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Abstract

We discuss the nonparametric Nadaraya-Watson (N-W) estimator of the drift
function for ergodic stochastic processes driven by α-stable noises and observed
at discrete instants. Under geometrical mixing condition, we derive consistency
and rate of convergence of the N-W estimator of the drift function. Furthermore,
we obtain a central limit theorem for stable stochastic integrals. The central limit
theorem has its own interest and is the crucial tool for the proofs. A simulation
study illustrates the finite sample properties of the N-W estimator.
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1 Introduction

We consider the following nonlinear stochastic differential equation (SDE) driven by an
α-stable Lévy motion (0 < α < 2):

dXt = b(Xt−)dt + σ(Xt−)dZt, X0 = η, (1)

where b : R → R is an unknown measurable function, σ : R → R+ is an unknown positive
function (which is considered as a nuisance parameter), and {Zt, t ≥ 0} is a standard
α-stable Lévy motion defined on a probability space (Ω,F , P ) equipped with a right
continuous and increasing family of σ-algebras {Ft, t ≥ 0}, and η is a random variable
independent of {Zt}. In this case, Z1 has a α-stable distribution Sα(1, β, 0), where
β ∈ [−1, 1] is the skewness parameter of the distribution. When β = 0, the underlying
stable distribution is symmetric. For more detailed discussion on stable distributions,
we refer to Samorodnitsky and Taqqu [38], Janicki and Weron [25], and Sato [39]. We
assume that the stochastic process {Xt} is observed at discrete time points {ti = i∆, i =

1Corresponding author, partially supported by FAU Start-up funding at the C. E. Schmidt College
of Science.
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0, 1, . . . , n}, where ∆ is the time frequency for observation and n is the sample size. The
purpose of this paper is to study the nonparametric estimation of the unknown drift
function b based on the sampling data {Xti}n

i=0. The nonparametric estimation of the
dispersion function σ is much harder, which will be addressed separately.

The SDEs driven by Lévy noises have attracted a lot of attention recently, espe-
cially in view of applications to finance (see Schoutens [41], Kyprianou, Schoutens and
Wilmott [29]), network traffic (see Mikosch et al. [31]), physics (see, e.g. Schertzer et
al. [40]), and climate dynamics (see Ditlevsen [10], [11]). The existence and uniqueness
of solutions to (1) under Lipschitz conditions are standard results in stochastic calculus
(see e.g., Applebaum [1]). For simplicity, we assume that the solution Xt is stationary
and geometrically strong mixing (in this case, the initial distribution is taken from the
invariant measure). Most recently, Masuda [30] provided sets of ergodic conditions for
a multidimensional diffusion process with jumps for any initial distribution to be expo-
nential β-mixing. These conditions build up the bridge between mixing sequences and
diffusion processes with jumps.

When the drift function in (1) is known to be linear, i.e. b(x) = −θx with unknown
parameter θ, the estimation of θ based on discrete or continuous observations of Xt was
studied in the parametric framework by Hu and Long [21], [22]. But in reality, the
drift function is seldom known. Hence in this paper, we focus on estimation of the drift
function b(·) in model (1) using nonparametric smoothing approach. Nonparametric
smooth approach is a data driven method and has many benefits. It provides a versatile
method of exploring the relationship between variables with no prior specified models.
The classical Nadaraya-Watson (N-W) estimator of the regression function was proposed
independently by Nadaraya [32] and Waston [44]. The major statistical properties (e.g.
consistency and rate of convergence) of nonparametric methods for the N-W estimators
under independent and identical distribution observations are developed between 1980
and 1990 (see Hardle [19]). These properties have been extended to dependent situations
in the 1990s (see Bosq [6]), typically for (α, β and φ)-mixing. These results have been
further generalized to stationary processes with so-called uniform predictive dependent
structure, which can be regarded as a natural alternative to strong mixing conditions,
by Wu [45] and [46].

Many authors have investigated nonparametric estimation for the drift function b in
the setting of diffusions driven by Brownian motions. Pham [34] and Prakasa Rao [35]
gave a non-parametric estimator for b by mimicking the construction of the well-known
Nadaraya-Watson estimator and the asymptotic behavior of the N-W estimator was
established. Arfi [2] discussed the uniformly strong consistency of the N-W estimator for
the drift function b under ergodic conditions. Recently, Bandi and Phillips [3] extended
the N-W estimators to non-stationary recurrent processes.

Other related methods of estimating the drift function have also been proposed.
Banon [4] constructed a drift estimator purely based on the kernel estimator and a
relation between the drift and the density function along with its derivative, which
was further extended by van Zanten [43], Dalalyan and Kutoyants [8], [9], Dalalyan [7]
(see also the monograph by Kutoyants [28] and references therein). Locally linear (or
polynomial) estimators have been proposed by Fan [12] and further discussed in Fan
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and Gijbels [14], Spokoiny [42] and Fan and Zhang [15]. For a complete review of non-
parametric methods for diffusion processes with applications in financial econometrics,
see the excellent survey paper by Fan [13]. Hoffmann [20] and Gobet, Hoffmann and
Reiss [17] applied wavelet approach.

In the stable setting, Hall, Peng and Yao [18] and Peng and Yao [33] discussed the
non-parametric regression estimation for time series with heavy tails. In this paper, we
shall consider the regression type of estimation for stochastic processes driven by Lévy
motions, which is a natural extension of the discrete time series with heavy tails. For
convenience, we shall discuss the Nadaraya-Waston estimator of the drift function b in
this paper. The basic idea of N-W estimator is to minimize an object function given
below with certain weights:

n−1∑
i=0

Wn,i(x)(Yi − a∆)2

over the parameter space of a and any given x ∈ R, where Yi := Xti+1
− Xti , ∆ =

ti+1 − ti, i = 0, 1, . . . , n− 1. The weight function is given by

Wn,i(x) =
Kh(Xti − x)∑n−1

i=0 Kh(Xti − x)
, i = 0, 1, ..., n− 1

where Kh(·) = K(·/h)/h, K is a kernel density function (with compact support) with
mean zero and finite variance, and h is the bandwidth for the kernel. Then, the N-W
estimator is given by the following expression

b̂n(x) =

∑n−1
i=0 YiKh(Xti − x)

∆
∑n−1

i=0 Kh(Xi − x)
. (2)

It turns out that N-W estimator is a simple class of a large family called “local polynomial
estimator” (see Fan and Gijbels [14]). Hence N-W estimator is also called local constant
estimator. As pointed out in Gobet, Hoffmann and Reiss [17], the N-W estimator of
the drift or diffusion coefficient in the classical diffusion cases is not consistent for low
frequency data (i.e. ∆ is fixed). So, we shall focus on the consistency and asymptotic
distribution of the N-W estimator of the drift function for high frequency data (i.e.
∆ → 0) in this paper.

The paper is organized as follows. In Section 2, we obtain consistency (1 < α < 2) or
inconsistency (0 < α ≤ 1) of the N-W estimator b̂n(x). A central limit theorem for stable
stochastic integrals is also established in Section 2, which is the crucial tool for proofs
presented in Sections 2 and 3. Then, in Section 3 we derive the rate of convergence and
pointwise asymptotic distribution of b̂n(x). Finally, in Section 4, we conduct a simulation
study to confirm the finite sample property. We conjecture that the results of this paper
can be extended to local polynomial estimator of order p. Throughout the paper, we
shall use notation “→P ” to denote “convergence in probability” and notation “⇒” to
denote “convergence in distribution”.
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2 Consistency of the Nadaraya-Watson Estimator

In this section, we consider consistency of the Nadaraya-Watson estimator of the drift
coefficient in our stable setting. The N-W estimator is closely related to the kernel
estimator f̂n(x) of the density function f(x) of the stationary distribution, which is
defined by

f̂n(x) =
1

n

n−1∑
i=0

Kh(Xti − x). (3)

Denote

ĝn(x) =
1

n∆

n−1∑
i=0

YiKh(Xti − x). (4)

Then, the N-W estimator given in (2) can be represented as

b̂n(x) = ĝn(x)/f̂n(x). (5)

Define the strong mixing coefficient of X by

αX(t) = sup
s∈R+

sup |P (A ∩B)− P (A)P (B)|,

where the second supremum is taken over measurable sets A and B in the σ-algebras
generated by Xs and Xs+t, respectively.

We will make use of the following assumptions:

(A.1). The drift function b(·) and dispersion function σ(·) satisfy a global Lipschitz
condition, i.e., there exists a positive constant L > 0 such that

|b(x1)− b(x2)|+ |σ(x1)− σ(x2)| ≤ L|x1 − x2|, x1, x2 ∈ R.

(A.2). The dispersion function σ(·) satisfies the following bounded condition: there
exist positive constants σ0 and σ1 such that 0 < σ0 ≤ σ(x) ≤ σ1 for each x ∈ R.
(A.3). The solution Xt admits a unique invariant distribution µ and is geometrically
strong mixing (GSM), i.e. there exists c0 > 0 and ρ ∈ (0, 1) such that αX(t) ≤ c0ρ

t, t ≥
0. Consequently, Xt is ergodic and stationary.
(A.4). The density function f(x) of the stationary distribution µ is continuous.
(A.5). The kernel function K(·) is a symmetric and nonnegative probability density
function (with compact support) satisfying∫ ∞

−∞
u2K(u)du < ∞,

∫ ∞

−∞
K2(u)du < ∞.

(A.6). As n →∞, h → 0, ∆ → 0 and n∆h →∞.

Our main results of this section are stated in the following theorems. Basically we dis-
cuss the consistency and inconsistency of the N-W estimator separately in terms of the
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range of α, i.e. α ∈ (1, 2) and α ∈ (0, 1].

Theorem 2.1. Assume that (A.1)-(A.6) hold. If f(x) > 0 and α ∈ (1, 2), then
b̂n(x) →P b(x) as n →∞.

Theorem 2.2. Assume that (A.1)-(A.6) hold. Let f(x) > 0 and α ∈ (0, 1]. If there

exists some r ∈ ( α
1+α

, α) such that nh∆
r

α(1−r) → 0, then b̂n(x) is not consistent.

Remark 2.3. The Lipschitz condition (A.1) is a typical condition which ensures that
SDE (1) admits a unique non-explosive cádlág adpated solution. For some sufficient
conditions which guarantee (A.3), we refer to Theorem 2.2 and Lemma 2.4 in Masuda
[30].

Before proving our main theorems, we prepare some preliminary results. The following
result (consistency of the kernel estimator) is an analogue to Lemma 2.1 in Bosq [6].

Lemma 2.4. Under the conditions (A.1)-(A.6), we have

f̂n(x) →P f(x) as n →∞. (6)

Proof. Note that

f̂n(x)− f(x) = f̂n(x)− E[f̂n(x)] + E[f̂n(x)]− f(x).

By the stationarity of the process Xt, we have

E[f̂n(x)] = E[Kh(X0 − x)] =

∫ ∞

−∞
Kh(y − x)f(y)dy

=

∫ ∞

−∞
K(u)f(x + uh)du

which converges to f(x) for each x as n → ∞ by Lebesgue dominated convergence
theorem. Thus, it suffices to prove that f̂n(x)− E[f̂n(x)] →P 0. We have

f̂n(x)− E[f̂n(x)] =
1

n

n−1∑
i=0

Kh(Xti − x)− 1

n

n−1∑
i=0

E[Kh(Xti − x)]

=
1

n

n−1∑
i=0

[Kh(Xti − x)− EKh(Xti − x)].

Let ηn,i(x) = Kh(Xti−1
−x)−EKh(Xti−1

−x), i = 1, 2, · · · , n. Note that sup1≤i≤n |ηn,i(x)| ≤
C0h

−1 a.s. for some positive constant C0 < ∞. Applying Theorem 1.3 of Bosq [6], we
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have for each integer q ∈ [1, n
2
] and each ε > 0

P

(
1

n

∣∣∣∣∣
n∑

i=1

ηn,i(x)

∣∣∣∣∣ > ε

)
≤ 4 exp

(
− ε2q

8v2(q)

)

+22

(
1 +

4C0h
−1

ε

)1/2

qαX ([p]∆) , (7)

where

v2(q) =
2

p2
s(q) +

C0h
−1ε

2

with p = n
2q

and

s(q) = max
0≤j≤2q−1

E[([jp] + 1− jp)ηn,[jp]+1(x) + ηn,[jp]+2(x)

+ · · ·+ ηn,[(j+1)p](x) + ((j + 1)p− [(j + 1)p])ηn,[(j+1)p]+1(x)]2.

Here we set ηn,n+1(x) = 0 for the well-definedness of s(q). By using Cauchy-Schwarz
inequality and stationarity of ηn,i(x), it is easy to find that s(q) = O(p2h−1). By choosing

q = [
√

n∆/
√

h] and p = n
2q

= O(
√

nh/
√

∆), we obtain

ε2q

8v2(q)
= ε2 ·O(qh) = O(ε2

√
n∆h). (8)

By the GSM property of Xt and some basic calculations, we find

22

(
1 +

4C0h
−1

ε

)1/2

qαX ([p]∆) ≤ C(ε) exp(−O(
√

n∆h)). (9)

Combining (7), (8) and (9), we have

P

(
1

n

∣∣∣∣∣
n∑

i=1

ηn,i(x)

∣∣∣∣∣ > ε

)
≤ C(ε) exp{−O(ε2

√
n∆h)}. (10)

Therefore, the desired convergence result (6) follows from given conditions. �

Next we establish a central limit theorem (CLT) for stable stochastic integrals, which
has some independent interest. The CLT will be crucial in establishing the consistency
(or inconsistency) and asymptotic distribution of the N-W estimator. Let φ(t) be a

predictable process satisfying
∫ T

0
|φ(t)|αdt < ∞ almost surely for T < ∞. Then the

stochastic integral
∫ t

0
φ(s)dZs is well-defined (see e.g., Rosinski and Woyczynski [37],

Kallenberg [27]). We assume that either φ(t) is nonnegative or Z is symmetric. Then,
we have the following version of Lenglart’s inequality in the stable setting.
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Lemma 2.5. For any given ε > 0 and δ > 0, there is some constant c > 0 such that

P

(
sup

0≤t≤T

∣∣∣∣∫ t

0

φ(s)dZs

∣∣∣∣ > ε

)
≤ cδ

εα
+ P

(∫ T

0

|φ(t)|αdt > δ

)
. (11)

Proof. Let St =
∫ t

0
|φ(s)|αds. By Theorem 4.1 and Theorem 4.2 of Kallenberg [27] (see

also Theorem 3.1 in Rosinski and Woyczynski [37] for the symmetric case), there exists
a strictly α-stable process Z

′
with the same finite-dimensional distributions as Z such

that
∫ t

0
φ(s)dZs = Z

′
(St) almost surely. By the classical maximal inequality (see e.g.,

Proposition 10.2 of Fristedt [16]), we find that for some c > 0

P

(
sup

0≤t≤T

∣∣∣∣∫ t

0

φ(s)dZs

∣∣∣∣ > ε

)
≤ P

(
sup

0≤t≤T

∣∣∣∣∫ t

0

φ(s)dZs

∣∣∣∣ > ε, ST ≤ δ

)
+ P (ST > δ)

≤ P

(
sup

0≤t≤T
|Z ′

(St)| > ε, ST ≤ δ

)
+ P (ST > δ)

≤ P

(
sup

0≤s≤δ
|Z ′

(s)| > ε

)
+ P (ST > δ)

≤ cδ

εα
+ P

(∫ T

0

|φ(t)|αdt > δ

)
.

This completes the proof. �

The following result is a version of the CLT for stable stochastic integrals.

Lemma 2.6. Suppose that there is a deterministic and nonnegative function Φ such
that

Φα(T )

∫ T

0

|φ(t)|αdt →P 1 as T →∞.

Then, we have

Φ(T )

∫ T

0

φ(t)dZt ⇒ Sα(1, β, 0). (12)

Proof. Let Rt = Φα(T )
∫ t

0
|φ(s)|αds. For a fixed T , we redefine the function φ on the

interval (T, T + 1] as φ(t) = Φ−1(T ) and define the stopping time τT = inf{t ≥ 0 : Rt >
1}. Then, τT ∈ [0, T + 1] almost surely. Note that there is a strictly α-stable process Z

′

with the same finite-dimensional distributions as Z such that Φ(T )
∫ t

0
φ(t)dZt = Z

′
Rt

. It
is easy to see that

Φ(T )

∫ τT

0

φ(t)dZt = Z
′

1 ∼ Sα(1, β, 0).

By using Lemma 2.5 and following exactly the same arguments as in the proof of Theo-
rem 1.19 in Kutoyants [28], we can show that the characteristic function of Φ(T )

∫ T

0
φ(t)dZt

converges to the characteristic function of Φ(T )
∫ τT

0
φ(t)dZt as T → ∞. Therefore, by
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the continuity theorem (see Theorem 26.3 of Billingsley [5]), it immediately follows that
(12) holds. �

We say that a continuous function F : [0,∞) → [0,∞) grows more slowly than uα

(α > 0) if there exist positive constants c, λ0 and α0 < α such that F (λu) ≤ cλα0F (u)
for all u > 0 and all λ ≥ λ0. Now we state the moment inequalities for stable stochastic
integrals in the following lemma, which can be regarded as a generalization of Theorem
3.2 of Rosinski and Woyczynski [36] where the symmetric case is dealt with. This lemma
will be a crucial tool in the proofs of our main results.

Lemma 2.7. Let φ(t) be a predictable process satisfying
∫ T

0
|φ(t)|αdt < ∞ almost surely

for T < ∞. We assume that either φ is nonnegative or Z is symmetric. If F (u) grows
more slowly than uα, then there exist positive constants c1 and c2 depending only on
α, α0, β, c and λ0 such that for each T > 0

c1E[F ((

∫ T

0

|φ(t)|αdt)1/α)] ≤ E[F (sup
t≤T

|
∫ t

0

φ(s)dZs|)] ≤ c2E[F ((

∫ T

0

|φ(t)|αdt)1/α)]. (13)

Proof. When Z is symmetric α-stable, moment inequalities (13) for stable stochastic
integrals have been established in Theorem 3.1 and Theorem 3.2 of Rosinski and Woy-
czynski [36]. We claim that the moment inequalities in Theorem 3.1 and Theorem 3.2 of
[36] are still true for non-symmetric (strictly) stable Lévy processes and stable stochastic
integrals. In this case, we assume that the integrand process φ(·) is non-negative and
predictable so that the random time change property (or inner clock property) of stable
stochastic integrals is applicable (see Kallenberg [27]). In the proof of Theorem 3.1 of
[36], there is only one place in the probability estimate of part I where the authors have
used the symmetric property via Lévy inequality. However, we can replace this estimate
by the following probability estimate with some constant C > 0

sup
λ>0

λαP

(
sup

0≤s≤1
|Zs| ≥ λ

)
≤ C,

provided in Proposition 10.2 of Fristedt [16] (see also Joulin [26]). All the remaining
arguments in the proof of Theorem 3.1 of [36] work throughout. Consequently, the mo-
ment inequalities in Theorem 3.2 of [36] are also true for non-symmetric case as stated
in (13) when the integrand process is non-negative, predictable and Lα-integrable. �

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. By (5) and Lemma 2.4, it suffices to prove that

ĝn(x) →P f(x)b(x) as n →∞. (14)
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We first note that

Yi =

∫ ti+1

ti

b(Xs−)ds +

∫ ti+1

ti

σ(Xs−)dZs

= b(Xti)∆ +

∫ ti+1

ti

(b(Xs−)− b(Xti))ds +

∫ ti+1

ti

σ(Xs−)dZs.

Then, by (4), it follows that

ĝn(x) =
1

n

n−1∑
i=0

b(Xti)Kh(Xti − x)

+
1

n∆

n−1∑
i=0

Kh(Xti − x)

∫ ti+1

ti

(b(Xs−)− b(Xti))ds

+
1

n∆

n−1∑
i=0

Kh(Xti − x)

∫ ti+1

ti

σ(Xs−)dZs

=: gn,1(x) + gn,2(x) + gn,3(x). (15)

We have the following claims:
(i) gn,1(x) →P f(x)b(x) as n →∞;
(ii) gn,2(x) →P 0 as n →∞;
(iii) gn,3(x) →P 0 as n →∞.
These three claims guarantee that (14) holds.

Proof of Claim (i). Note that

gn,1(x) = b(x)
1

n

n−1∑
i=0

Kh(Xti − x) +
1

n

n−1∑
i=0

(b(Xti)− b(x))Kh(Xti − x)

=: Bn,1(x) + Bn,2(x). (16)

By Lemma 2.4, it is clear that Bn,1(x) →P b(x)f(x) when n →∞. For Bn,2(x), by the
Lipschitz property of b(·) and stationarity of Xt, we have

|Bn,2(x)| ≤ 1

n

n−1∑
i=0

L|Xti − x|Kh(Xti − x)

≤ L
1

n

n−1∑
i=0

(|Xti − x|Kh(Xti − x)− E[|Xti − x|Kh(Xti − x)])

+L · E[|X0 − x|Kh(X0 − x)]. (17)

Note that |Xti − x|Kh(Xti − x)−E[|Xti − x|Kh(Xti − x)] is uniformly bounded for each
i (since K(·) has a compact and bounded support). By slightly modifying the proof of
Lemma 2.4, we can show that

L
1

n

n−1∑
i=0

(|Xti − x|Kh(Xti − x)− E[|Xti − x|Kh(Xti − x)]) →P 0 (18)
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when n → ∞. By using the continuity of f(x) and Lebesgue dominated convergence
theorem, we find

lim
h→0

E[|X0 − x|Kh(X0 − x)]

h
= lim

h→0

1

h

∫ ∞

−∞
|y − x|Kh(y − x)f(y)dy

= lim
h→0

∫ ∞

−∞
|u|K(u)f(x + uh)du

= f(x)

∫ ∞

−∞
|u|K(u)du. (19)

Combining (17), (18) and (19), it follows that Bn,2(x) →P 0 when n → ∞. Hence the
claim (i) holds. �

Proof of Claim (ii). By using the Lipschitz condition of b(·), we have

|gn,2(x)| ≤ 1

n∆

n−1∑
i=0

Kh(Xti − x)

∫ ti+1

ti

|b(Xs−)− b(Xti)|ds

≤ L

n∆

n−1∑
i=0

Kh(Xti − x)

∫ ti+1

ti

|Xs− −Xti|ds

≤ L

n

n−1∑
i=0

Kh(Xti − x) sup
ti≤t≤ti+1

|Xt −Xti|. (20)

Let us consider the estimate of supti≤t≤ti+1
|Xt −Xti|. Note that for ti ≤ t ≤ ti+1

Xt −Xti =

∫ t

ti

b(Xs−)ds +

∫ t

ti

σ(Xs−)dZs.

By using Lipschitz condition on b(·) again, we find

|Xt −Xti| ≤
∫ t

ti

|b(Xs−)|ds +

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣
≤

∫ t

ti

(|b(Xs−)− b(Xti)|+ |b(Xti)|)ds +

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣
≤ |b(Xti)|∆ + sup

ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣+ L

∫ t

ti

|Xs −Xti|ds.

By Gronwall’s inequality, we have

|Xt −Xti| ≤
(
|b(Xti)|∆ + sup

ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣) eL(t−ti).

It follows that

sup
ti≤t≤ti+1

|Xt −Xti| ≤ eL∆

(
|b(Xti)|∆ + sup

ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣) . (21)
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By (20) and (21), we find

|gn,2(x)| ≤ L

n

n−1∑
i=0

Kh(Xti − x)eL∆

(
|b(Xti)|∆ + sup

ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣)

≤ L∆eL∆ · 1

n

n−1∑
i=0

Kh(Xti − x)|b(Xti)|

+LeL∆ · 1

n

n−1∑
i=0

Kh(Xti − x) sup
ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣
=: Bn,3(x) + Bn,4(x). (22)

By the claim (i) with b being replaced by |b|, we know that

1

n

n−1∑
i=0

Kh(Xti − x)|b(Xti)| →P |b(x)|f(x)

when n → ∞. This implies that Bn,3(x) →P 0 when n → ∞. By Markov inequality
and Lemma 2.7, we have

P

(
1

n

n−1∑
i=0

Kh(Xti − x) sup
ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣ > ε

)

≤ 1

nε

n−1∑
i=0

E
[

sup
ti≤t≤ti+1

∣∣∣∣∫ t

ti

Kh(Xti − x)σ(Xs−)dZs

∣∣∣∣]

≤ C1

nε

n−1∑
i=0

E

[(∫ ti+1

ti

Kα
h (Xti − x)σα(Xs−)ds

)1/α
]

≤ C1

nε

n−1∑
i=0

E[Kh(Xti − x)σ1∆
1/α]

≤ O(∆1/α). (23)

Hence, Bn,4(x) →P 0 as n →∞. This completes the proof of claim (ii).

Proof of Claim (iii). We define

φn(t, x) =
n−1∑
i=0

1

h1/α
K

(
Xti − x

h

)
σ(Xt−)1(ti,ti+1](t), (24)

so that φn(t, x) is a predictable process. Then, we have

gn,3(x) =
1

n∆h
α−1

α

∫ tn

0

φn(t, x)dZt.

11



By using Markov inequality, Lemma 2.7, boundedness of σ(Xt−), and stationarity of Xt,
we find for some constant C2 > 0

P (|gn,3(x)| > ε)

≤ 1

n∆h
α−1

α ε
E
∣∣∣∣∫ tn

0

φn(t, x)dZt

∣∣∣∣
≤ C2

n∆h
α−1

α ε
E

[(∫ tn

0

|φn(t, x)|αdt

)1/α
]

≤ C2

n∆h
α−1

α ε

(
E

[
n−1∑
i=0

∫ ti+1

ti

1

h
Kα

(
Xti − x

h

)
σα(Xt−)dt

])1/α

≤ C2

n∆h
α−1

α ε

(
n∆σα

1 E
[

1

h
Kα

(
X0 − x

h

)])1/α

≤ C2σ1

n∆h
α−1

α ε
(n∆)

1
α O(1)

= O((n∆h)
1−α

α ), (25)

which goes to zero under condition (A.6). This shows that claim (iii) holds. �

Proof of Theorem 2.2. The claims (i) in the proof of Theorem 2.1 is still true when 0 <
α ≤ 1. For claim (ii), we need to make some minor modifications on its proof. It is clear
that we still have Bn,3(x) →P 0 under (A.1)-(A.6). For Bn,4(x), by Markov inequality,
Lemma 2.7, condition (A.2), and stationarity of Xt, we have for α

1+α
< r < α ≤ 1

P

(
1

n

n−1∑
i=0

Kh(Xti − x) sup
ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣ > ε

)

≤ 1

nrεr

n−1∑
i=0

E
[

sup
ti≤t≤ti+1

∣∣∣∣∫ t

ti

Kh(Xti − x)σ(Xs−)dZs

∣∣∣∣r]

≤ C1

nrεr

n−1∑
i=0

E

[(∫ ti+1

ti

Kα
h (Xti − x)σα(Xs−)ds

)r/α
]

≤ C1

nrεr

n−1∑
i=0

E[Kr
h(Xti − x)σr

1∆
r/α]

≤ O((nh∆
r

α(1−r) )1−r). (26)

which tends to zero when nh∆
r

α(1−r) → 0. So, under this extra condition, claim (ii)
holds when 0 < α ≤ 1. However, we shall prove that claim (iii) is not true, i.e., gn,3(x)

is no longer converging to zero in probability as n → ∞ and consequently b̂n(x) is not
consistent. Recall that

φn(t, x) =
n−1∑
i=0

1

h1/α
K

(
Xti − x

h

)
σ(Xt−)1(ti,ti+1](t).

12



Let

Φtn =

(
tnσ

α(x)f(x)

∫ ∞

−∞
Kα(u)du

)− 1
α

.

Then, we have

gn,3(x) =
1

n∆h1− 1
α

∫ tn

0

φn(t, x)dZt

=
σ(x)f

1
α (x)

(∫∞
−∞Kα(u)du

) 1
α

(n∆h)1− 1
α

· Φtn

∫ tn

0

φn(t, x)dZt,

or equivalently

Φtn

∫ tn

0

φn(t, x)dZt =
(n∆h)1− 1

α

σ(x)f(x)
1
α

(∫∞
−∞Kα(u)du

) 1
α

gn,3(x). (27)

Note that

Φα
tn ·
∫ tn

0

φα
n(t, x)dt = Φα

tn ·
∫ tn

0

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)
σα(Xt−)1(ti,ti+1](t)dt

= Φα
tn

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)∫ ti+1

ti

σα(Xt−)dt

= Φα
tn

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)
σα(Xti)∆

+Φα
tn

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)∫ ti+1

ti

(σα(Xt−)− σα(Xti))dt

=: I + J. (28)

Similar to Lemma 2.4, it is easy to prove that

1

n

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)
σα(Xti) →P σα(x)f(x)

∫ ∞

−∞
Kα(u)du. (29)

Therefore, we have

I =
1

σα(x)f(x)
∫∞
−∞Kα(u)du

· 1

n

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)
σα(Xti) →P 1. (30)

Next we deal with the second term J . By Lipschitz condition (A.1) on σ(·), (21) and

13



basic inequality ||u + v|q − |v|q| ≤ |u|q for u, v ∈ R and q ∈ (0, 1], we have

|J | = Φα
tn

∣∣∣∣∣
n−1∑
i=0

1

h
Kα

(
Xti − x

h

)∫ ti+1

ti

(σα(Xt−)− σα(Xti))dt

∣∣∣∣∣
≤ Φα

tn

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)∫ ti+1

ti

|σα(Xt−)− σα(Xti)| dt

≤ Φα
tn

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)∫ ti+1

ti

|σ(Xt−)− σ(Xti)|
α dt

≤ Φα
tn

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)
Lα∆ sup

ti≤t≤ti+1

|Xt −Xti|α

≤ LαeαL∆∆α

σα(x)f(x)
∫∞
−∞Kα(u)du

· 1

n

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)
|b(Xti)|α

+
LαeαL∆

σα(x)f(x)
∫∞
−∞Kα(u)du

· 1

n

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)
sup

ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣α
= J1 + J2. (31)

It is clear that J1 →P 0 under given conditions since (similar to Lemma 2.4)

1

n

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)
|b(Xti)|α →P |b(x)|αf(x)

∫ ∞

−∞
Kα(u)du. (32)

To prove that J2 →P 0, it is sufficient to show that

1

n

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)
sup

ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣α →P 0.

14



By using Markov inequality, Lemma 2.7, and condition (A.2), we have for q < 1

P

(
1

n

n−1∑
i=0

1

h
Kα

(
Xti − x

h

)
sup

ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣α > ε

)

≤ 1

(nhε)q
E

∣∣∣∣∣
n−1∑
i=0

Kα

(
Xti − x

h

)
sup

ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣α
∣∣∣∣∣
q

≤ 1

(nhε)q

n−1∑
i=0

E
[(

sup
ti≤t≤ti+1

∣∣∣∣∫ t

ti

K

(
Xti − x

h

)
σ(Xs−)dZs

∣∣∣∣)qα]

≤ C

(nhε)q

n−1∑
i=0

E
[(∫ ti+1

ti

Kα

(
Xti − x

h

)
σα(Xs−)ds

)q]

≤ C

(nhε)q

n−1∑
i=0

E
[
Kqα

(
Xti − x

h

)
σqα

1 ∆q

]
=

nCσqα
1 ∆q

(nhε)q

∫ ∞

−∞
Kqα

(
y − x

h

)
f(y)dy

= O((nh∆
q

1−q )1−q), (33)

which goes to zero if we choose r
α+(1−α)r

≤ q < 1 so that q
1−q

≥ r
α(1−r)

. Thus, combining

(28), (30)-(33), we find that

Φα
tn ·
∫ tn

0

φα
n(t, x)dt →P 1. (34)

Hence, by Lemma 2.6, we have

Φtn

∫ tn

0

φn(t, x)dZt ⇒ Sα(1, β, 0). (35)

If gn,3(x) →P 0 as n →∞, then the right hand side of (27) converges to zero in proba-

bility as n → ∞ since (n∆h)1− 1
α → 0 when 0 < α < 1 and (n∆h)1− 1

α = 1 when α = 1
under condition (A.6). This contradicts (35). Therefore, we conclude that gn,3(x) does
not converge to zero in probability. This completes the proof. �

3 Asymptotic Properties of the Nadaraya-Watson

Estimator

In this section, we study the asymptotic behavior of the N-W estimator for the drift
function. We impose some new conditions as follows:
(A.7). The drift function b(·) is twice continuously differentiable with bounded first and
second order derivatives.
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(A.8). The density function f(x) of the stationary distribution µ is continuously differ-
entiable (f

′
(x) is continuous).

Note that (A.7) is stronger than the Lipschitz condition on b(·) in (A.1), and (A.8) is
stronger than (A.4). We consider the rate of convergence of the N-W estimator when
1 < α < 2.

Let

Λ(x) =
f(x)1− 1

α

σ(x)
(∫∞

−∞Kα(u)du
)1/α

and

Γb(x) =

[
b
′
(x)

f
′
(x)

f(x)
+

1

2
b
′′
(x)

] ∫ ∞

−∞
u2K(u)du.

The main result of this section is stated in the following theorem.

Theorem 3.1 Let α ∈ [1, 2) and assume that (A.1)-(A.3) and (A.5)-(A.8) are satisfied.
We also assume that f(x) > 0.

(i) If (n∆h)1− 1
α h2 = o(1) and (n∆h)1− 1

α ∆1/κ = O(1) for some κ > α, then

(n∆h)1− 1
α Λ(x)(b̂n(x)− b(x)) ⇒ Sα(1, β, 0). (36)

(ii) If (n∆h)1− 1
α h2 = O(1) and (n∆h)1− 1

α ∆1/κ = O(1) for some κ > α, then

(n∆h)1− 1
α Λ(x)(b̂n(x)− b(x)− h2Γb(x)) ⇒ Sα(1, β, 0). (37)

Remark 3.2. (1) Since the set of conditions (A.1)-(A.3) and (A.5)-(A.8) in Theorem
3.1 is stronger than the set of conditions (A.1)-(A.6), all the results in section 2 are valid
under (A.1)-(A.3) and (A.5)-(A.8).
(2) Let us establish some sufficient conditions on admissible bandwidth h and time
frequency ∆. We first consider the conditions in part (i) of Theorem 3.1. When 1 <

α < 2, to ensure (n∆h)1− 1
α h2 = o(1), we may choose h = (n∆ log(n∆))−

α−1
3α−1 or h =

(n∆)−
(1+ε)(α−1)

3α−1 for any ε > 0 which is compatible with (A.6) when 0 < ε < 2α/(α − 1).

By some basic calculation, we find that if ∆ = O
(
(log n)δ n−

2κ(α−1)
2κ(α−1)+3α−1

)
with

δ =
κ(α− 1)2

α[2κ(α− 1) + 3α− 1]

or ∆ = O(n−γ) with

γ =

2(α−1)
3α−1

− (α−1)2ε
α(3α−1)

2(α−1)
3α−1

+ 1
κ
− (α−1)2ε

α(3α−1)

,
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then the condition (n∆h)1− 1
α ∆1/κ = O(1) is satisfied. By letting ε = 0 in the previous

arguments, we obtain the admissible h and ∆ for part (ii) of Theorem 3.1.
(3) When α = 1, it is clear that h2 = o(1) and ∆1/κ = o(1) under the condition (A.6).
Thus, we have

1

σ(x)
(b̂n(x)− b(x)) ⇒ Sα(1, β, 0).

This also shows that b̂n(x) is not consistent when α = 1 (see Theorem 2.2).

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1-(i). Note that

(n∆h)1− 1
α Λ(x)(b̂n(x)− b(x)) =

(n∆h)1− 1
α Λ(x)[ĝn(x)− b(x)f̂n(x)]

f̂n(x)

:=
Vn(x)

f̂n(x)
. (38)

Since f̂n(x) → f(x) in probability as n → ∞, it is enough to study the asymptotic
behavior of Vn(x). By (15), we find

Vn(x) = (n∆h)1− 1
α Λ(x)[gn,1(x)− b(x)f̂n(x)]

+(n∆h)1− 1
α Λ(x)gn,2(x)

+(n∆h)1− 1
α Λ(x)gn,3(x)

:= Vn,1(x) + Vn,2(x) + Vn,3(x). (39)

We have the following claims:
Claim 1.

Vn,1(x)

= oP (1) + oP (1) ·O((n∆h)1− 1
α h2)

+Λ(x)[b
′
(x)f

′
(x) +

1

2
b
′′
(x)f(x)]

∫ ∞

−∞
u2K(u)du · (n∆h)1− 1

α h2(1 + o(1)). (40)

Claim 2.
Vn,2(x) = OP (1) · (n∆h)1− 1

α ∆ + oP (1) · (n∆h)1− 1
α ∆1/κ. (41)

Claim 3.
Vn,3(x) ⇒ f(x)Sα(1, β, 0). (42)

Here the notation oP (1) (or OP (1)) means a sequence of random variables converging to
zero (or a finite constant) in probability.
Proof of Claim 1. We can express Vn,1(x) as

Vn,1(x) = (n∆h)1− 1
α Λ(x) · 1

n

n−1∑
i=0

(b(Xti)− b(x))Kh(Xti − x).
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By Taylor’s expansion, we have

b(Xti)− b(x) = b
′
(x)(Xti − x) +

1

2
b
′′
(x + θi(Xti − x))(Xti − x)2,

where θi is some random variable satisfying θi ∈ [0, 1]. Thus, it follows that

Vn,1(x)

= (n∆h)1− 1
α Λ(x)b

′
(x)

1

n

n−1∑
i=0

(Xti − x)Kh(Xti − x)

+(n∆h)1− 1
α Λ(x)

1

2
b
′′
(x)

1

n

n−1∑
i=0

(Xti − x)2Kh(Xti − x)

+(n∆h)1− 1
α Λ(x)

1

n

n−1∑
i=0

1

2
[b

′′
(x + θi(Xti − x))− b

′′
(x)](Xti − x)2Kh(Xti − x)

:= V
(1)
n,1 (x) + V

(2)
n,1 (x) + V

(3)
n,1 (x).

We have the following three claims:
Claim 1-(i):

V
(1)
n,1 (x) = oP (1) + Λ(x)b

′
(x)f

′
(x)

∫ ∞

−∞
u2K(u)du · (n∆h)1− 1

α h2(1 + o(1)). (43)

Claim 1-(ii):

V
(2)
n,1 (x) = oP (1) +

1

2
Λ(x)b

′′
(x)f(x)

∫ ∞

−∞
u2K(u)du · (n∆h)1− 1

α h2(1 + o(1)). (44)

Claim 1-(iii):

V
(3)
n,1 (x) = oP (1) ·O((n∆h)1− 1

α h2). (45)

Then, claim 1 follows immediately from claims 1-(i), 1-(ii) and 1-(iii).

Proof of Claim 1-(i). For i = 1, 2, · · · , n, set

ξn,i(x) = (n∆h)1− 1
α

(
(Xti−1

− x)Kh(Xti−1
− x)− E[(Xti−1

− x)Kh(Xti−1
− x)]

)
.

By the stationarity of Xt, we have

V
(1)
n,1 (x) = Λ(x)b

′
(x) · 1

n

n∑
i=1

ξn,i(x)

+Λ(x)b
′
(x)(n∆h)1− 1

α E[(X0 − x)Kh(X0 − x)]

:= Dn,1(x) + Dn,2(x). (46)
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We apply the inequality (1.26) in Theorem 1.3 of Bosq [6] to prove that Dn,1(x) = oP (1).
It suffices to show that 1

n

∑n
i=1 ξn,i(x) = oP (1). Note that

sup
1≤i≤n

|ξn,i(x)| ≤ M0(n∆h)1− 1
α a.s.

for some positive constant M0 < ∞. Applying Theorem 1.3 of Bosq [6], we have for
each integer q ∈ [1, n

2
] and each ε > 0

P

(
1

n

∣∣∣∣∣
n−1∑
i=0

ξn,i(x)

∣∣∣∣∣ > ε

)
≤ 4 exp

(
− ε2q

8v2(q)

)

+22

(
1 +

4M0(n∆h)1− 1
α

ε

)1/2

qαX ([p]∆) ,

where

v2(q) =
2

p2
s(q) +

M0(n∆h)1− 1
α ε

2

with p = n
2q

and

s(q) = max
0≤j≤2q−1

E[([jp] + 1− jp)ξn,[jp]+1(x) + ξn,[jp]+2(x)

+ · · ·+ ξn,[(j+1)p](x) + ((j + 1)p− [(j + 1)p])ξn,[(j+1)p]+1(x)]2.

By using Billingsley’s inequality (see Corollary 1.1 of Bosq [6])and stationarity of ξn,i(x),
it is easy to find that

s(q) = O(p(n∆h)2(1− 1
α

)∆−1),

here we have used the fact that
∑[p]

k=0 αX(k∆) = O(∆−1) under the GSM condition on
Xt. Then, we have

ε2q

8v2(q)
=

ε2n

O((n∆h)2(1− 1
α

)∆−1) + O(εp(n∆h)1− 1
α )

,

which goes to ∞ by choosing q = [
√

n∆/
√

h] and p = n
2q

= O(
√

nh/
√

∆). It is also easy

to see that (by GSM property of Xt again)

22

(
1 +

4M0(n∆h)1− 1
α

ε

)1/2

qαX ([p]∆) → 0.
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Therefore, we conclude that 1
n

∑n
i=1 ξn,i(x) = oP (1). Now, we turn to Dn,2(x). Note that

E[(X0 − x)Kh(X0 − x)]

=

∫ ∞

−∞

y − x

h
K

(
y − x

h

)
f(y)dy

=

∫ ∞

−∞
uK(u)f(x + uh)du · h

= hf(x)

∫ ∞

−∞
uK(u)du + h2

∫ ∞

−∞
u2K(u)f

′
(x + θuh)du

= f
′
(x)

∫ ∞

−∞
u2K(u)du · h2(1 + o(1)).

Thus, we have

Dn,2(x) = Λ(x)b
′
(x)f

′
(x)

∫ ∞

−∞
u2K(u)du · (n∆h)1− 1

α h2(1 + o(1)). (47)

This completes the proof of claim 1-(i).

Proof of Claim 1-(ii). The proof ideas are the same as above. For i = 0, · · · , n− 1, let

ζn,i+1(x) = (n∆h)1− 1
α

(
(Xti − x)2Kh(Xti − x)− E[(Xti − x)2Kh(Xti − x)]

)
.

By the stationarity of Xt, we have

V
(2)
n,1 (x) =

1

2
Λ(x)b

′′
(x) · 1

n

n−1∑
i=0

ζn,i(x)

+
1

2
Λ(x)b

′
(x)(n∆h)1− 1

α E[(X0 − x)2Kh(X0 − x)]

:= Dn,3(x) + Dn,4(x). (48)

Note that
sup

1≤i≤n
|ζn,i(x)| ≤ M1(n∆h)1− 1

α h a.s.

for some positive constant M1 < ∞. Applying Theorem 1.3 of Bosq [6], we have for
each integer q ∈ [1, n

2
] and each ε > 0

P

(
1

n

∣∣∣∣∣
n∑

i=1

ζn,i(x)

∣∣∣∣∣ > ε

)
≤ 4 exp

(
− ε2q

8ṽ2(q)

)

+22

(
1 +

4M1(n∆h)1− 1
α h

ε

)1/2

qαX ([p]∆) ,

where

ṽ2(q) =
2

p2
s̃(q) +

M1(n∆h)1− 1
α hε

2
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with p = n
2q

and

s̃(q) = max
0≤j≤2q−1

E[([jp] + 1− jp)ζn,[jp]+1(x) + ζn,[jp]+2(x)

+ · · ·+ ζn,[(j+1)p](x) + ((j + 1)p− [(j + 1)p])ζn,[(j+1)p+1](x)]2.

By using Billingsley’s inequality (see Corollary 1.1 of Bosq [6])and stationarity of ζn,i(x),
it is easy to find that

s̃(q) = O(p(n∆h)2(1− 1
α

)∆−1h2).

Then, we have

ε2q

8ṽ2(q)
=

ε2n

O((n∆h)2(1− 1
α

)∆−1h2) + O(εp(n∆h)1− 1
α h)

,

which goes to ∞ by choosing q = [
√

n∆/
√

h] and p = n
2q

= O(
√

nh/
√

∆). It is also easy

to check that (by GSM property of X again)

22

(
1 +

4M1(n∆h)1− 1
α h

ε

)1/2

qαX ([p]∆) → 0.

Therefore, we have Dn,3(x) = oP (1). Now, we consider Dn,4(x). Basic calculation yields
that

E[(X0 − x)2Kh(X0 − x)] = f(x)

∫ ∞

−∞
u2K(u)du · h2(1 + o(1)).

Hence, it follows that

Dn,4(x) =
1

2
Λ(x)b

′
(x)f(x)

∫ ∞

−∞
u2K(u)du · (n∆h)1− 1

α h2(1 + o(1)). (49)

Thus, the claim 1-(ii) holds.

Proof of Claim 1-(iii). By the uniform continuity of b
′′
(·) and the bounded support of

the kernel function K(·) (assuming that K(x) = 0 if |x| > M for some finite positive
number M), we have

|V (3)
n,1 (x)| ≤ 1

2
Λ(x) sup

|x−y|≤Mh

|b′′(x)− b
′′
(y)|(n∆h)1− 1

α
1

n

n−1∑
i=0

(Xti − x)2Kh(Xti − x)

= o(1) · (n∆h)1− 1
α h2 1

n

n−1∑
i=0

Kh(Xti − x)

= oP (1) · (n∆h)1− 1
α h2, (50)

since 1
n

∑n−1
i=0 Kh(Xti − x) → f(x) in probability. Hence, claim 1-(iii) holds.
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Proof of Claim 2. By (22), we have

Vn,2(x) = (n∆h)1− 1
α Λ(x)gn,2(x)

≤ (n∆h)1− 1
α Λ(x)

[
L∆eL∆ · 1

n

n−1∑
i=0

Kh(Xti − x)|b(Xti)|

+ LeL∆∆
1
κ · 1

n∆
1
κ

n−1∑
i=0

Kh(Xti − x) sup
ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣
]

.

Similar to claim (i) in the proof of Theorem 2.1, under given conditions, we have

1

n

n−1∑
i=0

Kh(Xti − x)|b(Xti)| →P |b(x)|f(x).

As in the proof of Claim (ii) of Theorem 2.1 via Lemma 2.7, we can show that

P

(
1

n∆
1
κ

n−1∑
i=0

Kh(Xti − x) sup
ti≤t≤ti+1

∣∣∣∣∫ t

ti

σ(Xs−)dZs

∣∣∣∣ > ε

)
≤ O(∆

1
α
− 1

κ ).

Thus, it follows that claim 2 holds.

Proof of Claim 3. Recall that

φn(t, x) =
n−1∑
i=0

1

h1/α
K

(
Xti − x

h

)
σ(Xt−)1(ti,ti+1](t).

and

Φtn =

(
tnσ

α(x)f(x)

∫ ∞

−∞
Kα(u)du

)− 1
α

.

Then, we have

Vn,3(x) = (n∆h)1− 1
α Λ(x)gn,3(x)

= (n∆h)1− 1
α Λ(x)

1

n∆

n−1∑
i=0

Kh(Xti − x)

∫ ti+1

ti

σ(Xs−)dZs

= f(x) · Φtn

∫ tn

0

φn(t, x)dZt.

By (35), it follows that
Vn,3(x) ⇒ f(x)Sα(1, β, 0),

i.e., claim 3 holds.
Finally, by (39) and the claims 1-3, we obtain

Vn(x) ⇒ f(x)Sα(1, β, 0) (51)
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under the given conditions. By using (38), (51), Slutsky’s theorem and Lemma 2.4, we
conclude that

Λ(x)(n∆h)1− 1
α (b̂n(x)− b(x)) =

Vn(x)

f̂n(x)
⇒ Sα(1, β, 0).

This completes the proof of part (i) of Theorem 3.1.

Proof of Theorem 3.1-(ii). If (n∆h)1− 1
α h2 = O(1), by (40), we have

Vn,1(x) = (n∆h)1− 1
α h2Λ(x)Γb(x)f(x) + oP (1).

By (41) and (42), we know that Vn,2(x) = oP (1) and Vn,3(x) ⇒ f(x)Sα(1, β, 0) under

the condition (n∆h)1− 1
α ∆

1
κ = O(1). Then, we use (39) to obtain

Vn(x)− (n∆h)1− 1
α h2Λ(x)Γb(x)f(x) ⇒ f(x)Sα(1, β, 0).

By Slutsky’s theorem and the fact that f(x)/f̂n(x) → 1 in probability, we find

(n∆h)1− 1
α Λ(x)(b̂n(x)− b(x)− h2Γb(x))

=
Vn(x)

f̂n(x)
− (n∆h)1− 1

α h2Λ(x)Γb(x)

=
Vn(x)− (n∆h)1− 1

α h2Λ(x)Γb(x)f(x)

f̂n(x)
+ (n∆h)1− 1

α h2Λ(x)Γb(x)

(
f(x)

f̂n(x)
− 1

)
⇒ Sα(1, β, 0).

This completes the proof. �

4 A Simulation Study

In this section, we conduct a simulation study to confirm the finite sample properties of
the asymptotic results developed in sections 2 and 3. Let T be the length of observation
time interval, n be the sample size, and ∆ = T/n be the observation time frequency.
For simplicity, let the dispersion function σ(·) be constant. The stable index α consid-
ered is 1.5 and the skewness parameter β is zero (symmetric case). We simulate and
approximate Xt by using the Euler scheme (see e.g., Jacod [23], Jacod et al. [24]):

Xti+1
= Xti + b(Xti)∆ + σ ·∆Zti , (52)

where ti = i∆ and ∆Zti = Zti+1
−Zti , i = 0, 1, · · · , n− 1. We consider various length of

observation time interval T and sample size n. The length of observation interval of the
process considered is 10, 50, 100, while the sample size n considered is 1000, 5000, 10000,
respectively. The drift function considered in the simulation is one of the following:

(i). b1(x) = −cx + d
√

1 + x2
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(ii). b2(x) = −cx + d sin(2πx),

for various c and d. Two different values of c and d are tested. Two possible values of
σ considered are 0.05 and 0.1. We consider six cases of parameter settings:

• Case 1: c = 1, d = 0, σ = 0.05 and b(x) = b1(x);

• Case 2: c = 1, d = 0.5, σ = 0.05 and b(x) = b1(x);

• Case 3: c = 3, d = 0.5, σ = 0.05 and b(x) = b2(x).

• Case 4: c = 1, d = 0, σ = 0.1 and b(x) = b1(x);

• Case 5: c = 1, d = 0.5, σ = 0.1 and b(x) = b1(x);

• Case 6: c = 3, d = 0.5, σ = 0.1 and b(x) = b2(x).

The purpose of the six cases are two folds. For cases 1-3, we are testing the sensitivity
of the N-W drift function estimator away from linearity. By changing the value of σ
from 0.05 to 0.1 in cases 1, 2 and 3, we obtain cases 4, 5 and 6, respectively. The purpose
of these changes is to test the sensitivity of the N-W estimators with respect to different
sizes of the scale parameter σ in the Lévy driven error term.

We adapt the direct method from Janicki and Weron [25] (1994, pp. 48) to generate
the α-stable process. That is: we first generate a random sample Vti uniformly distrib-
uted on (−π/2, π/2) and an exponential random sample Wti with mean 1. Then we
compute the symmetric α-stable random sample

Sti =
sin(αVti)

{cos(Vti)}1/α
×
{

cos(Vti − αVti)

Wti

} (α−1)
α

.

Last, we generate the Lévy sample path by putting ∆Zti = ∆1/αSti . The initial value
of the process Xt is set to be one.

Figure 1 shows the ten simulated sample paths of the process Xt. Notice that the
jump error term could affect the process a lot at some typical time points. Figure 2
shows the kernel density estimate of a realization of Xt overlay with the histogram.

In computing the N-W estimate, the normal kernel is used and the bandwidth is
selected according to the sample size n. In the simulation, we use h = n−1/5. Figure
3 represents the estimated b̂(·) from a random sample with n = 1000 and h = n−1/5

and other information given in the figure. It shows that the N-W estimator performs
reasonably well.

The estimator b̂(x) is assessed via the square-Root of Average Square Errors (RASE)

RASE =

[
1

n

n∑
k=0

{
b̂(xk)− b(xk)

}2
]1/2

,

where {xk}n
1 are chosen uniformly to cover the range of sample path of Xt. Table 1

below reports the results on RASE of the N-W estimator of the drift function b(·) based
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on 1000 replicates. In each cell, the first, second and third numbers represent the mean,
standard deviation and median of RASE for three sample sizes n = 1000, n = 5000 and
n = 10000, respectively.

Table 1: Simulation results on RASE for three lengths of time interval and three
sample sizes for six parameter settings. mean=sample mean, median=sample median,

sd=sample standard deviation over the 1000 replicates.

RASE mean sd median mean sd median mean sd median
T n=1000 n=5000 n=10000

Case=1
10 0.0781 0.1234 0.0409 0.0901 0.1141 0.0558 0.1013 0.1170 0.0646
50 0.0460 0.0556 0.0306 0.0570 0.0720 0.0368 0.0656 0.0820 0.0425

100 0.0352 0.0516 0.0250 0.0434 0.0458 0.0302 0.0487 0.0686 0.0339
Case=2

10 0.0407 0.0682 0.0283 0.0464 0.1417 0.0264 0.0423 0.0627 0.0267
50 0.0304 0.0537 0.0215 0.0388 0.1754 0.0184 0.0346 0.0763 0.0191

100 0.0287 0.0415 0.0197 0.0318 0.0859 0.0183 0.0424 0.1316 0.0195
Case=3

10 0.1637 0.5541 0.1341 0.1055 0.2617 0.0684 0.0983 0.2344 0.0614
50 0.1083 0.0840 0.0995 0.0926 0.3041 0.0535 0.0875 0.2103 0.0492

100 0.0940 0.1016 0.0782 0.0672 0.1029 0.0464 0.0684 0.1655 0.0397
Case=4

10 0.1279 0.5408 0.0631 0.1254 0.3521 0.0611 0.1457 0.4305 0.0662
50 0.0865 0.2032 0.0472 0.0895 0.1659 0.0493 0.1140 0.3014 0.0509

100 0.0691 0.1190 0.0401 0.0912 0.1770 0.0536 0.1103 0.3473 0.0546
Case=5

10 0.0789 0.2310 0.0441 0.0837 0.1919 0.0474 0.0853 0.1629 0.0495
50 0.0630 0.1299 0.0371 0.0782 0.1652 0.0395 0.0927 0.2317 0.0411

100 0.0576 0.0920 0.0366 0.0803 0.2088 0.0428 0.0864 0.2096 0.0437
Case=6

10 0.1686 0.3104 0.1202 0.1514 0.3264 0.0929 0.2029 1.2164 0.0896
50 0.1113 0.1590 0.0771 0.1262 0.2626 0.0710 0.1615 0.5427 0.0744

100 0.0869 0.1216 0.0601 0.1128 0.2156 0.0659 0.1181 0.2026 0.0663

Notice that as the time interval expands longer, the estimation is better as expected
for whatever sample size even though the time frequency becomes larger. This means
that T tending to ∞ is more important than ∆ tending to 0 in the asymptotic behavior
of the N-W estimator. The estimates are not so sensitive to the linearity assumption
on the drift function. As the σ increases, the summary statistics of RASE confirm the
results in Theorem 3.1. Namely, the increase of σ slows down the convergence of the
N-W estimator.

As both T and n get larger, the summary statistics of RASE are getting better seen
through the diagonal numerals in Table 1. The bias is getting smaller, the standard
deviation is getting smaller most of the time. So, in general, when Th becomes larger,
the N-W estimator becomes better with smaller RASE.
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One notices that for a fixed length of observation interval T , as the sample size gets
larger, the N-W estimator does not behave better, which is consistent with the asymp-
totic theory of the N-W estimators for stochastic processes driven by Lévy motions. This
confirms that the drift function can not be identified in a fixed time interval, no matter
how frequently the observations are sampled. This phenomenon is also consistent with
the sample paths shown in Figure 1. That is, the more often observed diffusion process,
it is more affected by the Lévy driven error term which may produce many huge jumps.

References
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[19] W. Härdle, Applied nonparametric regression, Cambridge University Press, Cam-
bridge, 1990.

[20] M. Hoffmann, Adaptive estimation in diffusion processes, Stochastic Process. Appl.
79 (1999) 135-163.

[21] Y. Hu, H. Long, Parameter estimation for Ornstein-Uhlenbeck processes driven by
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