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Abstract

Face recognition performance improves rapidly with the

recent deep learning technique developing and underlying

large training dataset accumulating. In this paper, we re-

port our observations on how big data impacts the recog-

nition performance. According to these observations, we

build our Megvii Face Recognition System, which achieves

99.50% accuracy on the LFW benchmark, outperforming

the previous state-of-the-art. Furthermore, we report the

performance in a real-world security certification scenario.

There still exists a clear gap between machine recognition

and human performance. We summarize our experiments

and present three challenges lying ahead in recent face

recognition. And we indicate several possible solutions to-

wards these challenges. We hope our work will stimulate the

community’s discussion of the difference between research

benchmark and real-world applications.

1. INTRODUCTION

The LFW benchmark [8] is intended to test the recog-

nition system’s performance in unconstrained environment,

which is considerably harder than many other constrained

dataset (e.g., YaleB [6] and MultiPIE [7]). It has become

the de-facto standard regarding to face-recognition-in-the-

wild performance evaluation in recent years. Extensive

works have been done to push the accuracy limit on it

[3, 16, 4, 1, 2, 5, 11, 10, 12, 14, 13, 17, 9].

Throughout the history of LFW benchmark, surpris-

ing improvements are obtained with recent deep learning

techniques [17, 14, 13, 10, 12]. The main framework

of these systems are based on multi-class classification

[10, 12, 14, 13]. Meanwhile, many sophisticated methods

are developed and applied to recognition systems (e.g., joint

Bayesian in [4, 2, 10, 12, 13], model ensemble in [10, 14],

multi-stage feature in [10, 12], and joint identification and

verification learning in [10, 13]). Indeed, large amounts

of outside labeled data are collected for learning deep net-

works. Unfortunately, there is little work on investigate the

relationship between big data and recognition performance.
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Figure 1. A data perspective to the LFW history. Large amounts

of web-collected data is coming up with the recent deep learning

waves. Extreme performance improvement is gained then. How

does big data impact face recognition?

This motivates us to explore how big data impacts the recog-

nition performance.

Hence, we collect large amounts of labeled web data, and

build a convolutional network framework. Two critical ob-

servations are obtained. First, the data distribution and data

size do influence the recognition performance. Second, we

observe that performance gain by many existing sophisti-

cated methods decreases as total data size increases.

According to our observations, we build our Megvii

Face Recognition System by simple straightforward convo-

lutional networks without any sophisticated tuning tricks or

smart architecture designs. Surprisingly, by utilizing a large

web-collected labelled dataset, this naive deep learning sys-

tem achieves state-of-the-art performance on the LFW. We

achieve the 99.50% recognition accuracy, surpassing the

human level. Furthermore, we introduce a new benchmark,

called Chinese ID (CHID) benchmark, to explore the recog-

nition system’s generalization. The CHID benchmark is

intended to test the recognition system in a real security

certificate environment which constrains on Chinese people
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and requires very low false positive rate. Unfortunately, em-

pirical results show that a generic method trained with web-

collected data and high LFW performance doesn’t imply an

acceptable result on such an application-driven benchmark.

When we keep the false positive rate in 10−5, the true pos-

itive rateis 66%, which does not meet our application’s re-

quirement.

By summarizing these experiments, we report three main

challenges in face recognition: data bias, very low false pos-

itive criteria, and cross factors. Despite we achieve very

high accuracy on the LFW benchmark, these problems still

exist and will be amplified in many specific real-world ap-

plications. Hence, from an industrial perspective, we dis-

cuss several ways to direct the future research. Our central

concern is around data: how to collect data and how to use

data. We hope these discussions will contribute to further

study in face recognition.

2. A DATA PERSPECTIVE TO FACE

RECOGNITION

An interesting view of the LFW benchmark history (see

Fig. 1) displays that an implicitly data accumulation under-

lies the performance improvement. The amount of data ex-

panded 100 times from 2010 to 2014 (e.g., from about 10

thousand training samples in Multiple LE [3] to 4 millions

images in DeepFace [14]). Especially, large amounts of

web-collected data is coming up with the recent deep learn-

ing waves and huge performance improvement is gained

then.

We are interested in this phenomenon. How does big

data, especially the large amounts of web-collected data,

impacts the recognition performance?

3. MEGVII FACE RECOGNITION SYSTEM

3.1. Megvii Face Classification Database.

We collect and label a large amount of celebrities from

Internet, referred to as the Megvii Face Classification

(MFC) database. It has 5 million labeled faces with about

20,000 individuals. We delete all the person who appeared

in the LFW manually. Fig. 2 (a) shows the distribution of

the MFC database, which is a very important characteristic

of web-collected data we will describe later.

3.2. Naive deep convolutional neural network.

We develop a simple straightforward deep network ar-

chitecture with multi-class classification on MFC database.

The network contains ten layers and the last layer is softmax

layer which is set in training phase for supervised learning.

The hidden layer output before the softmax layer is taken

as the feature of input image. The final representation of

the face is followed by a PCA model for feature reduction.
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Figure 2. Data talks. (a) The distribution of the MFC database.

All individuals are sorted by the number of instances. (b) Per-

formance under different amounts of training data. The LFW ac-

curacy rises linearly as data size increases. Each sub-training set

chooses individuals randomly from the MFC database. (c) Perfor-

mance under different amounts of training data, meanwhile each

sub-database chooses individuals with the largest number of in-

stances. Long-tail effect emerges when number of individuals are

greater than 10,000: keep increasing individuals with a few in-

stances per person does not help to improve performance.

We measure the similarity between two images through a

simple L2 norm.

4. CRITICAL OBSERVATIONS

We have conducted a series experiments to explore data

impacts on recognition performance. We first investigate

how do data size and data distribution influence the sys-

tem performance. Then we report our observations with

many sophisticated techniques appeared in previous liter-

atures, when they come up with large training dataset. All

of these experiments are set up with our ten layers CNN,

applying to the whole face region.

4.1. Pros and Cons of webcollected data

Web-collected data has typical long-tail characteristic: A

few “rich” individuals have many instances, and a lot of

individuals are “poor” with a few instances per person (see

Fig. 2(a)). In this section, we first explore how total data

size influence the final recognition performance. Then we

discuss the long-tail effect in the recognition system.

Continued performance improvement. Large amounts

of training data improve the system’s performance consider-

ably. We investigate this by training the same network with
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different number of individuals from 4,000 to 16,000. The

individuals are random sampled from the MFC database.

Hence, each sub database keeps the original data distribu-

tion. Fig. 2 (b) presents each system’s performance on the

LFW benchmark. The performance improves linearly as the

amounts of data accumulates.

Long tail effect. Long tail is a typical characteristic in

the web-collected data and we want to know the impact to

the system’s performance. We first sort all individuals by

the number of instances, decreasingly. Then we train the

same network with different number of individuals from

4,000 to 16,000. Fig. 2 (c) shows the performance of each

systems in the LFW benchmark. Long tail does influence

to the performance. The best performance occurs when we

take the first 10,000 individuals with the most instances as

the training dataset. On the other words, adding the indi-

viduals with only a few instances do not help to improve

the recognition performance. Indeed, these individuals will

further harm the system’s performance.

4.2. Traditional tricks fade as data increasing.

We have explored many sophisticated methods appeared

in previous literatures and observe that as training data in-

creases, little gain is obtained by these methods in our ex-

periments. We have tried:

• Joint Bayesian: modeling the face representation with in-

dependent Gaussian variables [4, 2, 10, 12, 13];

• Multi-stage features: combining last several layers’ out-

puts as the face representation [10, 12];

• Clustering: labeling each individuals with the hierarchi-

cal structure and learning with both coarse and fine labels

[15];

• Joint identification and verification: adding pairwise

constrains on the hidden layer of multi-class classification

framework [10, 13].

All of these sophisticated methods will introduce ex-

tra hyper-parameters to the system, which makes it harder

to train. But when we apply these methods to the MFC

database by trial and error, according to our experiments,

little gain is obtain compared with the simple CNN archi-

tecture and PCA reduction.

5. PERFORMANCE EVALUATION

In this section, we evaluate our system to the LFW

benchmark and a real-world security certification applica-

tion. Based on our previous observations, we train the

whole system with 10,000 most “rich” individuals. We train

the network on four face regions (i.e., centralized at eye-

brow, eye center, nose tip, and mouth corner through the

facial landmark detector). Fig. 3 presents an overview of

the whole system. The final representation of the face is

the concatenation on four features and followed by PCA for

feature reduction.
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Figure 3. Overview of Megvii Face Recognition System. We

design a simple 10 layers deep convolutional neural network for

recognition. Four face regions are cropped for representation ex-

traction. We train our networks on the MFC database under the

traditional multi-class classification framework. In testing phase,

a PCA model is applied for feature reduction, and a simple L2

norm is used for measuring the pair of testing faces.

5.1. Results on the LFW benchmark

We achieve 99.50% accuracy on the LFW benchmark,

which is the best result now and beyond human perfor-

mance. Fig. 4 shows all failed cases in our system. Except

for a few pairs (referred to as “easy cases”), most cases are

considerably hard to distinguish, even from a human. These

“hard cases” suffer from several different cross factors, such

as large pose variation, heavy make-up, glass wearing, or

other occlusions. We indicate that, without other priors

(e.g., We have watched The Hours, so we know that brown

hair “ Virginia Woolf” is Nicole Kidman), it’s very hard to

correct the most remain pairs. Based on this, we think a rea-

sonable upper limit of LFW is about 99.7% if all the “easy

cases” are solved.

5.2. Results on the realworld application

In order to investigate the recognition system’s per-

formance in real-world environment, we introduce a new

benchmark, referred to as Chinese ID (CHID) benchmark.

We collect the dataset offline and specialize on Chinese peo-

ple. Different from the LFW benchmark, CHID benchmark

is a domain-specific task to Chinese people. And we are

interested in the true positive rate when we keep false posi-

tive in a very low rate (e.g., FP = 10−5). This benchmark

is intended to mimic a real security certification environ-

ment and test recognition systems’ performance. When we

apply our “99.50%” recognition system to the CHID bench-

mark, the performance does not meet the real application’s

requirements. The ”beyond human” system does not really

work as it seems. When we keep the false positive rate in

10−5, the true positive rate is 66%. Fig. 5 shows some failed

cases in FP = 10−5 criteria. The age variation, including

intra-variation (i.e., same person’s faces captured in differ-

ent age) and inter-variation (i.e., people with different ages),
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Figure 4. 30 Failed Cases in the LFW benchmark. We present all the failed cases, and group them into two parts. (a) shows the failed

cases regarded as “easy cases”, which we believe can be solved with a better training system under the existing framework. (b) shows the

“hard cases”. These cases all present some special cross factors, such as occlusion, pose variation, or heavy make-up. Most of them are

even hard for human. Hence, we believe that without any other priors, it is hard for computer to correct these cases.

is a typical characteristic in the CHID benchmark. Unsur-

prisingly, the system suffers from this variation, because

they are not captured in the web-collected MFC database.

We do human test on all of our failed cases. After averaging

10 independent results, it shows 90% cases can be solved by

human, which means the machine recognition performance

is still far from human level in this scenario.

6. CHALLENGES LYING AHEAD

Based on our evaluation on two benchmarks, here we

summarize three main challenges to the face recognition.

Data bias. The distribution of web-collected data is

extremely unbalanced. Our experiments show a amount

of people with few instances per individual do not work

in a simple multi-class classification framework. On the

other hand, we realize that large-scale web-collected data

can only provide a starting point; it is a baseline for face

recognition. Most web-collected faces come from celebri-

ties: smiling, make-up, young, and beautiful. It is far from

images captured in the daily life. Despite the high accuracy

in the LFW benchmark, its performance still hardly meets

the requirements in real-world application.

Very low false positive rate. Real-world face recogni-

tion has much more diverse criteria than we treated in previ-

ous recognition benchmarks. As we state before, in most se-

curity certification scenario, customers concern more about

the true positive rate when false positive is kept in a very

low rate. Although we achieve very high accuracy in LFW

benchmark, our system is still far from human performance

in these real-world setting.

Cross factors. Throughout the failed case study on the

LFW and CHID benchmark, pose, occlusion, and age varia-

tion are most common factors which influence the system’s
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Figure 5. Some Failed Cases in the CHID Benchmark. The

recognition system suffers from the age variations in the CHID

benchmark, including intra-variation (i.e., same person’s faces

captured in different age) and inter-variation (i.e., people with

different ages). Because little age variation is captured by the

web-collected data, not surprisingly, the system cannot well han-

dle this variation. Indeed, we do human test on all these failed

cases. Results show that 90% failed cases can be solved by hu-

man. There still exists a big gap between machine recognition and

human level.

performance. However, we still lack a sufficient investiga-

tion on these cross factors, and also lack a efficient method

to handle them clearly and comprehensively.

7. FUTURE WORKS

Large amounts of web-collected data help us achieve the

state-of-the-art result on the LFW benchmark, surpassing

the human performance. But this is just a new starting point

of face recognition. The significance of this result is to show

that face recognition is able to go out of laboratories and

come into our daily life. When we are facing the real-work

application instead of a simple benchmark, there are still a

lot of works we have to do.

Our experiments do emphasize that data is an important

factor in the recognition system. And we present following

issues as an industrial perspective to the expect of future

research in face recognition.

On one hand, developing more smart and efficient meth-

ods mining domain-specific data is one of the important

ways to improve performance. For example, video is one

of data sources which can provide tremendous amounts of

data with spontaneous weakly-labeled faces, but we have

not explored completely and applied them to the large-scale

face recognition yet. On the other hand, data synthesize is

another direction to generate more data. For example, it

is very hard to collect data with intra-person age variation

manually. So a reliable age variation generator may help a

lot. 3D face reconstruction is also a powerful tool to syn-

thesize data, especially in modeling physical factors.

One of our observations is that the long-tail effect exists

in the simple multi-class classification framework. How to

use long-tail web-collected data effectively is an interest-

ing issue in the future. Moreover, how to transfer a generic

recognition system into a domain-specific application is still

a open question.

This report provides our industrial view on face recog-

nition, and we hope our experiments and observations will

stimulate discussion in the community, both academic and

industrial, and improve face recognition technique further.
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