAP (mtRNAP) can also be NAD+ capped. The human mtRNAP
conducts a higher efficiency of NAD+ capping than the nuclear
RNAP II, leading to ~15% NAD+ capping of mitochondrial
transcripts.204 The 5′ end NAD+ cap of RNAs in the cytoplasm
will be removed by two mammalian hydrolases, DXO and Nudt12.
Reported as a deNADding enzymes, the Nudt12 contributes to the
decapping of RNA following exposure to nutrient stress, such as
glucose deprivation, while DXO is responsible for the environ-
mental stress, such as heat shock.12,205–207 In line with that
NAD+-capped RNA levels respond to the cellular total NAD+

concentrations, the capping efficiencies of NAD+ capping and
NADH capping are also regulated by intracellular NAD+/NADH
ratio.204,207 These results raise the possibility that RNAP II and
mtRNAPs might function as both sensors and executors, which
sense NAD+/NADH ratios and induce the NAD+ capping to
regulate the gene expression, leading to the crosstalk between
cellular NAD+ metabolism and transcriptional activity.

ADP-ribosylation of RNA. Beyond decorating RNA as a nucleotide
analog, NAD+ also provides the ADPR groups for the reversible
mono-ADP-ribosylation of RNA phosphorylated ends. This RNA
modification is catalyzed by PARP10 with a preference for 5′ ends,
depending on NAD+ concentration. In addition to PARP10, TRPT1,
a PARP homolog, also catalyzes the ADP-ribosylation of RNA. The
ADP-ribosylation renders RNA resistant to phosphatase, which
might protect the RNA from the nuclease attack. Similar to the
reversible ADP-ribosylation of proteins and DNA, the ADP-
ribosylation of RNA can also be efficiently reversed by several
cellular hydrolases including TARG1, MACROD1-2, PARG, NUDT16
and ARH3 viruses.29 Besides human hydrolases, macrodomain-
containing hydrolases from VEEV and SARS can remove the ADP-
ribosylation of RNA catalyzed by PARPs, suggesting a potential
mechanism of pathogenesis via inhibiting the antiviral activity of
IFN-stimulated genes, PARPs. Altogether, the ADP-ribose moieties
attached to RNA end might protect RNA against degradation or
serve as a platform for recruiting proteins, controlling the
functional state of RNA.

NAD+ facilitates cellular energy metabolism
NAD+/NADH as hydride-donating coenzyme for metabolism. Act-
ing as a coenzyme, NAD+ plays pivotal roles in energy metabolism
pathways including glycolysis, the TCA cycle, OXPHOS, FAO and
alcohol (ethanol) metabolism.66 The glycolysis process begins with
one glucose molecule and ends with two molecules of pyruvate,
which are subsequently transported into the mitochondria to
begin the TCA cycle. NAD+ promotes glycolysis by facilitating the
enzymatic reactions catalyzed by GAPDH and lactate dehydro-
genase (LDH), which use NAD+ as a coenzyme.208,209 NAD+ is
reduced to NADH coupled with the oxidation of G3P to 1,3-BP by
GAPDH.210 Cytosolic pyruvate can also be converted to lactate by
LDH, coupled with the oxidation of NADH to NAD+.211 This
process helps maintain the cytosolic level of NAD+, thus
contributing to the continuity of glycolysis. When transported
into the mitochondria, the glycolytic end-product pyruvate is
decarboxylated to produce acetyl-CoA by PDH complex, which
reduces NAD+ to NADH simultaneously.210 Acetyl-CoA then starts
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the TCA cycle, where NAD+ serves as a coenzyme for three rate-
limiting enzymes, α-ketoglutarate dehydrogenase (KGDH), isoci-
trate dehydrogenase 3 (IDH3) and malate dehydrogenase (MDH2),
to generate NADH. Thus, the TCA cycle can convert four molecules
of NAD+ to NADH using one molecule of pyruvate in the
mitochondria under aerobic conditions.212 As an electron donor,
NADH produced in the TCA cycle plays a crucial role in ATP
synthesis by OXPHOS, which generates most of the energy
through the H+ gradient in animal cells.213

FAO breaks down a long-chain acyl-CoA, which is generated
from fatty acid and coenzyme A by acyl-CoA synthetase in the
cytosol, to generate acetyl-coA, NADH and FADH2 in the
mitochondria.214 This process is performed in repeated cycles,
each of which removes a two-carbon acetyl-coA from the acyl-CoA
via four enzymes, the enoyl-CoA hydratase, ketoacyl-CoA thiolase,
acyl-CoA dehydrogenase (ACADs) and hydroxyacyl-CoA dehydro-
genase (HADH). The last cycle generates two molecules of acetyl-
coA. FADH2 is generated by ACADs, while NADH is produced from
NAD+ in the reaction catalyzed by HADH. Both NADH and FADH2

generated in the FAO are utilized to synthesize ATP by the ETC.
NAD+ is also a cofactor in alcohol oxidation metabolism taking
place mainly in liver cells. Alcohol oxidation is completed in a two-
step reaction by two enzymes, alcohol dehydrogenase (ADH) and
aldehyde dehydrogenase (ALDH), which catalyzes the reduction of
NAD+ to NADH.215 Both the sufficient glycolysis and the effective
oxidation of alcohol require fast reoxidation of NADH to NAD+

through the coordinated reduction of pyruvate to lactate by LDH
or production of ATP by mitochondrial ETC.213,216

NAD+-dependent modification of metabolic enzymes. Beyond
serving as a hydride-donating coenzyme for metabolism, NADH/
NAD+ also acts as co-substrate for the sirtuins-mediated post-
translational modification of metabolic enzymes including acet-
ylation, ADP-ribosylation, succinylation and malonylation. A large
number of enzymes that participated in cytosolic glycolysis,
gluconeogenesis, the urea cycle, nitrogen metabolism, glycogen
metabolism, mitochondrial fatty acid oxidation, the TCA cycle and
amino acid catabolism can be regulated by sirtuins.217,218

The mitochondrial sirtuin-related acetylome covers almost all
the mitochondrial metabolism, including the enriched SIRT3-
related TCA cycle, ETC, FAO, the SIRT4-associated anion transpor-
ters, the translation and energy metabolism, the SIRT5-regulated
TCA cycle and branched chain amino acid catabolism (BCAA)
metabolism.219,220 The mitochondria SIRT3 function as a metabolic
sensor that links the cellular energy status with the mitochondrial
protein acetylation patterns. In healthy mitochondria, SIRT3
interacts with ATP5O, while the low pH owing to the loss of
membrane potential weakens the binding affinity between SIRT3
and ATP5O, leading to the redistribution of SIRT3 to other
mitochondria substrates. The pH-insensitive association between
SIRT3 and ATP5O provides a fundamental role for SIRT3 in
resetting mitochondrial acetylation in response to stress.219 The
transition to fasting enhances both the cellular NAD+ level and
the SIRT3 expression, which, in turn, catalyzes the deacetylation of
LCAD to promote fatty-acid oxidation.221 SIRT3 orchestrates the
metabolism reprogramming via controlling the balance between
cytosolic glycolytic metabolism and mitochondrial oxidative
metabolism.222 SIRT3 also plays a regulatory role in proline
metabolism via deacetylation of PYCR1.223

SIRT4 modulates mitochondria energy homeostasis and long-
evity based on its lysine deacetylase, lysine deacylase, lipoamidase
and ribosylase activity. Under nutrient-replete conditions, the
deacetylation of malonyl CoA decarboxylase (MCD) by SIRT4 plays
a pivotal role in lipid homeostasis via suppressing fatty acid
oxidation and inducing lipid anabolism.224 The lysine deacylase
activity of SIRT4 is involved in the control of leucine metabolism
and insulin secretion through regulating the acylation status of
enzymes in these pathways.225 SIRT4 also acts as a cellular

lipoamidase with a preferred catalytic efficiency for lipoyl- and
biotinyl-lysine modifications to its deacetylation activity. SIRT4
hydrolyzes the lipoamide cofactors from the E2 component
dihydrolipoyllysine acetyltransferase (DLAT), leading to diminished
PDH activity.226 Furthermore, SIRT4 uses NAD+ to ADP-ribosylate
and reduce GDH activity, thereby inhibits insulin secretion in
response to amino acids in β cells.227

SIRT5 is an NAD+-dependent lysine desuccinylase, demalony-
lase, and deglutarylase.228 BAT specific deletion of Sirt5 exhibits
hypersuccinylation of proteins involved in the amino acid
metabolism, ETC and FAO. A bunch of mitochondrial proteins
have succinylation modification, such as UCP1 in thermogenic
function, GLUD1 in glutamate metabolism, SDH in ETC, the TCA
cycle, GLS2 and CPS1 in glutaminolysis, ECHA and VLCAD in FAO,
HMGCS2 in ketogenesis and SHMT2 in serine catabolism.229–233

SIRT5-mediated desuccinylation also participates in protection
against peroxisome-induced oxidative stress via targeting
ACOX1.230 Moreover, SIRT5 functions as a leading regulator of
protein malonylation in both cytosolic metabolisms including
glycolysis, gluconeogenesis and mitochondria FAO. For instance,
SIRT5 increases the activity of GAPDH by demalonylation, thereby
controlling the energetic flux through glycolysis.227,234,235 Collec-
tively, sirtuins orchestrate an integrated modulation of metabolic
pathways via NAD+-dependent post-translational regulation in
response to diverse nutrient signals.

Rhythmic NAD+ oscillates circadian clock
Organisms have developed internal clocks as a timekeeping
mechanism to collaborate biological processes with the exogen-
ous environmental and endogenous factors. NAD+ functions as a
metabolic driver of circadian transcription via epigenetic mechan-
isms, transducing signals originated by environmental stimuli to
the circadian clock. The linkage of NAD+ metabolism to the
internal clocks is firstly evidenced by that the NAD(P)+/NAD(P)H
ratio modulates the DNA-binding activity of the core oscillators,
such as CLOCK: BMAL1 and NPAS2: BMAL1 heterodimers. The
redox state of FAD and NADPH also displays an oscillation pattern
in organotypic slices of suprachiasmatic nucleus (SCN).236 The
circadian control of intracellular NAD+ levels by the clock is
attributed to the oscillation expression of NAMPT, a rate-limiting
enzyme in the salvage of NAD+ with a 24-hour rhythm.36,38,237–239

The E-boxes in the promoter of Nampt gene allow the direct
transcriptional control by the CLOCK: BMAL1 chromatin com-
plex.240 Furthermore, the expression of enzymes in the NAD+

salvage pathway, including Nmrk1, Nampt, and Nadk, has
circadian oscillation patterns in WT and Liver-RE mice that
exclusively express BMAL1 in the liver, suggesting the circadian
clock might reprogram NAD+ salvage synthesis to maintain the
fluctuation of NAD+.241

The oscillation of NAD+, in turn, coordinates the transcription and
behavior through the circadian clock. The reduction of NAD+ in old
mice dampens the circadian transcription, which can be rescued by
NAD+ repletion to youthful levels with NR.242 The regulatory effect of
NAD+ on circadian reprogramming is mediated by changing the
activity of sirtuins and PARPs, which determines the transcriptional
activity of core oscillators. SIRT1/6 can be recruited into the core clock
CLOCK: BMAL1 complex, which renders the rhythmic acetylation of
BMAL1 and the cyclic H3K9/14Ac at circadian promoters on their target
genes.38,238,243 Besides, the oscillation activation of SIRT1 also regulates
the circadian dynamics via deacetylation of the core clock repressor
PER2K680 and mixed-lineage leukemia 1 (MLL1), thereby controlling
rhythmic chromatin property and the activity of BMAL1: CLOCK
complex.36,38,238,242,244 Similar to sirtuins, the activity of PARPs is also
regulated by the circadian clock. The oscillation activation of PARP-1
interacts with and poly(ADP-ribosyl)ates CLOCK, leading to suppressed
binding of CLOCK: BMAL1 to DNA and altered circadian gene
expression.245 Moreover, PARP1 interacts with CTCF in a circadian
manner, regulating lamina-associated chromatin and circadian
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oscillations in transcription.246,247 These reports indicate a connection
between NAD+-dependent epigenetic modification and the core
circadian clockwork circuitry.
The interplay of NAD+/NADP+ metabolism with circadian clock

is further evidenced by the oscillating redox, in which ROS levels
display a different liver pattern compared to other tissues due to
the unique NAD+ oscillation in response to the autonomous
hepatic clock. Circadian disruption in beta-Bmal1(-/-) mice and
arrhythmic ClockΔ19 mice decrease the Nrf2 expression and
subsequently impair the antioxidant defense system, contributing
to increased ROS accumulation, oxidative damage and mitochon-
drial uncoupling.248,249 Prxs, the most critical H2O2-removing
enzymes, exhibit rhythmic cycles of oxidation.250 The circadian
clock system can also regulate the production and consumption
of GSH through circadian regulation of the rate-limiting enzymes
in GSH biosynthesis and cellular detoxification.236 The oxidation
cycle of both Prxs and GSH is directly influenced by the availability
of redox cofactor NADPH, suggesting that NADPH metabolism
might play a vital role in controlling redox rhythmic and
transcriptional oscillations. In line with this notion, it has been
demonstrated that inhibition of NADPH production from PPP
alters circadian rhythms through changing the activity of CLOCK:
BMAL1.251–253 Thus, NAD(P)+/NAD(P)H acts as an important
modulator of cellular energetic status, enabling the reset of redox
rhythmic and transcriptional oscillations based on metabolic
signals.254

NAD+ metabolism programs immunity and inflammation
NAD+, along with citrate and succinate, is a novel class of
metabolites with inflammatory signaling capacity, linking the
NAD+ metabolism to the programming of immune responses.255

Restoring the NAD+ levels via de novo biosynthesis in the liver
prevents hepatic lipid accumulation and attenuates inflammation
in mice on a high-fat diet (HFD).15 Similarly, increased generation
of NAD+ via the KP in resting, aged or immune-challenged
macrophages restores OXPHOS and homeostatic immune
responses, whereas inhibition of de novo NAD+ synthesis induces
an increased inflammation-associated TCA-cycle metabolite succi-
nate and elevated mitochondria-generated ROS, resulting in rising
innate immune dysfunction in aging and age-associated dis-
eases.256 Mitochondrial complex III produces ROS immediately
after stimulation, which has an essential role in inflammatory
macrophage activation. However, the mitochondrial ROS are also
responsible for DNA damage, which causes the abundant
consumption of NAD+ by PARPs. The NAD+ abundance as well
as the NAD+/NADH ratio, therefore, decline significantly even with
the induction of the de novo synthesis from the KP in response to
the lipopolysaccharide (LPS) challenge.256,257 To maintain the
cellular NAD+ level, NAD+ salvage enzyme NAMPT has been
activated by LPS to boost the salvage pathway.258 Elevated
expression of NAMPT maintains the NAD+ content to drive the
glycolysis, which supports the activation of inflammatory macro-
phages.258 While in the mitochondrial respiration-impaired cells,
NAD+ could reduce the exacerbated inflammatory response via
improving lysosomal function. The addition of nicotinamide
precursor NAM in mitochondrial respiration-impaired cells restores
the lysosomal function and limits the increased proinflammatory
profile.259 Furthermore, endotoxin dose-dependent switch of
NAD+ biosynthesis pathways from NAMPT-dependent salvage to
IDO1-dependent de novo biosynthesis maintains the nuclear
NAD+ pool, which promotes SIRT1-directed epigenetic regulation
of immune tolerance.260,261

Owing to its rate-limiting enzymatic activity in NAD+ salvage
pathway, the elevated expression of NAMPT in the innate immune
cells, including macrophages and dendritic cells, further proposed
a link between intracellular NAD+ levels and inflammation.262–264

Specific competitive inhibitor of NAMPT could ameliorate the
immunity or inflammatory disorders, including DSS-induced colitis,

arthritis via reducing intracellular NAD+ levels in inflammatory cells
and circulating inflammatory cytokines, including IL-1beta, TNF-
alpha, and IL-6.265–267 Cellular levels of NAD+ regulated by NAMPT
also impacts NAD+-dependent enzymes, such as sirtuins. For
example, sirtuins modulated the optimal TNF translation.268 The
elevated NAD+ levels concomitant with SIRT1 switches the NF-κB-
dependent transcription into the RelB-dependent transcription of
the TNF-α in endotoxin tolerant sepsis blood leukocytes.269

Additionally, SIRT6 can modulate TNF production by regulating
the TNF mRNA translational efficiency.269 In a pancreatic cell line,
SIRT6 induces the production of cytokines including IL‐8 and TNF,
which promote cell migration.26 Sirtuins control immune responses
via directly regulating inflammatory transcription factors, including
deacetylation of FOXP3 to repress Treg cell responses, deacetyla-
tion of RORγt to promoteTH17 cell responses, and suppression of
NF-κB to reduce inflammatory responses.188

Besides NAD+, NADPH also plays essential roles in immunity
and inflammation, mainly dependent on the NADPH oxidases and
redox signaling.270 In an inflammatory response, activation of
epithelial and immune cells triggers NOXs to generate ROS, which
can directly kill microorganisms.271–273 NOXs-derived ROS can also
act as a second messenger in signaling transduction. It has been
reported that NOX4 directly interacts with TLR4, which is pivotal
for LPS-mediated NF-κB activation.274 In the nasal airway
epithelium, the interaction of TLR5 and another NOX isozyme,
Duox2, induces the ROS generation and IL-8 expression in
response to flagellin exposure.275,276 The phagocytic NADPH
oxidase complex can also be activated by Rubicon to induce a
ROS burst, inflammatory cytokine production and potent anti-
microbial activities.277

ABNORMAL NAD+ METABOLISM IN THE
PATHOPHYSIOLOGICAL CONDITION
Given the essential regulatory role of NAD+ in fundamental
physiologies, NAD+ metabolic abnormalities contribute to the
pathophysiology of various diseases, such as infection, cancers,
metabolic diseases, aging and age-associated neurodegeneration
disorders.

Perturbed NAD+ metabolism in response to infection
Microbial infection, including viruses and bacteria, causes an
imbalance in the cellular redox environment, thus inducing
different responses, e.g., antioxidant defenses, cell signaling,
immune response and other processes. NAD+ or NADPH level
determines the role of ROS in infections, either protecting against
invading microorganisms or causing tissue damage during the
resulting excessive inflammation (Fig. 5).

NAD+ mitigates viral infection-induced oxidative damage. Oxida-
tive stress is implicated as a pathogenic factor in viral infection.278

It can be caused by diverse virus families ranging from DNA (i.e.,
HBV, EBV, HSV-1) to RNA viruses (i.e., HCV, RSV, DENV, Influenza,
ZIKA, HIV).279–283 The increased cellular ROS by viral infection
cause DNA damage, gene mutation, cell death, viral DNA
integration and tumorigenesis.284–290 For instance, acute phase
of HCV infection induces oxidative stress via enhancing NOXs
expression and activity to generate ROS generation and decreas-
ing GSH, which supports the high rates of viral replication and
apoptotic cell death. On the other hand, the chronic infection
maintains a reduced environment to establish viral persistence.291

Moreover, NOX-induced ROS play various roles in the mechanisms
of oncogenesis by HCV, including genome instability, epigenetic
regulation, inflammation and modulation of cell growth and
death.292 In RSV-infected airway epithelial cells, NOX-generated
ROS trigger the activation of the transcription factors IRF and
STAT, thereby inducing the expression of chemokines and
cytokines involved in the immune/inflammatory responses of
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the lung.293 NQO1, an enzyme involved in the elimination of ROS,
is inhibited by HBx, leading to decreased GSH levels and increased
susceptibility of hepatoma cells to oxidative damage, cumulating
in HBV-associated pathogenesis of chronic liver diseases.294

To repair the oxidative stress-induced DNA damage, a large
amount of NAD+ were consumed by elevated PARPs in response
to virus infection, i.e., HSV-1, ZIKV and New Sindbis virus
(SV).281,282,295 Beyond the important role in DNA repair, PARP-1
also acts as a modulator of NF-κB, inducing the downstream CCL2-
CCR2 signaling, which is required for the recruitment of NK cell to
the infection site and viral control.296 Therefore, PARPs have
antiviral activity against multiple classes of viruses, including
retroviruses, alphaviruses, filoviruses, herpesviruses, adenoviruses
and coronavirus through enhancing the innate immunity.297–300

Sirtuins are another class of NAD+-consuming enzyme, which
have broad-range antiviral properties on diverse viruses including
HCV, HIV-1, HCMV and influenza A (H1N1) virus.301–305 Besides
controlling the virus replication, PARPs or sirtuins also contributes
to the oncogenic virus infection, such as oncogenic gamma
herpesviruses KSHV and Epstein Barr virus (EBV) infection, and the
tumorigenesis through the epigenetic remodeling.306–308 CD38 is
the third NAD+-consuming enzyme that is upregulated in
response to a number of viral infections.309–312 CD38 is under
the transcriptional control of RSV‐induced IFNs. The CD38‐
generated cADPR, in turn, augments the IFNs-induced ISGs and
NF-κB-mediated inflammation, leading to the antiviral hyperin-
flammation response.311 In addition to the excessively increased
consumption of NAD+, multiple viruses cause a decline in NAD+

concentration through reducing the protein levels of crucial
enzymes in the NAD+ biosynthesis pathway, including QPRT and
NAMPT.304,313 Regarding the redox role of NADH/NADPH in

eliminating ROS, the depletion of NAD+/NADP+ pool exacerbates
the oxidative damage during virus infection.306,308,314–316

NAD+ contributes to the bactericidal activity. Bacterial infection
induces rapid production of intracellular ROS either by NOXs or
mitochondria that are, in turn, crucially required by macrophages
to clear bacteria.105,317 Elimination of the ROS results in defective
bactericidal activity, allowing bacteria to survive and repeatedly
colonize various tissue sites.318,319 NOXs in immune cells, such as
macrophages and neutrophils, are primarily responsible for ROS
production and termed respiratory bursts during phagocytic
bacterial killing.320,321 Additionally, NOX2-generated ROS are
necessary for LC3 recruitment to phagosomes, revealing an
autophagy-dependent antibacterial activity of NOX2 in phago-
cytes.322 Mycobacterium tuberculosis (Mtb) can trigger the
production of ROS via depletion of NAD+. TNT, a major
cytotoxicity factor of Mtb, hydrolyzes the cellular NAD+ to NAM
and ADPR, thereby activating the necroptosis effectors MLKL and
RIPK3. Moreover, the NAD+ depletion or the NAD+ hydrolysis
products induced signaling contributes to the TNT-triggered ROS
production.323

Moreover, the NOX-dependent oxidative burst caused by
phagocytosis of bacterial cells activates CD38, producing NAADP
in the maturing phagosome. NAADP induces the lysosomal Ca2+

efflux and calcineurin-mediated TFEB activation, which enhances
the expression of pro-inflammatory cytokines including IL-1β, IL-
1α and IL-6.324 CD38 also exerts bactericidal activity in an
NAD+-dependent manner.325,326 CD38 controls neutrophil che-
motaxis to bacterial chemoattractants via producing cyclic ADP-
ribose.326 In macrophage, high levels of CD38 induced by LXR
agonists reduce NAD+ levels and interfere with cytoskeletal

Fig. 5 Physiological actions of NAD+ in the host response to infection. Microbial infection, including viruses and bacteria, causes oxidative
stress that has a critical effect on both the microbe and host cells. The production of ROS from NOXs depending on NADPH termed respiratory
burst is a powerful antimicrobial weapon and a major component of the innate immune defense against bacterial and fungal infections.
Meanwhile, oxidative stress causes the host DNA damage that enhances the consumption of NAD+ by elevated PARPs. The intracellular NAD+

can also be reduced by activation of CD38 that is required for the inflammation against infection. The NAD+ deficiency therefore might not be
able to support the clearance of microbial by autophagy or phagolysosome, the innate immune and inflammation response. Abbreviations:
EBV, Epstein-Barr virus; HCV, hepatitis C virus; HRV, human rhinovirus; HRSV, human orthopneumovirus; iNOS, inducible nitric oxide synthase;
ISGs, interferon-stimulated genes; IV, Influenza virus; KSHV, Kaposi’s sarcoma-associated herpesvirus; MPO, myeloperoxidase; Mtb,
Mycobacterium tuberculosis; NOXs, NADPH oxidases
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rearrangements triggered by invasive bacteria, protecting host
macrophages from substantial infection.327 However, in T-cell, the
NAD+ depletion by elevated CD38 expression increases the
acetylation of EZH2 by in a SIRT1-dependent manner, leading to
reduced cytotoxicity of CD8 T cell and enhanced inclination to
infections in patients with systemic lupus erythematosus (SLE).328

Additionally, the NAD+ concentration and NAD+/NADH ratio are
significantly elevated in response to Group A streptococcus (GAS)-
infection. The addition of NAM remarkably enhances the
intracellular NAD+ content that promotes the autophagosomal
acidification and clearance of GAS in endothelial cells.323 There-
fore, NAD(P)+/NAD(P)H exerts the bactericidal activity by promot-
ing the ROS generation, the pro-inflammatory response and the
anti-infection autophagy.

NAD+ deficiency accelerates aging
Multiply evidence elucidates that NAD+ and NAD+-related
metabolites govern biological functions in aging, including
metabolism, redox homeostasis, mitochondria function and the
circadian clock. The NAD+ decline during normal aging results in
oxidative damage, metabolic disorder, circadian rhythm abnorm-
alities, and mitochondrial dysfunction through regulating signal-
ing pathways, such as p53, NF-κB, PGC-1α and HIF-1α, by sirtuins
and PARPs.329–332 Accordingly, boosting NAD+ provides a
therapeutic option for improving the health lifespan and treating
aging-related diseases.

NAD+ deficiency accelerates aging. NAD+ levels display steadily
reduction in old worms, which causes a further shorter lifespan.333

Similarly, mice and rats exhibit an NAD+ decline during aging in a
variety of tissues, such as muscle, adipose tissue, brain, skin, liver
and pancreas.334 The reduced NAD+ is also observed in the aged
human brain and liver.335 In line with that, the plasma levels of
NAD+ and its metabolites, NADP+ and NAAD also remarkably
decline during aging.336

The age-dependent decline of NAD+ might be due to either
enhanced consumption or reduced biosynthesis. The NAD+ levels
and NAMPT expression are severely inhibited in various tissues
including liver, skeletal muscle, WAT and pancreas in age induced
T2D models. The decreased NAMPT might be due to the chronic
inflammation and impaired circadian clock during aging.337,338

However, another study describes no alteration of the NAMPT
mRNA or protein levels in aged mice and human tissues.52 Thus,
these controversial findings of NAMPT-catalyzed NAD+ biosynth-
esis overage might come from the differential cell type and tissue
context, which will be elucidated in future studies. Another
explanation for NAD+ decline with age is the increased NAD+

consumption by PARP or CD38. In contrast to the unchanged
levels of PARP1, both the protein levels and enzymatic activity of
CD38 are enhanced during aging, contributing to the age-related
NAD+ decline in mammals. CD38 is also responsible for the
mitochondrial dysfunction by regulation of SIRT3 activity.52

Nevertheless, CD38-deficient old mice preserve the NAD+ levels,
mitochondrial respiration and metabolic functions.339 CD38
expression might be induced by chronic inflammation, one
characteristic during aging.52,340

The NAD+ decline is a primary driver for the progressive of
biological dysfunction and age-related pathologies. Thus, the
genetic or pharmacological modulation of NAD+ provides a
therapeutic option for multiple age-related diseases. Indeed,
genetic and pharmacological replenishment of NAD+ improves
the age-related biologic function and increases lifespan at least in
worms and mice.341,342 The increased expression of NAMPT in
aging human SMCs prolonged lifespan via delaying senescence
and enhancing resistance to oxidative stress.343 Supplementation
with NAD+ precursors, NR and NMN, elevated NAD+ levels that
can maintain the mitochondrial and metabolic functions by
activating SIRT1 in mice, leading to an extensive lifespan of

mice.337,344,345 Augmentation of NAD+ by β-lap, a potent substrate
of NQO1, effectively prevents ARHL and its accompanying harmful
effects by preventing oxidative stress and inflammation and
improving mitochondrial function in rodents.346 Moreover,
mounting evidence has shown that NAD+-dependent sirtuins
can extend the lifespan of yeast, worms, flies and mice and
alleviate many diseases of aging-related pathologies. For instance,
both brain-specific or whole-body SIRT1-overexpressing trans-
genic mice exhibit a slowed aging and a prolonged lifespan.347,348

Aging-related NAD+ decline causes mitochondrial dysfunction.
Combining the evidence that mitochondrial dysfunction is a
hallmark of aging and NAD+ plays a crucial role in the
maintenance of mitochondrial function.341,345, we can hypothesize
that aging-related NAD+ decline might be the cause of
mitochondria dysfunction. NAD+ boosters play a preventive role
in aging via the early-phase activated UPRmt, and the late-phase
induced antioxidant defense. Regulation of NAD+ availability by
PARP inhibitors and NAD+ precursor modulates mitochondrial
function through sir-2.1 in worm to extend lifespan.341 The
PARylation is also markedly increased in muscle and the liver of
aged mice in parallel with robustly decline of NAD+ levels. Since
CSB can limit the activity of PARP1 via displacing it from damaged
DNA, in CSB-deficient cells and mice, the PAPRPs-mediated
PARylation is increased and accounts for the majority of cellular
NAD+ consumption. This aberrant activation of PARPs represses
the SIRT1 activity and mitochondrial dysfunction, which can be
rescued by both PARP inhibitor and NAD+ precursors.349 Aging-
related nuclear NAD+ decline inhibits the mitochondrially
encoded genes via the SIRT1-HIF-1α-c-Myc pathway, while
boosting NAD+ levels rescues the mitochondrial function in old
mice in a SIRT1-dependent manner.345 NAD+ also affects the
acetylation and activity of oxidative enzymes in mitochondria via
altering SIRT3 activity. The circadian activity of SIRT3 induced by
NAD+ oscillation regulates the rhythmic acetylation and activation
of oxidative enzymes and respiration in isolated mitochondria.350

NAD+ ameliorates the oxidative damage during aging. There is a
growing awareness that oxidative damage is an essential driver of
age-related deterioration in cell function.351,352 The DNA oxidative
damage and protein oxidation in the aged human brain are
associated with declined antioxidant enzyme activities.353,354 Age-
related increase in oxidative stress and cell senescence leads cells/
tissues to be more prone to undergo necroptosis, thereby
releasing DAMPs that trigger the chronic inflammation observed
with aging.355 The pro-inflammatory cytokines, in turn, augment
both mitochondrial and NOX-generated ROS, contributing to
further accumulation of oxidative damage (Fig. 6).356–359

NADH/NADPH is a powerful reduce source for buffering
oxidative stress, thereby protecting cells/tissues from oxidative
stress during aging. The remarkable reduction of NAD+ concen-
tration and NAD+/NADH ratio in aged rats occurs in parallel with
enhanced oxidative stress and diminished antioxidant capacity.334

NMN addition in isolated aortas elevates the NAD+ and MnSOD
levels, thus enhancing the antioxidant capacity.344 The over-
expression of Nmnat3 efficiently boosts NAD+ in a variety of
murine tissues, which significantly suppresses the ROS generation,
and protects from aging-related insulin resistance.360 Overexpres-
sion of G6PD promotes NADPH production, preventing tissue from
oxidative damage to improve mice health span.361 NAD+ also
regulates oxidative stress in cellular senescence by regulating
sirtuins and PARPs. NAD+-dependent SIRT1 is significantly
upregulated in response to oxidative stress, protecting heart from
oxidative damage, contributing to retard of aging.362

NAD+ deficiency correlates with disturbed circadian clocks during
aging. Besides mitigating the oxidative damage, NAD+ can
extend lifespan by driving the circadian rhythms. The
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misalignment of the circadian clocks, the internal timekeeper
mechanism that links metabolism with the exogenous and
endogenous factors, has been associated with the acceleration
of aging.240 The circadian sirtuins link the NAD+ metabolism to
the circadian clock machinery during aging. SIRT1 induces the
circadian transcription of core clock genes, such as Cry1, Per2,
Rorγ, and Bmal1 via either rhythmically deacetylating BMAL1 or
PER2.36,38 SIRT1 also modulates CLOCK-mediated chromatin
remodeling at H3 Lys9/Lys14 at circadian promoters to control
circadian.38 In the SCN of aged mice, SIRT1 level is significantly
decreased, resulting in a reduction of BMAL1 and other circadian
proteins.363 The autonomous hepatic clock induces the NAD+

salvage pathway to partially restore NAD+ oscillation, driving the
SIRT1 circadian function in the liver even without inputs from
other clocks.241 Therefore, NAD+-dependent SIRT1 regulates the
aging-dependent decline in central circadian function.

The critical role of NAD+ pool in tumorigenesis
NAD+ not only acts as a co-enzyme for metabolic redox reactions,
but also functions as a co-substrate to modulate the activity of
NAD+-consuming enzymes that govern the critical steps in
tumorigenesis, including genome stability, metabolism, cell
growth, cell death, redox homeostasis and immune response.
The sirtuins and PARPs in tumorigenesis exhibit both oncogenic
and tumor suppressor activity, which might be determined by
their sublocalization and cell type (Fig. 6).

NAD+-related metabolic reprogramming and redox homeostasis in
tumorigenesis. Cancer cells undergo metabolic reprogramming
that provides the substrates and energy for biomass generation,

to sustain the stress response and continuous proliferation.364 The
metabolic reprogramming is characterized by shifting glucose
metabolism to aerobic glycolysis, including enhanced cytosolic
lactate fermentation and PPP and decreased OXPHOS. This shift
not only allows for rapid production of energy but also for
maintenance of NADH/NAD+ redox ratio, which is required for
metabolic processes, such as aerobic glycolysis, the TCA cycle,
OXPHOS, FAO, serine biosynthesis and antioxidant defense.365–367

Cytosolic NAD+ is required for glycolysis, in which GAPDH
converts NAD+ to NADH. In health cells, cytosolic NADH is
shuttled into mitochondria, where it is turned into NAD+ by
OXPHOS whereas in cancer cells, the conversion of NAD+ to NADH
in mitochondria is not sufficient for the high rate of glycolysis due
to reduced OXPHOS. Therefore, cancer cells enhance the cytosolic
lactate fermentation to generate NADH by LDHA. Activation of
LDHA by oncogenic receptor tyrosine kinase FGFR1 promotes
glycolysis and tumor growth by increasing the NAD+/NADH
ratio,368 while the aberration of NAD+/NADH due to reduced
activity of mitochondrial complex I promotes the aggressiveness
of human breast cancer cells.369

The ‘hyper-metabolism’ of cancer cells causes the excessive
generation of ROS.370 ROS contribute to tumorigenesis through
multiple processes, including causing oxidative DNA damage,
genomic instability and inflammatory stress to drive malignant
transformation, and acting as a messenger to regulate signaling
pathways to support tumor initiation, development, and angio-
genesis.142,261,272,371–374 Cancer cells build a complicate and
powerful antioxidant system, such as the GSH and Trx systems,
to adapt to the high ROS levels. Notably, both GSH and Trx
systems rely on the reducing power of NADPH, which is generated

Fig. 6 NAD+ deficits in aging-associated dysfunction and cancer. Environmental stimuli, including nutrient perturbation, infection, radiation
and inflammation, induce oxidative stress, which causes the damage of cellular biomolecules and organelles. NAD+ and its metabolites
function as crucial regulators to maintain cellular redox homeostasis through replenishing the reducing power or modulating the activity of
NAD+-consuming enzymes including sirtuins and PARPs. However, disequilibrium of NAD+metabolism could disturb physiological processes,
including mitochondria function, circadian rhythm, inflammation, DNA repair and metabolism, leading to aging-associated dysfunction and
cancer. NAD+ levels could be augmented by dietary NAD+ precursor, inhibitors of NAD+-consuming enzymes, caloric restriction and exercise.
NAD+ boosters restore the bioenergetics, redox balance and signaling pathways, ameliorating the adverse effects of pathophysiological
conditions, including infection, aging and cancer. Abbreviations: 2-HG, 2-hydroxyglutarate; α-KG, α-ketoglutarate; CCGs, clock-controlled
genes; FOXO1, Forkhead Box O1; GSH, Glutathione; IDH1Mt, mutant isocitrate dehydrogenase 1; NOXs, NADPH oxidase; PER2, period circadian
clock 2; PPP, pentose phosphate pathway; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator alpha; ROS, reactive oxygen
species; OXPHOS, Oxidative phosphorylation; TCA cycle, tricarboxylic acid cycle
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by G6PD in PPP, ME1 in glutamine metabolism and NNT. In cancer
cells, increased ROS will oxidize the specific isoform of pyruvate
kinase (PKM2), diverting glucose flux towards the PPP and
generation of NADPH for GSH recycling.96,375,376 Similarly, nutri-
tion stress or oxidative stress induces the expression of enzymes,
including NAMPT, ME1 and NNT, which augments the NADPH to
support the cell survival under glucose deprival and anoikis
conditions, thereby promoting tumor growth and metastasis.377–
379 IDH1 mutations in human cancers favor consuming the NADPH
for 2-HG synthesis at the expense of other NADPH-requiring
pathways essential for cell viability even when NADPH is
limiting.96 Additionally, AMPK activation by reduced ATP levels
maintains NADPH through inhibiting NADPH consumption in
fatty-acid synthesis and enhancing NADPH production from fatty-
acid oxidation instead of PPP to inhibit cell death.380 However,
NAD+ depletion exacerbates oxidative damage via reducing the
antioxidant defense capacity, resulting in impaired cell prolifera-
tion and increased cell death.365,366

The NAD+/NADH ratio emerges as a fine-tuned signal to
regulate redox status through sirtuins.26 Sirtuins manipulate the
metabolism reprogramming via directedly altering the activity of
metabolic enzymes by NAD+-dependent modification or chan-
ging their expression by regulating transcription factors.217 All the
enzymes but PGI in the glycolysis and the TCA cycle can be
acetylated under the control of sirtuins. GAPDH and PKM2 are two
major enzymes in glycolysis that regulated by sirtuins. SIRT1 can
bind and retain GAPDH in the cytosol, but SIRT5 actives GAPDH via
demalonylation, thereby elevating glycolytic flux.381 Both SIRT2-
catalyzed deacetylation and SIRT5-mediated desuccinylation of
PKM2 reduce the activity of PKM2, preventing the carbon entry
into the TCA cycle. In contrast, SIRT3 deacetylates and activates
PDHA1 acetylation, linking glycolysis and OXPHOS.382 SIRT3 and
SIRT5 stabilize and activate the enzymatic activity of SHMT2 by its
deacetylase and desuccinylase activity, respectively, thereby
promoting the serine catabolism to drive carcinogenesis.383

SIRT5-catalyzed demalonylation and inactivation of SDHA block
the TCA cycle and induce succinate accumulation, promoting
tumorigenesis and drug resistance.383,384 Additionally, sirtuins also
regulate the expression of metabolic enzymes via transcription
factors, such as HIF-1α. SIRT3 enhances the enzymatic activities of
SOD2 and IDH2 to limit ROS levels, which repress the metabolism
reprogramming in cancer cell via destabilizing HIF-1α, thereby
repressing tumor growth.142,222,225,385–387 It has also been
demonstrated that the enzymes in glycolysis (e.g., GLUT4, HK1,
GSK3B, and GAPDH), the enzymes (e.g., PDPR PDHA1, and PDHX)
in carbohydrate metabolism, and most enzymes in ETC and ATP
synthesis are assigned as ADP-ribose amino acid acceptor.388

However, whether the ADP-ribosylation of metabolic enzymes
contributes to the metabolism reprogramming in cancer cells
requires further investigation.

NAD+-regulated genome stability and gene transcription in
carcinogenesis. NAD+ metabolism is not only essential for metabolic
and redox homeostasis, but also required for epigenetic reprogram-
ming in tumorigenesis. Genomic instability and altered transcriptional
pattern are well-known hallmarks of cancer.364 Sirtuins and PARPs
control the genome stability and gene transcription by regulating the
histone modification, DNA repair, as well as the recruitment and
activation of transcription factors.169,389 SIRT1 is responsible for the
histone acetylation patterns, including the H4K4ac, H3K9ac, H4K16ac
and H1K26ac, associated with tight chromatin compaction. The activity
of SIRT1 also modulates the formation of H3K9me3, H4K20me3 and
H3K79me2 to regulate chromatin. For instance, SIRT1 alters the
acetylation patterns of histones H3 and H4, including H3k4ac, H3k9ac
and H4k16ac, to regulate the expression of cancer-related genes in
breast cancer.390 Besides the impact on chromatin state, SIRT1
modulates the non-histone proteins to initiate DNA repair and gene
transcription. SIRT1 induces the recruitment of DNA repair factors,

including NBS1 and Rad51, in keratinocytes to maintain genome
stability and gene transcription.174 Oxidative stress-induced SIRT1 can
deacetylase hMOF to reduce the expression of DNA repair proteins,
including RAD50, BRCA2 and FANCA in human colorectal cancer
cells.169 hMOF also plays crucial roles in transcription activation by
H4K16 acetylation in HeLa and glioma cancer cells.391,392 The
contradictory role of SIRT1 in cancer is manifested as their over-
expression in neoplasms, such as prostate, AML, non-melanoma or
melanoma skin cancer, and colon carcinomas, and the reduced
expression in other cancers, including breast cancer and hepatic cell
carcinomas.393,394 Thus, the mechanisms underlying the regulatory role
of SIRT1 in DNA repair and gene transcription in cancer development
need further exploration.
As aforementioned, PARPs govern the genome stability and gene

transcription via NAD+-dependent ADP-ribosylation. PARPs-induced
ADP-ribose marks elevate 10- to 27-fold in response to the oxidative
genome damage by H2O2 in human osteosarcoma cells.133,183,184 A
variety of cancers have somatic mutations resulting in genomic
disability and defective DNA repair, including BRCA1/2, ATM, CHK2 and
TP53.395 The loss of double-strand repair pathway due to BRCA1 or
BRCA2 mutations renders cancer cells more dependent on the PARPs-
mediated repair, and more sensitive to PARP inhibition, raising a
possibility of a wider application of PARPi in cancer therapy.396–398

NAD+metabolism is also linked to epigenetic modification by NNMT
that transfers the methyl group of SAM to NAM. NNMT is increased in a
broad range of cancers, such as papillary thyroid cancer, renal clear cell
carcinoma, glioblastoma tumors, bladder cancer, colorectal cancers,
gastric cancers, and oral squamous cell carcinoma.200,399–402 Elevated
NNMT inhibits the methylation potential of cancer cells through
inducing methyl sink in the form of MNA. Reducing the NNMT
expression impairs the cell proliferation and tumor growth of
mesenchymal glioblastoma stem cells (GSCs), accompanied by reduced
methylation ability.403 Besides, NNMT promotes HCC cell invasion and
metastasis by changing the H3K27me patterns and transcriptionally
activating CD44. NNMT-mediated CD44 mRNA m6A methylation
produces a CD44v3 splice variant, while MNA stabilizes CD44 protein
by inhibiting the ubiquitin-mediated degradation.404 Furthermore,
NNMT depletion elevates the NAD(H)+ levels that result in an
enhanced expression of sirtuin target genes and a reduced
H3K9Ac.405 Therefore, NNMT acts as a crucial metabolic modulator of
epigenetic modification, promoting the migration, invasion, prolifera-
tion and survival of cancer cells.
The oncometabolite, 2-hydroxyglutarate (2-HG), also couples the

NADP+/NADPH to epigenetic modification, including histone and DNA
demethylases, in tumorigenesis. Mutant IDHs, accounting for 80% of
lower-grade gliomas and secondary GBM, continuously produce 2-HG.
To support 2-HG synthesis, cancer cells with IDH1R132H mutation
enhance NADPH production via the PPP.406,407 Interestingly, IDH1
mutants compete for NADPH to synthesize 2-HG with other pathways
that are critical for cell viability, resulting in further disruption of cellular
metabolism and redox homeostasis in tumorigenesis.36

NAD+-dependent cancer cell proliferation and metastasis. Given
the massive demand for NAD+ to support the metabolism
reprogramming, the genome integrity and gene transcription in
tumorigenesis, cancer cells enhance the capacity of NAD+

production through various pathways. It has been demonstrated
that tumors that arise from cells with highly NAPRT expression will
rely on NAD+ de novo synthesis for survival. While cancers derived
from tissues with normal NAPRT levels are entirely dependent on
the NAD+ salvage pathway for survival.408 Both the upregulated
NAPRT in ovarian cancer and the high expression of NAMPT in
glioblastoma, colorectal cancer tumors, and breast cancer,
increase intracellular NAD+ levels, contributing to cancer cell
metabolism and DNA repair process in tumors.409 Moreover,
resistant CCRF-CEM cells with high QPRT activity exploit amino
acid catabolism as a substitute pathway for NAD+ generation.410

High expression of NAMPT or NAPRT is associated with tumor
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progression, invasion, and drug resistance.411–414 This effect is
mediated by NAD+-dependent PARPs and SIRT1.415–417 SIRT6
induces the NAMPT activity to increase NAD+ content, thereby
preventing oxidative damage. Activation of the c-MYC-NAMPT-
SIRT1 feedback loop may crucially contribute to the initiation and
development of both routes to colorectal cancer.413,417 Declining
NAD+ levels reduced the SIRT1-mediated inhibition of STAT3,
which induces the secretion of IL-6 and TFG-β to sustain the
signaling required for EMT.418 CD38 expression inversely corre-
lates with prostate cancer progression due to its ability to lower
intracellular NAD+, resulting in cell-cycle arrest, reduced glycolytic
and mitochondrial metabolism, and impaired fatty acid and lipid
synthesis.419 These findings demonstrated a pro-tumor activity of
NAMPT, suggesting a promising therapeutic target for cancer
treatment. NAMPT inhibitors, FK866, STF-118804 and KPT-9274,
can reduce the viability and growth of different cancer cells and
have an additive effect in combination with main current
chemotherapeutic drugs.420–423

NAD+ metabolism and metabolic diseases
Diabetes. Diabetes is a chronic metabolic disease characterized
by hyperglycemia. The human pancreas cannot produce enough
insulin, or the body cannot effectively use the produced insulin,
which causing a pathological increase in blood sugar. Pancreatic
β-cells maintain systemic glucose homeostasis by controlling the
release of insulin, thereby responding to changes in metabolic
demand. The high capacity, low-affinity GLUT2 and high KM
glucokinase (GK) in β-cell ensure the proximal glucose-sensing. The
glucose fluxes through the glycolytic pathway and the TCA cycle,
enable the production of NADH and ATP. Thus, the elevated blood
glucose levels lead to more production of NADH and ATP, resulting
in closure of ATP-sensitive potassium channels, cell depolarization,
Ca2+ influx and culminating in insulin secretion.424–427 In addition
to NADH produced in the mitochondria by the TCA cycle,
cytoplasmic NAD+ generation is essential for insulin secretion.82,88

Given that β-cells only have extremely low LDHA activity to
regenerate NAD+ for glycolysis, NADH generated by glycolysis
must be transferred into the mitochondria to be oxidized by
complex I.424 Cytoplasmic NADH from the glycolytic pathway is
delivered to mitochondria through two NADH shuttles, G3P shuttle
and MA shuttle, allowing NAD+ recycling to sustain glycolytic flux.
As evidenced, at maximal glucose stimulation, the rising of NAD(P)
H levels is estimated to be approximately 30mM in whole
pancreatic islet beta cells, with a 7mM in the cytoplasmic domain
and an approximately 20 second delayed 60mM in mitochondrial
domain.428 The NADH shuttle thus promotes the increase of Ca2+

after the formation of mitochondrial membrane potential and
sufficient ATP generation from ETC, concomitantly triggering
glucose-stimulated insulin secretion (GSIS) (Fig. 7).429–431

Sustained high levels of insulin demand will eventually give rise
to functionally compromised or physical loss of β-cells, which
culminate in hyperglycemia and diabetes.432–434 However, β-cells
exposed to diabetes and hyperglycemia exhibit striking changes
in metabolism.433,435 Importantly, the increase of Krebs’ cycle in
the mitochondrial that generally responds to glucose is termi-
nated, which will cause glucose to fail to escalate the NADH and
ATP content in the pancreatic islets of diabetic patients.433 Rather
than producing from mitochondrial TCA cycle under controlled
conditions, the NADH in diabetic islets is generated by
cytoplasmic sorbitol oxidation and mitochondrial pyruvate
oxidation in response to diabetes and hyperglycemia stimu-
late.433,436 In diabetes, when GPDH is inhibited due to the
reduced utilization of NAD+, about 30% of glucose is involved in
the polyol pathway. When β cells are over-nutrient and
hyperglycemic, the excessive NADH produced by the polyol
pathway will promote the production of superoxide through the
overload complex I of ETC, resulting in cell dysfunction and
impaired insulin secretion.424 Moreover, the two components of

the G3P shuttle (including GPD1 in the cytoplasm and GPD2 in
the mitochondria) are up-regulated in mRNA and protein levels in
diabetic islets, thus ensuring the transfer of electrons from NADH
produced in glycolysis to mitochondria.429,433 In line with that,
the overexpression of cytoplasmic malic enzyme (ME1) enhanced
the GSIS and anaplerosis in insulinoma cells.437 Selective
reduction of cytosolic ME1 expression and enzyme activity
significantly reduces GSIS and amino acid-stimulated insulin
secretion (AASIS).438 There is growing evidence indicating that
cytosolic NADPH is one of the effectory metabolic coupling
factors, a variety of critical intermediates and cofactors involved
in the GSIS. Although glucose causes a dose-dependent inhibition
of pentose phosphate pathway activity in beta cells, the major
pathway for NADPH production, the cytosolic ratio of NADPH/
NADP+ increases during glucose-stimulated insulin release.439–441

NADPH stimulates the exocytotic machinery by the redox
proteins glutaredoxin and thioredoxin and has a local redox
reaction, thereby accelerating exocytosis and promoting the
secretion of insulin in pancreatic β-cells.442,443

The NAD+ level is associated with insulin resistance. HFD
significantly impairs the role of NAMPT-regulated NAD+ biosynth-
esis in metabolic organs.337 Mice that specifically knock out the
Nampt gene of adipocytes have serious insulin resistance, which
is manifested by an increase in plasma free fatty acid content and
a decrease in plasma content of the main insulin-sensitive
adipokine, adiponectin. These deleterious alterations can be
normalized by administering NMN.444 Furthermore, NMN alie-
nates glucose intolerance and lipid profiles by recovering NAD+

levels in age induced T2D mouse model.337 Conversely, over-
expression of Nmnat3 in mouse can effectively increase NAD+

levels in a variety of tissues and prevent aging-related insulin
resistance caused by diet.360 Owing to its expression and activity
increase with age, CD38 is essential for age-associated NAD+

decrease through degradation of NMN in vivo. CD38 deficiency
has improved glucose intolerance with HFD, which could be
further ameliorated by supplement of NR.52 78c, as a highly
specific and effective CD38 inhibitor, can reverse age-associated
NAD+ reduction and improve some metabolic and physiological
parameters of aging, such as glucose tolerance, cardiac function,
muscle function and exercise capacity in both natural aging and
accelerated aging mice models.53

Obesity. The pathological expansion of adipose tissue is
specifically manifested in the dysregulated production of
adipokines and lipid, low-grade inflammation and enrichment
of extracellular matrix. Insulin resistance is a critical whole-body
abnormal metabolism closely related to obesity.445,446 A reduc-
tion of NAD+ levels in cells is observed in many tissues with
obesity, like the skeletal muscles, hypothalamus, liver and
adipose tissue.337,447 Supplementation of NR or NMN can protect
against the decrease of NAD+ levels, and partially inhibit the
weight gain of the mice fed with HFD by enhancing energy
expenditure.448 The NAD+ biosynthesis regulated by NAMPT in
adipocytes plays an important role in the pathogenesis of
obesity-related metabolic complications.444 Both the expression
of NAMPT in visceral fat and the level of NAMPT in serum are
positively correlated with the degree of obesity.449–453 In
contrast, obese subjects have lower levels of NAMPT in
subcutaneous fat tissue.454–456 The upregulation of NAMPT by
the activation of the HIF1-α pathway under hypoxic conditions
plays a vital role in processing dietary lipids to regulate the
plasticity of adipose tissue, whole-body glucose homeostasis and
food intake. The deficiency of adipose Nampt can partially reduce
food intake, thereby preventing obesity caused by diet. In
addition, NAMPT-mediated NAD+ biosynthesis plays a vital role
in adipose by promoting weight gain caused by HFD, which can
be proved by the inability of HFD-fed FANKO mice that can
expand adipose tissue normally.453,457
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Several studies have shown that in different adipocyte models,
such as primary adipocytes, 3T3-L1 preadipocyte cell and SGBS
cell, NAMPT can be secreted directly into the supernatant
through non-classical pathways. These results indicate that the
adipose tissue is one of the main sources of secreted extracellular
NAMPT (eNAMPT).458 Treatment with eNAMPT can increase the
expression of lipoprotein lipase and PPARγ in preadipocytes and
promote the expression of fatty acid synthase in differentiated
adipocytes, which indicates that eNAMPT may be a positive
regulator in adipocytes lipid metabolism.459 Adipose tissue-
specific Nampt knockin and knockout mice (ANKI and ANKO)
showed opposite alterations of circulating eNAMPT, which
accordingly affected hypothalamic NAD+/SIRT1 signaling and

physical activity. Treatment with NMN can improve physical
activity deficits in ANKO mice.460 The biosynthesis of NAD+ in
adipocytes is crucial for the extension of HDF-induced white fat
depots and may have more specific effects in lipid accumulation
and processing.457 Based on these observations, the effect of
NAMPT on obesity depends on its enzymatic activity. Increasing
NAD+ levels by supplementing NR in mouse tissues and
mammalian cells activates SIRT1 and SIRT3, which ultimately
leads to increased oxidative metabolism and prevents metabolic
abnormalities induced by HFD.37 Moreover, adding leucine to
HFD can increase the expression of NAMPT and SIRT1 and
elevate the level of NAD+ in cells, which will reduce the
acetylation of FoxO1 and PPAR-γ co-activator 1α (PGC1α).

Fig. 7 Pathophysiological role of NAD+ disarrangement in metabolic diseases. a The liver is a master organ of NAD+ metabolism and may
facilitate the NAD+ biosynthesis in other tissues. NAD+ metabolism plays a critical role in the lipid metabolism through modulating the
activity of sirtuins. The reduced NAMPT expression and NAD+ levels contribute to the development of NAFLD through manipulating
dysmetabolic imbalance, hepatic energy homeostasis, glucose homeostasis, hepatic inflammation and insulin resistance. b Decreased NAD+/
NADH ratio by the mismatch between NADH production and oxidation inhibits the activity of sirtuins in the failing heart. Elevated protein
acetylation weakens the energy metabolism through negative feedback to OXPHOS and substrate metabolism, impairing antioxidant defense
and sensitizing the mPTP to ROS or calcium. c The deduced NAD+ levels in kidney are attributed to the decreased expression of enzymes in
NAD+ de novo synthesis and increased consumption by DNA damage activated PARPs. NAD+ depletion inhibits the SIRT1/PGC1α mediated
mitochondrial quality control, ATP production and NAD+ de novo biosynthesis. The phosphorylation of NAD+ to NADP+ enhances the
antioxidant defense against oxidant stress. NAD+-dependent defect in FAO results in intracellular lipid accumulation. In addition, the defected
FAO and increased desaturation of PUFAs to HUFAs due to NAD+ deficiency and impaired mitochondrial function result in the accumulation
of HUFA-containing triglycerides and cellular lipid in renal tubular cells. d The insulin secretion is adjusted by the dynamic glucose
concentration in blood. As a master regulator of insulin secretion, glucose is metabolized via the glycolysis and TCA cycle to produce NADH
and ATP. The increased NADH and ATP induces the closure of ATP-dependent K+ channels, the opening of voltage-gated L-type Ca2+

channels, the raising of cytosolic Ca2+ and culminating in insulin secretion in pancreatic β-cells. The activity of mitochondrial shuttles
including the glycerophosphate and malate/aspartate shuttles allows the reoxidation of cytosolic NADH into NAD+, which is required for
maintenance of the glycolysis. Purple representants the downregulated proteins or activated biological functions, while brown labels the
upregulated proteins and repressed physiological activities. Abbreviations: ACMSD, alpha-amino-beta-carboxy-muconate-semialdehyde
decarboxylase; AR, Aldose reductase; ETC, electron transport chain; Grxs, glutaredoxins; HUFAs, highly unsaturated fatty acids; KMO,
kynurenine 3-monooxygenase; FAO, fatty acid oxidation; PUFAs, polyunsaturated fatty acids; SDH, Sorbitol dehydrogenase; Trxs, thioredoxins.
3-HK, 3-hydroxykynurenine
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Deacetylation of PGC1α may promote the upregulation of genes
related to fatty acid oxidation and biogenesis in mitochondria,
thereby restoring mitochondrial function and protecting against
HFD-induced obesity.461

Non-alcoholic fatty liver disease (NAFLD). Alterations of hepatic
metabolism are critical to the development of liver diseases, in
which the NAFLD is the most common chronic liver disease and is
strongly related to metabolic syndrome. NAFLD might eventually
cause more severe liver diseases, such as liver fibrosis, liver
cirrhosis, liver failure and hepatocellular carcinoma (HCC).462–464 It
is reported that reduced NAD+ concentration caused a dysmeta-
bolic imbalance, leading to the development of NAFLD.465 Oral
administration of NR halts the progression of NAFLD through
rescuing the NAD+ reduction, reducing the total cholesterol and
triglyceride levels, decreasing the AST level, and reversing Kupffer
cells accumulated and inflammatory in aged group.466,467

Troxerutin, as a derivative from natural bioflavonoid rutin, could
promote NAMPT expression to restore the NAD+ level depleted by
oxidative stress in the HFD-induced NAFLD mouse model (Fig.
7).468 In a transgenic mouse model of DN-NAMPT, the researchers
found that middle-aged mice had a systemic reduction of NAD+

and showed a moderate NAFLD phenotype, like triggered
inflammation, lipid accumulation, increased oxidative stress and
impaired insulin sensitivity of liver. Some of these phenotypes are
further exacerbated after feeding a high-fat diet. However, oral NR
can completely reverse these phenotypes caused by NAD+

deficiency or high-fat diet.335 Significantly, knockdown of Nampt
gene increases, while over-expression reduces hepatic triglyceride
both in vitro and in vivo models. The expression of NAMPT in
patients with NAFLD has decreased systemically both in serum
and within the hepatic tissue, which is regulated by PPARα
activation and glucose.469 Meanwhile, the NAMPT is also a target
of FoxO transcription factors that control the NAD+ signaling in
the regulation of hepatic triglyceride homeostasis.470 Additionally,
the hepatic microRNA-34a, which is increased in obesity, reduces
NAD+ levels and SIRT1 activity by targeting NAMPT. The
antagonism of microRNA-34a could moderate inflammation,
steatosis and glucose intolerance, and recover NAMPT/NAD+

levels in diet-induced obese mouse model.447 It was found that
higher level of NAMPT in serum in women is correlated with a
much lower hepatic de novo lipogenesis (DNL) index, although
they do not correlate with the DNL index, but had a correlation
with a higher hepatic fat in men, implying a sex-dependent
interpretation role of serum NAMPT level for NAFLD prognosis.471

Mechanistically, reduced NAMPT/NAD+ inhibits SIRT1’s function,
thereby attenuating the deacetylation activity of SREBP1, leading
to the expression of ACC and FASN.463 Conversely, stabilization of
SIRT1 by increasing NNMT expression or MNAM levels improves
lipid parameters.63,472,473

Beyond the metabolic activity, NAMPT may also participate in
NAFLD’s pathogenesis by controlling hepatic inflammation, insulin
resistance and glucose homeostasis.474,475 eNAMPT regulates
glucose production via the PKA/CREB signaling in HepG2 cells.476

The expression of NAMPT is closely related to the expression of
pro-inflammatory cytokines in the inflammation induced by free
fatty acids and is remarkably reduced by the inhibition of NF-κB in
HepG2 cells.477 To date, the clinical analysis reveals controversy
regarding the relationship of circulating NAMPT with NAFLD.
Several studies report no statistically significant difference in
NAMPT levels between NAFLD and healthy controls, as well as
among different histological NAFLD groups.478,479 Another study
shows that NAFLD patients have systemically decreased the
expression of NAMPT in both serum and hepatic tissue.469 In
contrast, the liver and serum NAMPT of morbidly obese women
with NAFLD are significantly higher than that of morbidly obese
women with healthy livers.480 The serum NAMPT level and its
expression in hepatic tissues are positively correlated with pro-

inflammatory factors.480 Moreover, the expression of NAMPT is
notably higher in fibrosis patients and is correlated positively with
the stage of fibrosis in NAFLD patients.481 Elevated serum NAMPT,
together with inflammatory factors, such as IL-6, IL-8 and TNF-a, is
associated with an increased likelihood of exhibiting NAFLD and
NASH.482 Given that hepatocytes are only one of the sources of
eNAMPT, circulating NAMPT levels may not represent its actually
concentration in local liver or adipose tissues, thus requiring
further research to determine its exact role in NAFLD.

NAD+ metabolism in neurodegenerative disorders
Neurodegenerative diseases are a heterogeneous group of
diseases, including Alzheimer’s disease (AD), Parkinson’s disease
(PD) and amyotrophic lateral sclerosis (ALS), which are character-
ized by progressive degeneration of the structure and function of
the peripheral and central nervous system, with the characteristics
like the accumulation of misfolded and aggregated proteins that
are associated with severe proteotoxic stress (Fig. 8).

Axonal degeneration. Axonal degeneration is an early and
prominent feature of many neurological disorders, including AD,
PD, ALS, ischemic brain and spinal cord injuries, diabetic
neuropathy and traumatic brain injury.483,484

SARM1, as the evolutionary conservative executor of degrada-
tion cascade, is required for the progression of rapid Wallerian
degradation. The TIR domain of SARM1 has inherent NADase
activity, which can cleave NAD+ into nicotinamide, cADPR and
ADPR. The nicotinamide acts as a feedback inhibitor of SARM1.
Axons require the NADase activity of the full length SARM1 to
facilitate axonal degeneration and NAD+ consumption after
injury.33,34,485 Similarly, the loss of endogenous NMNAT2 is an
important cause of axon degeneration after injury.486 The axon
damages caused by SARM1 or NMNAT2 can be restored by
increasing NAD + synthesis, like over-expressing the NMNAT2
enzyme.34,487 The naturally occurring mutant mice, Wallerian
degeneration slow (WldS) with chimeric gene containing the N-
terminal 70AA of UBE4B and full length NMNAT1, show a delayed
Wallerian degeneration phenotype.488–492

Several mechanisms are underlying the protective role of
NMNAT on severed axons.493 Firstly, NMNAT acts as a stress-
response protein that aids the clearance or refolding of misfolded
proteins like a chaperone.494,495 Secondly, NMNAT and WldS
proteins facilitate axon preservation by suppressing the accumu-
lation of NMN. The activity of NMNAT1 is essential for axon
survival because activity reduced mutants have no axon protec-
tion effect. The protection effect can also be abolished by the
expression of exogenous NMN and ectopic expression of NMN
deamidase.489,496 Thirdly, NMNAT1 does not change the NAD+

biosynthesis, but prevents the SARM1-dependent NAD+ depletion
caused by injury, which is important for axon degeneration.490

Furthermore, Sir2, as a mammalian homolog of SIRT1, is the
downstream effector of increased Nmnat activity, which can lead
to axon protection in Wallerian degeneration slow mice.491

Additionally, SARM1 protein is required for NMN to promote
axon degeneration and Ca2+ influx. SARM1 and NMN play a role in
common signaling, which ultimately leads to the increase and
breakage of Ca2+ in axons and the dissociation of mitochondrial
dysfunction.497 Although the inhibitor of NMN synthase NAMPT
reduces NAD+ level, it can still provide strong morphological and
functional protection for damaged synapses and axons.489

Alzheimer’s disease (AD). AD is a long-term chronic disease in the
prodromal and preclinical stages with an average course of 8 to 10
years, which is the most common neurodegenerative disorder.
Currently, amyloid β peptide (Aβ), APOE and microtubule-associated

protein tau are three important factors that have sufficient evidence as
the etiology of AD.498 The key pathological features of AD are the
accumulation of Aβ-enriched neuritic plaques and neurofibrillary
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tangles (NFTs) (consisting of tau protein).499 Aβ and phosphorylated
Tau (p-Tau) neurofibrillary lesions lead to the pathology of neurons that
display oxidative damage, impaired Ca2+ processing, reduced DNA
repair, dysfunction of lysosomal and mitophagy, all of which have a
positive correlation with the age-related NAD+ decline.500–504Mounting
evidence supports the promotion of NAD+ consumption on the
process of AD, whereas the accumulation of NAD+ suppresses the AD-
related pathological progress and the decline of cognitive function in
different AD model ranging from C. elegans to mice.187,500,505,506 The
increased activity and expression of CD38 following aging is
responsible for the age-associated decrease in NAD+ level and
defective mitochondrial function, which is at least partially regulated
by the NAD+/SIRT3 signaling pathway.52 CD38 deficiency in APPs-
wePS1DE9 mouse reduces soluble Aβ concentration and Aβ plaques,
correlated with improved spatial cognition.507

The brains of individuals with preclinical AD (PCAD) and AD
exhibit oxidative damage to a variety of molecules, e.g.,
accumulation of protein carbonyls (PCs) in regions that are rich
in Aβ-peptide-containing SPs, increased lipid peroxidation in AD
and PCAD hippocampi and elevated DNA damage.508 Recent
studies have found that damaged cellular energy expenditure and
DNA repair are related to the AD’s pathogenesis.
In the novel AD mice with DNA repair defects (3xTgAD /Polβ+/-),

the content of NAD+ is reduced. Increasing NAD+ by supplement-
ing NR can remarkably normalize DNA damage, p-Tau, synaptic
transmission and neuroinflammation, improve the ability of motor
function, memory and learning and increase the activity of SIRT3

in the brain.187 Notably, NAD+ augmentation improves DNA repair
through improving the neuronal NHEJ activity in AD
mice.186,187,509,510 The accumulated DNA oxidative damage in
AD hyper-activates the DNA damage sensor PARP-1, thereby
reducing the concentration of cellular NAD+ and suppressing the
function of NAD+-SIRT1-PGC-1α axis, which in turn causes
abnormal mitochondria.511 Replenishing cellular NAD+ can
promote DNA repair in neurons and restore mitochondrial
function through mitophagy.511 Mitophagy diminishes insoluble
Aβ1-42, Aβ1-40, and hyper-phosphorylated tau, preventing cogni-
tive or memory impairment in mouse model.500,512 Additionally,
NAD+ protects neurons against p-Tau pathologies. NAD+ accu-
mulation may inhibit the phosphorylation of different Tau protein
sites by inhibiting the activity of Cdk5-p25 complex.501 Nicotina-
mide, as a competitive inhibitor of sirtuins, specifically reduces the
phosphorylation of tau (Thr231), which is related to microtubule
depolymerization in an analogous manner to that of SIRT1.513

NMNAT, as a binding partner of HSP90, can specifically recognize
p-Tau to inhibit its amyloid aggregation in vitro and reduce its
symptoms in the fly tauopathy model, and this effect could be
competitively destroyed by its enzymatic substrate.514

Parkinson’s disease (PD). PD is a common neurodegenerative
disease, mainly including motor and non-motor symptoms.515 The
neurons of PD patients exhibit symptoms, such as mitochondrial
dysfunction, oxidative stress and NAD+ metabolic changes.
Maintenance of NAD+ levels is vital for proficient neuronal

Fig. 8 Linkages between NAD+ depletion and neurodegenerative disorders. Most neurodegenerative disorders, including axonal
degeneration, Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (PD) and Amyotrophic lateral sclerosis (ALS), are
associated with mitochondrial dysfunction, lowered antioxidant capacity and heightened mitophagy, all of which are converged into the
age-related NAD+ depletion induced by either enhanced consumption or impaired biosynthesis. These neural pathologies can
be rescued by NAD+ boosting. Purple representants the downregulated proteins or activated biological functions, while brown labels
the upregulated proteins and repressed physiological activities in neurodegenerative disorders. Abbreviations: mHtt, mutant
Huntingtin; Aβ, amyloid beta; NFTs, neurofibrillary tangles; 3-HAA, 3-hydroxyanthranilic acid; QA, quinolinic acid; WldS, slow Wallerian
degeneration; 3-HK, 3-hydroxykynurenine
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function.333 It is reported that LRRK2 G2019S dopaminergic neurons
exhibit a decreased NAD+ pool and a reduced sirtuin deacetylase
activity, correlating with elevated acetylation of sirtuin substrates
p53, α-tubulin and SOD2.516 In the primary cell (sPD cell) derived
from patients with sporadic PD, the cytosolic conversion of
pyruvate to lactic acid resulted in a significant increase in the
nuclear NAD+ level and cellular NAD+/NADH ratio. The alteration of
NAD+metabolism in sPD cells contributes to the activation of SIRT2
and subsequently reduces the acetylation level of α-tubulin.
Inhibition of the deacetylase function of sirtuin-2 can enhance
the acetylation of α-tubulin and facilitate the clearance and
transport of misfolded protein.517 The redox status of NAD+/NADH
is remarkably decreased in iPSC neurons from GBA mutation
associated PD, which may be due to the decrease of NMNAT2, as
evidenced by the significant increase after NMN treatment.518

Furthermore, increasing the level of available NAD+ by supple-
menting diet containing NAD+ precursors or inhibiting the activity
of NAD+-dependent enzyme (e.g., PARP that snatches NAD+

competing with mitochondria) is a feasible strategy to avoid the
neurotoxicity related to mitochondrial dysfunction.518–520 Besides,
through maintaining the rate of NAD+ production and normalizing
the NADH/NAD+ balance, both pentylenetetrazole (PTZ) and niacin
(NA) exhibit neuroprotective properties.521,522

SARM1 participates in the occurrence of PD mainly through its
enzyme activity of NAD+ degradation. Compared with healthy
people, the phosphorylation level of SARM1 is significantly
increased in the neuronal cells from PD patients, with a high
sensitivity to oxidative stress. In the case of oxidative stress, JNK
increases the phosphorylation of SARM1, resulting in enhanced
NAD+ degradation activity, which in turn promotes the suppression
of mitochondrial respiration.523 The binding of SARM1 and PINK1
can facilitate TRAK6-induced ubiquitination of lysine 433 on PINK1,
which is essential for keeping the stabilized status of PINK1 and
bringing it into the outer membrane of mitochondria. Down-
regulation of SARM1 and TRAF6 reduce the level of PINK1 and then
recruits Parkin to the impaired mitochondria, indicating that SARM1
plays a crucial role in mitophagy via modulating PINK1.524

There is evidence showing that supplementation of high-dose
NAD+ precursors in cells or Drosophila can alleviate the patholo-
gical phenotype by reducing oxidative stress and mitochondrial
damage and improving motor function, which provides a feasible
solution for the prevention and improvement of PD.525,526

Huntington’s disease (HD). HD, also known as Huntington’s
chorea (Huntington’s chorea), is an autosomal dominant heredi-
tary neurodegenerative disorder that has a tremendous devastat-
ing effect on patients and their families, characterized by chorea-
like movements, cognitive decline and psychotic-like symptoms.
It is caused by repeated amplification of the CAG trinucleotide in
the huntingtin (Htt) gene on the short arm of chromosome 4,
which leads to a prolonged polyglutamine stretch at the N-
terminus of the protein.527–530 Mitochondrial defection and
increased oxidative stresses are the most prominent features in
the cells of HD patients.
SIRT3, as a deacetylase in mitochondria, modulates the

transcription of mitochondrial in response to oxidative stress.531

Notably, the expression of the Htt mutant reduces the
deacetylase effect of SIRT3. In the HD model, reduced expression
and deacetylase activity of SIRT3, which in turn prevents the
deacetylation of LKB1 and SOD2, leading to a decrease in the
level of NAD+, defects in mitochondrial biogenesis and accumu-
lation of ROS.532 However, the overexpression of SIRT1 displays
protection against abnormal motor function, cortical and striatal
atrophy and loss of striatal neurons in the transgenic HD mice via
regulating mitochondrial function.531 Both SIRT1 and SIRT3 exert
their function through PGC-1α, which acts as a modifier in HD and
ALS patients and other models. SIRT1/3-PGC-1α pathway in HD
transgenic mice attenuates motor deficits and neurodegeneration

by alleviating oxidative stress, eliminating huntingtin aggregates
and restoring mitochondrial function.531,533–537

It has been reported that the kynurenine pathway (KP) is
closely related to the pathogenesis of HD. The degradation
process of tryptophan in KP produces a variety of neuroactive
metabolites with amino acid-like structures, such as an N-methyl-
D-aspartate (NMDA) receptor agonist quinolinic acid (QA), and a
neuroprotective NMDA receptor agonist kynurenic acid
(KYNA).538,539 Compared with the control group, the ratio of
kynurenine (KYN) to KYNA in HD increases significantly, which is
related to the decrease in the production of KYNA in HD
patients.539 Genetic and pharmacological inhibition of TDO and
KMO can increase KYNA, but not the level of neurotoxic product
3-HK, thereby improving the symptoms of neurodegeneration.538

Amyotrophic lateral sclerosis (ALS). ALS is a neurological disorder
that causes progressive degeneration of the motor neurons in the
brainstem, spinal cord and cerebral cortex.540,541 More than 25
gene mutations have been reported to be closely related to ALS,
of which C9orf72 repetitive amplification mutations and SOD1
mutations are the most common causes. Among them, ALS
caused by mutations in the antioxidant enzyme SOD1 accounts
for about 1–2% of sporadic ALS (SALS) and 20% of familial ALS
(FALS).542–547 Astrocytes are specific contributors to spinal motor
neuron degeneration in SOD1-related ALS.548 The spinal cord
astrocytes isolated from SOD1G93A transgenic rats were co-
cultured with motor neurons, resulting in the induction of motor
neuron death.549 The reactive astrocytes can promote excitotoxic
injury of motor neurons by producing nitric oxide and peroxyni-
trite, which cause mitochondrial damage and apoptosis in
cultured neurons, decreasing glutamate transport, releasing pro-
apoptotic mediators selectively toxic to motor neurons.550

Enhancing NAD+ availability can abrogate the neurotoxicity of
astrocytes from diverse ALS models. Either overexpression of
NAMPT or supplementation of NMN can increase the mitochon-
dria and total cellular NAD+ levels of ALS astrocytes, thereby
enhancing the ability to resist oxidative stress and restoring the
toxicity of astrocytes to motor neurons.551 The NR repletion
increases the levels of UPRmt-related proteins and promotes the
clearance of mutant hSOD1 neurotoxic protein.552 Moreover,
supplementation of NR can reduce the expression of neuroin-
flammation biomarkers in the spinal cord, alleviate the degenera-
tion of motor neurons and appropriately extend the survival time
of hSOD1G93A transgenic mice.540,541

Studies have found that ALS is associated with NAD+

metabolism through KP pathway damage. The impairment of KP
in ALS is confirmed by the following evidence: higher serum
tryptophan, cerebrospinal fluid (CSF), KYN and QA and a decrease
in serum picolinic acid levels in ALS patients. Moreover, both the
inflammation of microglia in the motor cortex and spinal cord of
ALS patients and the expression of IDO and QA in neuronal cells
and microglia increased significantly.501,553 In parallel with the
impaired de novo pathway, the NAD+ decline in the ALS might
also be due to the inadequate NAMPT-mediated NAD+ salvage
synthesis pathway. NAM, a metabolite in the salvage pathway, is
reduced in both CSF and serum from ALS patients compared with
healthy people. NR supplement can increase the NAD+ concen-
tration, dependent on NRKs (NR kinases), thereby avoiding the
need for NAMPT in the salvage synthesis pathway.552,554

The protective effect of NAD+ on ALS might also be linked to
the altered activities of SIRTs, however, the conclusions of many
studies are quite different. It has been found that the expression
level and function of Sirt3 is selectively reduced in the spinal cord
of SOD1G93A mice at the end of ALS course, while the level of
Sirt3 is increased in the human spinal cord after autopsy.555

The overexpression of NAD+ dependent deacetylase SIRT6 and
SIRT3 can eliminate the neurotoxicity in the astrocyte cultured
in vitro by activating the Nrf2-mediated antioxidant defenses.556
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Interestingly, the expression of SIRT1 in the spinal cord of WT
mouse is reduced during normal aging, while the expression of
SIRT1 in different regions of the brain (including the spinal cord,
hippocampus, thalamus and cerebral cortex) in SOD1G93A mouse
is increased.557 Besides, overexpression of SIRT1 in motor neurons
slows down the progression of ALS in severely phenotypic
SOD1G93A (with high copy numbers) mice, partly by activating
the HSF1/HSP70i molecular chaperone system.558,559 However,
SIRT1 and SIRT2 are generally reduced in ALS primary motor
cortex while they are upregulated in the spinal cord in human
post-mortem tissues. In contrast to the neuroprotection role of
SIRT1, SIRT2 upregulation is toxic to neuronal cells.540,557,560–564 A
preliminary clinical trial has confirmed the importance of SIRT1
activation and NAD+metabolism in ALS. The drug used in this trail
is EH301 (a mixture of pterostilbene and NR), which contains the
SIRT1 activator and the precursor of NAD+. Compared with the
placebo control group, EH301 can significantly alleviate the
development of ALS.501,565

NAD+ in cardiac and renal diseases
NAD+ and heart failure (HF). HF is a complex clinical syndrome
caused by various initial heart damage and subsequent dis-
turbance in compensatory effects and pathogenesis mechanisms.
It is manifested through a number of complex molecular and
systemic dysfunctions from the subcellular level to the multi-
organ system of the whole body.566,567 There are many kinds of
evidence indicating that the imbalance of myocardial NAD+ pool
is causally linked to metabolic remodeling and mitochondrial
dysfunction in HF.568 A wide range of tissues display a reduction of
NAD+ in the aging mice model. The down-regulation of NAD+

levels in the heart is most significant. NAD+ is reduced by 70%
within 3 to 24 months, and as a compensation, the concentration
of NADH has increased by 50%.334,569 The increased NADH/NAD+

ratio and protein hyperacetylation are found in the HF patients’
hearts and pathologically hypertrophied mice.570 It is important to
note that hyperacetylation of mitochondrial proteins is considered
to be an inducer for cardiac dysfunction.570–572 Increasing NAD+

levels by activating the NAD+ salvage pathway can inhibit
mitochondrial protein hyperacetylation and cardiac hypertrophy
and improve cardiac function under stress. Proteomics analysis
identified a subgroup of mitochondrial proteins, particularly
sensitive to the changes of NADH/NAD+ ratio. It is reported that
the hyperacetylation modification of mitochondrial proteins
caused by the imbalance of NAD+ redox mainly promotes the
pathological remodeling of the heart through two different
mechanisms. First, the hyperacetylation of the mitochondrial
malate-aspartate shuttle protein inhibits the oxidation and
transport of NADH in the mitochondria, resulting in an imbalance
of redox in the cytoplasm. Second, the acetylation modification of
the oligomycin-sensitive conferring protein increases its binding
to cyclophilin D and enhances the sensitivity of the mitochondrial
permeability transition pore. Both of these conditions can be
restored by regulating the normalization of NAD+ redox balance
at the genetic or pharmacological level.570

It has been reported that hyperacetylation of cardiac protein in
mice with HFD is closely related to the decreased expression of
SIRT3.573 Exogenous supplementation of NAD+ can maintain the
intracellular NAD+ level and block the symptoms of agonist-
induced cardiac hypertrophy in vitro and in vivo by regulating the
activation of SIRT3.574 As a negative regulator in cardiac
hypertrophy, SIRT3 protects the heart by inhibiting intracellular
ROS.140 Mice lacking SIRT3 become more sensitive to the
stimulation of several pharmacological or non-pharmacological
stressors, showing symptoms, such as fibrosis, cardiac hypertrophy
and high mortality.575 In the SIRT3 knockout mouse model, the
progression of fibrosis and cardiac hypertrophy also accelerated
with age. In addition, mitochondrial swelling also appears to
increase with age due to the increased opening of mitochondrial

permeability transition pore (mPTP).575 Similarly, the loss of
mitochondrial complex I leads to a decrease in the ratio of
NAD+/NADH and can inhibit the activity of Sirt3, thereby
enhancing the protein acetylation and mPTP sensitivity. Supple-
menting cKO mice with NAD+ precursors can partially normalize
the NAD+/NADH ratio, acetylation of protein and sensitivity of
mPTP.576 It is noteworthy that compared with normal mice, SIRT3-
deficient mice can cause increased oxidation of fatty acid in heart,
which is due to the high acetylation modification and high activity
of β-HAD and LCAD.573 Moreover, in the absence of sirt5, the
succinylation of protein lysine mainly occurs in the heart. When
fasting, Sirt5 knockout mouse has reduced ECHA (an enzyme
regulates the oxidation of fatty acid) activity, increased long-chain
acyl-CoAs content and decreased ATP content.229 Compared with
control mice in the same litter, after 20min of ischemia and 90min
of reperfusion, the area of cardiac infarction in Sirt5 knockout mice
was larger. The ischemia-reperfusion injury (I/R injury) of Sirt5
knockout mouse heart is restored to normal levels by dimethyl
malonate (a succinate dehydrogenase (SDH) inhibitor) pretreat-
ment, which implies that the change of SDH activity is the leading
cause of the damage.577 Clinically, I/R injury occurs during
myocardial infarction or blood supply stop during cardiovascular
surgery. I/R injury is related to the decrease of endogenous NAMPT
and the down-regulated expression of SIRT1, SIRT3 and SIRT4.
NAMPT strictly controls the NAD+ and ATP content, thus playing
an important part in regulating cell survival by suppressing
apoptosis and increasing autophagy flux in cardiomyocyte.578–580

SIRT3 reduction can increase the sensitivity of heart-derived cells
and the adult heart to I/R injury and may cause more severe I/R
injury in the elderly heart.581,582 Exogenous expression of NMN can
activate Sirt1-mediated FoxO1 deacetylation, which can protect the
heart from I/R injury during ischemia and reperfusion. Similarly,
calorie restriction promotes NAD+ to stimulate the Nampt-Sirt1
signaling pathway, which can protect the heart from I/R injury by
up-regulating antioxidants and down-regulating pro-apoptotic
molecules by activating FoxO.579,580,583–585

It is reported that the human cardiac fibroblasts with high
expression of NOX5 and NOX4 are the main source of cardiac
fibrosis related to heart failure and cardiac hypertrophy. NADPH
produced by G6PD increases the level of NOXs, thereby producing
most of the superoxide during the course of heart failure in
patients with ischemic cardiomyopathy. Under the acceleration of
TGF-β1, Nox4 mRNA is significantly upregulated and mediates the
transformation of fibroblasts into myofibroblasts by activating TGF-
β1-Smad2/3 signaling, which leads to cardiac fibrosis.586,587

NAD+ and kidney failure. Acute kidney injury (AKI) is a common
clinical syndrome, and its prevalence and mortality increase with
age. In the AKI mouse model, compared with the kidneys from 3-
month-old mice, NAD+ levels in the kidneys from 20-month-old
mice were significantly reduced.588 Renal ischemia impairs de
novo NAD+ biosynthesis via reducing the renal expression of
QPRT. Knockout of one allele of QPRT recapitulates these effects
and increases susceptibility to AKI compared with control mice,
which could be prevented by augmenting NAD+ metabolism
with oral NAM supplementation.589,590 The robust finding that
the early rise of urinary quinolinate levels and the urinary
quinolinate/tryptophan ratio are related to the probability of AKI
and adverse outcomes in a cohort of >300 patients indicates that
impaired NAD+ metabolism leads to kidney injury in patients.591

Additionally, boosting NAD+ levels via inhibiting ACMSD (an
enzyme restricts the de novo synthesis of NAD+ from trypto-
phan) also protects against AKI after renal I/R injury.15 The
decrease in enzymes related to NAD+ de novo synthesis is due to
the inhibition of the activity of PPARγ coactivator 1α (PGC-1α),
which is a crucial determinant of renal recovery from AKI.592,593

Moreover, due to the decrease of 3-hydroxykynurenine (a
cytotoxic metabolite of KMO), the mice that lack active
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kynurenine 3-monooxygenase (KMO) will not develop into AKI
after I/R injury.590

The expression of PARPs in the injured kidney’s proximal
tubules is upregulated from 6–12 h after I/R injury.594 Oxidative
stress and DNA damage caused by I/R injury lead to excessive
activation of PARPs.595 A study suggests that the activation of
PARP may lead to cell death through ATP consumption and
enhancement of the inflammatory cascade in mice.596 Inhibition
of excessive activation of PARP can protect renal function from
abnormal hemodynamics, renal metabolic disorders and renal
cell apoptosis during AKI.594,597 Meanwhile, knocking out the
Parp1 gene can protect mice from ischemic kidney damage.596

The simultaneous effects of impaired NAD+ biosynthesis and
over depletion of NAD+ by PARPs can lead to a decrease in the
level of NAD+ in the kidney during AKI. The decline in NAD+

levels therefore results in impaired metabolism and mitochon-
drial function via SIRTs and PGC-1α.593,598,599 SIRT3 protects
against mitochondrial damage in the kidneys by attenuating
oxidative stress, inhibiting inflammation and inducing autophagy
through regulation of the AMPK/mTOR pathway.600,601 SIRT1
regulates the gluconeogenesis/glycolysis pathway by executing
fasting signals via PGC-1α. Augmenting NAD+ induces SIRT1-
mediated deacetylation of PGC-1α, thereby increasing the
production of lipolysis product β-hydroxybutyrate and the
production of PGE2, a prostaglandin to maintain kidney
function.593,599 Additionally, supplementation with NMN restores
the activity of kidney SIRT1, thereby reducing the stress response
by regulating the JNK pathway and protecting mice from
cisplatin-induced AKI.588

BOOSTING NAD+ AS A THERAPEUTIC STRATEGY
In general, intracellular NAD+ levels are maintained between 0.2
and 0.5mM, depending on the cell type or tissue. However, the
concentration and distribution of NAD+ can fluctuate in response to
diverse physiological stimuli and cellular stresses. Altered NAD+

homeostasis has been linked to multiple diseases affecting different
organs, including the brain and nervous system, liver, heart and
kidney. NAD+ depletion is a hallmark of ageing and numerous age-
related disorders.237,238,599,602–605 Therefore, boosting NAD+ offers a
promising option for enhancing resilient to aging or diseases,
thereby extending a healthy lifespan.23 The NAD+ level can be
elevated by dietary supplementation of NAD+ precursors, such as
Trp, NA, NMN and NR, inhibition of NAD+-consuming enzymes,
including PARP1 and CD38, management of the NAD+ biosynthesis
via controlling NAD+-biosynthesis enzymes, or improving NAD+

bioavailability through exercise and caloric restriction.

Supplementation of NAD+ precursors
NAD+ precursors can be used as a nutritional supplement to
improve a broad spectrum of physiological functions and patholo-
gical processes.606–611 As highlighted in Table 1, the therapeutic and
preventive efficacy of NAD+ boosters, especially the soluble and
orally bioavailable endogenous molecules NR, NAM and Niacin, have
been assessed in a series of clinical trials in humans.

NAD+ precursor: NMN. NMN administration can effectively and
rapidly enhance NAD+ biosynthesis in various tissues, even in the
brain, with a promising safety.612 Aged animals are more
responsive to NAD+ replenishment by NMN treatment than the
young one due to the age-related decline in NAD+ availability.
NMN treatment exerts beneficial effects on insulin secretion and
insulin sensitivity in age- and diet-induced diabetes by restoring
NAD+ biosynthesis. Long-term NMN administration rescues the
age-associated decline in physiological function, including mito-
chondrial function, energy metabolism, gene expression changes,
insulin sensitivity and plasma lipid profile, thereby improving
physical activities, such as bone density and eye function.612 NMN

treatment improves the neuronal functions, including rescuing the
memory and cognition in rodent models for Alzheimer’s disease,
protecting neurons from cell death after intracerebral hemorrhage
or ischemia, recovering severe retinal degeneration and restoring
the age-associated loss of the neural stem/progenitor pool.
Besides, the NMN administration also exerts a pleiotropic effect
on acute heart failure and renal injury.23,613,614 It is worth noting
that clinical trials of NAM have been initiated in patients with
cancers including bladder cancer, non-small-cell lung carcinoma,
non-melanoma skin cancer, non-Hodgkin’s lymphoma and multi-
ple myeloma (Table 1).
Despite that the NMN bioavailability is evidenced by the rapid

absorption and convention of administered NMN to NAD+ in
various organs, including skeletal muscle, kidney and liver, the
transportation of NMN into cells remains unclear. NMN may be
directly taken up by specific transporters, as the NAD+ content in
peripheral organs, such as the gut, is immediately increased by
NMN administration.23,614 However, in vitro studies demonstrate
that Nrk1/2 depletion abandons the incorporation of NMN into
NAD+ synthesis. Moreover, NMN administration can significantly
elevate NAD+ biosynthesis in white adipose tissue, heart and the
liver, but not the NAD+ content in brown adipose tissue and
kidney, suggesting a tissue- and cell-type-specific transportation
of NMN to cells or tissues for NAD+ biosynthesis presumably due
to the deferent expression pattern of NRK1.612,615 Therefore, the
identification of the putative NMN transporter and its tissue
specific expression pattern will help assess the cell type or tissue-
specific preference of NMN, paving the way for precious clinical
application of NMN in different conditions.

NAD+ precursor: NR. NR is another natural compound that
displays a surprisingly robust effect on systemic NAD+ metabo-
lism. A large phase clinical trial of NR has been registered on a
broad range of pathologies, including infection, neoplasms, aging-
related diseases and disorders that occur in the circulatory system,
genitourinary system, nervous system and skin (Table 1). Oral NR
supplementation in aged participants elevates the muscle NAD+

metabolome, ameliorates metabolic dysfunction, depresses levels
of circulating inflammatory cytokines and increases the anti-
inflammatory molecule adiponectin in aged human.606,616,617

Dietary administration with NR improves cold tolerance, endur-
ance and energy expenditure. NR protects mice from HFD-induced
body weight gain, enhances the liver weight regain by promoting
hepatocyte replication and increasing hepatic ATP content in the
regenerating liver.618 NR exhibits beneficial effects in several
muscle disorders through improving mitochondrial function and
decreasing the UPRmt in heart failure mice. NR boosts the NAD+

biosynthesis to prevent DNA damage and tumorigenesis. NAD+

repletion with NR may reverse NAFLD by improving mitochondrial
function in both HFHS-fed mice and HFC‐fed Apoe−/− mice.619 It
has been reported that NR has a variety of compelling benefits in
the nervous system, including improving the cognitive function
and synaptic plasticity in Alzheimer’s disease and preventing
noise-induced hearing loss. NR restores the age-associated decline
in the metabolic cycle and circadian behavioral, including the
BMAL1 activity, oscillation mitochondrial respiration, rhythmic
transcription and late evening activity to youthful levels.242

NR can be directly transported by ENTs into cells and enhance
NAD+ biosynthesis bypassing the NAMPT-mediated salvage
pathway. However, the short stability of NR in circulation and
rate-limited utilization by the expression of NRKs restrict its clinical
application. Dihydronicotinamide riboside (NRH), a reduced form
of NR with oral bioavailability, is developed to overcome these
limitations. NRH provides better efficacy to boost NAD+ synthesis
using an NRK1/2-independent pathway compared with NR and
NMN, preventing cisplatin-induced acute kidney injury. The potent
and efficient NRH that serve as an NAD+ booster, offers a
promising option to increase NAD+ levels.620,621
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Table 1. Therapeutic potential of NAD+ boosters in human

Human diseases in ICD-11
classification

Conditions Interventions NCT Number

Diseases of the circulatory system Acute coronary syndrome Niacin NCT00855257

Aortocoronary saphenous vein
Bypass graft atherosclerosis

Niacin NCT01221402

Arterial occlusive diseases Niacin NCT00000539

Atherogenic dyslipidemia Niacin NCT03615534

Atherosclerosis Niacin; NR NCT00150722; NCT00127218; NCT02812238

Cardiovascular diseases Niacin NCT02322203; NCT00461630; NCT01200160;
NCT00000512; NCT00000483; NCT00000482;
NCT00000553; NCT00000461; NCT00880178;
NCT00246376; NCT01921010

Carotid atherosclerosis Niacin NCT00804843

Heart failure Niacin; NR NCT00458055; NCT00590629; NCT02003638;
NCT01178320; NCT00715273; NCT00298909;
NCT01126073; NCT03423342; NCT03727646

Established carotid atherosclerosis Niacin NCT00307307

Intermittent claudication Niacin NCT00062556; NCT00071266

Peripheral artery disease Niacin; NR NCT00687076; NCT03743636

Pregnancy induced hypertension Nicotinamide NCT02213094

Vascular diseases NR NCT04040959

Diseases of the
genitourinary system

Acute kidney injury Niacinamide; NR NCT02701127; NCT04342975; NCT03176628

Chronic kidney disease Nicotinamide;
Niacin; NR

NCT02258074; NCT01200784; NCT00852969;
NCT03579693

Polycystic kidney disease Niacinamide NCT02558595; NCT02140814

Mental, behavioral or
neurodevelopmental disorders

Acute schizophrenia Niacinamide NCT00140166

Depressive disorder Niacin NCT03866174

Obsessive-compulsive disorder Niacin NCT03356483

Post traumatic stress disorder Niacin NCT03752918

Schizophrenia Niacin NCT02458924

Aging Aging NR; Niacin and
Nicotinamide

NCT02921659; NCT03821623; NCT03310034

Diseases of the nervous system Alzheimer’s disease Nicotinamide NCT00580931; NCT03061474

Chemotherapy-induced peripheral
neuropathy

NR NCT04112641; NCT03642990

Cognitive function NR NCT03562468

Diabetic neuropathy peripheral NR NCT03685253

Ischemic stroke Niacin NCT00796887

Mild cognitive impairment NR NCT03482167; NCT02942888

Multiple sclerosis Niacinamide NCT01381354

Parkinson’s disease Niacin; NR NCT03808961; NCT03462680; NCT03816020

Progressive supranuclear palsy Niacinamide NCT00605930

Retinal vein occlusion Niacin NCT00493064

Others Bioavailability NR NCT02712593

Cystic fibrosis NR NCT04166396

Development Nicotinamide NCT03268902

Flushing Niacin NCT00930839; NCT00533611; NCT00536237

Gulf War illness Niacin NCT01672710

Healthy Nicotinamide;
Niacin; NR

NCT03136705; NCT03974685; NCT01809301;
NCT00359281; NCT01258491; NCT00608699;
NCT01275300; NCT00953667; NCT03838822;
NCT02191462; NCT02678611; NCT03151707;
NCT02300740; NCT03818802

Melasma Niacinamide NCT03392623

Muscle injury NR NCT03754842

Preeclampsia Nicotinamide NCT03419364

Psychosis Niacin NCT01720095
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NAD+ precursors: NAM and NA. NAM is an uncharged molecule
that can diffuse rapidly across the plasma, supporting the NAD+

biosynthesis for most tissues in vivo.91 Oral administrated NAM is
converted into NA in the small intestine and colon by nicotinami-
dase PncA of gut microbiota. Gut microbiota-mediated deamidation
of NAM is necessary and responsible for the NAD+ biosynthesis in
various organs, including the kidney, the liver and the colon.101 NAM
protects against streptozotocin (STZ)-induced diabetes by recover-
ing the NAD+ decline in pancreatic islet cells. NAM treatment

exhibits profound metabolic improvements in obesity and type 2
diabetes mouse model. However, there are several side effects
caused by NAM, limiting the application of NAM. Firstly, NAM exerts
feedback inhibition on SIRT1 activity. Secondly, it has been indicated
that high doses or long-term NAM reduces the methyl group
availability and cellular methylation potential via promoting the
methyl sink in the form of 1‐MNA. Consistent with this hypothesis,
dietary methionine supplementation attenuates the development of
steatohepatitis induced by high doses of NAM.66,622

Table 1. continued

Human diseases in ICD-11
classification

Conditions Interventions NCT Number

Recovery of function NR NCT03635411
Sickle cell disease Niacin NCT00508989

Sleep apnea Niacin NCT04234217

Inflammation NR NCT04110028

Neoplasms Bladder cancer Niacinamide NCT00033436

Non-melanoma skin cancer Niacinamide NCT03769285

Non-small-cell lung carcinoma Niacinamide NCT02416739

Non-Hodgkin’s lymphoma Niacin; Niacinamide NCT00957359; NCT02702492; NCT04281420;
NCT00691210

Cancer NR NCT03789175

Multiple myeloma Nicotinamide NCT03019666

Diseases of the skin Contact dermatitis of hands Niacinamide NCT04218500

Hand-foot skin reaction Niacin NCT04242927

Hyperpigmentation Niacinamide NCT01542138

Psoriasis Nicotinamide; NR NCT01763424; NCT04271735

Endocrine, nutritional or metabolic
diseases

Diabetes mellitus type 2 Niacin NCT00485758; NCT03685773; NCT00618995;
NCT02153879; NCT03867500

Dyslipidemia Niacin NCT00903617; NCT00194402; NCT01984073;
NCT00944645; NCT00943124; NCT00626392;
NCT00111891; NCT00111891; NCT00728910;
NCT00961636; NCT01803594; NCT02642159;
NCT01104519; NCT01071291; NCT00079638;
NCT01250990

Glucose metabolism disorders NMN supplement NCT03151239

Hypercholesterolemia Niacin NCT00376584; NCT02890992; NCT03510884;
NCT01321034; NCT00769132; NCT00080275;
NCT00082251; NCT00271817; NCT00533312;
NCT01054508; NCT03510715; NCT00378833;
NCT00652431; NCT00536510

Hyperlipidemia Niacin NCT00244231; NCT00203476; NCT00465088;
NCT00345657

Hyperphosphatemia Niacinamide NCT00508885; NCT00316472

Insulin sensitivity Niacin NCT01216956

Metabolic disturbance NR NCT02689882

Metabolic syndrome Niacin NCT00300365; NCT00346970; NCT02061267;
NCT00286234; NCT00304993

Mitochondrial diseases Niacin,NR NCT03973203; NCT03432871

Obesity Niacin,NR NCT01083329; NCT02303483; NCT03951285;
NCT02835664

Polycystic ovary syndrome Niacin NCT01118598

Primary hypercholesterolemia Niacin NCT00269204; NCT00479388; NCT01012219;
NCT00269217

Undernutrition Nicotinamide NCT04012177

Infection HIV infections Niacin,NR NCT02018965; NCT00986986; NCT00046267;
NCT01426438; NCT00202228

Diseases of the digestive system Non alcoholic fatty liver disease Niacinamide NCT03850886; NCT00262964; NCT04330326

Diseases of the blood or blood-
forming organs

Sickle cell disease Nicotinamide NCT04055818
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NA is effective in treating dyslipidemia due to its cholesterol
lowering actions. NA treatment decreases the serum low-density
lipoprotein and triglyceride content and elevates the high-density
lipoprotein levels. Nevertheless, the clinical application of NA is
limited because the pharmacological dosing of it induces cutaneous
flushing via activation of a G protein-coupled receptor, GPR109A.
Given this undesirable effect, several niacin derivatives with
prolonged release time, including enduracin, niaspan and acipimox,
have been developed. Therefore, niacin has been replaced by its
derivatives in the clinical treatment of hyperlipidemia. The Acipimox
can directly affect mitochondrial function in skeletal muscle of
patients with type 2 diabetes.623

The side effects of NAD+ boosting. The aforementioned findings
suggest that elevating NAD+ levels by administration of NAD+

precursors, including NMN, NR, NAM, and NA, is a rational
therapeutic strategy to improve a healthy lifespan. Given that
NAD+-depleting drugs exhibit anti-tumor potential due to their
impact on DNA repair and inflammation, long-term boosting
NAD+ might increase the risk of driving tumor growth. Moreover,
the detrimental side effects of NAD+ and its intermediates may be
caused by the NAD+-dependent sirtuins that have both oncogenic
and tumor suppressive activity in different contexts. Consistent
with this hypothesis, NMN treatment accelerates pancreatic
cancer progression via creating an inflammatory environ-
ment.66,260 Thus, future clinical studies are necessary to assess
the long-term safety of NAD+ precursors in human therapeutics.

Inhibition of NAD+ consumption
The excessive activation of PARPs or CD38 causes a NAD+

consumption up to the extent that leads to ATP decline, energy
loss and cell death.52,184,624,625 Thus, reducing the NAD+

consumption via suppressing PARPs or CD38 is also a strategy
to boost NAD+.53,626

Accumulating evidence demonstrates that aberrant PARPs
activation by DNA damage causes NAD+ depletion, contributing
to the progression of tumorigenesis and neurodegenerative
disorders that involve DNA repair defects. To date, PARP inhibitors,
including niraparib, rucaparib and olaparib have been approved
by US-FDA to treat cancers, including prostate cancer, breast
cancer and ovarian cancer, through disrupting DNA repair and
replication pathways.627–629 PARPs-mediated ADP-ribosylation
accounts for up to 90% of the cellular intracellular NAD+

consumption, leading to reduced NAD+ availability for sirtuins.
Therefore, genetic ablation or pharmacological inhibition of Parp-
1 enhances the Sirt1 activity through restoring the NAD+ content,
providing a protection benefit for various tissues, including the
liver, muscle and brown adipose tissue.630,631 NADP+ has been
demonstrated as an endogenous inhibitor of PARPs, which extend
the therapeutic effect of PARP inhibitors on cancers with higher
levels of NADP+.184

A variety of flavonoids, including apigenin, quercetin, luteolin,
kuromanin, and luteolinidin, exhibit inhibitory effect on CD38 activity.23

78c is a highly specific CD38 inhibitor, which has greater potency than
the flavonoids in reversing NAD+ decline during aging, thereby
improving several age-associated physiological functions, including
cardiac function, muscle function and glucose tolerance.53 Interestingly,
78c elevates NAD+ to a higher level in mouse liver than that in muscle,
arguing a tissue specific CD38 activity.632 Thus, further studies
uncovering the tissue specific CD38 activities will facilitate the
development of clinical application of CD38 inhibitors.

Controlling NAD+-biosynthesis pathway
Enhancing NAD+-biosynthesis is one alternative approach to
elevate NAD+ concentration through either increasing the activity
of enzymes in NAD+-biosynthetic pathway or inhibiting the
activity of enzymes in the side branch pathway.633

NAD+ is synthesized from both de novo pathway and the
salvage pathway.634 The distinct expression level of NAPRT in
various healthy tissues determines the choice of NAD+ biosyn-
thetic pathway for survival. Cancers arising from tissue with a
highly NAPRT are expression completely and irreversibly depen-
dent on the NAPRT-regulated de novo pathway, while cancers
deriving from tissues with the low level of NAPRT mainly rely on
the NAMPT-mediated NAD+ salvage pathway. This deferent
dependence renders cancer cells resistant to inhibition of NAMPT
by other NAD+ synthesis.408 In line with this hypothesis, the loss of
NAPRT in both RCC cell lines and EMT-subtype gastric cell lines
renders the cells hypersensitive to NAMPT inhibitors, such as
FK866, and KPT-9274, suggesting that NAMPT inhibitors may be a
promising strategy for NAPRT deficient tumors.421,423 Moreover,
bacteria-mediated deamidated NAD+ biosynthesis also rescues
NAMPTi-induced toxicity in cancer cells and xenograft tumors.101

The enzymatic ability of NAMPT can be enhanced by pharma-
cological agents, P7C3 or SBI-797812. P7C3 is a NAMPT enhancer
with good bioavailability and nontoxicity. It has been demonstrated
that P7C3 and its analogs have neuroprotective efficacy in a broad
range of preclinical rodent and nonhuman primate models relying
on the activation of NAMPT.635–638 Therefore, the neuroprotective
activity of P7C3 offers a new pharmacotherapy for age-associated
ALS, Alzheimer’s disease and Parkinson’s disease.635,637,638 SBI-
797812 activates NAMPT via stabilizing the NAMPT phosphorylation
at His247, enhancing the efficiency of NMN generation, providing
another option to raise NAD+.639 Together, the NAMPT enhancers,
P7C3 and SBI-797812, warrant further study for the clinical
treatment of neuron related diseases.
The NAD+-biosynthetic pathway can also be increased by

blocking the side branch to prevent the escape of intermediates.
Overexpressing ACMSD reduces the NAD+ level by dissipating
ACMS from the de novo NAD+ synthesis into the side branch
pathway for acetyl-CoA production, while inhibiting ACMSD
elevates NAD+ concentration. The high expression of ACMSD in
the kidney and liver offers the therapeutic potential of ACMSD
inhibitors, such as TES-991 and TES-1025, for renal and hepatic
dysfunction.15,640 ACMSD may also be a novel target for
Parkinson’s disease, as it inhibits the generation of neurotoxin
quinolinic acid in the kynurenine pathway.641 Similarly, NNMT
shifts the NAM into producing 1-methylnicotinamide, leading to
impaired salvage pathway. WAT- and liver-specific knockdown of
NNMT prevent diet-induced obesity through enhancing the
energy expenditure. The effect of NNMT is achieved by its effect
on histone methylation. Pharmacological inhibition of NNMT
significantly shows benefits diet-induced obese mice, including
reducing the body weight gain and adipocyte size, and decreasing
serum cholesterol levels.642,643 These results suggest that NNMT is
an appealing target for obesity and type 2 diabetes treatment.642

Together, ACMSD and NNMT provide novel targets for modulating
NAD+ homeostasis, which will be of great importance to
determine whether ACMSD and NNMT inhibitors can increase
NAD+ levels and achieve therapeutic effects.

Increasing NAD+ bioavailability
Intracellular NAD+ levels can also be increased by energy stress,
including fasting, glucose restriction, caloric restriction (CR) and
exercise.599 CR-mediated NAD+ boosting depends on the NAD+

salvage biosynthesis rather than de novo pathway via elevating the
NAMPT expression.237,238,644–646 CR restores the age-associated circa-
dian decline via sharpening circadian control of NAD+metabolism and
NAD+/SIRT1-modulated epigenetic modification.647–650 It has been
shown that both long-term and short-term CR rescue the large elastic
artery stiffening and endothelial dysfunction.651,652 Similarly, CR-
boosted NAD+ level protects the brain against aging and diseases
through attenuating plasma membrane lipid peroxidation, protein
carbonyls, nitrotyrosine and oxidative stress.653
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Beyond CR, the exercise has attracted growing attention due to
its benefits on health. In this context, exercise could also increase
the NAD+ level and SIRT1 activity due to an increase in NAMPT.605

It has been reported that the NAMPT protein levels in athletes’
skeletal muscle is much higher than in type 2 diabetic, sedentary
obese and nonobese subjects. Furthermore, exercise training
induces a robust increase in the skeletal muscle of NAMPT protein
in sedentary nonobese subjects.605 The exercise-mediated NAD+

boosting by inducing Nampt is a response strategy for energy
stress, which is abolished by depletion of the energy sensor
AMPK.603 Intriguingly, the gut microenvironment, especially the
host-bacteria interactions also contributes to NAD+ metabolism.
The gut microbiota-derived deamidated pathway facilitates the
utilization of NAM or NR for hepatic NAD+ synthesis, suggesting
that manipulation of microbiota might offer a new option to
manipulate NAD+ metabolism.101 Taken together, both caloric
restriction and exercise provide the potential therapeutic strate-
gies in therapy against pathologies related to NAD+ decline.

CONCLUDING REMARKS
The levels and compartmentalization of NAD+ dictate energy state that
impinges on normal physiological and biological responses, as
indicated by the regulatory role of NAD+ in proper redox homeostasis,
genomic stability, gene expression, circadian clock, inflammation,
metabolism, cellular bioenergetics, mitochondrial homeostasis and
adaptive stress responses. A healthy lifestyle and exercise are non-
pharmacologic strategies to improve the body’s resilience and extend
healthy lifespan through enhancing NAD+ levels. NAD+ boosters can
be applied for a broad spectrum of NAD+ deficiency related
pathologies, such as infection, cancer, metabolic diseases, acute injury,
aging and aging-related neurodegenerative disorders. Conceivably, this
could be achieved by boosting NAD+ via enhancing the NAD+

generation and diminishing NAD+ consumption.
Despite exciting and emerging strides in NAD+ biology, there

are a variety of outstanding questions that warrant future
systematic exploitation to accelerate the translation of remarkable
bench work to effective clinical application in humans. The first
interesting question is that the precise mechanisms executing the
beneficial effects of NAD+ and its metabolites on pathologies and
lifespan remain elusive. Further investigation understanding the
landscape of NAD+ in response to diseases and identifying the
specific effector molecules for each NAD+ precursors at different
time points provide critical insights into development of effective
interventions for various physiologies. Secondly, the systemic
NAD+ metabolome is largely unexplored. Are there any tissue
specificities for NAD+ boosting, such tissue preferences of distinct
NAD+ precursors? What is the crosstalk with the NAD+ systems of
each organ? What is the distinct NAD+metabolome in each tissue?
In spite of growing interest in the use of NAD+ precursors as a
strategy for healthy aging, the in vivo pharmacokinetics remain
poorly understood. The efficacy of NAD+ boosters, the therapeutic
dosages and favorable administration routes should be optimized
for different diseases in humans. It is also essential to fully assess
the unforeseen side effects of long-term NAD+ boosting. This task
requires the development of new technologies to enable the
simplifying, accurate and reproducible monitoring of dynamic
NAD+ and its metabolites in patients and healthy individuals.
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