
Naı̈ve Filterbots for Robust Cold-Start Recommendations

Seung-Taek Park1, David Pennock2, Omid Madani1, Nathan Good3, Dennis DeCoste1

1Yahoo! Research, 3333 Empire Ave, 2nd Floor, Burbank, CA 91504 USA
2Yahoo! Research, 45 West 18th Street, 6th Floor, New York, NY 10011 USA
3Yahoo! Research, 1950 University Ave., Suite 200, Berkeley, CA 94704 USA

{parkst,pennockd,madani,ngood,decosted}@yahoo-inc.com

ABSTRACT
The goal of a recommender system is to suggest items of
interest to a user based on historical behavior of a com-
munity of users. Given detailed enough history, item-based
collaborative filtering (CF) often performs as well or better
than almost any other recommendation method. However,
in cold-start situations—where a user, an item, or the entire
system is new—simple non-personalized recommendations
often fare better. We improve the scalability and perfor-
mance of a previous approach to handling cold-start situa-
tions that uses filterbots, or surrogate users that rate items
based only on user or item attributes. We show that intro-
ducing a very small number of simple filterbots helps make
CF algorithms more robust. In particular, adding just seven
global filterbots improves both user-based and item-based
CF in cold-start user, cold-start item, and cold-start system
settings. Performance is better when data is scarce, per-
formance is no worse when data is plentiful, and algorithm
efficiency is negligibly affected. We systematically compare
a non-personalized baseline, user-based CF, item-based CF,
and our bot-augmented user- and item-based CF algorithms
using three data sets (Yahoo! Movies, MovieLens, and Each-
Movie) with the normalized MAE metric in three types of
cold-start situations. The advantage of our “näıve filter-
bot” approach is most pronounced for the Yahoo! data, the
sparsest of the three data sets.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning

General Terms: Algorithms, Experimentation, Measure-
ment, Performance

Keywords: Performance analysis, cold start, collaborative
filtering, recommender systems, robustness, hybrid content
and collaborative filtering, näıve filterbots

1. INTRODUCTION
A recommender system uses algorithmic means to churn

through the available data of user preferences in order to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

suggest items of interest. For example, a recommender sys-
tem for books would use the user’s past ratings on books to
find similar users, and determine algorithmically how much
that user would like a book he/she has not read before. Rec-
ommender systems have been used for all types of informa-
tion, from websites to CD-Roms, books, etc. Recommender
systems are widely deployed on the web, appearing on ev-
erything from independent community-driven web sites to
e-commerce powerhouses.

Once a substantial amount of preference data has been
gathered about a particular user and his community, collab-
orative filtering (CF) algorithms are among the most effec-
tive recommendation algorithms. In particular, item-based
CF [29], a simple variant of the very first user-based CF
algorithms, is hard to beat when enough data is available.
For example, many studies including [29, 13, 7, 22] demon-
strate that item-based CF is as good or better than other
approaches across a variety of settings in the movie domain.

However one situation when CF algorithms are less ef-
fective is when data is sparse, either because the target
user is new to the system, an item is new, or both. In
fact, in extreme cases, when data is very scarce, simple non-
personalized recommendations based on global averages can
perform better than CF algorithms. We study the behav-
ior of a number of CF algorithms as data availability on
users and items grows, examining three types of cold-start
situations: cold-start user, cold-start item, and cold-start
system. Our algorithm is a simple variation of the filter-
bot algorithm proposed by Good et al. [9], which we call
the näıve filterbot algorithm. A filterbot algorithm injects
pseudo users or bots into the system. These bots rate items
algorithmically according to attributes of items or users, for
example according to who acted in a movie, or according to
the average of some demographic of users. Ratings gener-
ated by the bots are injected into the user-item matrix along
with actual user ratings. Then standard CF algorithms are
applied to generate recommendations.

In this paper, we examine how simple filterbots effect the
performance of standard user-based (UB) and item-based
(IB) collaborative filtering algorithms. Our approach im-
proves on the scalability of Good et al.’s original filterbot
approach. In previous work Good et al. saw improvement
in performance from a set of 2N personal filterbots for N
users and 20 genrebots. In our paper, we demonstrate im-
provement in performance with a smaller set of only a total
of seven global filterbots. In addition to changing the num-
ber of filterbots, we changed the scale on which the filterbots
rated movies from binary (high and low in Good et al.) to

average ratings. We also demonstrate that switching from
Good et al.’s UB baseline to IB significantly improves ac-
curacy. We then show that our näıve filterbots improve ac-
curacy further, especially in cold-start settings, when users,
items, or both are relatively new to the system, and thus
have little data associated with them. The computational
cost of employing 5-7 näıve filterbots is almost negligible
compared to the baseline.

We analyze the performance of a non-personalized base-
line recommender (AVG), traditional user-based (UB) and
item-based (IB) CF algorithms, and our näıve filterbot al-
gorithms in three cold start situations with three large data
sets in the movie domain: Yahoo! Movies,1 MovieLens,2

and EachMovie.3 We use normalized mean absolute error
(NMAE) as our performance metric, as employed in [15].
Among the non-filterbot approaches, IB appears best across
a wide range of data availability settings, confirming previ-
ous results. We find that AVG does outperform IB when the
user-item matrix is extremely sparse. In general, our näıve
filterbot algorithms either equal or beat their non-filterbot
counterparts over all datasets and cold-start settings. The
benefit of näıve filterbots grows as the training matrix be-
comes more sparse. The benefit of filterbots is most clear
with the Yahoo! data set, which also happens to be the
sparsest data set.

2. RELATED WORK
Collaborative filtering (CF) systems use community rat-

ings to determine recommendations for users. CF systems
typically work by associating a user with a group of like-
minded users, called neighborhoods, then recommending items
enjoyed by others in the group. The movie domain is proba-
bly the most widely studied application area for CF systems
[9, 28, 29, 25, 17, 32], though the same methodology is ap-
plicable across a number of domains, including books, music
[30], web pages [6], jokes [8], news, newsgroups [27, 14, 19],
advertisements, and more.

CF algorithms range from simple nearest-neighbor meth-
ods [6, 27, 29] (Breese et al. [6] call these “memory-based”
methods) to more elaborate model-based methods which
first train or “compile” a model—for example, a Bayesian
network [6], a classifier [5, 20], a co-clustered matrix [31],
or a truncated singular value decomposition matrix [5, 8,
28]—based on historical data, then use the trained model
to generate recommendations. Hundreds of CF algorithms
have been proposed and studied, including machine learning
methods [5, 4, 15, 26], graph-based methods [1, 12], linear
algebra based methods [5, 8, 28], and probabilistic meth-
ods [11, 23, 24]. A number of hybrid methods combining
information filtering (IF) and CF techniques have also been
proposed [3, 2, 4, 24, 18, 9], which are especially useful
when data is sparse, for example in cold-start situations. In
fact, in the extreme cold-start setting, CF methods cannot
provide recommendations at all, and IF methods or hybrid
IF/CF methods are needed.

In general, given enough data, a straightforward item-
based (IB) nearest-neighbor method [29, 13, 7] is hard to

1Yahoo! Movies, http://movies.yahoo.com/
2MovieLens, http://movielens.org/
3The data was available at
http://www.research.compaq.com/src/eachmovie/ un-
til October 2004 when it was finally retired.

beat decisively. Park et al. [22] showed that the Fast MMMF
algorithm, which has recently been cited as one of the best
CF algorithms [26], does not beat IB. We base our näıve
filterbot approach on Good et al.’s filterbot algorithm [9], a
hybrid CF/IF approach. A filterbot is an automated agent
that rates all or most items using IF techniques. These fil-
terbots are then treated as additional users in a CF system.

3. DATA SETS
We use three movie ratings datasets: Yahoo! Movies, Movie-

Lens and EachMovie. We use movie content information
(e.g., cast, genre, synopsis, etc.) from Yahoo! Movies. All
movie-ids in MovieLens and EachMovie were converted to
the Yahoo! movie-ids to index the same movie content infor-
mation. User ratings in the Yahoo!, MovieLens and Each-
Movie data sets are integers ranging from 1 (F) to 13 (A+),
from 1 to 5, and from 0 to 5, respectively, where higher
ratings mean “more preferred”.

Due to the large number of experiments we run in this
study, we choose to use smaller datasets. We use the 100K
user rating set, which is sampled and provided by Movie-
Lens. Then, we randomly select 10% of ratings for testing
and the rest for training. For the EachMovie dataset, we first
remove all of the “sounds awful” ratings since these ratings
(which have a weight less than one) described users’ impres-
sions of the item but not their actual experience. Next, we
sample 10% of users randomly, and randomly assign 10% of
their ratings into test and the rest into training set. In our
dataset, we choose to keep users who have rated less than
20 movies in the EachMovie data set. We believe that many
users in real systems provide only a few ratings to test the
system, and then never come back. In order to keep these
users, increasing the initial accuracy seems very important.
TheYahoo! dataset consists of two files in chronological or-
der, where the test data was gathered after the training data.
Because of this, the Yahoo! training and testing data sets
have slightly different rating-frequency distributions.

Table 1 displays summary statistics of the three datasets.
For example, the Yahoo! training data contains 211,327 rat-
ings from 7,642 users for 11,916 movies. The average user

rating (Ru =
P

u
ru

|U|
) is 9.639 and the average item rating

(Ri =
P

i
ri

|I|
) is 9.325 where ru and ri are the average rat-

ings of user u and item i. The average number of ratings
(“votes”) per user, denoted Vu, is 27.65. The matrix den-

sity ratio (δ = 100∗|R|
|U|∗|I|

) of the Yahoo! training data is 0.23,

meaning that only 0.23% entries in the user-item matrix are
filled. The Yahoo! dataset is more biased toward positive
user preferences than the other data sets, with a greater fre-
quency of top ratings and a higher average rating. Yahoo!
users are also more likely express extreme preferences at ei-
ther ends of the scale (13=A+ or 1=F), showing a bimodal
ratings distribution. The Yahoo! dataset has the lowest den-
sity (δ = 0.23) while the MovieLens has the highest density
(δ = 6.3).

4. SIMULATION PROTOCOLS

4.1 CF algorithms
We test three CF algorithms: user-based (UB), item-

based (IB), and our näıve filterbot modifications of UB and
IB. In this section, we briefly explain the first two algo-

Table 1: Data statistics: the number of ratings (|R|), the number of users (|U |), the number of items (|I|), the
average number of votes per user (Vu), the average number of votes per item (Vi), the average user rating
(Ru), the average item rating (Ri) and matrix density (δ).

Yahoo! training Yahoo! test MovieLens, 1M MovieLens, 100K EachMovie EachMovie, Sample

|R| 211,327 10,136 1,000,209 10,.000 2,811,983 254,321

|U | 7,642 2,309 6,040 943 61,265 6,174

|I| 11,916 2,380 3,652 1,682 1,607 1,461

Vu 27.65 4.39 165.6 106.04 45.9 41.19

Vi 17.73 4.26 273.88 59.45 1,749.83 174.07

Ru 9.64 9.66 3.7 3.59 3.15 3.42

Ri 9.32 9.54 3.24 3.08 2.3 3.23

δ .23 .18 4.53 6.3 2.86 2.82

rithms. Our modifications will be explained with more de-
tail in the Section 5.

4.1.1 The UB algorithm
UB first calculates the similarities between user ratings

using the pearson correlation coefficient [6, 14, 27].

sim(u, v) =

P

i∈Iu∩Iv
(ru,i − ru) · (rv,i − rv)

p
P

i
(ru,i − ru)2 ·

p
P

i
(rv,i − rv)2

(1)

where ru,i is the rating of user u for item i and ru is user u’s
average rating for items rated by both u and v. Iu is the set
of items that user u has rated. It helps to penalize similarity
scores that are based on a small number of overlapping items
in order to reflect a lack a confidence, yielding a modified
similarity score sim′(u, v) as follows [10]:

sim′(u, v) =
min(|Iu ∩ Iv|, γ)

γ
∗ sim(u, v) (2)

We set γ = 50. Then, the predicted rating of item j for user
u is calculated as:

pu,j = ru +

P

v∈U
sim′(u, v) ∗ (rv,j − rv)

P

v∈U
|sim′(u, v)|

(3)

where ru is user u’s average rating.

4.1.2 The IB algorithm
IB is very similar to UB. Instead of calculating similarities

between users, it calculates similarities between items using
adjusted cosine similarity [29, 16].

sim(i, j) =

P

u∈U
(ru,i − ru) · (ru,j − ru)

q

P

u∈U
(ru,i − ru)2 ·

q

P

u∈U
(ru,j − ru)2

(4)

Note that when ru is calculated, all items which user u has
rated are considered. Similarities based on a small number of
common items are penalized similarly to (2). The predicted
rating of the item i for user u is:

pu,i = ri +

P

j∈Iu
sim′(i, j) ∗ (ru,j − rj)

P

j∈Iu
|sim′(i, j)|

(5)

where ri denotes the average rating of item i.
Note that IB algorithm can be considered as a model

based approach and it consists of two parts; item similarity
computations (or model learning stage) and neighbor selec-
tion (or prediction calculation stage) using the the model.
For example, IB first calculates item similarities and it can
be done at offline. Then when a new user-item pair comes

to the system, IB selects the top k nearest neighbors of the
target item in the candidate set — items the target user has
rated so far — by using the item similarities matrix. Then
the prediction of the target item for the target user is given
by the sum of the average rating of the target item and the
weighted average of its neighbors.

4.2 Evaluation metrics
We use “normalized MAE” (NMAE), proposed in [15],

as a performance metric. MAE [19, 6] can be calculated
in two ways: macro-averaged and micro-averaged. Macro-
average first calculates the mean absolute error of each user
and averaging them over all users. Micro-averaged MAE
averages errors over all ratings. From a system-wide per-
spective, a recommender service may want to reward users
who provide more ratings. If so, micro-averaged metrics
which put more weight on high-volume raters are more ap-
propriate. For this reason, we use micro-averaged MAE for
our cold-start system experiments. For our cold-start user
and item experiments, we use macro-averaged MAE in or-
der to better measure the average incremental effect of each
new user/item. Then MAE is normalized by MAErandom,
which denotes the expected MAE where predictions are ran-
domly selected. If NMAE is smaller than 1, the algorithm
works better than random. We used 4.824, 1.6, 1.944 as
the MAErandom for Yahoo!, MovieLens and EachMovie.4

Note that NMAE provides the similar performance scale
over three different datasets and make comparison easier.

4.3 Cold-start setting
We measure prediction accuracy of AVG, UB, IB and our

näıve filterbot variations of UB and IB in three cold-start
situations: cold-start system, where a new service starts and
the user-item matrix is extremely sparse; cold-start user,
where a new user comes to the system and the system has
little knowledge about the user; and cold-start item, where
a new item comes to the system and the system has little
knowledge about the item.

4.3.1 Cold-start system
To analyze performance variations of CF algorithms in

cold-start settings, we first generate training sets of varying
degrees of sparsity. We randomly select ratings from the
original training data with probability of γ and use them
for training algorithms. We increase γ from 0.1 to 1. We

4We empirically calculate MAErandom for Yahoo!, but use
the same MAErandom in [15] for MovieLens and EachMovie.

Table 2: Average density ratio (δ) of sparse training
data in cold-start system setting.

γ Yahoo! MovieLens EeahMovie

0.1 0.082 0.81 0.431
0.2 0.1 1.397 0.67
0.3 0.12 1.986 0.917
0.4 0.139 2.558 1.115
0.5 0.156 3.122 1.396
0.6 0.173 3.709 1.619
0.7 0.189 4.259 1.856
0.8 0.204 4.819 2.088
0.9 0.228 5.366 2.325
1 0.232 5.946 2.557

generate 10 different sparse training data for each γ with 10
different seed numbers. Table 2 shows the average density
ratio and the average number of users/items in the sparse
training data while γ increases. For each test, bots use only
user ratings in the sparse training data. The same user
demographics, content information of items and test data
are used for all test. All results in this environment are
averaged over 10 runs, each with a different collection of
randomly selected ratings used for training.

4.3.2 Cold-start user
To study the effect of a new user on CF algorithms, we

select users who have rated more than 40 items in the train-
ing data and at least 1 item in the test data. We select 432
users from Yahoo!, 612 users from MovieLens, and 1,845
users from EachMovie. Then, we generate 5 different test-
user sets, each of which includes 20% of those users. We
remove all ratings of test users in the training data, then
filterbot ratings and item similarities are calculated based
on the given matrix. In UB, we keep ratings of non-test
users and one test user in the memory and user similarities
between the target and only non-test users arer calculated.
Then, in each successive round of testing, we randomly add
two more of the target user’s ratings back into the training
matrix. Each algorithm computes predictions for all of the
target user’s test ratings. The process repeats, restoring two
more training ratings to the training set at each step. The
results shown in this setting are the average of five different
test-user data.

4.3.3 Cold-start item
Similar to cold-start user, we select items that have been

rated by more than 40 users in the training data and by
at least 1 user in the test data as test items. We select
803 test items from Yahoo!, 651 items from MovieLens, and
702 items for EachMovie. Then, we divide items into 5 test
sets. We remove all ratings of test items in the training
data and ratings of content-based bots are calculated based
on the given matrix. In IB, when 2 more ratings are added,
item similarities between the target and other items are re-
calculated. The system keep ratings of only non-test items
for each user, thus the size of the candidate sets will not
change. In UB, user similarities are calculated with only
training data and will not be recalculated during the test.
Similar to cold-start user, in each successive round of test-
ing, we randomly add two more of the target item’s ratings
back into the training matrix. Each algorithm computes
predictions for all of the target item’s test ratings. We do

not use award and average critic rating information in this
experiment since this information is generally not available
for a new movie. The results shown in this setting are the
average of five different test-item data.

5. NAÏVE FILTERBOTS
Our algorithm is a variation of Good et al.’s [9] filterbot

algorithm discussed briefly in Section 2. We were interested
in applying filter-bots to the item-based algorithm, which
seems to be the best state of the art CF algorithm. In
this section, we discuss the problems and limitations of the
previous approaches and describe our solution to address
these problems. Please refer [22] for more details.

5.1 The effect of bots on IB and UB
A bot can be generated as either an artificial user or item.

One example of user-bots are RipperBots in [9]. RipperBots
generated personalized ratings of items based on the item
features and user profiles. An ActionBot, on the other hand
(which rates ‘action’ movies) can be considered as an item
which generates ratings of all users based on their ratings
of action movies. Once the filterbots are defined, we inject
their ratings into the system by treating them just like any
other users or items, applying either UB or IB to calculate
predictions. When any CF algorithm fails to generate a
prediction for item i, we use the item’s average rating as
a default prediction. Note that user and item-bots affect
IB and UB differently. In IB, user-bots only have an effect
on the learning model — the item similarity matrix — but
do not increase the size of the candidate set. Since more
item similarities can be defined due to addition of ”pseudo”
users, more neighbors for the target item can be chosen from
the candidate set. On the other hand, item-bots affect on
the size of the candidate set rather than the learning model
itself. In UB, user-bots increase the size of the candidate set
— users who have rated the target item — and the item-bots
effect on user similarities.

5.2 Injecting critic ratings and feature bots
The first bots we consider are the critic ratings. We select

42 critics5 who have rated more than 10 movies and in-
sert their ratings directly to the user-item matrix. We find
that even though 42 critics seems to be useful for Yahoo!
they cause significant performance degradation on Movie-
Lens and EachMovie. Since we consider a media as a critic,
ratings of a critic may not be consistent.

We also consider feature-bots, which generate item ratings
based on the features of items such as genre and casting in-
formation. We inject various feature-bots into the user-item
matrix and test their performance. Unfortunately, the per-
formance of this approach is often worse. For example, when
we inject many user feature-bots into the matrix, they are
often useful for IB when the items have been rated by very
few users. In this case, item similarities are mainly calcu-
lated based on pseudo ratings generated by bots. However,
when items have been rated by many users, it can cause a
problem. Note that bots generate ratings of most items and
those pseudo ratings becomes major factor for the item sim-
ilarities even though the item has been rated by many users.

5Note that we consider a media, e.g. New York Times, as
a critic rather than an individual reviewer, e.g. Stephen
Holden, to increase the coverage of each critic.

Thus, item similarities often overfit contents too much. We
observe that item feature-bots are useful for the IB and user-
feature bots are useful for the UB in the cold-start setting
where the number of bots is large. In both cases, bots in-
crease the size of the candidate sets rather than changing
the similarity model. More detailed results are shown in the
[22].

5.3 Bot criteria
Even though user-bots are useful for UB and item-bots are

useful for IB, their limited scalability can be a critical barrier
to adoption by many real world systems, as users and item-
bots significantly increase the size of the user-item matrix.
Thus, we define three criteria, which our bot-augmented ap-
proach should meet.

• Coverage: If a bot represents a pseudo user, it should
be able to rate most of the items. If a bot represents a
pseudo item, ratings of most users should be calculated
based on some sort of user information. If a bot does
not meet this requirement, it may be useless in the
cold start situation.

• Scalability: The injection of the bots should not de-
crease the system’s overall scalability significantly. Since
most recommender systems are used online, the scala-
bility of the system should be considered.

• Performance: The injection of the bots should im-
prove recommendation quality in cold-start situations
while it performs at least as good as IB and UB when
enough user ratings are provided. In the other words,
predictions should not overfit pseudo ratings when the
system already have enough information. This crite-
ria comes from our experience that users’ own ratings
seems to be the best resource to predict their prefer-
ences on other items.

5.4 Injecting GBots
Based on three criteria, we reject personal-bots because

of the increased computational complexity. Similarly we re-
ject user and item feature bots. Instead of them, we pro-
pose 7 global user-bots (GBots) based on aggregate rat-
ing information and item content information. AVGBot
generates ratings based on average item ratings over all
users. VTBot generates the rating of an item i accord-
ing to: ri = logβ Vi, where Vi is the number of users who
have rated item i. β is a normalization factor that caps
ratings at the maximum available rating (13 for Yahoo!; 5
for MovieLens and EachMovie). We set β = 2 for Yahoo!
and β = 4 for MovieLens and EachMovie. Critic-bot (CR-
Bot) generates item ratings based on their average critic
ratings. Award-bot (AWBot) first partitions items based
on how many awards they have won (woni) or nominated
(nomii) such as Cli = int((woni + 0.5 ∗ nomii)/3). Then,
the rating of each item is generated based on the average
rating of the items in the partition that the item i belongs
to. Actor-bot (ATBot) first calculates ratings of actors over
all users. The rating of an actor is the average rating of
movies in which the actor has starred. Then, it generates
the rating of movie i based on the average of actor ratings
who starred in the movie i. Here, we only consider the first
five featured actors among the movie’s cast. Director-bot
(DRBot) and Genre-bot (GRBot) generate ratings of items
similarly to ATBot.

To meet scalability criterium, we try to keep the number
of bots as small as possible. If we only inject a few bots into
the user-item matrix, additional computation complexity is
almost negligible. Also, it will minimal effect on the item
similarities when enough ratings are available. For user-
based CF algorithm, a user can have only a few “pseudo”
neighbors among the top 50. Thus, it provides at least com-
petitive performance with the original IB and UB when the
user-item matrix is dense.

6. EMPIRICAL RESULTS IN COLD-START

6.1 Cold-start system
Figure 1 shows NMAE changes of five different recom-

mendation algorithms while the density of the training ma-
trix increases. We do not compare the performance of the
original filter-bot algorithm[9] with others due to its limited
scalability. Note that we need to run each algorithm 273
times (10 for each .1 ≤ γ ≤ .9 and 1 for γ = 1 with three
different data) and it is almost impossible to conduct this
experiment with the original algorithm.

Where the matrix is extremely sparse, AVG is more ro-
bust than IB and UB. For example, AVG provides better
average prediction than IB and UB when γ ≤ 0.5 for Ya-
hoo! and γ ≤ 0.2 for MovieLens and EachMovie. Also,
where the training matrix is very sparse (i.e., γ = 0.1 for
Yahoo! and MovieLens and γ ≤ 0.3 for EachMovie), UB
provides better predictions than IB. However, the advan-
tage of UB disappears rapidly in all three data sets as the
density of the training data increases. Our bot-augmented
algorithms with seven GBots (IB+7G and UB+7G) always
improve the performance of both IB and UB in cold-start.
In general, performance improvements of our näıve filter-
bot algorithms become larger as γ decreases and IB+7G
outperforms UB+7G. The only exception is when Yahoo! is
used, which is the most sparse data among the three. When
γ ≤ 0.7, UB+7G is slightly better than IB+7G on Yahoo!
data.

6.2 Cold-start user
When a new user comes to the system, the user affects

IB and UB differently. The ratings of a single user do not
effect IB’s item similarities, since the model is already built
offline. If a new user rates more items, it increases the size of
candidate set for both IB and IB+7G. Note that additional
bots only effect the model but do not increase the size of the
candidate set. Thus, when the matrix is sparse such as with
the Yahoo! dataset, IB+7G shows better performance than
IB due to better similarity computation. The improvements
will continue while the user rates more items. However,
where the matrix is dense, the performance improvements
of IB+7G may not be clear because item similarities have
not changed signifigantly. The results shown in the Figure 2
confirm our reasoning. Note that among the three datasets,
items in EachMovie have been rated by 174 users while items
in Yahoo! have been rated by 18 users on average.

On the other hand, ratings of a new user significantly
effect user similarities in UB and UB+7G. If the user rates
more items, the system can calculate more accurately user
similarities because of the additional information. Addition
of bots in UB slightly increase the size of the candidate
set. We expect that UB+7G shows increased performance
improvement when the user has rated very few items. When

0.2 0.4 0.6 0.8 1
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Fraction of training data used

N
M

A
E

AVG
IB
IB+7G
UB
UB+7G

(a) Yahoo!

0.2 0.4 0.6 0.8 1
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Fraction of training data used

N
M

A
E

AVG
IB
IB+7G
UB
UB+7G

(b) MovieLens

0.2 0.4 0.6 0.8 1
0.4

0.42

0.44

0.46

0.48

0.5

0.52

Fraction of training data used

N
M

A
E

AVG
IB
IB+7G
UB
UB+7G

(c) EachMovie

Figure 1: NMAE changes while the size of training data increases

the user have rated more items, the user similarities in UB
and UB+7G will improve, and as the candidate set increases
and the effect of bots will be negligible. The result shown in
the Figure 2 confirms our hypothesis. With Yahoo!, UB+7G
shows performance improvements over all periods due to
the matrix sparsity. In this case, the additional candidates,
who rate most of items, are chosen as neighbors in most
cases and those bots actually help to generate more accurate
predictions for the given user-item pairs. With MovieLens
and EachMovie, UB+7G shows performance improvements
only when a user has rated very few items. One interesting
observation is that when a user has voted only 2 items, all
algorithm show similar performance due to the size of the
candidate set being very small.

6.3 Cold-start item
When a new item has received more ratings, item similari-

ties in IB will improve. When the item has been rated by few
users and the matrix is dense as in EachMovie, the addition
of bots may cause inaccurate item similarities because the
similarities largely depend on ”pseudo” ratings rather than
users’ ”real” ratings . However, when the new item has re-
ceived enough ratings, the effect of bots will disappear or
even improve the quality of predictions. With Yahoo! where
the matrix is very sparse, the system often ends up failing
to find neighbors in the candidate set due to lack of infor-
mation. In cases where there datasets are very sparse and
there are no neighbors to correlate with, item similarities
will be based solely off of the bot ratings.

In UB algorithm, more ratings of new items will increase
the size of the candidate set. Since additional bots only
provide a small number of additional candidates, the effect
of bots will be clear only when the item has been rated by
a few users. When more users rate the item, the size of the
candidate set will be larger and the effect of the bots will
disappear. Similar to the cold-user setting, the effect of the
bots is lessoned or worse when an item has been rated by
very few users. It seems that ”pseudo” ratings are more
useful when they are used as supplements of user ratings
rather than by themselves.

7. CONCLUSIONS AND FUTURE WORK
We conduct performance analyses of five CF algorithms:

AVG, IB, UB and our “näıve filterbot” variations of IB and
UB in three different cold-start environments. We use three
data sets from Yahoo!, MovieLens and EachMovie and the

performances of algorithms are measured by NMAE. Our
filterbot algorithms clearly demonstrate better robustness
than UB and IB in all three cold-start situations. The ad-
vantage of our algorithm is more clear if we use Yahoo! data,
which is the most sparse among the three data sets. We see
our main contribution as a detailed study of a number of
different filter-bot generation methods and demonstration
that a very few number of simple (“näıve”) filterbots help
collaborative filtering algorithms work better in cold-start
situation, with negligible impact on non-cold-start recom-
mendation accuracy and system efficiency. In the future, we
plan to develop a new algorithm which exploits user implicit
data such as user pageview history and search logs. Also, we
plan to study how our filterbot algorithm reacts when at-
tacks are introduced to the system. We plan to deploy our
algorithm within MAD6 [21], a personalized movie search
engine developed at Yahoo! Research. We plan to make our
Yahoo! data available to academic researchers in the near
future.

8. ACKNOWLEDGMENTS
We thank Yahoo! Movies, GroupLens (MovieLens), and

Digital Equipment Corporation (EachMovie) for providing
valuable movie ratings and content data.

9. REFERENCES
[1] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu. Horting

hatches an egg: a new graph-theoretic approach to
collaborative filtering. In ACM KDD, pages 201–212, 1999.

[2] M. Balabanovic and Y. Shoham. Fab: content-based,
collaborative recommendation. Communications of the ACM,
40(3):66–72, 1997.

[3] J. Basilico and T. Hofmann. A joint framework for
collaborative and content filtering. In ACM SIGIR, 2004.

[4] C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as
classification: Using social and content-based information in
recommendation. In AAAI/IAAI, pages 714–720, 1998.

[5] D. Billsus and M. J. Pazzani. Learning collaborative
information filters. In ICML, pages 46–54, 1998.

[6] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In UAI,
pages 43–52, 1998.

[7] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM TOIS, 22(1):143–177, Jan
2004.

[8] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste:
A constant time collaborative filtering algorithm. Information
Retrieval, 4(2):133–151, 2001.

[9] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. M.
Sarwar, J. L. Herlocker, and J. Riedl. Combining collaborative

0 10 20 30 40
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of training data used per user

N
M

A
E

IB
IB+7G
UB
UB+7G

(a) Yahoo!

0 10 20 30 40
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of training data used per user

N
M

A
E

IB
IB+7G
UB
UB+7G

(b) MovieLens

0 10 20 30 40
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Number of training data used per user

N
M

A
E

IB
IB+7G
UB
UB+7G

(c) EachMovie

Figure 2: NMAE changes while the number of ratings from a new user increases

0 10 20 30 40
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of training data used per item

N
M

A
E

IB
IB+5G
UB
UB+5G

(a) Yahoo!

0 10 20 30 40
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Number of training data used per item

N
M

A
E

IB
IB+5G
UB
UB+5G

(b) MovieLens

0 10 20 30 40
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Number of training data used per item

N
M

A
E

IB
IB+5G
UB
UB+5G

(c) EachMovie

Figure 3: NMAE changes while the number of ratings for a new item increases

filtering with personal agents for better recommendations. In
AAAI/IAAI, pages 439–446, 1999.

[10] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative filtering. In
ACM SIGIR, pages 230–237, 1999.

[11] T. Hofmann and J. Puzicha. Latent class models for
collaborative filtering. In IJCAI, pages 688–693, 1999.

[12] Z. Huang, H. Chen, and D. Zeng. Applying associative
retrieval techniques to alleviate the sparsity problem in
collaborative filtering. ACM TOIS, 22(1):116–142, Jan 2004.

[13] G. Karypis. Evaluation of item-based top-n recommendation
algorithms. In CIKM, pages 247–254, 2001.

[14] J. A. Konstan, B. N. Miller, D. Maltz, J. L. H. L. R. Gordon,
and J. Riedl. GroupLens: applying collaborative filtering to
Usenet news. Communications of the ACM, 40(3):77–87, 1997.

[15] B. Marlin. Collaborative filtering: A machine learning
perspective. Master’s thesis, University of Toronto, Computer
Science Department.

[16] M. R. McLaughlin and J. l. Herlocker. A collaborative filtering
algorithm and evaluation metric that accurately model the
user experience. In ACM SIGIR, pages 329–336, 2004.

[17] S. McNee, S. Lam, J. Konstan, and J. Riedl. Interfaces for
eliciting new user preferences in recommender systems. In UM,
pages 178–188, 2003.

[18] P. Melville, R. Mooney, and R. Nagarajan. Content-boosted
collaborative filtering. In AAAI, 2002.

[19] B. N. Miller, J. T. Riedl, and J. A. Konstan. Experience with
grouplens: Making usenet useful again. In USENIX annual
technical conference, pages 219–231, 1997.

[20] K. Miyahara and M. J. Pazzani. Collaborative filtering with
the simple bayesian classifier. In PRICAI, pages 679–689, 2000.

[21] S.-T. Park, D. M. Pennock, and D. DeCoste. Applying
collaborative filtering techniques to movie search for better
ranking and browsing. In AAAI Workshop on Intelligent
Techniques for Web Personalization (ITWP 2006), 2006.

[22] S.-T. Park, D. M. Pennock, O. Madani, N. Good, and
D. DeCoste. Naive filterbots for robust cold-start
recommendations. Technical report, YRL-2005-058, Nov 2005.

[23] D. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles.
Collaborative filtering by personality diagnosis: A hybrid
memory- and model-based approach. In UAI, pages 473–480,
2000.

[24] A. Popescul, L. Ungar, D. Pennock, and S. Lawrence.
Probabilistic models for unified collaborative and
content-based recommendation in sparse-data environments. In
UAI, pages 437–444, 2001.

[25] A. Rashid, I. Albert, D. Cosley, S. Lam, S. Mcnee, J. Konstan,
and J. Riedl. Getting to know you: Learning new user
preferences in recommender systems. In IUI, pages 127–134,
2002.

[26] J. Rennie and N. Srebro. Fast maximum margin matrix
factorization for collaborative prediction. In ICML, 2005.

[27] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl.
GroupLens: An Open Architecture for Collaborative Filtering
of Netnews. In ACM CSCW, pages 175–186, 1994.

[28] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application
of dimensionality reduction in recommender systems–a case
study. In ACM WebKDD Workshop, 2000.

[29] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation algorithms.
In WWW, pages 285–295, 2001.

[30] U. Shardanand and P. Maes. Social information filtering:
Algorithms for automating ”word of mouth”. In CHI, 1995.

[31] L. Ungar and D. Foster. Clustering methods for collaborative
filtering. In Workshop on Recommendation Systems at
AAAI, 1998.

[32] M. R. W. Hill, L. Stead and G. Furnas. Recommending and
evaluating choices in a virtual community of use. In ACM
CHI, pages 194–201, 1995.

