

Open access • Posted Content • DOI:10.1101/2020.07.31.231555

NAD modulates DNA methylation and cell differentiation — Source link []

Simone Ummarino, Simone Ummarino, Mahmoud A. Bassal, Yanzhou Zhang ...+12 more authors

Institutions: Harvard University, Beth Israel Deaconess Medical Center, University of Eastern Piedmont, University of Milan

Published on: 02 Aug 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Epigenetic Profile, Cellular differentiation, Epigenome, Epigenetics and DNA methylation

Related papers:

- NAD Modulates DNA Methylation and Cell Differentiation
- Epigenetics: Connecting Environment and Genotype to Phenotype and Disease
- Epigenetic control of reprogramming and cellular differentiation.
- Epigenetics: Reprogrammable interface of the genome and environments.
- Epigenetic Modulators of Monocytic Function: Implication for Steady State and Disease in the CNS

Ummarino et al.

1	NAD modulates DNA methylation and cell differentiation.
2	
3	Simone Ummarino ^{1,2,3} , Mahmoud A. Bassal ^{1,2,3,4*} , Yanzhou Zhang ^{1,2,3*} , Andy Joe Seelam ^{5,6} , Ikei S.
4	Kobayashi ³ , Marta Borchiellini ⁵ , Alexander K. Ebralidze ^{1,2,3} , Bon Q. Trinh ^{1,2,3} , Susumu S.
5	Kobayashi ^{2,3,7} , Annalisa Di Ruscio ^{1,2,3,5}
6	*These two authors equally contributed to the work
7	1 Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA,
8	02115, USA
9	2 Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
10	3 Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School,
11	Boston, 02215, MA, USA
12	4 Cancer Science Institute, National University of Singapore, 117599, Singapore
13	5 University of Eastern Piedmont, Department of Translational Medicine, Novara, 28100, Italy
14	6 International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi",
15	Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano, Milan,
16	Italy
17	7 Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center,
18	National Cancer Center, Kashiwa, 277-8577, Japan
19	
20 21 22 23 24 25 26 27 28	Corresponding author Annalisa Di Ruscio Center for Life Science, Room 404 3 Blackfan Circle, Boston, MA 02115 Tel: 617-735-2022 FAX: 617-735-2222 adirusci@bidmc.harvard.edu
29	
30	
31	
32	
33	
34	

Ummarino et al.

35 Abstract

36	Nutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell
37	development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional
38	intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation.
39	Herein, we present a novel epigenetic effect of the essential nutrient, NAD. We demonstrate that
40	impairment of DNMT1 enzymatic activity by NAD-promoted ADP-ribosylation, leads to
41	demethylation and transcriptional activation of CEBPA gene, suggesting the existence of an
42	unknown NAD-controlled region within the locus. In addition to the molecular events, NAD treated
43	cells exhibit significant morphological and phenotypical changes that correspond to myeloid
44	differentiation.
45	Collectively, these results delineate a novel role for NAD in cell differentiation and indicate
46	novel nutri-epigenetic strategy to regulate and control gene expression in human cells.
47	
48	Introduction
49	Malnutrition and obesity are associated to epigenetic dysregulation thereby promoting cellular
50	transformation and cancer initiation (Avgerinos, Spyrou et al., 2019, Birks, Peeters et al., 2012). A
51	prolonged exposure to high-fat diet, poor nutrition and insults from environmental toxicants, all
52	contribute to the epigenetic transgenerational inheritance of the obesity (King & Skinner, 2020).
53	The degree of obesity, in term of body weight, is a well-documented risk factor for hematopoietic
54	disease and cancer (Strom, Yamamura et al., 2009, Tedesco, Qualtieri et al., 2011). Together, these
55	evidences highlight the importance of balanced micronutrient intake in order to preserve cell
56	specific epigenetic programming and prevent anomalies that can potentially result in malignant
57	transformation (Montgomery & Srinivasan, 2019, Yilmaz, Atilla et al., 2020).
58	In the last decade, numerous studies focusing on establishing a link between nutrition and
59	epigenetics, leaded to the concept of "Precision Nutrition"; a translational approach based on the
60	use of dietary compounds to direct epigenetic changes and drive normal cellular development

Ummarino et al.

61	(Zeisel, 2020). Natural compounds, like vitamins C and D, have been shown to slow pathological
62	processes through their impact on the epigenome (Bunce, Brown et al., 1997, Nur, Rath et al.,
63	2020). Similarly, nutri-epigenomic approaches have been shown to prevent several disease
64	conditions including cancer (Di Tano, Raucci et al., 2020, Meroni, Longo et al., 2020).
65	Nevertheless, the molecular mechanisms by which nutrients modulate the epigenome of healthy or
66	cancer cells is largely unknown.
67	Nicotinamide adenine dinucleotide (NAD) is a dietary compound essential for life, and a
68	coenzyme implicated in cellular redox reactions (Rajman, Chwalek et al., 2018). Maintenance of
69	adequate levels of NAD is critical for cellular function and genomic stability (Ralto, Rhee et al.,
70	2020). Few reports have shown that NAD precursors such as vitamin B3 (or nicotinic acid, NA) and
71	nicotinamide (Nam) are able to drive cell differentiation in leukemic cell lines (Ida, Ogata et al.,
72	2009, Iwata, Ogata et al., 2003), and impair cell growth. However, the molecular mechanism
73	participating in these morphological changes remain unknown.
74	DNA methylation is a key epigenetic signature involved in transcriptional regulation, normal
75	cellular development, and function (Jones, 2012). Methyl groups are added to the carbon 5 of
76	cytosines in the contest of CpG dinucleotides by specialized enzymes the DNA methyltransferase
77	enzymes (DNMT1, 3A and 3B). While the bulk of the genome is methylated at 70-80% of its
78	CpGs, CpG islands (CGI), that are clusters of CpG dinucleotides generally proximal to the
79	transcription start sites (TSSs) of most human protein-coding genes, are mostly unmethylated in
80	somatic cells. Numerous studies have established a link between aberrant promoter DNA
81	methylation and gene silencing in diseases such as cancer (Herman & Baylin, 2003, Jones &
82	Baylin, 2002).
83	NAD is also the substrate of Poly-(ADP) Ribose Polymerase 1 (PARP1) a nuclear protein that
84	plays a pivotal role in gene regulation, and chromatin remodeling (Hageman & Stierum, 2001, Ray
85	Chaudhuri & Nussenzweig, 2017). PARP1 utilizes NAD as a source of ADP-ribose moieties to
86	assemble ADP-ribose polymers (PAR) and coordinate epigenetic modifications including DNA

Ummarino et al.

87	methylation (Ciccarone, Zampieri et al., 2017, Reale, Matteis et al., 2005). Several experimental
88	data support a PARP1-mediated inhibition of DNA methyltransferase 1 (DNMT1) activity in
89	human cell lines (Fang, Bi et al., 2015, Witcher & Emerson, 2009). These findings suggest a role
90	for NAD in altering and, or facilitating modulation of DNA methylation, even if a direct link
91	between demethylation and NAD treatment has not been established (Ciccarone, Valentini et al.,
92	2014, Di Ruscio, Ebralidze et al., 2013).
93	Herein, we present a novel function of NAD, the ability to specifically demethylate and induce
94	the expression of the hematopoietic master regulator, CCAAT/enhancer binding protein alpha
95	(CEBPA) gene locus. The demethylation effect correlates with a total and local increase of ADP-
96	ribose polymers (PAR) at the CEBPA promoter, thus supporting a NAD/PARP1/DNMT1 axis in
97	which local inhibition of DNMT1, results in site-specific demethylation and transcriptional
98	activation.
99	Our findings indicate NAD as a novel epigenetic modulator that counteracts the widespread

epigenetic reprogramming concurring to obesity and cancers, and provide the first nutritional-basedtherapy for clinical interventions in these conditions.

102

103 Materials and Methods

104 *Cells and Cell Culture*

105 K562 cell line was purchased from ATCC and grown in RPMI medium supplemented with 10% 106 fetal bovine serum (FBS), in the absence of antibiotics at 37°C, 5% CO₂. The K562-*CEBPA*-ER 107 line was grown in 12 well plate in phenol red–free RPMI 1640 (ThermoFisher Scientific, Cat. No. 108 11835030), supplemented with 10% Charcoal stripped FBS (Sigma Aldrich, Cat. No. F6765), and 1 109 μ g/mL puromycin, beginning at a density of 0.2 x 10^6 cells/mL. 1 μ M estradiol (Sigma Aldrich, 100 Cat. No. E2758) was added from a 5-mM stock solution in 100% ethanol to induce *CEBPA*-ER 111 nuclear translocation and a corresponding amount of ethanol (0.02%) to mock-treated cells as

Ummarino et al.

- 112 controls. Viable cells excluding trypan blue were enumerated every day and used for the experiment
 113 (D'Alo, Johansen et al., 2003, Umek, Friedman et al., 1991).
- 114
- 115 *NAD treatment*
- 116 K562 cells were incubated with 0.1, 0.5, 1, 1.5 or 10 mM of NAD (Sigma Aldrich) or vehicle
- 117 (milliQ water) for four days at 37°C. Cells were counted every day and cell pellets were collected to
- 118 perform all the downstream analysis. Colorimetric NAD assay. The BioVision NAD/NADH
- 119 Quantification Colorimettic Kit was used according to the manufacturer's instructions (BioVsion).
- 120 Briefly, K562 cells were homogenized by two cycles of freezing and thawing in 400µl of BioVsion
- 121 NAD/NADH extraction buffer. The homogenate was filtered using BioVision 10-kD cut-off filters
- 122 (10000 g, 25 min, 4°C). To detect only NADH content, NAD was decomposed by heating 200µl of
- the homogenate. The homogenate of decomposed and non-decomposed samples was distributed in
- a 96 well plate, the developer solutions was added to the samples. The absorbance (OD 450nm) was
- acquired for 30 minutes using the VICTOR Multilabel Plate Reader (Perkin Elmer).
- 126
- 127 K562 Wright Giemsa staining

Approximately 2×10^4 per each sample, were spotted on a slide using the cytospin at 400 rpm for 5 min. The cells were then stained with the Wright Giemsa solutions kit (CAMCO STAIN PAK, pc#702) according to manufacturer's instructions.

- 131
- 132 Nitroblue Tetrazolium (NBT) assay

Nitroblue blue tetrazolium (NBT) analysis was performed using 5×10^5 cells incubated in a 1 mL solution containing phosphate-buffered saline (PBS), NBT (Sigma), and 0.33 µM phorbol myristate acetate (PMA) for 20 minutes at 37°C. The reaction was then stopped by incubation on ice. Cells were immediately fixed on slides by cytocentrifugation and counterstained with 0.5% safranin O in 20% ethanol.

Ummarino et al.

138 Immunofluorescence

139	Cells were fixed with PFA 2% (Paraformaldehyde/MeOH), washed with 1X Phosphate-buffered
140	saline (PBS), and permeabilized with 0.5 % Triton X100. After blocking with 7% Goat-serum, for
141	30 min, cells were incubated with primary antibody Anti poly (ADP-ribose) polymer (1:400
142	Abcam, ab 14459) overnight at 4°C, covered from the light. The following day, cells were washed
143	with 1X PBS, and incubated with secondary antibody goat anti-mouse (1:500, Alexa Fluor 555) for
144	1hr, re-washed, and nuclei counterstained with Prolong gold antifade mountant already containing
145	DAPI (Thermo Fisher Scientific). Samples were analysed on a Leica DM 5500B Microscope with a
146	100W high-pressure mercury lamp. Images were assembled and contrast-enhanced using Image J as
147	per manufacturer's recommendations.
148	
149	RNA isolation and qRT-PCR analyses
150	Total RNA isolation was carried out using TRIzol (Thermo-Fisher Scientific), as previously
151	described (23). All RNA samples used in this study were treated with DNase I (10 U of DNase I per
152	$3 \mu g$ of total RNA; $37 \degree C$ for 1 hr; in the presence of RNase inhibitor). After DNase I treatment,
153	RNA samples were extracted with acidic phenol (Sigma, pH 4.3) to eliminate any remaining traces
154	of DNA. Taqman based qRT-PCR was performed using the one step Affymetrix HotStart-IT qRT-
155	PCR Master Mix Kit (Affymetrix USB) and 50 ng of total RNA per reaction. Amplification
156	conditions were 50°C (10 min), 95°C (2 min), followed by 40 cycles of 95°C (15s) and 60°C (1
157	min). Target gene amplification was calculated using the formula $2^{\Lambda-\Delta\Delta Ct}$ as described (23), primer
158	and probe sequences are listed in supplementary Tab 1.
159	
160	DNA isolation
161	Cell pellets, resuspended in a homemade lysis buffer (0.5% SDS, 25 mM EDTA pH 8, 10 mM
162	TRIS pH 8, 200 mM NaCl), were initially treated with RNase A (Roche) for 20 minutes at 37°C and

163 then Proteinase K (Roche) overnight at 65°C. High quality genomic DNA was extracted by

Ummarino et al.

Phenol:chloroform:isoamyl Alcohol 25:24:1, pH:8 (Sigma) and precipitated with Isopropanol the
following day. Genomic DNA was resuspended in Tris 1mM, EDTA 10mM (TE) pH 8 and stored
at 4°C.

167

168 *Western blotting analysis*

Whole-cell lysates from approximately 2×10^5 cells per each sample were separated on 15% 169 170 SDS-PAGE gels and transferred to a nitrocellulose membrane. Immunoblots were all blocked with 5% nonfat dry milk in Tris-buffered saline, 0.1% (TBS-T) prior to incubation with primary 171 antibodies. The Anti-poly (ADP-ribose) polymer (1:1000 Abcam, ab14459) was stained overnight 172 173 at 4°C. For PARP1 and DNMT1 protein analyses, equivalent amount of whole-cell lysates were 174 separated on 7 % SDS-PAGE gels and transferred to a nitrocellulose membrane. Immunoblots were stained overnight with the following primary antibodies: Anti-PARP1 (1:1000 Active motif, 175 176 39559), Anti-DNMT1 (1:1000, Abcam, ab19905). All secondary horseradish peroxidase (HRP)conjugated antibodies were diluted 1:5000 and incubated for 1hr at room temperature with TBST/ 177 5% milk. Immuno-reactive proteins were detected using the Pierce[®] ECL system (Thermo 178 Scientific #32106). 179

180

181 Bisulfite Sequencing and Analysis

182 DNA methylation profile of *CEBPA* locus was analyzed by bisulphite sequencing as previously

described (Di Ruscio et al., 2013). Briefly, high molecular weight genomic DNA (1µg) was

subjected to bisulfite conversion using the EZ DNA Methylation-Direct kit (Zymo Research)

185 following the manufacturer's instructions. Polymerase chain reactions (PCR) on bisulfite converted

186 DNA was performed with FastStart Taq DNA Polymerase (Roche) in the following conditions:

187 95°C (6 min) followed by 35 cycles at 95°C (30 s) 53-57°C (1 min) 72°C (1 min), and a final step at

188 72°C (7 min). Primers and PCR conditions for bisulfite sequencing are summarized

in supplementary Tab 2. After gel purification, cloning into PGEM T-easy vector (Promega) and

Ummarino et al.

190	transformation in E. coli Competent Cells JM109 (Promega), 9 positive clones analyzed by Sanger
191	sequencing for each sample. Only clones with a conversion efficiency of at least 99.6% were
192	considered for further processed by QUMA: a quantification tool for methylation analysis
193	(http://quma.cdb.riken.jp/) (Kumaki, Oda et al., 2008).
194	
195	Chromatin immunoprecipitation
196	ChIP was performed as previously described (Zhang, Alberich-Jorda et al., 2013), Briefly, K562

cells were crosslinked with 1% formaldehyde (formaldehyde solution, freshly made: 50 mM 197 HEPES-KOH; 100 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 11% formaldehyde) for 10 min at 198 room temperature (RT) and 1/10th volume of 2.66 M Glycine was then added to stop the reaction. 199 Cell pellets were washed twice with ice-cold 1X PBS (freshly supplemented with 1 mM PMSF). 200 Pellets of 2×10^6 cells were used for immunoprecipitation and lysed for 10 minutes on ice and 201 202 chromatin fragmented using a Bioruptor Standard (30 cycles, 30 sec on, 60 sec off, high power). Each ChIP was performed with 10µg of antibody, incubated overnight at 4°C. A slurry of protein 203 A or G magnetic beads (NEB) was used to capture enriched chromatin, which was then washed 204 before reverse-crosslinking and proteinase K digestion at 65°C. Beads were then removed in the 205 206 magnetic field and RNase treatment (5µg/µl Epicentre MRNA092) performed for 30 minutes at 207 37°C. ChIP DNA was extracted with Phenol:chloroform:isoamyl Alcohol 25:24:1, pH:8 (Sigma) 208 and then precipitated with equal volume of isopropanol in presence of glycogen. DNA pellet was dissolved in 30µl of TE buffer for following qPCR analyses. The following antibodies were used 209 210 for ChIP: Anti-DNMT1 (Abcam, ab19905), Anti-poly (ADP-ribose) polymer (Abcam, ab14459), normal mouse IgG (Millipore 12-371b) and normal rabbit IgG (Cell Signaling 2729S). Fold 211 212 enrichment was calculated using the formula 2 (- $\Delta\Delta$ Ct (ChIP/non-immune serum)). Primer sets used for ChIP are listed in supplementary Table 3. 213

- 214
- 215

Ummarino et al.

216 Immunostaining for FACS analysis

217	Anti-CD15-APC (Thermal Fisher Scientific, Cat. No. 17-0158-42), anti-CD14-FITC (Thermal
218	Fisher Scientific, Cat. No. 11-0149-42) and anti-CD11b-Pacific blue (BioLegend, Cat. No. 101224)
219	were incubated with 1×10^6 K562 cells (vehicle or NAD treated) at 1:100 ratio. Cells were pre-
220	incubated with anti-Fc receptor antibody (Thermal Fisher Scientific, Cat. No. 14-9161-73) at 1:20
221	ratio to block Fc receptor before staining. Zombie red staining (BioLegend, Cat. No. 423109) was
222	used as cell viability dye during FACS analysis. Cells were fixed using 2% PFA (Sigma, Cat. No.
223	158127) before performing FACS analysis. Cell acquisition and analysis were performed on BD
224	LSRFortessa (BD biosciences, CA, USA) using BD FACSDiva TM software (BD Bioscience).
225	Analysis was performed using Flowjo software (Flowjo LLC, USA).
226	
227	Annexin V staining
228	FITC Annexin V Apoptosis Detection Kit I (BD Bioscience) was used to determine the percentage
229	of K562 undergoing apoptosis upon NAD treatment. All samples were prepared following the
230	manufacturer's instructions. Briefly, cells were collected every day, washed twice with cold PBS and
231	then resuspended in 1x Binding buffed at a concentration of 1×10^6 cells/ml.
232	Cells were incubated with 5 μ l fluorescein isothiocyanate (FITC) annexin V and 5 μ l Propidium Iodide
233	for 15 min at room temperature in darkness. Analyses of cells viability and apoptosis were performed
234	on BD LSR Fortessa (BD biosciences, CA, USA) using BD FACSDiva TM software (BD Bioscience).
235	The data analysis was performed using Flowjo software (Flowjo LLC, USA).
236	
237	Seahorse analysis
238	Mito Stress Test (Agilent Seahorse, 103015-100) assay was run as per manufacturers'
239	recommendations. Briefly, on the day of assay, counted and PBS washed cells were suspended in
240	XF Assay media (Agilent Seahorse Bioscience) pH adjusted to 7.4 ± 0.1 supplemented with 4.5 g/L
241	glucose (Sigma-Aldrich G7528), 0.11 g/L sodium pyruvate (Sigma-Aldrich) and 8 mM L-glutamine

Ummarino et al.

242	(Sigma-Aldrich). 1x10 ⁵ cells were added to each well of XFe24 Cell-Tak (Corning) pre-coated
243	culture plates and then slowly centrifuged for incubation at 37°C in a non-CO ₂ incubator. Oxygen
244	consumption rate was measured at baseline using a Seahorse XFe24 according to standard protocols
245	and after the addition of oligomycin (100 μ M), carbonyl cyanide-4-(trifluoromethoxy)
246	phenylhydrazone (FCCP, 100 μ M) and rotenone and antimycin A (50 μ M). Fold change was
247	determined by normalizing raw values to the average of the second basal reading.
248	
249	Statistical analysis
250	All bisulfite sequenced clones were analyzed by Fisher's exact test. For mRNA qRT-PCR,
251	p-values were calculated by t-test in GraphPad Prism Software. For both the analysis, values of p
252	<0.05 were considered statistically significant (* $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$). The Mean ±
253	SD of duplicates is reported.
254	
255	Results
256	NAD inhibits cancer cell growth in a dose-dependent manner and drives accumulation of
257	intracellular poly ADP-ribose polymers.
258	NAD precursors drive myeloid differentiation and impair cell growth (Ida et al., 2009, Iwata et
259	al., 2003). To examine whether similar effects could be mediated by NAD, K562 cells were
260	cultured following a single addition of NAD or vehicle to the media, and tracked over four days

(Fig. 1a). Cells were counted every day and cell pellets collected for downstream analyses (Fig. 1a,

b). Inhibition of the cell growth, was observed across all the tested NAD concentrations in a dose-

dependent manner, with the strongest effect at 10 mM, 96 hours upon treatment (Fig. 1b). Notably,

this inhibition was not associated with apoptosis as demonstrated by the Annexin V staining,

showing high viability ($\approx 85\%$) of NAD-treated cells *versus* untreated (Fig. S1a). Consistently, the

266 NAD/NADH content in the 10mM NAD treated cells, displayed nearly eightfold increase as

compared to the baseline, already 24 hours after treatment (Fig. 1c). Provided that NAD is partially,

Ummarino *et al*.

268	utilized as a source of ADP-ribose units by PARP1 to build linear and branched poly ADP-ribose
269	(PAR) polymers, NAD-treated and untreated K562 were stained with an anti-PAR antibody and
270	examined by immunofluorescence to monitor the accumulation of PAR. Consistently, 24 hours
271	upon NAD treatment, cells displayed an intense fluorescence signal in treated as compared to
272	untreated cells, owing to the increased PAR synthesis and accumulation (Fig. 1d). These results
273	mirrored the effects induced by 10-minutes treatment with hydrogen peroxide (H ₂ O ₂), a known
274	DNA damaging agent (Blenn, Althaus et al., 2006, Ryabokon, Cieslar-Pobuda et al., 2009, Valdor,
275	Schreiber et al., 2008), associated with PAR production and therefore used as a positive control
276	(Fig. S1b). Overall, these findings supported a PAR accumulation driven by NAD. As a further
277	validation, PAR levels were analyzed by western blot. The strongest PAR band was detected on the
278	first day and gradually decreased in the following days (Fig. 1e) likely due to PARs degradation by
279	poly (ADP-ribose) glycohydrolases (PARGs) or similar pathway-related enzymes (O'Sullivan,
280	Tedim Ferreira et al., 2019).
281	Collectively these data demonstrate that NAD inhibit cell growth and mediates accumulation of
282	intracellular PAR as early as 24 hours upon treatment.
283	
284	NAD treatment induces CEBPA distal promoter demethylation
285	A PARP1-mediated inhibition of DNMT1 activity in human cell lines has been reported (Fang et
286	al., 2015, Reale et al., 2005). Therefore, we reasoned that increase of NAD, a substrate of PARP1,
287	could modulate genomic methylation. To this end, we investigated the methylation dynamics of the
288	well-studied methylation-sensitive gene CEBPA in K562 cells, following treatment with 10mM
289	NAD (Hackanson, Bennett et al., 2008, Zhang et al., 2013) CEBPA is a master transcription factor
290	in the hematopoietic system, the loss or inhibition of which can result in block of differentiation and
291	granulopoiesis, contributing to leukemic transformation. CEBPA promoter is aberrantly methylated
292	in ~30% and ~51% of patients with chronic myeloid leukemia and acute myeloid leukemia,

respectively (Hackanson et al., 2008, Iwata et al., 2003, Tenen, 2003). As *CEBPA* promoter,

Ummarino et al.

294	encompassing the -1.4 kb to -0.5 kb regions from the transcriptional start site (TSS), is methylated
295	in K562, we decided to assess the impact of NAD treatment on DNA methylation profile. Using
296	bisulfite sequencing, we surveyed three distinct regions located at -0.8 kb (-557; -857), -1.1kb (-
297	895; -1.122), -1.4 kb (-1.120; -1.473) upstream to the TSS of CEBPA (Fig. 2a). NAD treatment led
298	to concomitant decrease of DNA methylation levels within the distal promoter region (-0.8 kb)
299	(Figs. 2b, c and S2a) which equaled 44% reduction at 48 hours and dropped to 60%, 72 hours after
300	NAD addition. These levels bounced back to a mild 17% decrease after 96 hours suggesting a
301	dynamic re-establishment of DNA methylation levels within the site (Fig. 2b, c). In agreement with
302	our earlier findings (Fig. 1d,e), wherein the strongest accumulation of PARs was observed 24 hours
303	post-NAD treatment (Fig. 1d,e), these results seem to indicate that the additional 24 hours were
304	required to inhibit DNMT1 enzymatic activity and promote the methylation changes observed over
305	the 48 and 72 hour time points (Fig. 2b,c). Unexpectedly, only minor changes in the distal promoter
306	I (-1.1kb) and II (-1.4kb) were detected at 72 hours, suggesting a certain specific modality of NAD-
307	mediated demethylation (Figs. 2d, e and S2a). Consistent with previous reports, DNA methylation
308	within the -1.1kb and -1.4kb regions, does not correlate with CEBPA expression in both K562 and
309	AML samples using conventional hypomethylating drugs (Hackanson et al., 2008).
310	Taken together these data demonstrate that the NAD-induced CEBPA promoter demethylation
311	relies on a PAR-dependent mechanism which impairs DNMT1 activity

312

NAD treatment enhances CEBPA mRNA transcription in K562 by a PARP1- dependent
 mechanism

315 DNA methylation is a key epigenetic signature involved in gene regulation. To investigate 316 whether NAD-induced demethylation of *CEBPA* distal promotor was associated with increased 317 levels of *CEBPA* transcriptional activation, we measured the *CEBPA* expression by qRT PCR in 318 cells treated with 10 mM NAD (**Fig. 3a**), over multiple time points. Upregulation of *CEBPA*, 72-319 and 96-hour- upon treatment was observed only in cells treated with the highest NAD concentration

Ummarino et al.

320	(Figs. 3a and S2b). These results parallel CEBPA upregulation at 72 and 96 hours following
321	demethylation of the distal promoter using the standard hypomethylating agent 5-aza-2'-
322	deoxycytidine in K562 cells (Hackanson et al., 2008). As the only region sensitive to NAD-induced
323	demethylation effect corresponded to CEBPA distal promoter, while nearly no changes occurred in
324	the two upstream regions (-1.4 kb and -1.1kb) we reasoned the involvement of epigenetic regulators
325	to account for this site selectivity. Previous studies have reported that PARP1 assembled ADP-
326	ribose polymers are able to impair DNMT1 activity in human and murine cell lines (Reale et al.,
327	2005). In following these findings, we hypothesized a mechanism wherein the NAD-induced
328	production of PAR would specifically inhibit DNMT1 activity at CEBPA distal promoter, without
329	affecting the more upstream regions. To test this hypothesis, we firstly verified the levels of PARP1
330	and DNMT1 were not influenced by NAD at both expression and protein levels (Figs. 3b and S2c).
331	Secondly, we performed quantitative Chromatin Immunoprecipitation (ChIP) with anti-PAR and
332	anti-DNMT1 antibodies, 24 hours upon NAD treatment (Fig. 3c-e), given the strongest increase of
333	PAR polymers at that specific time point (Fig. 1d, e). As expected, the CEBPA distal promoter
334	region exhibited over 1.6-fold enrichment of PAR polymers than the vehicle treated cells, unlike the
335	distal promoter II (Fig. 3d, e) in which the polymers were absent. Interestingly, DNMT1
336	distribution between the distal promoter and the regions more upstream was unchanged (Fig. 3e),
337	suggesting the same accessibility of DNMT1 for both sites, and a potential impairment of the
338	enzymatic activity at the distal promoter due to the presence of the PAR polymers.
339	Collectively, these results indicate a PARP1-dependent demethylating mechanism boosted by
340	NAD levels and enabling inhibition of DNMT1 activity in selected loci.
341	
342	NAD induces myeloid differentiation.

As previously reported NAD-precursors such as NA and other niacin-related compounds induce
differentiation in immortalized cell lines, such as K562 and HL60 (Ida et al., 2009, Iwata et al.,

345 2003). These findings prompted us to assess morphological changes upon NAD treatment. Wright

Ummarino et al.

346	Giemsa staining of K562 treated with 10mM NAD or vehicle revealed striking morphological
347	changes four days after treatment (Fig. 4a). Specifically, vehicle treated cells exhibited a
348	homogeneous population of round-shaped cells, with round or oval cell nuclei, whereas NAD-
349	treated cells were more heterogeneous, with a higher cytoplasm:nucleus ratio, eccentrically located
350	reniform nuclei with dense regions of heterochromatin and numerous vacuoles resembling a
351	monocytic-macrophagic morphology. Additionally, NAD treatment leads to increases in nitroblue
352	tetrazolium (NBT)-positive cells and expression of CD11b and CD14 surface markers indicating
353	that NAD promotes monocytic-macrophagic differentiation in K562, whilst the absence of CD15
354	expression ruled out a shift toward the granulocytic lineage (Fig. 4b, c) (Federzoni, Humbert et al.,
355	2014). Hence, despite the reactivation of CEBPA mRNA, which is a master regulator of
356	granulocytic differentiation, the expected morphological changes were not detected in NAD treated
357	cells, although we could confirm increased expression of both CD15 and CD11b and not CD14
358	upon ectopic expression of CEBPA protein as already shown previously (Federzoni et al., 2014,
359	Perrotti, Cesi et al., 2002) (Fig. S3a). These results are not surprisingly since the oncogenic fusion
360	protein: BCR-ABL, that is constitutively expressed in K562, suppresses CEBPA translation thus
361	leading to transcriptional suppression of the granulocyte colony-stimulating factor receptor G-CSF-
362	R and other myeloid precursor cells critical for granulocytic differentiation (Perrotti et al., 2002).
363	Along with these data, we confirmed the absence of CEBPA protein by western blot analysis on
364	K562 NAD-treated cells (data not shown).

365

366 NAD treatment improves mitochondrial OXPHOS function

NAD has been previously demonstrated to restore mitochondrial function in aged mice and
increase the intracellular ratio of NAD⁺/NADH, a critical cellular balance required for the Sirtuin 1
(SIRT1) mediated activation of mitochondrial biogenesis (Chalkiadaki & Guarente, 2015, Khan,
Auranen et al., 2014). To further investigate the NAD contribution to the mitochondrial function of
K562, the Mito Stress Test was performed using a Seahorse XFe24 (Fig. 4d). Basal oxygen

Ummarino et al.

consumption rate (OCR) is used as a surrogate measure of mitochondrial function since 372 373 mitochondria utilize oxygen to generate mitochondrial ATP. Our results show that NAD-treated 374 K562 cells displayed a marginal increase in maximal oxygen consumption in response to Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP) stress. This translated to a 1.3-fold 375 improvement in normalized maximal reserve capacity after only four days of co-incubation with 376 NAD. Albeit a marginal change in maximal reserve capacity post NAD-treatment was observed, 377 these results still highlight the significance NAD treatment plays on improving mitochondrial health 378 and perhaps contributing to the changes described. The entire profile of K562 NAD-treated does not 379 depart drastically from K562 untreated, but the increment of ORC emerging after the injection of 380 381 FCCP, indicate variations in respiration capacity of K562 NAD-treated versus untreated, subjected 382 to the same mitochondrial stimuli.

383

384 **Discussion**

This study explores the demethylation impact brought about by NAD treatment. On the example of the *CEBPA* gene locus, silenced by DNA methylation in the leukemia model used herein, we carried out a molecular and biological dissection of the potential mechanism implicated in NAD-induced demethylation. We demonstrate that impairment of DNMT1 enzymatic activity, as a result from NAD-promoted ADP-ribosylation, leads to loss of *CEBPA* promoter methylation and corresponding transcriptional activation of *CEBPA* mRNA thereby revealing an unknown NADcontrolled region within the *CEBPA* locus.

NAD is regarded as a potential antiaging molecule, the levels of which tend to decline over our lifetime, yet the molecular mechanisms linking low NAD levels to aging are only partially understood (Bonkowski & Sinclair, 2016, Lautrup, Sinclair et al., 2019). As a critical substrate of SIRT and PARP enzyme family members, that are involved in multiple epigenetic pathways such as acetylation, ADP-ribosylation and DNA methylation, fluctuations of NAD levels may alter chromatin remodeling (Bai, 2015, Chalkiadaki & Guarente, 2015). An additional epigenetic role for

Ummarino et al.

398	NAD, independently of its partnering enzymes, has also been hypothesized by few reports wherein
399	age- or nutrition-related decline of NAD levels were associated with the acquisition of abnormal
400	DNA methylation profiles at specific loci (Chang, Zhang et al., 2010, Kane & Sinclair, 2019). In
401	vitro evidence have also shown that ADP-ribosyl polymer impair DNMT1 enzymatic activity
402	(Reale et al., 2005) and an ADP-ribosylation transcriptional control for the P16 and TET1 genes has
403	been demonstrated (Ciccarone et al., 2014, Witcher & Emerson, 2009). To date over 2300 proteins,
404	including DNMT1, have been reported as ADP-ribosylated (http://ADPriboDB.leunglab.org) but
405	how ADP-ribosylation preserves the unmethylated state of certain regulatory sequences, remains
406	elusive (Vivelo, Wat et al., 2017). In every instance studied, we demonstrate that NAD treatment
407	induces production of PAR polymers, site-specific demethylation of CEBPA distal promoter and
408	results in transcriptional activation of CEBPA mRNA in K562 cells (Figs. 2,3). These results led to
409	hypothesize a site-selective demethylation mechanism wherein the NAD-induced production of
410	PAR polymers inhibits DNMT1 activity at CEBPA distal promoter by preventing DNMT1
411	interaction with the CGI, as described in the depicted model (Fig. 4e). The co-occurrence of PARs
412	and DNMT1 on the distal promoter, but not on the distal promoter II, suggests a PAR-mediated
413	specific inhibition of DNMT1 and reveals a NAD-responsive element on <i>CEBPA</i> promoter (Fig. 3).
414	Intriguingly, the morphological changes along with the pronounced NBT staining and the positive
415	shift of CD11b and CD14 surface markers, in addition to the improved mitochondrial function,
416	seems to point to a monocytic-macrophagic-like transcriptional activation program initiated by
417	NAD treatment (Fig. 4).
418	In conclusion, this study bridges a nutritional intervention to a molecular observation: increase of
419	NAD levels in a cancer cell line results in local correction of DNA methylation. These data,
420	therefore, provides a nutritional-guided approach for the prevention and the clinical management of
421	cancers or other conditions associated with alteration of DNA methylation, potentially linked to
422	decreased NAD levels.

423

Ummarino et al.

424 Acknowledgements

- 425 This work was supported by the National Institution of Health R00 CA188595, the Italian
- 426 Association for Cancer Research (AIRC) Start-up Grant N.15347, the Giovanni Armenise-Harvard
- 427 Foundation Career Development Award to ADR; the National Institution of Health (R01CA169259
- 428 and R01CA240257) and Harvard Stem Cell Institute Blood Program (DP-0110-12-00) to SSK; the
- 429 NCI K01CA222707 was awarded to BQT.

430

431 Author contributions

- 432 ADR supervised the project. ADR and SU conceived and designed the study and wrote the
- 433 manuscript; SU, MAB, YZ, AJ, ISK, MB, SSK, performed experiments; BQT, MAB, SSK and
- AKE provided valuable suggestions about the project, and BQT, MAB, SSK critically reviewed themanuscript.

436

437 **Conflict of Interest**

- 438 SSK reports research grants and honorarium from Boehringer Ingelheim, grants from Taiho
- 439 Pharmaceutical and MiNA therapeutics, and honorarium from Pfizer, Ono, Chugai, Astra Zeneca,
- 440 and Roche outside the submitted work.
- 441 The other authors declare no conflict of interests.
- 442
- 443 Data and materials availability: All data and materials are available in the main text or the
- 444 supplementary materials.

445

446 **References**

- 447 Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M (2019) Obesity and cancer risk: Emerging
- biological mechanisms and perspectives. *Metabolism* 92: 121-135
- Bai P (2015) Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell Maintenance. *Mol Cell* 58: 947-58

Ummarino et al.

- Birks S, Peeters A, Backholer K, O'Brien P, Brown W (2012) A systematic review of the impact of
 weight loss on cancer incidence and mortality. *Obes Rev* 13: 868-91
- 453 Blenn C, Althaus FR, Malanga M (2006) Poly(ADP-ribose) glycohydrolase silencing protects 454 against H2O2-induced cell death. *Biochem J* 396: 419-29
- 455 Bonkowski MS, Sinclair DA (2016) Slowing ageing by design: the rise of NAD(+) and sirtuin-
- 456 activating compounds. *Nat Rev Mol Cell Biol* 17: 679-690
- Bunce CM, Brown G, Hewison M (1997) Vitamin D and hematopoiesis. *Trends Endocrinol Metab*8: 245-51
- Chalkiadaki A, Guarente L (2015) The multifaceted functions of sirtuins in cancer. *Nat Rev Cancer*15: 608-24
- 461 Chang J, Zhang B, Heath H, Galjart N, Wang X, Milbrandt J (2010) Nicotinamide adenine
- dinucleotide (NAD)-regulated DNA methylation alters CCCTC-binding factor (CTCF)/cohesin
- binding and transcription at the BDNF locus. *Proc Natl Acad Sci U S A* 107: 21836-41
- 464 Ciccarone F, Valentini E, Bacalini MG, Zampieri M, Calabrese R, Guastafierro T, Mariano G,
- 465 Reale A, Franceschi C, Caiafa P (2014) Poly(ADP-ribosyl)ation is involved in the epigenetic
- 466 control of TET1 gene transcription. *Oncotarget* 5: 10356-67
- 467 Ciccarone F, Zampieri M, Caiafa P (2017) PARP1 orchestrates epigenetic events setting up
- 468 chromatin domains. Semin Cell Dev Biol 63: 123-134
- 469 D'Alo F, Johansen LM, Nelson EA, Radomska HS, Evans EK, Zhang P, Nerlov C, Tenen DG
- (2003) The amino terminal and E2F interaction domains are critical for C/EBP alpha-mediated
 induction of granulopoietic development of hematopoietic cells. *Blood* 102: 3163-71
- 472 Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, Figueroa ME, De
- 473 Figueiredo Pontes LL, Alberich-Jorda M, Zhang P, Wu M, D'Alo F, Melnick A, Leone G, Ebralidze
- KK, Pradhan S, Rinn JL, Tenen DG (2013) DNMT1-interacting RNAs block gene-specific DNA
 methylation. *Nature* 503: 371-6
- 476 Di Tano M, Raucci F, Vernieri C, Caffa I, Buono R, Fanti M, Brandhorst S, Curigliano G, Nencioni
- 477 A, de Braud F, Longo VD (2020) Synergistic effect of fasting-mimicking diet and vitamin C against
- 478 KRAS mutated cancers. *Nat Commun* 11: 2332
- 479 Fang YY, Bi FF, Zhou YM, Sun WP, Li CY, Liu Q, Zhao Y, Li D (2015) Nicotinamide adenine
- dinucleotide (NAD) may affect DNA methyltransferase 1 through regulation of BRCA1 in ovarian
 cancer. *Am J Cancer Res* 5: 1199-206
- 482 Federzoni EA, Humbert M, Torbett BE, Behre G, Fey MF, Tschan MP (2014) CEBPA-dependent
- 483 HK3 and KLF5 expression in primary AML and during AML differentiation. Sci Rep 4: 4261
- 484 Hackanson B, Bennett KL, Brena RM, Jiang J, Claus R, Chen SS, Blagitko-Dorfs N, Maharry K,
- 485 Whitman SP, Schmittgen TD, Lubbert M, Marcucci G, Bloomfield CD, Plass C (2008) Epigenetic
- 486 modification of CCAAT/enhancer binding protein alpha expression in acute myeloid leukemia.
- 487 *Cancer Res* 68: 3142-51
- Hageman GJ, Stierum RH (2001) Niacin, poly(ADP-ribose) polymerase-1 and genomic stability. *Mutat Res* 475: 45-56
- 490 Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter
- 491 hypermethylation. *N Engl J Med* 349(21): 2042-2054
- 492 Ida C, Ogata S, Okumura K, Taguchi H (2009) Induction of differentiation in k562 cell line by
- 493 nicotinic acid-related compounds. *Biosci Biotechnol Biochem* 73: 79-84
- 494 Iwata K, Ogata S, Okumura K, Taguchi H (2003) Induction of differentiation in human
- 495 promyelocytic leukemia HL-60 cell line by niacin-related compounds. *Biosci Biotechnol Biochem* 496 67: 1132-5
- Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. *Nat Rev Genet* 13: 484-92
- 499 Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. *Nature Reviews*
- 500 *Genetics* 3: 415-428

Ummarino et al.

- 501 Kane AE, Sinclair DA (2019) Epigenetic changes during aging and their reprogramming potential.
- 502 Crit Rev Biochem Mol Biol 54: 61-83
- 503 Khan NA, Auranen M, Paetau I, Pirinen E, Euro L, Forsstrom S, Pasila L, Velagapudi V, Carroll
- 504 CJ, Auwerx J, Suomalainen A (2014) Effective treatment of mitochondrial myopathy by
- nicotinamide riboside, a vitamin B3. EMBO Mol Med 6: 721-31
- King SE, Skinner MK (2020) Epigenetic Transgenerational Inheritance of Obesity Susceptibility.
 Trends Endocrinol Metab 31: 478-494
- Kumaki Y, Oda M, Okano M (2008) QUMA: quantification tool for methylation analysis. *Nucleic Acids Res* 36: W170-5
- Lautrup S, Sinclair DA, Mattson MP, Fang EF (2019) NAD(+) in Brain Aging and
- 511 Neurodegenerative Disorders. *Cell Metab* 30: 630-655
- 512 Meroni M, Longo M, Rustichelli A, Dongiovanni P (2020) Nutrition and Genetics in NAFLD: The
- 513 Perfect Binomium. Int J Mol Sci 21
- 514 Montgomery M, Srinivasan A (2019) Epigenetic Gene Regulation by Dietary Compounds in
- 515 Cancer Prevention. *Adv Nutr* 10: 1012-1028
- 516 Nur SM, Rath S, Ahmad V, Ahmad A, Ateeq B, Khan MI (2020) Nutritive vitamins as epidrugs.
- 517 Crit Rev Food Sci Nutr: 1-13
- 518 O'Sullivan J, Tedim Ferreira M, Gagne JP, Sharma AK, Hendzel MJ, Masson JY, Poirier GG
- (2019) Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. *Nat Commun* 10: 1182
- 521 Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K, Iervolino A, Condorelli F,
- Gambacorti-Passerini C, Caligiuri MA, Calabretta B (2002) BCR-ABL suppresses C/EBPalpha
 expression through inhibitory action of hnRNP E2. *Nat Genet* 30: 48-58
- Rajman L, Chwalek K, Sinclair DA (2018) Therapeutic Potential of NAD-Boosting Molecules: The
 In Vivo Evidence. *Cell Metab* 27: 529-547
- Ralto KM, Rhee EP, Parikh SM (2020) NAD(+) homeostasis in renal health and disease. *Nat Rev Nephrol* 16: 99-111
- Ray Chaudhuri A, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and
 chromatin remodelling. *Nat Rev Mol Cell Biol* 18: 610-621
- Reale A, Matteis GD, Galleazzi G, Zampieri M, Caiafa P (2005) Modulation of DNMT1 activity by
 ADP-ribose polymers. *Oncogene* 24: 13-9
- 532 Ryabokon NI, Čieslar-Pobuda A, Rzeszowska-Wolny J (2009) Inhibition of poly(ADP-ribose)
- polymerase activity affects its subcellular localization and DNA strand break rejoining. *Acta Biochim Pol* 56: 243-8
- 535 Strom SS, Yamamura Y, Kantarijian HM, Cortes-Franco JE (2009) Obesity, weight gain, and risk 536 of chronic myeloid leukemia. *Cancer Epidemiol Biomarkers Prev* 18: 1501-6
- 537 Tedesco J, Qualtieri J, Head D, Savani BN, Reddy N (2011) High Prevalence of Obesity in Acute
- 538 Promyelocytic Leukemia (APL): Implications for Differentiating Agents in APL and Metabolic
- 539 Syndrome. *Ther Adv Hematol* 2: 141-5
- Tenen DG (2003) Disruption of differentiation in human cancer: AML shows the way. *Nat Rev Cancer* 3: 89-101
- 542 Umek RM, Friedman AD, McKnight SL (1991) CCAAT-enhancer binding protein: a component of
 543 a differentiation switch. *Science* 251: 288-92
- Valdor R, Schreiber V, Saenz L, Martinez T, Munoz-Suano A, Dominguez-Villar M, Ramirez P,
- Parrilla P, Aguado E, Garcia-Cozar F, Yelamos J (2008) Regulation of NFAT by poly(ADP-ribose)
 polymerase activity in T cells. *Mol Immunol* 45: 1863-71
- 547 Vivelo CA, Wat R, Agrawal C, Tee HY, Leung AKL (2017) ADPriboDB: The database of ADP-
- ribosylated proteins. *Nucleic Acids Res* 45: 6254
- 549 Witcher M, Emerson BM (2009) Epigenetic silencing of the p16(INK4a) tumor suppressor is
- associated with loss of CTCF binding and a chromatin boundary. Mol Cell 34: 271-84

Ummarino et al.

- 551 Yilmaz M, Atilla FD, Sahin F, Saydam G (2020) The effect of malnutrition on mortality in
- bospitalized patients with hematologic malignancy. *Support Care Cancer* 28: 1441-1448
- Zeisel SH (2020) Precision (Personalized) Nutrition: Understanding Metabolic Heterogeneity. *Annu Rev Food Sci Technol* 11: 71-92
- 555 Zhang H, Alberich-Jorda M, Amabile G, Yang H, Staber PB, Di Ruscio A, Welner RS, Ebralidze
- A, Zhang J, Levantini E, Lefebvre V, Valk PJ, Delwel R, Hoogenkamp M, Nerlov C, Cammenga J,
- 557 Saez B, Scadden DT, Bonifer C, Ye M et al. (2013) Sox4 is a key oncogenic target in C/EBPalpha
- 558 mutant acute myeloid leukemia. *Cancer Cell* 24: 575-88
- 559 560

561 FIGURE LEGENDS

562 Figure 1. NAD inhibits cancer cell growth in a dose-dependent manner and drives

563 accumulation of intracellular poly ADP-ribose polymers.

- (A) Schematic of the experiment. K562 cells were cultured at different concentration of NAD:0.1,
- 565 0.5, 1, 1.5, 10 mM or vehicle. Cell pellets, RNA and DNA samples were collected at different time
- point, 24, 48, 72, 96 hrs. (B) K562 growth curves in presence of NAD or vehicle. Cells were
- 567 counted every 24 hrs for four days (C) The NAD/NADH content measured by colorimetric assay.
- 568 The absorbance was measured at 450 nm every 24 hrs from the addition of NAD (10mM) to the cell
- culture media. NAD ratio was calculated according to the manufacturer's instructions (BioVision).
- 570 (D) Immunofluorescence of PARs in K562 supplemented with of NAD (10mM) or vehicle after 24
- 571 hrs. (E) PAR and PARP1 protein levels in K562 cells treated with NAD. The immunoblot band

572 densities is measured using ImageJ and normalized by β -Actin.

573

574 Figure 2. DNA methylation patterns of *CEBPA* upon NAD (10mM) or vehicle treatment.

- 575 (A) Schematic representation of *CEBPA* locus. The three regions analysed in the promoter of
- 576 *CEBPA* located at -0.8 kb (-557; -857), -1.1 kb (-895; -1.122) or -1.4 kb (-1.120; -1.473) from the
- 577 TSS (+1) of the gene. (**B**, **C**) The methylation status of the distal promoter (the -0.8 kb region) was
- analysed at the three indicated time points. 9 clones were analysed, and lollipop graphs were
- 579 generated using QUMA software. CpG methylation ratio consisting in methylated CpGs divided by
- unmethylated CpGs, was calculated by QUMA software. (**D**, **E**) Methylation status of distal
- promoter I (-1.1 kb) and distal promoter II (-1.4 kb) analysed 72hrs upon NAD (10mM) addition.

Ummarino et al.

- Lollipop graphs were generated as described. (n=9 clones). All bisulfite sequenced clones were analysed by Fisher's exact test, *:p<0.05; **:p<0.01; **:p<0.001
- 584

585 Figure 3. NAD treatment enhances *CEBPA* transcription in K562 by a PARP1-dependent

- **mechanism.** Panel (A) shows *CEBPA mRNA* levels upon 4 days treatment with NAD. The graph
- represents the average of two independent experiments (n=2). Panel (B) shows *PARP1* and *DNMT1*
- mRNA levels upon 4 days treatment with NAD. Chromatin was collected to perform ChIP assays
- with antibodies to PAR, DNMT1 and IgG (C-E). (C) Schematic of the CEBPA promoter regions
- screened by ChIP-qPCR analysis respectively at -1.4 kb and -0.8 kb from the TSS (double-headed
- arrows). (**D**) ChIP using PAR antibody and qPCR analysis of regions -1.4 kb (left panel) and -0.8
- kb (right panel). (E) ChIP using DNMT1 antibody and qPCR analysis of regions -1.4 kb (left panel)
- and -0.8 kb (right panel). Error bars indicate \pm S.D. *:*p*<0.05; **:*p*<0.01; **:*p*<0.001
- 594

595 Figure 4. NAD induces myeloid differentiation in K562.

596 (A) Wright Giemsa staining showing morphological changes between NAD-treated and control

- cells after four days. (**B**) Increase in the surface markers CD15, CD14 and CD11b upon NAD
- treatment (C) NBT positive staining detected by small blue dots after counterstaining the cells with
- safranin. A magnification is shown in the rectangle. (D) Seahorse XF analysis of K562
- 600 mitochondrial stress response in cells treated with NAD or vehicle. The figure represents the mean
- of two biological replicates (n=2). Error bars indicate \pm S.D. (E) Model showing the molecular
- mechanism of *CEBPA* gene reactivation by NAD. *CEBPA* is epigenetically silenced in K562.
- 603 DNMT1 ensure a constant methylated status of *CEBPA* promoter (upper part). The NAD
- supplementation to K562 cell culture, boosts PARP1 to produce ADP-ribose polymers leading to
- 605 DNMT1 inhibition (bottom part). The ultimate effect is *CEPBA* re-activated transcription.

Ummarino et al.

607	Supplementary figure 1. Cell viability upon NAD treatment. (A) K562 cells viability and
608	apoptosis analyses upon NAD or vehicle (water) treatment. (B) Immunofluorescence analysis of
609	PARs formation induced by 10 min-treatment with H_2O_2 (100µM) in K562.
610	
611	Supplementary figure 2. DNA methylation patterns and expression profile of <i>CEBPA</i> upon NAD
612	or vehicle treatment. (A) Histograms representing the percentages of methylated CpGs (% Me
613	CpGs) across CEBPA promoter 72hrs or 96hrs after treatment with NAD (10mM), calculated by
614	Quma software. (B) expression levels of CEBPA in K562 treated for four days with either vehicle
615	(water) or different concentration of NAD (0.1, 0.5, 1, 1.5 mM). (C) PARP1 and DNMT1 protein
616	levels in K562 upon NAD treatment were monitored by western blot analysis.
617	
618	Supplementary figure 3. Flow cytometry analysis of CD14, CD15 and CD11b expression, in
619	K562 wild type and K562-CEBPA-ER differentiated cells.

620

С

е

Ummarino *et al*_Fig. 1

Ummarino *et al*_Fig. 2

а

b

Annexin V

Ummarino et al_Sup.Fig. 1

а

b

CEBPA (-1.4) 72hr

CEBPA (-1.1) 72hr

CEBPA (-0.8) 96hr

%

С

Ummarino et al_ Sup.Fig. 2

