
Naive Bayes Image Classification:
beyond Nearest Neighbors

Radu Timofte1, Tinne Tuytelaars1, and Luc Van Gool1,2

1ESAT-VISICS /IBBT, Catholic University of Leuven, Belgium
2D-ITET, ETH Zurich, Switzerland

Abstract. Naive Bayes Nearest Neighbor (NBNN) has been proposed
as a powerful, learning-free, non-parametric approach for object classifi-
cation. Its good performance is mainly due to the avoidance of a vector
quantization step, and the use of image-to-class comparisons, yielding
good generalization. In this paper we study the replacement of the near-
est neighbor part with more elaborate and robust (sparse) representa-
tions, as well as trading performance for speed for practical purposes.
The representations investigated are k-Nearest Neighbors (kNN), Iter-
ative Nearest Neighbors (INN) solving a constrained least squares (LS)
problem, Local Linear Embedding (LLE), a Sparse Representation ob-
tained by l1-regularized LS (SRl1), and a Collaborative Representation
obtained as the solution of a l2-regularized LS problem (CRl2). In partic-
ular, NIMBLE and K-DES descriptors proved viable alternatives to SIFT
and, the NBSRl1 and NBINN classifiers provide significant improve-
ments over NBNN, obtaining competitive results on Scene-15, Caltech-
101, and PASCAL VOC 2007 datasets, while remaining learning-free
approaches (i.e., no parameters need to be learned).

1 Introduction

In [1], Boiman et al. introduced a novel, non-parametric approach for image
classification, the Naive Bayes Nearest Neighbor classifier (NBNN). Given an
image represented by a set of extracted features, and a priori sets/classes of such
features with known label, NBNN is searching for the class to which the query
features have the minimum cumulated distance. In spite of being a learning-free
method and the lack of tuned parameters, this scheme achieves close to state-
of-the-art results for image classification. This is due to: i) the lack of a vector
quantization step, avoiding thus to introduce more discretization errors, and ii)
the use of image-to-class comparisons instead of image-to-image, which allows
to combine bits and pieces of information from multiple training images.

At the same time, NBNN also has its limitations. The most important one
is the high computational cost during testing: computation time depends lin-
early on the number of extracted features from the query image and linearly
to logarithmicly on the number of stored labeled features. Unfortunately, the
performance heavily depends on the density of features: the more information,
the better the results but the slower the evaluation. Some have also criticized

2 Radu Timofte, Tinne Tuytelaars, and Luc Van Gool

the Naive Bayes learning free approach, as it needs balanced data with similar
density in feature space for all classes, which often is not the case, and also
the feature independence assumption is questionable. Learning is the solution to
these problems, as addressed by [2–4]. Here we do not follow this strand of work,
but rather stick to the simplicity of the original, parameter-free NBNN based on
Naive Bayes. Instead, we explore another, complementary direction for improv-
ing the results, by investigating alternative representations that can replace the
Nearest Neighbor scheme. We believe it is easier to spot the relative power of
different representations in a learning-free formulation. Adapting the learning-
based extensions of NBNN of [2–4] to the Naive Bayes variants investigated here
seems relatively straightforward.

NBNN starts from the basic Naive Bayes (NB) Classifier, and uses the dis-
tance to the Nearest Neighbor (NN) as an approximation of the log-probability
for a single feature to belong to a certain class of features. This is a somewhat
arbitrary choice, yet critical for the overall performance. Arguably, NN is not the
best option. In sparse coding approaches for object classification [5], NN in the
form of so-called ’hard assignment’ was proven inferior to the ’soft-assignment’
approaches such as l1-regularized least squares. Moreover, the NN classifier has
considerably lower performance than state-of-the-art classifiers such as Support
Vector Machines or Sparse Representation-based Classifiers (SRC) for the recog-
nition of faces [6], handwritten digits or traffic signs [7].

Replacing the NN with a different representation in the NB classifier for-
mulation is not affecting the desirable properties of NBNN: i) discretization is
still avoided, ii) the good generalization of ‘image-to-class’ is maintained, and
iii) it is still a learning free method. The parameters of the representations are
adjustable, but usually have known general values for which the performance is
reasonably high on (largely) different features and settings.

The main contributions of this paper are as follows. We investigate more
general variations of the Naive Bayes Classifier starting from sparse representa-
tions. We empirically evaluate k-Nearest Neighbors (kNN), Local Linear Em-
bedding (LLE) [8], Iterative Nearest Neighbors (INN) [9], Sparse Representa-
tion with l1-regularization (SRl1) [6], and the Collaborative Representation with
l2-regularization (CRl2) [10]. Except for the last one, all of these are sparse.
Moreover, we use in the NB framework for the first time the recently proposed
Kernel Descriptors [11] and compare them to the results obtained with NIMBLE
features [12].

Another side contribution is the evaluation of speeding up strategies for Naive
Bayes Classification. We show that with only a small overhead over the original
NBNN introduced by computing the rich representations, we are able to improve
the performance. Moreover, we evaluate schemes with asymmetric sampling den-
sity as in [4] and approximated nearest neighbors (ANN) [13], with respect to
the impact on performance and the speedup achieved.

Section 2 of this paper reviews the NB classifier and the sparse represen-
tations based variants. Section 3 gives a time complexity analysis. Section 4

Naive Bayes Image Classification: beyond Nearest Neighbors 3

describes our experimental results. Section 5 discusses trade-offs between per-
formance and speed for practical applications, and Section 6 concludes the paper.

2 Naive Bayes classification

The NB classifier [1] is a probabilistic classifier working under strong indepen-
dence assumptions. A query image is represented by a set Q = {q} of features
which are assumed to be independently sampled from a class-specific feature dis-
tribution p(q|c). Assuming uniform priors p(c), the classification then becomes

ĉ = arg maxc∈C p(c|Q) = arg maxc∈C{
∏

q∈Q p(q|c)}
= arg minc∈C − log{

∏
q∈Q p(q|c)} = arg maxc∈C{

∑
q∈Q log p(q|c)} (1)

In the following we review some of the most popular techniques for defining
a (sparse) representation for a query from a given set of samples and we show
how the Naive Bayes Classifier can be adapted to use these representations.

2.1 k Nearest Neighbors (kNN)

kNN is a standard method for defining the locality of a sample. The parame-
ters required are the similarity or distance measure necessary for ordering the
neighbors and the number of nearest neighbors to be kept. Boiman et al. [1] have
shown impressive results using NB and 1NN for image classification.

In the case of NB-NNk, for a query image represented by its set of features
Q = {q}, we compute the k-nearest neighbors from each class c ∈ C, notated
N c

k(q), and the (squared) distance-to-class dcq and the classification becomes

ĉ = arg min
c∈C

∑
q∈Q

dcq, dcq =
∑

x∈Nc
k(q)

‖q − x‖2 (2)

which corresponds to the class with the minimum cumulated distances to the
query. It is assumed that p(q|c) ∼ exp(−dcq). Here, we consider only neighbor-
hood sizes: k = 1, i.e. NBNN1, which is the original NBNN [1], and k = 5,
referred to as NBNN5.

2.2 Local Linear Embedding (LLE)

LLE [8] was introduced as a non-linear dimensionality reduction method, and re-
cently incorporated in the Locality-constrained Linear Coding (LLC) method [14].

For a given sample q and the set Nk(q) of kNN from all the labeled samples
X, LLE solves:

minw ‖q −
∑

x∈Nk(q) wxx‖2 , subject to ‖w‖1 = 1 (3)

where w is a k-dimensional weights vector corresponding to the kNN , with its
l1-norm constrained to 1. In our experiments, we consider 5NN as in LLC [14].

4 Radu Timofte, Tinne Tuytelaars, and Luc Van Gool

The importance of each sample x ∈ Nk(q) in the reconstruction of q is
given by the absolute value of the assigned weight, w̃x = |wx|, while the non-
neighboring samples, x /∈ Nk(q), get w̃x = 0. We further l1-normalize the im-
portance weights for a sample q to sum to 1, yielding ŵq = w̃/‖w̃‖1. Now the
likeliness of q to belong to class c is given by:

dcq =
∑
x∈Xc

ŵq
x (4)

where Xc is the subset of X corresponding to the class c.
The decision for the NBLLE classifier gives the class with the largest impor-

tance/likeliness in locally linear embedding the query image Q:

ĉ = arg max
c∈C

∑
q∈Q

dcq (5)

2.3 Sparse Representation with l1-min (SRl1)

The power of l1-regularized least squares or lasso is proven for problems such as
face recognition [6] or dimensionality reduction [7]. Given the set of M labeled
samples X = {x}, a matrix is formed X = [x1, x2, . . . , xM]. Then, for a given
sample q, we optimize over w (we fix λ = 0.3):

min
w
‖q −Xw‖2 + λ‖w‖1 (6)

For capturing the importance of the weights for the query q, we again take their
absolute value w̃ = |w|, as in [7], and further l1 normalize them as in the case of
LLE, yielding ŵq = w̃/‖w̃‖1. Now the likeliness dcq of q to belong to class c and
the decision for the NBSRl1 classifier is taken similarly to NBLLE (eqs. (4)(5))
and selects the class that scores the largest importance/likeliness in the sparse
representations of the query image Q. In this form NBSRl1 has been used in [9].

2.4 Collaborative Representation (CRl2)

CRl2 [10] seen as l2-regularized least squares can be as good as the SRl1 on face
recognition under specific conditions, like high dimensional face representations
and suitable features such as eigenfaces. A strong point of this approach is the
existence of an algebraic solution for

min
w
‖q −Xw‖22 + λ‖w‖22 (7)

(we fix λ = 0.001) such that the coding of q over X is given by

w = (XTX + λI)−1XT q (8)

For a specific class c the regularized residuals are computed, as in [10]:

rqc = ‖q −Xcwc‖2/‖wc‖2 (9)

Naive Bayes Image Classification: beyond Nearest Neighbors 5

where wc is the (sub)vector of coefficients corresponding to the class c samples
from the whole representation w. Similarly Xc is the (sub)matrix of X containing
only the samples corresponding to class c. The decision for NBCRl2 is then

ĉ = arg min
c∈C

∑
q∈Q

rcq (10)

corresponding to the class with minimum cumulated residuals to the query Q.

2.5 Iterative Nearest Neighbors (INN)

INN [9] representation is an approximate solution to a LS decomposition with
imposed coefficients/weights and optimized selected samples. INN tries to fill
the gap between fast kNN approaches and powerful but slow sparse or collab-
orative representations (SRl1,CRl2). Given the set of labeled samples X = {x},
k samples si are picked iteratively optimizing

arg min
{si}Ki=1

‖q −
K∑
i=1

λ

(1 + λ)i
si‖2, K = d− log(1− β)

log(1 + λ)
e (11)

where λ is set to 0.1 and β is 0.95 as in [9], thus K = 25. Since the weights are
nonnegative and sum up to 1, the likeliness of q to belong to class c is taken as:

dcq =
∑

si∈Xc

wq
si =

∑
si∈Xc

λ

(1 + λ)i
(12)

where Xc is the subset of X corresponding to the class c and si is the i-th
selected sample in the INN representation.

The decision for the NBINN classifier is taken similarly to NBLLE (eq. (5))

3 Time analysis

3.1 Time complexity analysis

NBNNk depends on the number of features from the query image, N = |Q|, the
number of labeled features, M = |X|, the dimensionality of the features, D, and
the number of nearest neighbors, k. The time complexity of a straightforward
implementation is O(NMD+NMk). Using the structure of the known data, and
organizing it with standard data structures such as kd-trees or hashing tables,
allows for a practical sub-linear search in M for k nearest neighbors, without loss
of accuracy. However, the higher the dimensionality of the features, the lower
the speedup achieved, to the point of no gain.

NBLLE has a time complexity of O(NMD + NMk + NMk2D), where
O(NMk2D) is the added time complexity introduced by solving the local lin-
ear embedding over k-nearest neighbors. In most practical cases k � D, thus
NBLLE is k2 times slower than NBNNk.

6 Radu Timofte, Tinne Tuytelaars, and Luc Van Gool

NBINN is running iteratively NN , thus its time complexity is the number K
of iterations, equation (11), times the time complexity of NBNN1, O(NMDK).

NBSRl1 greatly depends on the l1-minimization solver employed for solv-
ing equation (6). The feature sign algorithm solver used by us [15] has a time
complexity, in the optimal case, of O(MDs), where s depends on the non-zero
coefficients in the solution. The solutions tend to be very sparse, so s is small. The
time complexity of NBSRl1 is O(NMDs) and, still, much slower than NBNNk.

For NBCRl2 , first computing the projection matrix of equation (8) greatly
reduces the further computation time. The time complexity for this is O(M2D+
M3 + NMD), so depending heavily on the number of labeled features, M . If
one uses the pseudoinverse [16] then we have O(D3 +D2M +NMD).

With naive implementations all the NB variants presented are adding time
complexity to that of the original NBNN1 algorithm. Usually, in our settings,
the running times are, from the fastest to the slowest, in the following order:
NBNN1 <NBNNk <NBLLE ≈NBINN �NBSRl1 <NBCRl2 , where NBSRl1

and NBCRl2 can be orders of magnitude slower than the NBNN1 classifier.

3.2 Approximations analysis

At first glance, the presented NB variants are doomed to unfeasible compu-
tational burden. Luckily, all methods can be speeded up significantly using a
number of approximations, as discussed next. First, as used in [14], LLE can
be seen as a local approximation of the richer LLC, which instead of kNN is
defined over the whole data. Also for SRl1 the performance is seen to degrade
slowly when the labeled features used for the decomposition are reduced to a
local neighborhood of sufficient size. In [5] only the top nearest neighbors are
kept, reducing the computational burden and causing a drop in time complexity
to O(MD + Mk + kDs) for solving a single l1-minimization. The same trick
can be applied for CRl2 , so the critical part remains the retrieval of the nearest
neighbors.
ANN. The computational burden is now finding the k-nearest neighbors where
k is either 1 (NBNN1 and NBINN), 5 (NBNN5 and NBLLE), or 200 (NBSRl1

and NBCRl2). A lot of effort has been devoted to sub-linear searching by using
the structure of the data, and accurate techniques such as kd-tree or hashing
can be used especially when the feature dimensionality is low. In our case, the
speedup over linear search is small with such approaches. Therefore, we employ
approximated nearest neighbors. Here, we use the FLANN implementation [13].
At the price of lower accuracy (out of k-nearest neighbors, on average only 90%
are accurately retrieved), we gain a substantial speedup. ANN was also used
in [1, 4].
Asymmetry. A further improvement in running time of the NB variants can be
obtained by sampling less densely. We experiment with an asymmetric scheme
where we lower the sampling density on the training material (reducing M), or
on the testing material (reducing N). Usually, the speedup obtained is equal to
the subsampling ratios (except if combined with ANN, when it is significantly
lower than the subsampling ratio in training material). [3] suggested reducing

Naive Bayes Image Classification: beyond Nearest Neighbors 7

the sampling density and learning a metric in feature space to compensate for
the loss in accuracy. [4] shows that reducing the sampling density in the query
usually brings smaller than expected accuracy loss. We arguably show that it
is better to keep as dense as possible the features on the query, exploiting all
the information available in the query image. Reducing the sampling density
for the known labeled features affects less the performance of the NB variants
than sampling less densely on the query image. The reason behind this is: if the
set of labeled features is sufficiently large, then it is likely to contain redundant
data, and subsampling these features still keeps the overall distribution, while
subsampling the query image results in loss of valuable data for classification.

4 Experimental results

4.1 Feature extraction

In our experiments we use both NIMBLE [12] and dense Gradient Kernel De-
scriptors (G-KDES) [11]. This choice is motivated by the reported performance
of both features, consistently outperforming the more conventional SIFT [17]
features. Moreover, the NIMBLE features are richer and achieve higher reported
performance than SIFT while being an order of magnitude sparser. For NIM-
BLE we use the code of [12] and follow exactly the settings as in their paper (100
fixations per image and 500-dimensional feature descriptors). Due to its sparse
extraction, the running time of the NB methods with NIMBLE is considerably
lower than in the case of dense G-KDES or dense SIFT and it is therefore the
first choice for most of the experiments we perform. For G-KDES we follow the
settings from [11]: extracting dense G-KDES features over a regular grid with 8
pixels step and 16× 16 pixels patches, after resizing the image to a maximum of
300× 300 pixels. We further lower the dimensionality through PCA to 64.

We include the weighted relative image coordinates in our feature descriptors,
as suggested in [1]. Without them there is a significant drop in performance for
NBNN [4]. The image coordinates are normalized to [0, 1] by dividing with the
width and height of the image and added with an empirically fixed weight of√

0.5 to the l2-normalized feature descriptors. This is equivalent to the value 0.5
used in [12] to weight the square l2 distances.

4.2 Implementation

In the case of LLE, we pick the 5NN . This is motivated by [14], where the LLC
framework performs best when the neighborhood size is 5. For solving (6) for the
SRl1 representation, we use the feature sign search algorithm [15] run only on
the top NNs to obtain approximated sparse coefficients. However, if the ratio of
nearest neighbors w.r.t. the total number of samples used for solving an approx-
imated SRl1 representation is too small the loss in performance is significant [9].
Thus, we use 200-NN for the experiments up to 10000 training samples, 500-NN
for up to 50000 and 2000-NN for up to 150000. Similarly to [5], for the feature

8 Radu Timofte, Tinne Tuytelaars, and Luc Van Gool

Fig. 1. Performance vs. training size on Scene-15.

sign algorithm, the parameter λ is set to 0.3, which forces a very sparse repre-
sentation. In case of CRl2 , equation (7), we first compute the projection matrix,
thus speeding up the subsequent computations. For the experiments with ANN
we use [13] and build the data structure offline with a target of 90% correct
neighbors in a k-NN query. Note that we are building one data structure for the
whole pool of labeled features and we retrieve only once the 200-NN for each
query feature. From these we pick the k-NN, for NBNNk, for each class and, in
absence of representatives, we take the largest distance to the retrieved samples.
This approach was taken also in [9, 18]. In [18] the neighborhood size is tuned
for best performance with FLANN, calling this method Local NBNN.

4.3 Scene-15

Scene-15 is a popular benchmark from [19]. We follow the common experimental
settings, with a training partition of 100 images per class. We generate 20 random
train/test splits and for each keep the performance as the average over per class
accuracies. Finally we compute mean performance and standard deviation.

Performance vs. training size. First, we evaluate the impact of the number
of training images per class on the performance using NIMBLE features (see
Fig. 1). From Fig. 1 we see that considering more neighbors in the NB decision
does not necessarily improve the performance. NBNN1, NBNN5 and NBLLE
perform similarly. NBCRl2 is the best for 10 to 40 training images, while NBSRl1

takes the lead after 40 images. NBINN is on par with NBSRl1 .

Performance vs. feature density. In Table 1 we report the accuracies for the
NB variants under different uniform sampling densities of NIMBLE features in
training and test images. Also the effect of using ANN is evaluated. We report
mean classification rates and standard deviation for 20 trials for each setting.
The best performance is achieved when sampling with the highest possible den-
sity in both training and testing images (78.2%-NBINN ,77.8%-NBSRl1 ,74.3%-
NBNN5,74.2%-NBNN ,73.7%-NBCRl2 ,73.1%-NBLLE). Reducing the density
results in some performance loss, yet significantly speeds up all methods. Us-
ing only a single NIMBLE feature per image, the accuracy for NBSRl1 and
NBCRl2 is still above 30% and 35%, respectively. This is mostly due to the
saliency guided NIMBLE feature extraction and the richness of the descriptor
itself. The richer representations greatly improve over the standard NN1 espe-

Naive Bayes Image Classification: beyond Nearest Neighbors 9

Table 1. Performance versus asymmetry in train/test and use of ANN on Scene-15.

#tr/#te With asymmetry With ANN(target 90%) and asymmetry
features speedup NBNN1 NBNN5 NBCRl2 NBSRl1 NBINN NBLLE speedup NBNN NBSRl1 NBINN NBLLE

1/1 10000x 26.0 ± 1 33.8 ± 1 35.7 ± 1 30.7 ± 1 29.8 ± 1 28.5 ± 1 10000x 25.92 ± 1.3 30.63 ± 0.9 29.13 ± 1.7 28.49 ± 0.8
5/5 400x 52.2 ± 1 59.8 ± 1 63.2 ± 1 58.8 ± 1 58.2 ± 1 53.1 ± 1 500x 52.19 ± 1.0 58.83 ± 1.2 56.95 ± 1.9 53.05 ± 0.6

10/10 100x 62.3 ± 1 65.6 ± 1 68.3 ± 1 68.7 ± 1 68.4 ± 1 62.5 ± 1 200x 61.26 ± 1.1 66.29 ± 1.1 65.86 ± 1.0 61.37 ± 1.2
20/20 25x 67.0 ± 1 70.6 ± 1 70.0 ± 1 71.1 ± 1 71.6 ± 1 66.4 ± 1 75x 66.86 ± 1.0 71.44 ± 0.8 70.61 ± 1.5 66.45 ± 0.7
50/50 4x 72.1 ± 1 74.1 ± 1 72.2 ± 1 75.5 ± 1 76.2 ± 1 70.5 ± 1 12x 71.30 ± 0.7 74.33 ± 0.7 74.18 ± 1.4 69.00 ± 1.8

100/100 (REF) 74.2±1 74.3±1 73.7±1 77.8±1 78.2±1 73.1±1 5x 73.23 ± 1.0 77.26 ± 1.2 77.65 ± 1.6 68.33 ± 1.2

100/50 2x 71.2 ± 1 70.9 ± 1 71.8 ± 1 77.1 ± 1 77.6 ± 1 71.0 ± 1 10x 70.56 ± 1.1 76.59 ± 1.2 76.72 ± 1.4 67.73 ± 0.7
100/20 5x 67.4 ± 1 68.8 ± 1 70.5 ± 1 75.3 ± 1 76.7 ± 1 67.6 ± 1 25x 66.68 ± 0.9 74.84 ± 1.1 74.93 ± 1.5 63.01 ± 0.9
100/10 10x 65.5 ± 1 66.5 ± 1 69.4 ± 1 72.7 ± 1 73.1 ± 1 63.8 ± 1 50x 65.09 ± 1.2 71.97 ± 1.0 71.45 ± 1.4 58.28 ± 1.2
100/1 100x 39.5 ± 1 40.7 ± 1 58.4 ± 1 54.6 ± 1 55.2 ± 1 42.8 ± 1 500x 39.09 ± 1.3 54.32 ± 1.5 54.13 ± 1.0 41.16 ± 1.4

1/100 100x 65.0 ± 1 65.7 ± 1 65.1 ± 1 66.4 ± 1 66.1 ± 1 64.5 ± 1 100x 64.73 ± 1.3 66.16 ± 1.4 65.81 ± 1.6 64.32 ± 1.6
10/100 10x 71.1 ± 1 72.9 ± 1 72.0 ± 1 73.4 ± 1 72.8 ± 1 71.5 ± 1 20x 70.68 ± 0.7 73.18 ± 1.3 72.50 ± 1.2 70.40 ± 1.2
20/100 5x 72.6 ± 1 74.4 ± 1 70.8 ± 1 75.5 ± 1 75.0 ± 1 72.1 ± 1 15x 72.53 ± 1.1 75.06 ± 1.0 74.64 ± 1.1 71.77 ± 0.9
50/100 2x 72.7 ± 1 72.3 ± 1 73.5 ± 1 76.6 ± 1 76.9 ± 1 72.3 ± 1 6x 72.27 ± 0.7 75.83 ± 0.9 75.17 ± 1.3 71.13 ± 1.2

cially in the lower densities settings. Also note how for lower densities, NBNN5

also does improve over the NBNN1.
In an asymmetric setting, the performance decreases much faster when lower-

ing the density in the query as compared to lowering the density for the training
images, especially for NBNN . With only one feature per query image, NBCRl2

and NBSRl1 still give a reasonable performance (58% and 55%) vs. NBNN1

(39%). In the reversed case, with one feature per training image, the drop in
performance is much lower for all the methods, and NBCRl2 / NBSRl1 still
reach 65%/ 66%. NBINN is on par with NBSRl1 for all the settings.
Performance vs. running time. Note that subsampling can result in enor-
mous speedups, with often acceptable drops in performance. For instance, with
NBSRl1 a 100× speedup is achievable at the price of a 9.1% drop in performance
(68.7% vs. 77.8%). NBINN is 10× faster than and on par with NBSRl1 . The
ANN speedup increases with the size of the training, and decreases with feature
dimensionality. Relaxing the target, by allowing more incorrect neighbors, lowers
the performance but the gain in speed might pay off. One NBNN experiment
on Scene-15 using ANN and 100 NIMBLE features per image, takes less than
3 hours on a 2009 Core 2 Quad machine. NBSRl1 is slower, requiring about 4
hours, using a similar 200-NN retrieval per each feature. Nevertheless, the run-
ning time per query image per class is way below 1 second, which corresponds
to the NBNN time reported in [1] (using dense SIFT).
State-of-the-art. In Table 2 we compare the performance of the NB classifiers
proposed here to state-of-the-art results reported in the literature. All these top
methods are learning based, i.e. they require prior training and parameter es-
timation. The Naive Bayes methods, on the other hand, are learning-free and
parameter-free to a large extent. One could tune λ for SRl1 in equation (6),
hoping in a better fit to the feature space used, but we did not try this. NBSRl1

and NBINN methods improve over the standard NBNN1 using either NIMBLE
or G-KDES features. The gain in performance is more than 4% using INN rep-
resentations. The recently proposed, Kernelized NBNN with dense SIFT [4], (a
learning based method), has similar performance with the NBSRl1 and NBINN
methods. Our best performance is achieved by NBSRl1 with G-KDES features
and is close in performance to the standard learned method Sparse Coding Spa-
tial Pyramid Matching (78.7% vs. 80.3%). Note that kernelizing our methods and

10 Radu Timofte, Tinne Tuytelaars, and Luc Van Gool

Table 2. Performance Comparison on Scene-15 and Caltech-101

Scene-15 Caltech-101

Method 100 images Method 15 images 30 images

L
ea

rn
ed

ScSPM+SIFT [5] 80.28 ± 0.93

L
ea

rn
ed

ScSPM+SIFT [5] 67.0 ± 0.5 73.2 ± 0.5
EMK+KDES [11] 87.5 EMK+KDES [11] ? 77.5
LScSPM+SIFT [22] 89.75±0.50 GLP [21] 70.34 82.6
NBNN&BoF+SIFT [4] 85 ± 4 NBNN&phow+SIFT [4] 69.2 ± 0.9 75.2 ± 0.4
NBNN-f2+SIFT [4] 79 ± 2 LLC+HOG [14] 65.43 73.4

L
ea

rn
in

g
-f

re
e

NB-NN+NIMBLE 74.2 ± 1

L
ea

rn
in

g
-f

re
e

NB-NN+NIMBLE 70.1 ± 1 78.1 ± 1
NB-NN5+NIMBLE 74.2 ± 1 NB-NN5+NIMBLE 70.2 ± 1 78.2 ± 1
NB-SRl1+NIMBLE 77.8±1 NB-SRl1+NIMBLE 71.8±0.8 79.73±1.1
NB-INN+NIMBLE 78.2±1 NB-INN+NIMBLE 72.1±1.2 80.29±1.0
NB-CRl2+NIMBLE 73.7 ± 1 NB-CRl2+NIMBLE
NB-LLE+NIMBLE 74.0 ± 1 NB-LLE+NIMBLE 70.4 ± 1 78.2 ± 1
NB-NN+G-KDES 75.1 ± 1 NBNN+SIFT [1]* 65.0 ± 1.1 70.4
NB-NN5+G-KDES 75.1 ± 1 NBNN+NIMBLE [12]* 70.8 ± 0.7 78.5 ± 1.2
NB-SRl1+G-KDES 78.7±1 LocalNBNN+SIFT [18]* 66.1 ± 1.1 71.9 ± 0.6
NB-INN+G-KDES 79.8±1
NB-CRl2+G-KDES 74.5 ± 1
NB-LLE+G-KDES 76.4 ± 1 * indicates results without background class

combining them with bag-of-features based methods as in [4] is likely to increase
our results further (at the cost of switching to a learning-based scheme).

4.4 Caltech-101

On Caltech-101 [20] we report results both with NIMBLE and G-KDES fea-
tures. In our evaluation (see Table 2), the performance of the NBNN classifier
with NIMBLE features compares to the one reported in the original paper [12]
(note that their result is without considering the background class). All the NB
variants achieve comparable or better results than the state-of-the-art. 70.3% at
15 images per class and 82.6% at 30 images is the best performance out of the
state-of-the-art learning methods, achieved by the GLP method of [21]. NBSRl1

with NIMBLE features reaches 71.8%@15 and 79.73%@30, and NBINN with
NIMBLE features reaches 72.1%@15 and 80.29%@30. This is the best result us-
ing a single descriptor for Caltech-101 with 15 train images per class, to the best
of our knowledge.

4.5 PASCAL VOC 2007

The PASCAL VOC 2007 [23] has a much higher variability in shape, pose, and
position for the 20 annotated object classes than Caltech-101 or Scene-15. We are
using NIMBLE features and report results with different sampling densities in
training and test images respectively. We report for NBINN the results from [9]
and run only NBNN and NBSRl1 since the other NB variants gave lower, less
robust performance on the previous datasets.

For this challenge, we need to provide class confidences. The relative ranking
among the classes for a specific image query is not sufficient, as some images
contain instances of multiple classes. Using directly the score from equation (2)
for NBNN is not beneficial. The scores need to be brought to the same meaning,
to be comparable across the image queries and not just for the class decision. To
this end, we consider the likelihood ratio between the probability of belonging
to the class and the probability of not belonging to the class. This resembles the
f2 kernel from [4], and gives the following confidence function:

S =
∑
q∈Q

(dcq − dc̄q), dc̄q =
∑

x∈N c̄
k(q)

‖q − x‖2 (13)

Naive Bayes Image Classification: beyond Nearest Neighbors 11

Table 3. Image classification results using PASCAL VOC 2007 dataset

object class + #tr/#te aero bicyc bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv average

Best of VOC’07[23] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.9 79.2 53.2 59.4
NBINN [9] 69.8 63.8 48.5 61.9 26.6 58.9 74.8 52.9 51.6 36.0 42.5 40.8 75.7 62.2 82.8 22.1 28.9 41.3 74.1 46.0 53.1
INNSPM[9] 77.2 64.4 56.2 71.4 32.7 69.1 80.0 59.8 49.5 47.9 55.3 45.8 77.8 67.0 84.6 30.2 44.7 53.4 79.1 53.8 60.0

NBNN+1/100 57.1 34.3 17.3 25.0 07.5 31.8 51.3 32.1 27.6 16.3 19.2 19.7 57.6 37.3 50.5 10.5 10.9 24.1 48.4 22.4 30.4
NBNNS+1/100 62.3 39.0 23.8 38.6 13.1 33.6 64.9 36.8 33.5 21.5 31.0 27.5 61.2 47.4 69.5 18.2 17.1 25.5 53.0 28.2 37.3
NBNNS+10/10 61.7 43.2 24.9 30.5 11.2 31.5 61.8 32.1 31.5 16.3 18.1 26.3 60.3 39.2 66.4 11.4 17.8 22.2 51.6 26.0 34.2

NBNNS+100/100 69.4 59.5 39.3 45.7 22.3 54.2 73.9 49.6 42.7 29.2 39.8 34.7 72.7 61.3 76.6 13.8 27.1 33.8 71.5 42.6 48.0
NBNNS+100/1000 70.7 59.3 40.3 47.4 23.0 57.4 74.3 50.7 42.2 32.9 43.7 35.7 72.9 61.8 78.1 14.5 29.1 34.8 73.1 44.9 49.3

NBSRl1+1/1 36.9 17.1 09.2 13.7 04.8 14.4 32.0 11.2 21.0 04.4 14.2 16.0 18.2 16.5 52.7 06.3 02.9 09.2 17.6 08.4 16.3
NBSRl1+10/10 62.0 47.2 28.4 41.7 12.4 35.7 66.1 36.7 37.9 18.8 20.3 28.8 62.8 45.0 72.6 09.7 17.7 24.4 57.7 32.8 37.9

NBSRl1+100/100 67.9 63.2 46.1 50.7 21.6 56.6 75.2 54.5 46.4 34.2 40.9 41.4 73.5 62.1 81.4 21.1 26.9 41.9 72.7 44.9 51.2
NBSRl1+100/1000 67.9 63.6 47.0 50.5 22.4 57.9 75.3 56.0 47.0 34.6 37.9 41.6 74.8 62.5 81.7 21.4 28.1 43.5 73.1 46.2 51.7

for a given query Q and a class c, where c̄ is the negative class. The NBNN
method with normalized scores is noted NBNNS , where k = 1 as in NBNN .

In Table 3 we compare our different settings with the best results from the
challenge. When using a strong asymmetry (just 1 feature per training image,
100 features per query image), we already achieve a mean average precision of
37.3% for NBNNS . Using equal densities (100/100) we obtain a performance
of 48.1%, which is 11% behind the best entry in the VOC2007 challenge. The
sparse representations pay off and the NBSRl1 improves over NBNNS resulting
in a mean average precision of 52% or only 7% below the top results. This is a
good result, taking into account that the best entry in VOC2007 is a learning-
based method, more complex than our learning-free approaches. Moreover, we
used only the top 200NN to compute the NBSRl1 decision, while NBINN uses
the whole training pool.

5 Discussion

Computational costs. The main limitation of NB classifiers is the high com-
putational cost. As shown in Section 3 the time complexity depends (usually)
linearly on the number of training images, feature extraction density in train-
ing and testing, and feature dimensionality. All these made the deployment of
NBNN prohibitive in practice. It remained just a theoretical exercise. Even with
exploiting the data structure and using ANN, NBNN is quite slow in traditional
settings, i.e. for ∼ 5, 000 SIFT features per image and 3,000 training images, it
takes ∼ 1 second per query image and class [1]. Here, we show how to temper
the computational costs for NB schemes so they can be used in practice.
Features. The features are the building blocks in NB image classification. Ide-
ally, features should be statistically significant for classification with a low dimen-
sional representation and a low sampling density. The main stream literature [1–
4] heavily relies on the 128 dimensional SIFT features that for high classification
performance require uniform sampling densities above 3,000 features per nor-
malized < 0.1 mega pixels images. The recently proposed NIMBLE [12] features
(500 dimensional, 100 sampling density) and G-KDES [11] features (200 dim.,
< 1000 density) proved to improve over SIFT based classification and come
with (much) lower sampling densities. Using NIMBLE features gives two orders
of magnitude speedup over the NBNN SIFT baseline. G-KDES features are also
able to severely reduce (one order of magnitude) the running time of a NBNN

12 Radu Timofte, Tinne Tuytelaars, and Luc Van Gool

SIFT baseline. The Matlab implementations as provided by [12, 11] are running
in the range of seconds and can be optimized further.

Training size. The number of training images per class heavily affects the
performance. The larger their number the higher the classification rate but at the
price of an increase in run time. From Fig. 1 we observe that for up to 5 training
images per class, NBCRl2 is the worst performing method, while NBNN1 and
NBNN5 are best. Collaborative Representation (CRl2) shows clearest benefit
in performance in the middle range (10 up to 40 training images), while after
40 training images NBCRl2 performance scales less well w.r.t. the other NB
variants. When more than 40 training images per class are available, NBSRl1

and NBINN are clearly the best choices. To the limit, when infinite number
of training images are available, it is expected that all NB variants with the
exception of NBCRl2 converge in performance. A topic of further research is:
how to filter the training features without loss in performance, e.g. by feature
selection. Note that from Fig. 1 and Table 1 we see that the number of training
images has a bigger impact than the sampling density of the extracted features:
e.g. lowering from 100 to 50 the number of training images brings an 8% decrease
in classification rates for NBSRl1 , while reducing the feature density from 100
to 50 causes just a 2% drop. Each training image brings usually something new,
while increased sampling over an image is likely to increase the redundancy of
the features.

Feature density and asymmetry. What is better: higher sampling density in
training or in query images? From Table 1 we see that for all the NB variants
there is a higher drop in performance when we uniformly subsample in the query
image than when we subsample in the training images. We achieve a 100 fold
speedup by extracting a single NIMBLE feature either in each training image
(causing a drop of 9% up to 12% in performance, depending on the method) or
in the query (24% up to 35%). While in training the sampling density is less
sensitive, for the query image the subsampling in fact removes important dis-
criminant information for classification. For high feature densities NBSRl1 and
NBINN are our best choices. In very low sampling densities (≤ 10 per image),
in either train or query or both, NBCRl2 gets on par or better than NBSRl1

and the other methods – promoting sparsity is less beneficial than using the
whole data. It is worth mentioning that in lower densities NBNN5 consistently
outperforms NBNN1 by stabilizing the assignments. While not tried, adjusting
the neighborhood size to the pool size is expected to improve the results further.

Approximations. A consistent speed up can be obtained by using the structure
of the data to drive the NN search. This is especially true when the feature
dimensionality is low. Since NIMBLE features are 500 dimensional, we need to
use approximated nearest neighbors. We control the chance of accurate neighbor
retrieval to 90%, thus the drop in performance is marginal. Note that in our case,
we achieve a maximal speedup of 5×. The larger the training pool, the bigger
the speedup. Also, the representations can be computed approximatively using
a local neighborhood as retrieved using ANN.

Naive Bayes Image Classification: beyond Nearest Neighbors 13

State-of-the-art. Using NIMBLE features instead of SIFT features in a stan-
dard setup brings up to two orders of magnitude speed up in a straightforward
implementation. This allows us to provide results for large datasets such as PAS-
CAL VOC 2007 (see Table 3) where NBSRl1 improves over NBNN adapted for
this task. For learning-free methods we show that representations such as CRl2 ,
SRl1 or INN are more suitable for high performance than the standard NN
under the standard Naive Bayes Image Classification formulation. The methods
are validated on Scene-15, Caltech-101, and PASCAL VOC 2007. NBINN shows
improvements over NBSRl1 of 0.5% on Scene-15 and Caltech-101 (see Table 2)
and of 1.4% on PASCAL VOC 2007 (see Table 3). Moreover, INN while being
on par with SRl2 it is much faster [9].

While we do not always outperform the state-of-the-art, it is surprising how
close we get with our NB variants without any learning stage!

Best practice. For best performance, we suggest the use of NIMBLE features,
high sampling densities in the query image (100 features per image), as many
different training images as possible (not necessarily highly sampled), ANN for
fast query feature neighborhood retrieval and more powerful sparse representa-
tion such as SRl1 or INN . When the labeled pool is small (tens of images per
class) and feature dimensionality is large (> 200), CRl2 is a good option.

A good tradeoff between speed and performance is given by the following
combination: NIMBLE features, low sampling densities (10 per image), ANN,
and NBNN5/NBINN for very small training pool of samples, NBCRl2 for a
small pool, or NBSRl1/NBINN for large pools.

6 Conclusions

In this work we have studied the use of sparse representations in a learning-free,
parameter-free setup given by the Naive Bayes Classifier formulation. In partic-
ular, the NBSRl1 and NBINN give substantial improvements over the standard
NBNN approach which has the NN (hard assignment) as basis. Moreover, we
have studied asymmetric schemes and the impact of the approximated nearest
neighbors on the performance of the NB variants. Combined with recently in-
troduced NIMBLE and G-KDES features, the NBSRl1 and NBINN achieves
state-of-the-art results for learning-free methods in all the considered bench-
marks. Moreover, on Caltech-101, we establish a new state-of-the-art for single
descriptor based methods. On PASCAL VOC 2007, we get close to the best en-
try of the challenge, a learned complex approach. Naive Bayes Classification is
still promising. Further directions are to better subsample by feature selection
and to explore kernelized versions of the NB variants, learning the priors, and,
thus, further improving over our basic methods.

Acknowledgement. This work was partly funded by the Flemish IWT/SBO
project ALAMIRE and the ERC research grant COGNIMUND.

14 Radu Timofte, Tinne Tuytelaars, and Luc Van Gool

References

1. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image
classification. In: CVPR, IEEE Computer Society (2008)

2. Behmo, R., Marcombes, P., Dalalyan, A.S., Prinet, V.: Towards optimal naive
bayes nearest neighbor. In: ECCV (4). (2010) 171–184

3. Wang, Z., Hu, Y., Chia, L.T.: Image-to-class distance metric learning for image
classification. In: ECCV (1). (2010) 706–719

4. Tuytelaars, T., Fritz, M., Saenko, K., Darrell, T.: The NBNN kernel. In: ICCV.
(2011)

5. Yang, J., Yu, K., Gong, Y., Huang, T.S.: Linear spatial pyramid matching using
sparse coding for image classification. In: CVPR, IEEE (2009) 1794–1801

6. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition
via sparse representation. PAMI 31 (2009)

7. Timofte, R., Van Gool, L.: Sparse representation based projections. In: BMVC.
(2011)

8. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embed-
ding. In: IEEE ICCV. Volume 290. (2001) 2323–2326

9. Timofte, R., Van Gool, L.: Iterative nearest neighbors for classification and di-
mensionality reduction. In: CVPR. (2012)

10. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representa-
tion: Which helps face recognition? In: ICCV. (2011)

11. Bo, L., Ren, X., Fox, D.: Kernel descriptors for visual recognition. In: Advances
in Neural Information Processing Systems. (2010)

12. Kanan, C., Cottrell, G.W.: Robust classification of objects, faces, and flowers using
natural image statistics. In: CVPR. (2010) 2472–2479

13. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-
rithm configuration. In: VISAPP (1). (2009) 331–340

14. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained
linear coding for image classification. In: CVPR. (2010) 3360–3367

15. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In
Schölkopf, B., Platt, J.C., Hoffman, T., eds.: NIPS, MIT Press (2006) 801–808

16. Timofte, R., Van Gool, L.: Weighted collaborative representation and classification
of images. In: ICPR. (2012)

17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60 (2004) 91–110

18. McCann, S., Lowe, D.: Local naive bayes nearest neighbor for image classification.
In: CVPR. (2012)

19. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: CVPR (2). (2006)

20. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE
Transactions on Pattern Analysis and Machine Intelligence 28(4) (2006) 594–611

21. Feng, J., Ni, B., Tian, Q., Yan, S.: Geometric lp-norm feature pooling for image
classification. In: CVPR, IEEE (2011) 2697–2704

22. Gao, S., Tsang, I.W.H., Chia, L.T., Zhao, P.: Local features are not lonely -
laplacian sparse coding for image classification. In: CVPR. (2010) 3555–3561

23. Everingham, M., Van Gool, L., Williams, C.K.I., Winn,
J., Zisserman, A.: The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. (http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html)

