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Abstract. We describe in mathematical detail the Nahm transformation which
maps anti-self dual connections on the four-torus (S')* onto anti-self-dual
connections on the dual torus. This transformation induces a map between the
relevant instanton moduli spaces and we show that this map is a (hyperKahler)
isometry.

Introduction

This paper deals with “magical” properties of U(n) anti-self-dual (asd) connections
A on a C"—bundle F over a four-torus 7%, The “witchcraft” starts by introducing
a family of Dirac operators coupled to (F, A) parametrized by the dual torus 7%
The families index turns out to be a bundle F — T* (under a genericity assumption
on A) and comes equipped with a natural connection A, which is again asd
(Theorem 1.5). This is Nahm’s transform. Doing it again to (F, A), we obtain (F, 4)
and a unitary equivalence (F, A) ~ (F, A). In other words the square of Nahm’s
transform is the identity (Theorem 2.8&2.9). This was discovered by the authors
and independently by Schenk [21], and relies heavily on some ideas of Nahm
[19,20]. The transformation now induces a map of moduli spaces of (generic) asd
connections N:.#(F)— .#(F). The spaces .#(F) and .#(F) carry a hyperKihler
metric and N turns out to be a hyperKahler isometry, as was conjectured by S. K.
Donaldson (Theorem 3.4).

This transformation has been around for awhile, and the fact that its square
is the identity was announced by Nahm [19,20] in the early cighties (see also
Corrigan and Goddard [6]). However, for mathematicians it is not so easy to
understand Nahm’s work. In a way, the torus case treated here is the simplest
version of Nahm’s transform. Nahm originally developed his transformation for
instantons invariant under subgroups of R*, different from the 4-dimensional lattice
(such as R or Z). For time-invariant instantons this was used extensively by Hitchin

* Address until September 1, 1989, Department of Mathematics University of Utah, Salt Lake City,
Utah 84112, USA



268 P.J. Braam and P. van Baal

{137 and Hurtubise-Murray [157 to study magnetic monopoles. In these cases
the direct analytical attack is still missing.

Two further comments are in place. In algebraic geometry, Mukai [16]
discovered the same transformation, but now in the category of coherent sheaves
on abelian varieties. Mukai [18] applied this to the study of moduli spaces of
stable bundles on abelian varieties and this could be of future use in mathematical
physics. Antony Maciocia pointed out that one can use Mukai’s work to give an
alternative proof of the isometry property of the transform.

Secondly, it should be pointed out that Nahm’s work is very reminiscent of
certain methods used in the theory of completely integrable systems. Also there
the solutions of an associated set of linear equations is a key ingredient, see e.g.
Segal-Wilson [22] and Duistermaat--Griinbaum [12].

1. Connections on 7% and the Nahm Transform

Let A < R* be a lattice of rank 4. Then T* = R*/A inherits from R* the structure
of an oriented Riemannian manifold. Clearly T* is a four-dimensional torus, ie.
T* is diffeomorphic to (S')*. We shall assume the volume to be 1. Let R* denote
the dual space of R* and define the dual lattice A* as

A* = {ueR* u(iyeZ,VicA}.

Cohomology classes on T* can be represented by constant, or equivalently,
invariant differential forms, therefore

HY(T* R)y=R* HY(T*Z)=A*

We can also define a dual torus T* = R*/A*. Points in T* parametrize the unitary
flat connections on the trivial line bundle T* x C = & — T*, up to gauge equivalence,
because

Repr (,(T*).SY) = HY(T* R)/H (T*: Z2) = T*.

Denote by n:T* x R* - T* the projection. On the trivial line bundle 7* % —
T* x R* we have a universal conncction 1-form given by
4

w(x,z)=2ni ) z,dx,,
w=1
where x, and z, are dual lincar coordinates on R* and R*. Clearly w(x,z)
and w(x,z + 4) are, for ieA*, gauge equivalent connections on T*; the gauge
transformation g(x) = exp (— 2niA(x)) satisfies g-w, = w,. ;. This gives a quotient

bundle 2 - T* x T* with connection w. The bundle # is called the Poincaré
bundle and the curvature of w equals

Q=2niY dz, ndx,. (L.
I

There is a canonical isomorphism 7* = T* and under this isomorphism 2 = 2%,
the dual of 2. In order to see this we use the gauge transformation g{x,z)=

exp(—2mix-z) on R* x R* to transform w(x, z) into —2niy x,dz,, which is minus
. u
the universal connection on R* x T,

Let Q be a principal U(n)-bundle over T* equipped with a connection 4. Let
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F =Q X y4,C" and define a family of connections A, on F by 4, = A + 2zild, Y z,dx,.

“
Clearly A, is the connection A® 1 + Id, ® w on 7*(F ® ) restricted to T* x {z}.
Because the modification lies in the centre of U(n) the curvature of A, equals that
of 4. In the same way we can equip Z ® n*F with a connection A..

If §7,8™ — T* denote the spin-bundles of T* then we have Dirac operators:

D} I (T*S* @F)~T(T* S ®F),
D; I (T*S” @F)~»I'(T* 5" ®F).

A connection A on F is said to be I-irreducible if there are no covariantly constant
sel (T*, F)for any A,,zeT*; this concept is due to Donaldson—Kronheimer [10].
If the holonomy of 4, is an open setin U(n) (for all z) then A is certainly 1-irreducible.

Lemma 1.1. If A is 1-irreducible and anti-self dual then ker D < I'(T*,S* ® F) is
zero for all z.

Proof. Use the Weitzenboch formula:
D, D =ViV,, (1.2)
see Atiyah—~Hitchin—Singer [3], §6. B

For l-irreducible 4 the vector spaces F,=ker D}, build up a smooth vector
bundle F over T% Let H—T* be the bundle of Hilbert spaces with fiber
FIZ =[XT* S~ ® F&® 24« y). Then F is a subbundle of H. Observe further that
the “horizontal-component” d/dz of the connection 4 ® 1 + Id, ® w induces a (flat)
connection d on H — T"', and that over Ii“, #*F is a Hermitian subbundle of the
trivial, flat Hilbert space bundle with fiber L*(T#, S~ ® F). This will be important
for computational purposes. Let

P:H-F
denote the I?—projection, then it is well known (see e.g. Atiyah [1]) that:
V=Pd:I'(T* F)>T(T* A'®F)
defines a connection 4 on F.

Definition 1.2. The Nahm transform 4" of (F, A) is the pair of vector bundle and
connection (F, A).

First we shall study the topology of F. It is not very hard to prove that,
topologically, U(n) bundles F — T* are determined by

n=rk(F), ¢ (F)eH T* Z), c,(F)eH*(T* 2).

For n>1 and any ¢, (F), ¢,(F) a bundle F can be constructed, and if F is a line
bundle (n = 1) then ¢,(F) =0 1s the only constraint on these data. If one assumes
that F carries an anti-self dual connection then ¢, (F) must be an anti-self dual
class in H*(T*, Ryn H*(T*,Z). For this the three dimensional eigenspace of * in
H?*(T*, R) with eigenvalue — I, must have a non-empty intersection with the lattice
H?(T*,Z). This depends on the Riemannian structure, and for a generic flat torus
the only integral anti-self dual class is 0. Concerning the topological invariants of
F we have:
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Proposition 1.3. Let A be a 1-irreducible asd connection on F. For F we have
rk(ﬁ) = —3p(Fg) = c3(F) = 3c}(F),

N 1
e (F)= 5 Quue (FYLT*),
pi(Fg)=—21k(F) or cy(F)=rk(F)+c}(F).

Here / denotes slant product, ie. integration over T*, U denotes cup product and
(Fg, Fg) are the underlying real bundles of (F, F).

Proof. The Atiyah-Singer index theorem for families (see Atiyah--Singer [47])
asserts that

ch(F) = tk(F) + ¢, (F) + 1p,(F) = — ch(P) U ch(Fyu A (T)/[T*],
with o/ (X) the ./ —genus of X. This proves the proposition. M
This proposition has a nice corollary (see Mukai [ 16],[18] and also Schenk [217]):

Corollary 1.4. There exist no asd connections A on a bundle F with ¢,(F)=0,

c{(Fy=1.

Proof. It is easy to see that such a pair (F, A) would be I-irreducible. Thus F is a
vector bundle of rank 1 with ¢, # 0, which is impossible. R

If one allows a twist such 1-instantons do exist, More precisely let O -~ T* be
an SO(3) bundle with non-zero second Stiefel- Witney class (w,(Q) #0, i.¢. there
is twist). Such a bundle has a unique flat connection A,, up to SO(3)-gauge
transformations for which all cohomology groups of the Atiyah-Hitchin—-Singer
complex [3], §6 vanish. Using the construction of Taubes [23] and Donaldson
[11] one can “attach™ a localized 1-instanton from S* to this flat connection in
order to obtain a new asd connection on a bundle Q' — T* with w,(Q') = w,(Q)
and p,(Q)= — 4. The dimension of the hyperKdhler moduli space .# of these
connections is 8. The eight parameters asymptotically equal centre and scale of
the attached, localized instanton (T* x (0, ¢)) and finally the attaching parameters
in SO(3)/Z,, where Z, is the stabilizer of 4,. Consequently .# modulo the 4-torus,
acting by translations, is a hyperKihler 4-manifold, which is presumably related
to a K3-surface.

The Nahm transformation has a “magic” property:

Theorem 1.5. Let A be asd and 1-irreducible then A is asd on F.

Proof. Tt will be expedient to introduce a more detailed notation. Let Filz) =
Wi(x)el? (T4 STRZ.QF) with zeR*, j=1,..., 2pl( ) be an orthonormal
framing of F on R* Note that . is tr1v1ahzed on T* x R*, using the connection
o = 2miz,dx,, therefore we map into the fixed vector space L*(T*,8™ ® Z(® F),
which is isomorphic to LZ(T4 S ®F)

Then for a section $(z Zs , S eC“(R“) we have (with P:L2(T*S"®F)®

A5 F®R A the pro;ectlon).

A~ -~

V= Pd§ = (1 — D G.D )[d(3,(2)¥i(x))], (1.3)
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because, using Hodge theory,
P=(1-D4.G.D,)
with G,=(D; D} )" ' acting on LZ(T“,]:"@S_). For P we also have a pedestrian
expression. If re L*(T*, F ® S ™), then
PV:ZQI‘?’;@F, (1.4)
7

where (,)> denotes the L*(T* F® S ") inner product. So

o~

V$ = (ds; + A8 [
with A i the connection matrix of A equal to
A= (JLATS = hadys). (1.5)
For the curvature one easily finds:
Fy=dAy+ Ay A A= (AWt A dydy + CPldyty n Cyt.dyd.
Now (dyi, k> = — Yl dyt), so
Fiy= (i, ndpdy — CPAYL, A dyl)
=(D};,G.D3,dyi, ndyl> = G.D YL A D dyd).
But
Dy dl=[D},.d]wi =~ Q. (16)
The dot in this equation stands for Clifford multiplication, using the fact that there

is a covariantly constant framing of S*,§~ and T*T* Thus G, acts on
LHT*, ST QF)~S* ®:L*T*F) as 1dg, ®:%, with ¥, =(V% V, ) ! acting on

z

L*(T*,F). This shows that G, commutes with Clifford multiplication. Thus we
obtain

Fiy= = QN QYL Gl (L.7)

with Q A Qi = (2n)? Y dz, A dz,dx,dx, . which is an element of A2 ® S~ @ F.
IR

n

The formal manipulations in this proof will appear again and will sometimes be
left to the reader.

There is a holomorphic version of the Nahm transformation, which has been
discovered by Mukai [ 16, 18]. For this one needs to choose a holomorphic structure
on T* The Poincaré bundle now appears as a holomorphic line bundle on
T* x Pic®(T*); here Pic®(T*)~T* in a canonical way. A bundle F carrying a
1-irreducibie asd connection is holomorphic and stable; conversely every stable
holomorphic bundle carries a unique asd connection inducing the holomorphic
structure, see Donaldson [8]. Mukai’s “Fourier functor” is defined as:

F(F)=R'%,(# Qn*F),

where #:T% x T#— T* is the projection. If F is a stable vector bundle then also
F(F) will be stable and we shall prove (see also Donaldson-Kronheimer [107)
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that #(F) is the holomorphic bundle underlying (F, 4). In fact the fibre F (F),,
(zeT*) equals H(T*, F® L), where L= %|;.,.. By Hodge theory this space is
canonically isomorphic to the kernel of 0y, @ 0fy, I (T* A QF® L)~
I(T*,(A° + A°?)® F ® L). However, this operator is precisely the Dirac operator
D} discussed earlier (see Atiyah [2]). This establishes an isomorphism F(F)—F
as bundles. It remains to show that the holomorphic structure on & (F) coincides
with that of F. This was proved in a general context by Bismut -Gillet - Soulé [7]
(Proposition 3.10 and Theorem 3.11).

It order to prove our next proposition we need the quaternionic structure on
spinors on 4-manifolds. There is an anti-linear, covariantly constant map

e:St—>S*

satisfying ¢ = — 1. Tensoring this with the anti-linear map: E — E* for any vector
bundle E gives an anti-linear map £:S* ® E - S* ® E* which still commutes with
Clifford multiplication.

Proposition 1.6. Assume that (F, A) is asd and 1-irreducible. Then A (F* A*) is
isomorphic to ((—1Y*F*,(—1)*A%), Here A* denotes the connection on the dual
bundle F* of F, and —1 is the inversion map on T*.

Proof. Let Y, elX(T*, F® ¥,®S7) be a harmonic spinor for D . Then
8 )eLN(T* F*® ¥ _,®S7) is a harmonic spinor for D« . Indeed, let ¢, be a
covariantly constant orthonormal framing of T*T* then:

D/E(:({A:w:) = eul<f\l (él//z) - Aftél//z - ZNiZ;t éW:>

dx,

i

¢
€#é<57+ Aul//z + 27Zi2ﬂl//z>
i

=&e, Vi) = 4Dy, y.)=0.

Therefore we have a complex linear bundle map (— D*F* > A°(F*). Tt is trivial to
show that this preserves connections. W

In Mukai [16] the reader can also find a convolution type relation between
F(E®F)and #(E)® # (F), for two vector bundles E and F.

We end this section with a remark of a different nature. The Nahm transformation
can be studied more generally for asd connections A on R*, invariant under a
subgroup of translations A < R*. Possible choices of A include A = {0}, these are
the ordinary instantons on $*. A = R gives rise to monopoles, whereas A = Z will
correspond to the so-called calorons. In this paper, we are restricting ourselves to
instantons on the 4-torus, for which A = Z*. For the more generalized situations
mentioned above, going through a construction similar to ours, we see that the
Nahm transformation gives rise to new instantons on R*, which are invariant under

A* = {aeR* a(l)eZ,¥icA).

If A = {0} this is closely related to the celebrated ADHM construction, see Nahm
[20} and Donaldson-Kronheimer [ 10]. In the case of magnetic monopoles (A = R),



Nahm’s Transformation for Instantons 273

Nahm’s transformation has been a powerful tool to understand moduli spaces, see
Hitchin [13], Donaldson [9], Hurtubise—Murray [15] and Atiyah-Hitchin [5].
In a forthcoming paper we shall consider a Nahm transformation for instantons
on T? x R, which can be studied as monopoles on T3 with some singularities.
Instantons on T3 x R are intimately related to probiems of confinement,
see 't Hooft [147.

2. The Square of Nahm’s Transform

In this section we shall prove that there is a canonical isomorphism (F, A) ~ (F, A)
of Hermitian bundles with asd connections. Before starting in earnest, we give an
outline of the ingredients of the proof.

a. We express harmonic spinors for 13/{ in terms of those for D, , using the
Green operator G,. :

b. It is shown that A is I-irreducible, by explicitly giving the inverse G, of

c. To prove that the spinors found in a. form an orthonormal framing of F we
need F® S~ -innerproducts of spinors for D ;.- These appear as the Laplacian
in z applied to the z-dependent operator G,. Here we use the first term of the
celebrated expansion of G,(x,, x,).

d. Finally we can compare 4 and A using the same method and the second term
in the expansion.
Recall that F' was defined as a subbundle of H - T*. So we have a canonical
element:

Yel (T* x T* #*F*Qn*FRS™ ® P),

such that 'f’(f)(feliz) is annihilated by D;_on T* x {z}. If G,=(D{ D )" then
tensoring over C*(T*) with id; we obtain a section:

GWel (T*x T, #*F*Qn*FR® S~ Q@ #). 2.1
We shall use the metric to let TT* ~ T*T* act on S*, thereby identifying §* with
S*.
Proposition 2.1. For feF¥ the section G¥(f)el ({x} x T4 #*F*® 85~ ® P) lies in
ker D3x.
Proof. First we will state the following
Lemma 2.2. G, V4 G, = (1/4ni)(0G,/0z,), where x,, z, are dual linear coordinates
on R* R* and V¥, §= VA (s)(6/0x,).
Proof of the lemma follows from [V% V , ,(6/0z,)]=47iVy_. R
As before,Alet a local framing 7 jgz) of F be given, together with the framing pf P
on T*x R* Then R*sz—¥(f/(2)=yle(TLFR®ZL®S ) and (G¥)(f')=
G Y. If feF¥ and f*is the framing of F* dual to f7 then (G V)(f) = Y (G .Y (f) [ ¥,

- - A~ i
and now we have the connection matrix A¥ = — Aj;for F'* at our disposal (observe

that in this trivialization the connection on % has no dz components). Let e, ¢,
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be dual orthonormal framings of TT*, TT* which can be identified, using the
metric. Following Atiyah—Hitchin—Singer [3] we choose the relations in the
Clifford algebra such that e, e, + e, e, = — 25,,, so the inner products on S* satisfy
{e,s,,5_ )s5-= —{s,,e,5_ )g+. Then we have

(D3(G v/><f>>l:é;r{5fsfaz‘< e >} o

a AN

(4

Using Lemma 2.2, D, =e,V¥%_and D} (8y}/0z,) = — 2mie, ] this equals:

oG, .
éu.(éu,v ZLV(‘ )(ﬁz“¢l>(f)’

which is easily seen to vanish, using Ze”e»eu =2e¢, N

This is quite a remarkable formula as it relates the spinors for 4 with those for
A, connections on bundles over different manifolds! In homological algebra such
results can be obtained by using spectral sequences or, in a more sophisticated
version, derived categories. Donaldson-Kronheimer [ 10] and Mukai [ 16] proceed
in this way.

Reasoning as in the proof of Proposition 1.6 one sees that

U= 478(G ) (2.2)

is a map from F, to the harmonic spinors for 135 acting on NT2.08" ® F).
We shall now show that it is actually an isometry F — F. Our reasoning closely
follows the exposition given by Schenk [21].

First we shall establish that (I, 4) is 1-irreducible, by showing that 63‘7/{
has an inverse. The inverse can actually be written down quite explicitly. Recall
that the maps R* - L3(T*, S~ ® F):z— ) = ¥(f/(z)) describe a section of #* F* ®
T*FRS™®% over T*x T* Assume that for leA¥*, A—=g,(z); is a set of
automorphy factors for F, then we may therefore assume that on R*:

Wt () = exp (= 2mid(x)) g, (2); ().

Sections of F satisfy similar relations with exp (—2niA(x)) left out. Thus the object:

> § dxexp(2rip(x ))M

Glzy,2,)
v 4 Z/IEAT4 Iﬂ“z1+22’2

(2.3)
represents for z, —z,¢A* an element of Fn@ﬁ;“z. Here (,)> is the Hermitian
product on F® S~, which is antilinear in the first argument so as to correctly give
the linear map GA:FZ2 - le. Observe that the summation is over Fourier coefficients
of a smooth function. These decrease rapidly and this ensures locally uniform
convergence of all derivatives in the summation.

In order to prove that G is the inverse of AA_V V;, we will need two

lemmas. We shall encounter sections of F of the form Z<xpz,s>f’( ), where
J
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sel?(T*, S~ ®F). The following two lemmas give information about covariant
derivatives of these sections.
Lemma 2.3.
(vg*)l‘]lpé 27UDA Gz ulpz'

Equivalently one has for arbitrary se L*(T*,F®S™),

(V) Y5> = = 2mi YL, Gue, D35,
where the inner product is for I*(T*,F®S™).

Proof. Substitute (VA*)U = 8,(0/0z,) — {Wi,(0}/0z,) >, and proceed as in the proof
of Proposition 2.1. W

The next lemma will also play an important role in Sect. 3.
Lemma 24.
(A )yl = (4 G,
or equivalently for any sel*(T*,F®S~),
(A1) W 5D = (4m)* (YL, G5,
Proof. Employing the previous lemma, we can write
(A )i = (V2)a2miD, G, %)
oyl

=~(27tiDszze#¢/i)—27riDA G,e P@z )

0z,

Using [(6/0z,), D} ] = 2nie, and Lemma 2.2, together with the by-now-standard
manipulations will finish the proof. MW

Proposition 2.5. G is the integral kernel of the inverse of ﬁj. Therefore (F, A) is
1-irreducible.

Proof. Assume A; acts on the z, variable. First we show (A}G)(zl,zz)zo if
z, —z,¢A* This goes by brute force: Applying Lemma 2.3 to the section

s(x) = exp Quip(x) Wi, (x) gives
(Va 1k<lpzu (271)2(#—' Zy +22)a<w;1aG21 gz>7
and combining with the result of Lemma 2.4,
Al ] dxexp Qriuo)lu— 2, + 2] 72Uk, YLD
gives
] dxexp Qmip() L, UL Al =z, 4+ 25] 2,
which is zero for z; — z,¢A*. This shows that j dz,G(z,,z,)(A Af)(zl):O for f

supported in T* — {z,}. To finish the proof one sxmply has to observe three points:
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Near z,

a) 4; = d*d + something bounded. R

b) G(zy,z,)=(1d/@dn?|z; — z,1*) + R_,(z,)) with A;R,, integrable.
¢) (1d/(4n?|z, —z,|%)) is the Green’s function for d*d.

These three points are easy to see and quickly lead to a prooonf the Green’s
function formula. The 1l-irreducibility follows from the fact that 4 is asd. W

We shall now show that F* — L2(T*, F*®J’ L ®ST) S = 4rG¥(f) is an
1nJect1ve isometry. To study Nahm’s transform on F we used yi(x), which mapped
F, into the fixed vector space L(T*,S™ ® F), see the proof of Theorem 1.5. We
now have to map F, into the fixed vector space LX(T*,S™ ® F). This requires a
trivialisation of the pullback of 2 over R* x T*, and this was discussed in Sect.
1. Tt follows that

x = v,(2) = exp (—27iz(x))(G. Y1 () f(2)

describes a map F,— L*(T*, F®S ™). In this trivialisation the connection of the
pullback of 2@ n*F over R* x T* equals: 4, = /E + 2mix, dz,,.

Just as ¢, (x),¢,,(X)>rps- gives @ map F,,—F,, we can likewise use
{0y, (2), 0, (2 )>F*®S as a map I, = F, . We have

~

Lemma 2.6. {v, (2),v,,(2)) g5 =exp(2miz(x, — xz))(f*dGz(xl,xz).

Proof. Since
v (f¥(2)) = dmexp (- 2miz(x))é { [ dyG.(x, wa(y)}

and (Wi, )24 5~ op¥l = Pf we find that
(0, (2), 04,(2) ) pr = (4m)? exp (2miz(x, — x,))G. PG, (2.4)

acting on I'(T*,S_ ® F). As explained in the prool of Theorem 1.5 this operator
is really a constant matrix acting on S, tensored over C with a pseudo-differential
operator acting on L?*(T*, F). Thus it makes sense to take the spinor trace trg- of
Eg. (2.4) which gives:

(0 (2,0, (2) )5 g = 8% exp (2miz(x, — x)NG2 + 4. V4. 4. V4. 9.)

acting on L*(T* F). A repeated application of Lemma 2.2 gives the required
result. W

That the map u: F— Fisan isometry follows from:

Proposition 2.7. For all xeT*,
;4 dz {1 (2),u(2) D pgs~ = Oy,
with ul(z) = u(f(x)) for fi(x) an orthonormal framing of F .
Proof. We obviously have:
QU2)u(2) ) pps = lim {04,(2),04,(2) Drgs

X1 X
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Combining this with the identity obtained in Lemma 2.6 we find:

[ dz<ub(2),ullz)> = lim | dzexp(2miz(x; — x,))d*dGY(x;,x,).
7&4

x1ox2 74

From the definition of the Green’s function one easily finds the short distance
expansion;

y 1 - .
GY(x,y) =54 0 — (A (X) + 2miz, 3,5) (x, — y,) + C(|x =y} o (25)
4n”|x —yl P
Partially integrating twice will give the desired result. W
Collecting the results we have:

Theorem 2.8. 47é(G W)el (T* x T*, n*F*@#*F®# @S~) gives a Hermitian
isometry F->F. W

Theerem 2.9. Under the isomorphism of Theorem 2.8, A = A .
Proof. By definition (see Egs. (1.5) and the discussion above Lemma 2.6)

e (0.0 ) i e (0,00
i—4

Y P
ox, Xy A4 oxh

Y

Using Lemma 2.6 and Eq. (2.5), together with partially integrating twice will give
the desired result. W

In some sense it seems that the Nahm transformation is perfect. It preserves
self-duality, its square is the identity and as we shall see next, it gives a hyperKdhler
isometry between moduli spaces.

3. Metric Properties of Nahm’s Transform

We have seen that the Nahm transformation gives a diffeomorphism from the
space .#'(F) of l-irreducible asd connections modulo gauge transformations to
' (F). These spaces are open subsets of the moduli spaces .# (F), .#(F) of instantons
and it is well known that .#(F), A (F) are smooth manifolds away from the reducible
connections (see Atiyah—Hitchin—Singer [3]). Moreover .#(F) (and also of course
(F))are supplied with a Riemannian metric as follows. A tangent vector X € T,
can be uniquely represented by an element of I'(T*, A'®(Q x ,qu(n})), also denoted

by X, satisfying
d%X =0 ({Coulomb gauge condition),
P,d,X =0 (deformation equation). (3.1)

The [#—metric on A ®(Q x ,4u(n)) now induces a Riemannian metric on .# (F).
We shall show here that Nahm’s transformation is an isometry with respect to
this metric on the moduli spaces.

Suppose a is a tangent vector to Ae.#'(F). The first step is to compute the
infinitesimal change in the spinors, dy/(a). It is easily seen that 6/ should satisfy
D 8yl = —a-yi, where a acts on ) by Clifford multiplication tensored with the
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fundamental representation of U(n). One can normalize the dy’ by requiring
(8YI WS> =0, for all i, j. The normalized Sy is
oYl=—Dj G, lay]). (3.2)

Combining this with Eq. (1.5) for the Nahm Eranfformgtion, we obtain the
following formula for the infinitesimal change del" (T*, A ®(Q x ,qu(k)))(k =1k(F)),
which is the derivative of the Nahm transformation applied to a:

dy= = (D3, Glayh).dyl) — (i, dD5 G.layi))
=2nia -y, G.(dze, i) ) + 2mildzie, ', Go(a-y))
= (a YL, Q-G Yl — Q-G ayl). (3.3)
The inner products are all with respect to L2(T4,F®AS‘). The deformation of A

could also be given by describing how the bundle F varies as a subbundle of
H — T*, but this would not be a suitable description to compare metrics.

Propesition 3.1. If A is asd and if a satisfies the Coulomb gauge condition (3.1) then
also &, given by Eq. (3.3), satisfies the gauge condition.

Proof. UsingtheidentitiesY e, D e, = 2D} , onefindseasily that in the framing y/’,

u

(dxa); Z4n <wi,GZZeﬂ(D;oa~aoD§z>e#~GZw£>eF(T“,T*T“®Endﬁ),
13

where ° denotes composition of operators. Now with ¢pel (T*, 5™ ® F),
Ye,Djilae,d)—e,aDyle,d)=> e, (D a)e, ¢+2 gﬂeueaeﬂeu'(aBij¢),
u u I

where we substituted D, = e, V4 and a=e,a”* But D; a =0 because the Dirac
operator on 1-forms combines the deformation equation and the Coulomb gauge
condition of Eq. (3.1), see Atiyah—~Hitchin—Singer [3], §6. Finally it is a relation
in the Clifford algebra of R* that: ) e e,epe, =0if o % W

n

Proposition 3.2. The Nahm transformation preserves the L*—metric, provided the
u(n) metric is normalized as {X,Y ) = —tr(XY).

Proof. Let aeTA/%(f) and deT/;/%(ﬁ) be arbitrary elements, satisfying Eqgs. (3.1)
and its analogue for F. We denote by dN the derivative of the Nahm transformation
N:AM(F)— J4(F), ie. dN(a) is given by Eqg. (3.3). We have to show

{dN(a),a> ,p=<a,dN(A)) 45 (3.4)
since the right-hand side equals {a, (dN)~ (&))W) as N2 =1. Now Eq. (3.4) would
folow from
) dz<{ a'l//i, 27'”.@,[ G, ‘//é >L2(T4,F®s’>aj'ti
T4

:dea (a-vt,2mie, Gyv SO0 Fes ) (3.5)

where we Psed Eqgs.(3.3) fpr the derivative of the Nahm transformation. The Green’s
function G, is related to G in Eq. (2.3} by the gauge transformation g(x, z) introduced
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in Sect. I:Gx(zl,zzA): exp(—2miz, (x))G(z,, 2,) exp (2miz, (x)). Using now both the
indices i, j,... for F and ¢, §,... for F we can rewrite Eqn. (3.5), multiplying both
sides with —2i, as
[ odxdz<a® Y, a8 S ds- = | dxdzd;u?, 4na,, (Gu),ds-,  (3.6)
T4 X 'T‘t % 7
or erasing the indices R
[ Cau,adnGuy = | (ay, e 'u).
4% f"‘ T4 X 7"4

.
Finally, and crucially, we make use of Lemma 2.4 which can be restated as

Lemma 3.3. ¥ =& (4nGu).

Proof. This follows directly from Lemma 2.4, Proposition 2.5 and the fact that
£7GE=G. W

Using this to rewrite the right-hand side of Eq. (3.6) as

J" <dji'“?a aaﬁ.élpé Vs

T4 X 7'4
the fact that § commutes with Clifford multiplication and that (v, £ " *w> = {w, év),
one easily establishes equality with the left-hand side of Eq. (3.6). M

The tangent bundle of T* can be equipped with a hyperKéihler structure; that
is, there are three integrable complex structures I,J,K on T* which satisfy
quaternionic relations, and are all compatible with the orientation such that the
metric is Kéhler for each of them. It is a special feature of the anti-selfduality
equations that also .#(F) is a hyperKédhler manifold where the complex structures
on T, #(F) < I'(T* A*®(Q x ,,u(n))) are simply given by those on Al. We refer
the reader to Atiyah—Hitchin [5], Mukai [17].

Theorem 3.4. N:.#/'(F)— 4'(F) is a hyperKihler isometry.

Proof. 1t remains to show that the derivative dN:a — a4 of Nahm’s transformation
commutes with a complex structure. This follows immediately from:

by =Gy, Qayl) — (Q-ay, Gy D),

which is equivalent to Eq. (3.3), but makes more explicit how £ connects the two
spaces of one-forms, in terms of which the complex structures are defined. W

A. Maciocia pointed out to us that alternatively one can deduce the results of
this section in the algebro-geometric setup as follows. Choosing a Kahler structure
on .# defines a complex analytic complex symplectic form on .#, see Mukai [17].
This form is the natural bilinear form on H'(T* End,F) with values in
H?(T*,End F) = C. It can be shown that this pairing is preserved under the Fourier
transform, thereby establishing that Nahm’s transform is a hyperKahler isometry.
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