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ABSTRACT

The DeGroot model has emerged as a credible alternative to the standard Bayesian model for 
studying learning on networks, offering a natural way to model naive learning in a complex 
setting. One unattractive aspect of this model is the assumption that the process starts with every 
node in the network having a signal. We study a natural extension of the DeGroot model that can 
deal with sparse initial signals. We show that an agent's social influence in this generalized 
DeGroot model is essentially proportional to the number of uninformed nodes who will hear 
about an event for the first time via this agent. This characterization result then allows us to relate 
network geometry to information aggregation. We identify an example of a network structure 
where essentially only the signal of a single agent is aggregated, which helps us pinpoint a 
condition on the network structure necessary for almost full aggregation. We then simulate the 
modeled learning process on a set of real world networks; for these networks there is on average 
21.6% information loss. We also explore how correlation in the location of seeds can exacerbate 
aggregation failure. Simulations with real world network data show that with clustered seeding, 
information loss climbs to 35%.
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...[A]s we know, there are known knowns; there are things we know
we know. We also know there are known unknowns; that is to say
we know there are some things we do not know. But there are also
unknown unknowns – the ones we don’t know we don’t know... [I]t is
the latter category that tend to be the difficult ones.
– Donald Henry Rumsfeld, Secretary of Defense, (2002)

1. Introduction

Learning from friends and neighbors is one of the most common ways in which
new ideas and opinions about new products get disseminated. There are really two
distinct pieces to most real world processes of social learning. One part of it is the
exchange of views between two (or more) people who each have an opinion on the issue
(“Lyft is better than Uber” or the other way around). The other piece is the spread
of new information from an (at least partially) informed person to an uninformed
person (“there is now an alternative to Uber called Lyft which is actually better”).
Information aggregation models (Bala and Goyal, 2000; DeMarzo et al., 2003; Eyster
and Rabin, 2014) emphasize the first while models of diffusion (Calvo-Armengol and
Jackson, 2004; Jackson and Yariv, 2007; Banerjee et al., 2013) emphasize the second.

In reality both processes occur at the same time. For example, in the lead up to
the financial crisis of 2007-2008, if popular accounts are to be believed, most investors
were not tracking news on subprime lending, despite its central role in what ultimately
happened. After all, ex ante there is a whole host of other factors that are potentially
important to keep an eye on – this was also a period when world commodity prices
were changing rapidly, and China seemed poised to take over the world economy. For
most individual investors, information about the sheer volume and nature of subprime
lending was new information, an unknown unknown when they heard about it from
someone. After that of course many of them started tracking the state of the subprime
market and started to form and share their own opinions about where it was going.

Microcredit programs provide another example. Most microfinance borrowers did
not know that the product existed before a branch opened in their neighborhood.1

Indeed we know from Banerjee et al. (2013) that the MFI studied in that paper has
an explicit strategy of making its case to the opinion leaders in the village and then
assuming that the information will flow from them to the rest of the village. However,

1Marketing materials of microfinance institutions (MFIs) often feature quotes from their beneficiaries
to the effect that they never imagined that they could ever be clients of a formal financial institution.



NAIVE LEARNING WITH UNINFORMED AGENTS 3

once people hear about the product, they may seek out the opinions of others before
deciding whether to take the plunge.

In this paper, we develop a generalization of the DeGroot model (DeGroot, 1974;
DeMarzo et al., 2003) that accommodates both these aspects of social learning. We
feel that this is important because the DeGroot model has a number of attractive
properties that has made it perhaps the canonical model of boundedly rational infor-
mation aggregation in network settings.2,3 However, the DeGroot model makes the
somewhat unrealistic assumption that everyone is informed about the issue at hand
to start with – no one needs to be told that Lyft or microcredit or widespread sub-
prime lending exists. The current paper relaxes that assumption and allows the initial
signals to be sparse relative to the number of eventual participants in the informa-
tion exchange. In other words, we allow for the possibility that many or even most
network members may start by having absolutely no views on a particular issue, and
only start having an opinion after someone else shares their opinion with them.

While in the standard DeGroot model, agents average the opinions of their neigh-
bors (including themselves) in every period, agents in our Generalized DeGroot (GDG)
updating rule only average the opinion of their informed neighbors while ignoring un-
informed neighbors. Hence, an agent who received a seed signal and is surrounded by
uninformed neighbors will stick to this initial opinion and only will start averaging
once her neighbors become informed. An uninformed agent who has an informed
neighbor will adopt that opinion. Our model reduces to the standard DeGroot model
when all agents are initially informed and a standard diffusion model if informed
agents all start with the same seed. Just like the standard DeGroot rule, the GDG
rule can also be thought as a form of naive static Bayesian updating with normal
signals where uninformed agents have weak and diffuse signals that are ignored in the
aggregation while the stronger signals of informed agents are averaged.

2The DeGroot model has a number of clear advantages. The rule itself is simple and intuitive,
whereas the correct Bayesian information aggregation rule in network settings can be so complex
that it is hard to believe that anyone would actually use it. Indeed the experimental evidence
supports the view that most people’s information aggregation rules are better approximated by the
DeGroot model than the Bayesian alternative (Chandrasekhar et al., 2015; Mengel and Grimm,
2015; Mueller-Frank and Neri, 2013). Finally the model has attractive long-run properties under
some relatively weak assumptions.
3Molavi et al. (2017) develop axiomatic foundations of DeGroot social learning. They begin with
the assumption of imperfect recall – that the current belief of an individual’s neighbor is a sufficient
statistic for all available information, ignoring how and why these opinions were formed. They show
how under this assumption and other restrictions on information processing, DeGroot or DeGroot-
like log-linear learning emerges.
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It turns out that the social learning dynamics under these assumptions can be
thought of as the result of two separate processes: signals first diffuse through the
social network such that uninformed direct and indirect neighbors of the initially
informed agents adopt the opinion of the socially closest informed agent. But second,
as soon as there are at least two informed neighbors, they start exchanging opinions
and engage in DeGroot averaging. This roughly corresponds to the two stages of
social learning that we highlighted in our examples; what is an unknown unknown for
some people at a point of time is a known unknown for others.4

We show that what determines the long-run outcomes is the partition of the set
of nodes into those that got their initial opinion from the same seed – the so-called
Voronoi tessellation of the social network induced by the set of initially informed
agents. The Voronoi tessalation therefore describes the seeded agents’ social influence
in our model unlike the standard DeGroot model where social influence is proportional
to an agent’s popularity (in the symmetric DeGroot version). Being popular isn’t
enough to be influential in our generalized model: agents might have to surround
themselves with other popular neighbors in order to enlarge their Voronoi set and
make their opinion heard.

Each element of this partition effectively plays the role of a single node in the
standard DeGroot process; the (common) signal associated with all the nodes in
that element gets averaged with the signals associated with the other elements of the
partition over and over again, exactly as in the standard DeGroot model. The one
difference is that the weight given to a particular signal is (essentially) the degree-
weighted share of the nodes in the element of the partition associated with that signal.
The geometry of the social network embodied in the structure of the Voronoi partition
therefore interacts with the ability of the DeGroot process to aggregate the signals of
informed agents to generate the ultimate outcome.

An important consequence of this insight is that networks that would generate
asymptotic full aggregation of all available signals in the standard DeGroot case (the
“wisdom of crowds” effect analyzed by Golub and Jackson (2010)), may not do so
in the Generalized DeGroot case.5 In other words, the long-run outcome may reflect
only a fraction of the initially available signals. To demonstrate a worst-case version
4Of course, in reality it is likely that both these processes of pure opinion aggregation intersects with
another process of acquiring information by direct observation (for example by taking a Lyft), but
this of course was also true in the original DeGroot model.
5Importantly here we are not asking whether the Generalized DeGroot process leads to the same
long-run outcome as the standard DeGroot process; because there are potentially many more initial
signals in the standard DeGroot case, that would be an unfair comparison. The claim here is about
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of this, we construct a class of networks which, for most initial sparse seed sets,
“aggregates” only the signal of a single agent in the Generalized DeGroot case; this is
what we call a belief dictatorship. With the same set of networks, there would be no
dictatorships in the standard DeGroot case where all agents receive signals initially,
since no agent in these networks has a particularly high degree. However, we can also
characterize large classes of other networks where this issue does not arise and there
is nearly full signal aggregation even in the sparse case. For example, social networks
on rewired lattice graphs as introduced by Watts and Strogatz (1998) do not suffer
from belief dictatorships, but, on the contrary, aggregate the initial signals almost
perfectly.

The quality of the signal aggregation is therefore a function of the structure of
the network. To get some empirical insight into whether the average real world
network is closer to the belief dictatorship case or to the full aggregation case, we
simulate the Generalized DeGroot process on a set of 75 village networks where we
had previously collected complete network data (Banerjee et al., 2015) by injecting
signals at a number of randomly chosen nodes. The variance of the long-run outcome
of our simulated process across multiple rounds of injections gives us a measure of
information loss. Our results show that over a range of levels of sparsity at least
for these villages, we end up reasonably close to full aggregation; in our simulations
we find that the average amount of information loss is 21.6%. We also find that
there is substantial heterogeneity in how much information is lost/preserved with the
25th percentile losing about 33% of information and the 75th percentile losing 13%
of information.

Throughout much of the paper, we analyze cases where the initial signals are dis-
tributed uniformly at random in the network. However, there are many real-world
situations that might lead to information being clustered in a small number of sub-
communities. We next show that for a class of networks, such clustered seeding can
dramatically exacerbate information loss. Finally, we simulate the model using a clus-
tered seeding protocol in the 75 Indian village networks and show that on average,
correlation in the location of signals does indeed lead to a higher variance in limit
beliefs, holding the number of signals fixed. We find that under clustered seeding,
the average information loss climbs to 35%.

The remainder of the paper is organized as follows. Section 2 sets up the formal
model. Section 3 shows how the limit belief can be thought of as a Voronoi-weighted
the extent to which the long-run opinion reflects all the available signals, taking into account the
fact that there are more signals in the standard DeGroot case.
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average of the initial signals. In Section 4 describe how the network’s geometry
affects information loss. We explore how correlation in the location of initial signals
can influence information loss in Section 5. Both in the theoretical illustration and
in our data, such correlation exacerbates information loss. Section 6 concludes and
introduces some questions for future research, inspired by our model.

2. A Model of DeGroot Learning with Uninformed Agents

2.1. Setup. Our model builds on the standard DeGroot model as introduced by
DeMarzo et al. (2003) but adds uninformed agents. We consider a finite set of agents
who each may observe a signal about the state of the world θ ∈ R.

There are a finite number n of agents who are embedded in a fully connected and
symmetric graph g such that (i, j) ∈ g implies (j, i) ∈ g for any two agents i and j.
All agents to whom a node is linked are called neighbors: this will be the group of
people an agent listens to. We also assume that g includes self-loops (i, i) implying
that an agent also listens to herself. We denote the degree of a node in the graph
with di (including the self-loop).

At any point in time t an agent is either informed or uninformed. An informed agent
at time t holds belief xti ∈ R. An uninformed agent holds the empty belief xti = ∅.
Following DeMarzo et al. (2003) we assume that the initial opinions of informed
agents are an unbiased signal with finite variance about the true state drawn from
some distribution F :

(2.1) x0
i = θ + εi where εi ∼ F (0, σ2).

At time t = 0 a set S of size k = |S| nodes are initially seeded with signals x0
i . The

remaining n − k nodes receive no signal at period 0. Note that if k = n this is the
standard DeGroot case, where signals are dense rather than sparse.

2.2. Learning. Agents observe their neighbors’ opinions in every period and update
their own beliefs. We denote the set of informed neighbors of agent i at time t with
J ti and this set can include the agent herself. We then specify the generalized DeGroot
(GDG) updating process as follows:

xt+1
i =


∅ if J ti = ∅∑

j∈Jt
i
xt

j

|Jt
i |

if J ti 6= ∅.

Our updating rule implies that uninformed agents remain uninformed as long as all
their neighbors are uninformed. If just one of her neighbors becomes informed, the
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uninformed agent will adopt the opinion of that neighbor. If there is disagreement the
agent will use simple averaging to derive a new opinion.6 Note, that our updating rule
reduces to the standard DeGroot model once every agent is informed. Also Section
6 spells out a potential foundation for this rule: it can be seen as a naive dynamic
extension of the static optimum Bayesian learning rule.

1
∅ ∅

∅ ∅
∅

3 ∅

(a) t = 0

1
1 ∅

1 3
1

3 3

(b) t = 2

1
1 3

3
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7
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1
3 3

(c) t = 3
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9
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9

17
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9
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9

(d) t =∞

Figure 1. Evolving beliefs in a sample social network

To gain intuition about the learning dynamics, consider the belief dynamic for the
social network shown in Figure 1. At time t = 0 only two agents are informed and
have distinct signals. During the next two periods the seeds’ information diffuses and
the direct neighbors and the neighbors of neighbors adopt the opinion of the seed
closest to them. In period 3, averaging starts and continues until all agents have
converged to limit belief 17

9 . This example illustrates that the belief dynamics can be
broadly described as a diffusion process followed by an averaging phase. While it is
generally not possible to cleanly separate these two phases in time, they are helpful
for characterizing the long-run behavior of our updating process.

6Our results generalize to non-uniform weighting, but they are cleaner to present in this way.



NAIVE LEARNING WITH UNINFORMED AGENTS 8

3. How network geometry affects limit beliefs

We next characterize limit beliefs in our model starting from the initial seed set
S = {i1, .., ik} of k > 0 informed agents. Note, that beliefs in our model always
converge to some uniform limit belief x∞ because all agents will become eventually
informed and our model then reduces to the standard DeGroot model.

Proposition 1. The limit belief x∞ is a weighted average ∑i∈S wi(S)x0
i of the initial

signals of the seeds, where the weight given to the signal of seed i, wi(S), only depends
on the position of the seeds in the network and ∑wi(S) = 1.

The key intuition for this result is that we apply a linear operator to each agent’s
beliefs at each time. Proposition 1 also implies that the limit belief – for a fixed
seed set S – is an unbiased estimator of the state of the world, where we take the
expectation over the possible realizations of the initial signals.

We will call a seed’s weight wi(S) in the limit opinion the seed’s social influence.
It will be convenient to assume from now on that the weights wi(S) are monotonic in
the index i – this can always be accomplished by re-labeling the seeds, and therefore
this assumption can be made without loss of generality.

Clearly the most efficient estimator attaches equal weight to each seed’s signal
since they are equally precise. We are particularly interested in the variability of the
limiting social opinion x∞:

(3.1) var(x∞) =
∑
i∈S

wi(S)2σ2.

We can bound this variance above and below:

(3.2) σ2

k
≤ var(x∞) ≤ σ2.

Notice that the upper bound is the variance of a single signal, and this says that
society effectively pays attention to one node’s initial piece of information and has
“forgotten” the k−1 other pieces of information. The lower bound is just the variance
of the sample mean of k independent draws.

Loosely speaking, we say that the generalized DeGroot process exhibits “wisdom” if
the variance of the limit belief is close to the lower bound, which is precisely achieved
by the optimal estimator. On the contrary, if the variance in the limit belief is close
to the upper bound we say the process exhibits “dictatorship” because it only puts
weight on the signal of one single agent.
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In order to understand the conditions under which wisdom or dictatorship arises we
have to understand the weights wi(S). To study these weights we define the Voronoi
tessellation of the social network induced by seed set S as a partition of the nodes of
the social network into k almost disjoint sets. Each Voronoi set is associated with a
seed i and contains all the nodes that are weakly closer to seed i than any other seed
in terms of network distance. These sets do not quite form a partition since nodes
can be equidistant from two (or more) seeds in which case the nodes are assigned to
multiple Voronoi sets. Panel A of Figure 2 provides an example of such a Voronoi
tessalation on a line network with 7 agents where agents 1 and 7 are informed. Note,
that agent 4 belongs to both Voronoi sets V1 and V7.

For each Voronoi set Vi define the boundary of the set to be ∂Vi which is the set
of nodes that are not in Vi but are directly connected to an element of Vi (i.e., at
distance 1). Panel B of Figure 2 illustrates this boundary for V7. Next, for each node
i′ define the define to the closest seed as ci′ and the set of associated seeds A(i′, S) as
those seeds whose shortest distance to i′ differs from ci′ by at most one. The set of
associated seeds always includes at least the closest seed itself. We then define the
boundary region H(S) of seed set S as the set of nodes i′ whose set of associated seeds
has at least size 2. The boundary region includes equidistant nodes that are shared
between two Voronoi sets but also nodes immediately next to the boundary between
Voronoi sets. For each seed i we also define the minimal Voronoi set V min

i = Vi\H(S)
and the maximal Voronoi set V max

i = Vi ∪ ∂Vi.
Nodes within the minimal Voronoi sets will start averaging conflicting opinions only

after all their neighbors have become informed. Intuitively, information aggregation
will therefore occur exactly like in the standard DeGroot model. However, nodes in
the boundary region H(S) might enter the averaging phase while their set of informed
neighbors is still evolving: based on the rules of GDG updating their initial opinion
(once becoming informed) can therefore vary between the lowest and highest signal
among their associated seeds. In order to bound these two extremes, we construct the
lower Voronoi sets V i and the upper Voronoi sets V i for a particular signal realization
x0
i on the seeds as follows.
Let us start with the lower Voronoi sets V i first. All nodes in the minimal set V min

i

are assigned to V i. Moreover, any node i′ ∈ H(S) is assigned to the associated seed
with the lowest signal realization. Note that the lower Voronoi sets form a partition.
We define the upper Voronoi sets V i analogously by assigning nodes in the boundary
region to the highest associated seed. We can bound the sets in this lower and upper
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1 2 3 4 5 6 7
(a) Nodes 1 and 7 are seeds. V1 = {1, 2, 3, 4}
and V7 = {7, 6, 5, 4}.

1 2 3 4 5 6 7
(b) ∂V7 = {3} and H(S) = {3, 4, 5}.

.1 .1 .1 .1 .1 .3 .3
(c) V 1 = {1, 2, 3, 4, 5} and V 7 = {6, 7}.

.1 .1 .3 .3 .3 .3 .3
(d) V 1 = {1, 2} and V 7 = {3, 4, 5, 6, 7}.

Figure 2. Nodes 1 and 7 are seeds, with signals 0.1 and 0.3, respec-
tively. The panels describe the Voronoi sets as well as the upper and
lower Voronoi sets.

partition as follows:

V min
i ⊆ V i ⊆ V max

i(3.3)

V min
i ⊆ V i ⊆ V max

i

Panels C and D in Figure 2 illustrate this construction of lower and upper Voronoi
sets.

We can now bound the limit belief x∞ only based on the lower and upper Voronoi
partition. To state the result we denote the share of nodes in a network that is part
of the lower Voronoi set V i with vi = |V i|

n
and define the link-weighted share:

(3.4) v∗i =
∑
i∈V i

di∑n
i=1 di

.

Analogously, we define the link-weighted share of agents in the upper Voronoi set V i.
Note, that for regular graphs such as the circle we have vi = v∗i . Our first theorem
(proved in the Appendix) then says:
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Theorem 1. Assume a social network with seed set S. The limit belief is bounded
below and above as follows:7

(3.5)
∑
i

v∗ix
0
i ≤ x∞ ≤

∑
i

v∗ix
0
i

The proof of Theorem 1 proceeds by induction: we show that we can sandwich the
link-weighted opinion of all informed agents in each time period t = 0, 1, .. by the
link-weighted average seed opinions that are assigned to these agents by the respective
lower and upper Voronoi partition. This is easy to show at time t = 0. The inductive
argument exploits the fact that the standard DeGroot averaging rule preserves the
link-weighted average opinion of agents between time t and t + 1 (proved in the
Appendix). However, for agents in the boundary region the set of informed neighbors
with conflicting opinion tends to increase: the lower and upper Voronoi sets provide
the appropriate bounds to bound the evolution of these agents’ beliefs until all their
neighbors are informed.

Theorem 1 allows us to characterize the limit belief by studying a static problem
and relates the geometry of the social network to an agent’s social influence wi(S).

Corollary 1. The social influence wi(S) of seed i satifies v∗,min
i ≤ wj(S) ≤ v∗,max

i

where v∗,min
i and v∗,max

i are the link-weighted shares of the minimal and maximal
Voronoi sets, respectively.

The proof of Corollary 1 follows immediately from inequality 3.3 and Theorem 1
by setting all signal’s except for seed i to 0.

Intuitively, an agent’s social influence is (approximately) proportional to the size
of her Voronoi set which determines how many agents she manages to convince of her
opinion before information aggregation commences.

4. How network geometry affects wisdom

In this section we explore how the geometry of the network influences how much
information gets aggregated into the final opinion. This is particularly important in
the sparse case because, even with large n the actual number of signals, k, can be a
small number and therefore we cannot assume that society can just lean on a law of
large numbers.

7These bounds are tight if we focus on general networks. For specific classes of geometries we can
improve the bounds.
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It is instructive to start by comparing the case of sparse signals to the case when
everyone gets a signal (which we call the dense case). Golub and Jackson (2010)
characterize when crowds will be wise in the dense case and show that, for a setting
like ours, the degree distribution is a sufficient statistic for characterizing asymptotic
learning. Other network statistics, such as average path length are irrelevant. For-
mally, Golub and Jackson (2010) show that a sequence of graphs (gj)j∈N is wise only
if

max
1≤i≤nj

di(gj)∑nj

i′=1 di′(gn) → 0.

where di(gj) denotes the degree of node i in graph gj and the size of graph gj is equal
to nj.8

In the sparse case, however, the above condition no longer guarantees wisdom. In
fact, we can construct a sequence of networks, all satisfying the Golub and Jackson
(2010) condition, where one of the k signals comes to fully dominate everybody’s
opinion. That is, the society’s converged opinion may reflect just one signal and
therefore be arbitrarily close to having the maximal possible variance. More generally,
this suggests that networks with important asymmetries may destroy considerable
part of the available information in sparse learning environments.

We then explore the class of networks that are best described as lattice graphs
with shortcuts, leaning on Watts and Strogatz (1998). This models environments
best described by homogenous small-world networks, which may be realistic in many
contexts. First, we first show that lattice-like graphs exhibit wisdom even with sparse
signals. Second, we prove that adding shortcuts to a lattice graph—wherein a random
set of links in the lattice are rewired randomly to other nodes, thereby creating short
paths across the network—preserves this result.

4.1. Belief Dictators. We construct a class of networks such that the generalized
DeGroot process selects an opinion dictator with probability close to 1 in the sparse
case despite being wise in the dense case.

For each integer r we define a graph GT (r) that – intuitively – consists of a central
tree graph surrounded by a “wheel”. We construct the tree by starting with a root
agent who is connected to 3 neighbors. Each of these neighbors in turn is connected
to 2 neighbors, and we let this tree grow outward up to radius r. We can calculate
the number of agents in this tree network as:

(4.1) 1 + 3 + 3× 2 + 3× 22 + ...+ 3× 2r−1 = 1 + 3 (2r − 1) .
8Recall, that our definition of degree includes a self-loop.
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r=1
r=2

r=…

3r+1 nodes on the periphery

3x2r spokes

Figure 3. Belief Dictators Example

Agents at the perimeter of this tree have 3 × 2r unassigned links. We surround the
tree by a circle of size 3r+1 and connect the tree’s unassigned links like spokes on a
wheel to this circle such that spokes connect to an equidistant set of nodes on the
circle. All agents in this network have degree 2 or 3: agents who are connected to
any agent in the central tree have degree 3 and all other agents have degree 2.

Proposition 2. Consider the class GT (r) of social networks and assume that k
seeds are randomly chosen on the network. The expected value of the largest weight
ES(wk(S)) (taken over all the seeds sets) converges to 1 as r →∞ while the expecta-
tion of all lower-ranked weights converges to 0.

In other words, one of the seeds becomes, with high probability, a belief dictator.
The intuition is simple: the share of agents in the center is o(

(
2
3

)r
) and therefore

converges to 0 as r increases. Hence, it becomes highly unlikely for large enough r

that any of the seeds are located in the center. Now consider the seed that happens
to be closest to a spoke. It is easy to see that this distance is uniformly distributed
since seeds are drawn randomly. Moreover, the distance between two spokes on the
wheel is O(

(
3
2

)r
). Therefore, the distance between the closest and second closest seed

increases exponentially in r. However, the closest seed needs only O(r) time periods
to infect the central tree and spread out to the all the other spokes. Hence, the
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opinion of the closest seed will take over almost the entire network. Put differently,
the Voronoi set of the closest seed encompasses almost the entire network.

It is instructive to contrast this observation to the “wisdom of crowds” result in
Golub and Jackson (2010). Each GT (r) network has bounded degree and there-
fore aggregates final opinions (almost) efficiently in the standard (dense) DeGroot
model. However, since our process adds a diffusion stage to the social learning pro-
cess, second-order properties of the social network – such as expansiveness, meaning
the number of links outgoing from a given set of nodes relative to the number of links
among that set – matter as well for learning.

4.2. Wisdom in small world lattices. The previous example is a case where almost
all information is destroyed leaving just one signal to dominate. This happens because
in almost any allocation of initial seeds, the induced Voronoi sets are such that one
set is much, much larger than all of the others.

In this section we study a class of networks where for a typical seeding, the Voronoi
sets of seeds are essentially all of the same order of magnitude. In this case, the
wisdom of crowds result continues to hold in the sense that the final opinion reflects
equally weighted information from all k seeds.

For this exercise, we look at small world networks on lattice graphs, building on
Watts and Strogatz (1998). First, we show that lattice-like graphs exhibit wisdom.
Second, we prove that adding a small number of shortcuts to a lattice graph induces
only small changes in the variance of limit beliefs and therefore preserves wisdom.

4.2.1. Lattice-like Graphs. As the name suggests, lattice-like graphs resemble lattice
graphs such as the one-dimensional line or a circle or the two-dimensional plane or a
torus. We start by defining the concept of an r-ball Bi(r) which is the set of nodes
at distance at most r from agent i.

Definition 1. The class G(a,A,m, d, ρ) of social networks consists of all n finite,
integral and positive, social networks with n nodes and bounded degree d with the
property that for each node i in a given network z of size n there is an rmax(z) with
Bi(rmax(z)) ≥ ρn and the following property holds for all r ≤ rmax:

(4.2) arm ≤ Bi(r) ≤ Arm

where a,A > 0 and m is a positive integer.

This regularity property ensures that the networks that we consider do not have
regions that grow at very different rates. For example we cannot have one region
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that is tree-like and another region that is a line.9 Intuitively, the parameter m de-
scribes the dimensionality of the network while ρ represents the minimum slice of
the social network for which this property has to hold.10 For example, the class of
circle networks where agents interact with their direct neighbors belongs to the class
G(1, 1, 1, 2, 1

2) while the class of torus networks belongs to G(1, 1, 2, 4, 1
2). At the same

time, the definition is flexible enough to allow for local rewiring. For example, consider
a circle network and add, for each agent, up to two more links to neighbors at most
distance R away. The resulting network belongs to the class G(1, 2, 1, 4, 1

2) of lattice-
like networks: the network is no longer a regular network as agents can have degree
ranging from 2 to 4 but it still resembles a one-dimensional line. Similarly, the geo-
graphic networks studied by Ambrus et al. (2014) belong to the class G(a,A, 2, d, 1

2)
for appropriately chosen parameters a, A and d which is a generalization of regular
two-dimensional torus networks.

Theorem 2. Consider the class G(a,A,m, d, ρ) of social networks and assume that
k seeds are randomly chosen on the network. Then there is a constant C that does
not depend on k or n such that we can bound the variance in the limit opinion as
follows:

(4.3) ES [var(x∞)] ≤ Cσ2

k
.

To understand the significance of this result recall the basic inequality (3.2) that
bounds the variance of the limit belief:

σ2

k
≤ var(x∞) ≤ σ2.

The theorem shows that for most seeds sets the variance in the limit belief is at
most a constant factor (which is independent of both n and k) larger than the first-
best case where all signals are equally weighted. In particular, the variance of the
limit belief scales inversely proportional with k and therefore the generalized DeGroot
process aggregates opinions far better than belief dictatorships. We can therefore view
Theorem 2 as an approximate “wisdom of crowds” result similar to Golub and Jackson
(2010) for this class of networks.

9This property obviously cannot hold for all r because eventually the balls will cover the entire
network, which is why we only require to hold up to some rmax.
10For example, we cannot take a torus and make it very thin so that it resembles a circle rather
than a plane.
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4.2.2. Small World Graphs. The seminal work of Watts and Strogatz (1998) empha-
sizes that real-world social networks have small average path length, and note that
this cannot be generated from lattice graphs by local rewiring only. Instead, we have
to allow for limited long-range rewiring that creates shortcuts in the social network.

Formally, we define a R(η) rewiring of the class of lattice-like graphs G(a,A,m, d, ρ)
as follows: we randomly pair all agents in the network with a random partner and
with probability η we add a link between these two nodes for each of the n/2 pairs.11

By construction, the degree of every node increases by η in expectation and the
maximum degree is now d+ 1.

Theorem 3. Consider the class G(a,A,m, d, ρ) of social networks and an associated
R(η) rewiring. Assume that k seeds are randomly chosen on the network. Then there
is a constant C that does not depend on k or n such that we can bound the variance
in the limit opinion as follows:

(4.4) ES,R(η) [var(x∞)] ≤ Cσ2

k
.

This result implies that small worlds exhibit wisdom on average across rewiring.12

The intuition behind this result is that even though long-range rewiring has a dramatic
effect on average path length (as shown in Watts and Strogatz (1998)) it affects the
diffusion ability of every seed in an equal manner. Therefore, it does not exacerbate
the imbalance of the Voronoi set size distribution.

4.3. Simulations in Indian Village Networks. We have explored network ge-
ometries where belief dictatorships arise (i.e., where k − 1 units of information are
destroyed) as well as cases where there is wisdom (i.e., all k units of information are
preserved).

However, whether GDG dynamics in real-world networks tend more toward belief
dictatorship or wisdom is ultimately an empirical question. To investigate this, we
simulate our model using network data collected from 75 independent villages in
India and analyze the resulting variance of each community’s beliefs across simulation
draws.

11If n is odd we leave out one randomly selected agent.
12Note, that we take the expectation both over seed sets and rewirings. In particular, there is always
a positive probability of obtaining a network akin to the T (r) class of social networks that we studied
in Section 2 which gives rise to belief dictatorships.
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Table 1. Summary Statistics

(1) (2)

Mean

Standard 

Deviation

Village Size 216.37 70.65

Fraction in Giant Component 0.96 0.02

Average Degree 10.18 2.50

Variance of the Degree Distribution 33.41 20.17

Average Clustering Coefficient 0.26 0.05

Average Path Length 2.81 0.35

Village Diameter (Longest Shortest Path) 5.93 1.07

First Eigenvalue 13.79 3.47

4.3.1. Data Description. For this exercise, we use the household network data col-
lected by Banerjee et al. (2015). The data set captures twelve dimensions of inter-
actions between almost all households in 75 villages located in the Indian state of
Karnataka. Surveys were completed with household heads in 89.14% of the 16,476
households across these villages. Thus the data respresents a near-complete snapshot
of each village’s network.

For simplicity in this analysis, we assume two households to be linked if in the
surveys, either household indicated that they exchange information or advice with
the other.13 Thus, our resulting empirical networks are undirected.14 This means
that we have link data on 98.8% of pairs of nodes.15 For this exercise, we further
restrict our analysis to only the giant connected component of each graph.

Table 1 contains descriptive statistics across all 75 of the empirical networks. The
average village in the sample contains approximately 216 households, 96% of which
are typically contained in the village’s giant component. Restricting only to those
nodes in the giant component, the average degree in the sample is 10.18, but exhibits
a large amount of dispersion with an average variance of 33.41. Average path lengths
in these networks are quite short, with a minimum distance of 2.81 between two
arbitrarily-chosen households in the sample. Moreover, the average diameter (i.e.,

13Specifically, the questions ask about which households come to the respondent seeking medical
advice or help in making decisions. Symmetrically, the questions also ask to whom the respondent
goes for medical advice or for help in making decisions.
14See Banerjee et al. (2013) and Banerjee et al. (2015) for a detailed description of the data collection
methodology and for a general discussion of the data.
15This follows from 1− (1− 0.8914)2 = 0.988.
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the longest shortest path) of the 75 villages in the sample is 5.93. We also observe
that the average clustering coefficient in 0.26, which implies that any pair of common
links for a household are themselves linked with 26% probability.

4.3.2. Signal Structure. For our simulations, we take the world to be θ = 1
2 . Further,

we assume signals to be distributed N (θ, σ2) with σ2 = 1. We conduct simulations
for varying levels of sparsity: k ∈ {2, 4, 6, 8, 10, 14, 18, 22, 26, 30}. For each village, for
each k and for each simulation run, we randomly seed k out of the n total nodes with
a signal and calculate the limit opinion under GDG. We simulate the model 50 times
for each village, for each k.

We are interested in measuring the variance of these limit opinions in the simula-
tions, which we denote as σ2

x∞ . We can then compare this variance to the natural
benchmark that would arise if each individual could observe all k signals simulta-
neously. In that case, the limit belief would simply be the sample mean over the
realizations of each of the k signals. This sample mean has variance σ2

k
= 1

k
.

Given that some network geometries destroy information (belief dictatorships),
while others preserve all k signals, we use the simulation exercise to quantify how
much information is destroyed in the village networks. To do this, we define the
effective number of signals as

keffective := σ2

σ2
x∞
.

Given that σ2
x∞ ≤ σ2

k
, keffective (which must be less than or equal to k) measures

the number of signals that would generate a variance equivalent to σ2
x∞ if all of those

signals could be observed simultaneously by an individual. The extent of information
preservation is given by keffective

k
.

4.3.3. Results. Figure 4, we plot the the mean keffective against the true k, averaging
across all 75 villages. We do find some evidence of information loss across the different
values of k; note that each point falls below the 45-degree line. On average, adding
one additional signal improves keffective by 0.775 signals.

In addition, we find substantial heterogeneity in the degree of information loss
across the 75 networks. We plot the interquartile range of average village outcomes
for each k. That is, we calculate the 25th percentile and the 75th percentile in the
distribution of keffective across the 75 villages. We find substantial heterogeneity. On
average, the 25th percentile village experiences 33% information loss, while the 75th
percentile village experiences 13% information loss.
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Figure 4. Simulations on 75 Indian village networks. The average
is taken over all simulations and all networks. The bars represent the
interquartile range across networks, for each k.

4.3.4. Discussion. In sum, that real world social networks do quite well at preserving
information both in theory (as our “small worlds” results show) and in practice (using
Indian village data) have 21.6% information loss in our simulations. An interesting
avenue to explore in future research is to look at which sorts of economic environments
give rise to equilibrium networks that are more likely to generate wisdom or more
likely to generate information loss.

5. Clustered Seeding

We have thus far focused our analysis on situations where the set of initially-
informed agents is drawn uniformly at random from the population. However, in
many real-world settings, opinion-leaders tend to be clustered in a small number of
locations. Firms often offer promotions to those they perceive as opinion leaders (e.g.,
on Twitter) and agricultural extension workers target new technology to those who
they perceive to be “model farmers”. And these targeted people often tend to be
clustered just because the same kind of people tend to be connected to each other.
Here, we explore the consequences of clustered seeding on the variance of the limit
beliefs using an illustrative example.
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5.1. An Illustrative Example. We consider a circle network of n nodes in which
each individual has two friends, di = 2 for each i, one friend to the right and one friend
to the left. Assume that there are R intervals or “regions” that collectively contain
all of the k opinion leaders in the network. These regions are distributed randomly
over the circle and together comprise a small number of nodes relative to n. In other
words, if the rth interval has br nodes, b = ∑

r∈R br � n. To capture the idea that
opinion leaders are often the first to learn about new technologies or opportunities,
we assume that seeds are drawn randomly from these b nodes only. Note, that we
abstract away from any difference in network structure within and outside regions
(the network structure is the same).

Given this structure, the variance of the limit beliefs is constrained by the number
of regions and not just the number of seeds. If there are few regions then the limit
opinion is less predictable even if there are many seeds.

To see this, we begin with a simplification of the above setup. Assume that the R
regions each have b

R
nodes and the regions are equally spaced in the network of size

n. Let zn denote the distance between two adjacent regions in the circle measured by
the closest members of each region, recognizing that this distance is the same for any
pair of adjacent regions. Finally let k = b, so every node in every region receives an
initial signal x0

i .
With this setup, notice that the Voronoi set for every seed node is either 1 (for all

interior nodes within each region) or zn

2 for each boundary node, of which there are
2R. Since the number of regions R and the number of nodes per region b/R is held
constant as n→∞, it follows from the arguments of Proposition 1 and Theorem 1,

var(x∞) = σ2

2R + o(1) as n→∞.

The logic behind this is that k − 2R of the seed nodes all have a Voronoi set of size
1 which vanishes relative to the 2R seed nodes that have growing Voronoi sets, all of
equal size, zn

2 .
This means that even though there are k > 2R nodes that serve as initial seeds,

because they are divided into R regions, the boundaries of these regions drive the
limit opinion. Therefore the limit opinion under a clustered allocation of seeds will
have far more variance than under a more dispersed allocation.

Let’s return to the general setup, where now b can differ from k, the regions can
be distributed randomly over the network, and seeds are drawn randomly from the
b ≥ k ≥ R nodes. In this case, the reader can check, there are constants C1 and C2
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that do not depend on R, k, n, or b such that we can bound the variance in the limit
opinion as follows:

ES[var(x∞)] ≤
(
C1

b
n

k
+
C2(1− b

n
)

min(R, k)

)
σ2.

Note that the variance of the limiting belief is bounded above by a function that
is decreasing in the number of regions R. The intuition here is that the Voronoi sets
are determined by the seeds that are closest to the boundary of each region. Any
seeds that are sandwiched between other seeds essentially won’t matter because the
combined size of their Voronoi sets is bounded by the sum of the R intervals, which
is small by assumption. Thus clustered seeding can result in much more information
loss than random seeding.

Limit Belief: 0.74 Limit Belief: 0.97 

N=300, k=8, R=2 

Figure 5. Example: Clustered Seeding

Figure 5 presents a simple illustration of the phenomenon. Here we have a circle
with n = 300, k = 8, R = 2, and br = 6 for each region. The large balls indicate the
initial seeds. The darkly shaded nodes indicate members of the two regions.

The example plots the limit beliefs following a specific realization of the eight
signals. The large, solid balls indicate a signal realization of 1, while the empty balls
indicate a signal realization of 0. Note that in both examples, the average signal is
0.375. However, the signal configurations and signal realizations have been chosen
to show how the interior signals are basically ignored. In the left panel, both the
left-most and right-most signal in each region are essentially preserved, resulting in
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a limit belief close to 0.75. In the right panel the regions are close together, and
therefore the signals that are closest to each other in the different regions also do not
influence the limit opinion by much. In this case, the limit belief largely reflects only
the outer two signals, that is the two signals with realization 1. Here the limit belief,
0.97, is close to 1.

5.2. Simulations in Indian Village Networks. We now repeat the exercise of
Section 4.3, where we simulate the GDG process on or Indian village network data.
In all of our simulations we fix k = 20 and we vary the number of regions seeds can
come from, from three to ten. These regions are located randomly throughout the
network.

Figure 6 shows the results, repeating 50 simulations per network for each of the 75
networks.
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Figure 6. Plots of the mean keffective against R, where the average is
taken over all simulations and all networks. The solid lines represent the
5th and 95th percentiles of keffective, bootstrapped across the simulation
draws.

We show that the effective number of signals ranges from 13 to 15, depending on
the number of regions, which range from three to ten here. If there are only three
regions, for instance, this corresponds to a loss of 35% of the information. When
we compare this to the case where signals are distributed i.i.d., in Figure 6, we see
that this represents a 13pp further decline in effective number of signals on a base of
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22pp loss just due to the GDG process. This shows that in empirical networks, when
information is not disturbed uniformly at random, the loss can be sizable.

6. Discussion and Conclusions

There is a continuum of possible naive learning rules – for example, one can think
of rules that aggregate signals in some non-linear way or that incorporate the presence
of uninformed neighbors (other than ignoring them as GDG does). In this concluding
section, we argue that GDG has a number of desirable properties which make it a
focal choice for naive learning in the presence of uninformed agents.

6.1. GDG as One-Step Bayesian Updating. In the standard DeGroot model
with Gaussian signals the linear learning rule is the optimal Bayesian rule in period
t = 1 which the agent then “naively” applies in all subsequent periods when it is no
longer optimal (DeMarzo et al., 2003). The following argument shows that the GDG
rule is the obvious analogue rule in the presence of uninformed agents.

To see this, assume that the signals are drawn normally for informed agents:
F (θ, σ2) = N (θ, σ2). In order to perform Bayesian learning with uninformed agents
we assume that an uninformed agent i has also a normally distributed but highly
imprecise signal x̃i:

(6.1) x̃0
i = θ + ε̃i where ε̃i ∼ N (0, σ̃2)

We assume that the variance σ̃2 is very large and we will implicitly consider the limit
case as σ̃2 →∞.

It is now easy to see that a Bayesian learner who has at least one informed neighbor
would exactly apply GDG as σ̃2 → ∞. Moreover, a Bayesian learner who has no
informed neighbors (including herself) would arrive at a low-precision posterior which
we can interpret as “staying uninformed”. Hence, the GDG model can be interpreted
as the naive application of one-step Bayesian updating in every period: in both the
original and our generalized DeGroot model agents behave like “naive Bayesians”.16

16Note that our results on belief dictatorships do not discontinuously rely on ignoring the uninformed.
To see this formally, let hI = 1

σ2 and hU = 1
σ̃2 be the respective precisions, which will be used in

the weighting formula. Agents average over their informed and uninformed neighbors, weighting by
precisions. It is easy to check that the belief dictatorship in GT (r) described in Section 4.1 persists
if hI is sufficiently large relative to hU . Formally, allowing the ratio hI/hU to depend on r, the result
follows if (3/2)r = o(hI/hU ) as r → ∞. However, our modeling choice in having the informed not
weigh the uninformed is intentional: those who have nothing to say about a topic do not contribute
to the conversation and are purely consumers of the newly discovered information.
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6.2. GDG and the Loss of Precision. While, as we show above, there are cases
where the generalized DeGroot model allows society to learn the average of all the
seeds, it is worth commenting that they do not learn the number of seeds k that
make up this average. In other words, they don’t learn the precision of what they
have learned. In the standard DeGroot model there is no need to learn k because
everyone starts informed and therefore if the population is large, the long-run outcome
of the DeGroot process is almost always the exact truth – precision of the prediction
is not an issue. In contrast, under GDG only a relatively small number of signals
get aggregated even for large networks, at least in the interesting case. In such
an environment even after many rounds of aggregation, participants in the learning
process would want to know if the opinion aggregated 3 or 30 signals.

One way to modify the GDG process to solve this precision problem is to require
everyone to keep track of the uninformed agents they encounter. For example, agents
could keep track of two different numbers: (1) the share of informed agents (with
the initial opinion equal to the share of informed neighbors at time t = 0) and (2)
the average opinion of informed agents (as in GDG). Agents then use the standard
DeGroot rule for updating their estimate of the share of informed agents in the
population and GDG for learning the average signals of informed agents. By learning
the share of informed agents, the naive learner can infer k (assuming she knows n)
while, as shown above, GDG allows her to learn the average of these k seed agents in
many classes of social networks.

However, to learn k, decision-makers need to keep track of the share of all the
uninformed agents they encounter from the beginning of time in all states of the world.
This may be a plausible assumption when the state of the world is a known unknown:
for example, agents might have no information about the state of the economy right
now but they are probably interested in this outcome from the beginning and know
that some people have received signals. Hence, they might keep track of the share
of informed agents even before any signal reaches them. However when dealing with
unknown unknowns (such as a new product or an unanticipated state of the world) it
seems implausible that agents will start updating their information before they have
talked to at least one informed neighbor.

It turns out however that there are ways to solve the problem of estimating precision
without using uninformed agents: for example, agents could “tag” informed seeds
and transmit these tags to their neighbors. What this means is that an agent could
explicitly tell her neighbors the actual names of the seeds that she knows of, and her
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neighbors can do the same, thereby keeping track of exactly which individuals were
original seeds (as well as possibly their seed values). If k is not too large then tagging
is an excellent way to easily learn k. However, tagging quickly becomes cognitively
expensive for larger k.

The examples suggest that learning precision (e.g., k) might be difficult. At the
same time, our results in this paper show that learning the average is inexpensive
and can be achieved through GDG in many settings. We hope to address the topic
of precision in social learning in future work.

6.3. Concluding remarks. The DeGroot model is fast becoming a work-horse model
for learning on social networks. We relax one key and potentially unrealistic assump-
tion of the model and show that this can completely undermine the full information
aggregation result associated with the standard DeGroot model. However, we also
characterize a large class of networks where this does not happen. Our simulations
using 75 real world social networks from Indian villages suggest that the outcome cor-
responds to 21.6% information loss on average. Finally, we observe that the extent of
information aggregation depends on the clustering of signals on the network. Under
clustered seeding, the average information loss is 35% in our simulations using real
world social networks.
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Appendix A. Proofs

A.1. Proof of Proposition 1. The limit x∞ exists since once all agents are in-
formed, standard (dense) DeGroot commences and we have assumed g is such that
the corresponding stochastic matrix is irreducible and aperiodic.

Consider t∗(S) as the period where the last uninformed agent becomes informed.
Because the generalized DeGroot learning process is a composition of linear operators,
it must be the case that xt∗i for every i is a linear combination of x0

j for j ∈ S. And
beginning at t∗(S), we can treat the process as standard DeGroot since everyone has
a signal, so the limit is just a weighted average of the initial signals, and we denote
the weights wj(S) for j ∈ S.

A.2. Proof of Theorem 1. We will make use of a simple auxiliary lemma that
characterizes the evolution of beliefs under the standard DeGroot model. To gain
some intuition consider a graph where every agent has opinion 0 except agent i who
has opinion 1. Denote the set of neighbors of i with N(i) and assume that every agent
j has degree dj where we use the convention that the degree is equal to |N(j)| + 1.
Denote the opinion of each agent j at time t in the network with xt,ij .

It is easy to see that the opinion of agent i at time t = 1 will equal x1,i
i = 1

di
and

the opinion of neighbor j ∈ N(i) at time t with x1,i
j = 1

dj
. Note that we have:

(A.1)
∑
j

djx
0,i
j =

∑
j

djx
1,i
j .

In this example both sides of this equation are equal to di.
We can show that this holds more generally, at every t and for arbitrary initial

signal vector x0.

Lemma 1. In the standard DeGroot model with undirected links the link-weighted
sum of beliefs is preserved:

(A.2)
∑
j

djx
t−1
j =

∑
j

djx
t
j.

Proof. [Proof of Lemma 1]
Denote the (column) vector of opinions at time t + 1 with xt+1 =

(
xt+1
i

)
and the

vector of opinions at time t with xt. Also introduce the degree (row) vector D = (di).
Finally, denote the DeGroot transition matrix with M . We then have:

(A.3) xt+1 = Mxt
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Now left-multiply both sides with the row vector D:

(A.4) Dxt+1 = D ·Mxt

It is easy to see that D ·M = D. This proves the lemma. �

Note that Lemma 1 implies that ∑j djx
0
j = x∞

∑
j dj for limit belief x∞ which

provides us with the well-known limit belief of the DeGoot model with symmetric
links.

We next prove Theorem 1. Without loss of generality, we assume that all initial
opinions of seeds are positive.17

We assume that the process starts from a seed set S and initial opinions xi for
i ∈ S. We also denote the opinion of each agent at time t in the network with x̃ti such
that x̃0

i = xi for all i ∈ S and x̃0
i = ∅ otherwise.

We denote the set of agents who become newly informed at time t = 0, 1, 2, .. with
∂St and the agents who are already informed with St. Hence the total set of informed
agents after time t is St ∪ ∂St. We use the convention S0 = ∅ and ∂S0 = S (initial
seed set). Note that eventually every agent becomes informed such that ∂St = ∅ for
t ≥ T and some T that depends on the graph and the seed set.

We denote the opinion of agent i in the lower Voronoi configuration with xi and
in the upper Voronoi configuration with xi. These opinions are defined for all agents
in the network and are equal to the opinion of the closest seed (except in case of ties
when the lower and upper configuration differ).

We want to prove the following claim:

Claim 1. The following inequality holds for all times:∑
j∈St

djxj ≤
∑
j∈St

djx
t
j ≤

∑
j∈St

djxj

Note, that this claim implies as t→∞
n∑
j=1

djxj ≤
n∑
j=1

djx
∞ ≤

n∑
j=1

djxj

which proves Theorem 1.
We prove the claim by induction on t = 0, 1, ... At time t = 0 the claim is trivially

true because S0 is an empty sets. Now assume that the claim holds at time t. We
show that this implies that the claim holds for t + 1 as well (which completes the
inductive argument).
17We can always ensure that by adding a constant to all opinions.
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We can think of the evolution of beliefs from time t to t + 1 as the result of two
processes: (a) for all agents in the set St ∪ ∂St the process evolves like a standard
DeGroot process on the truncated network that only includes edges of the graph
where both nodes are in St ∪ ∂St; (b) agents in the set ∂St+1 become informed.

Let’s look at the DeGroot process on the truncated network first. We can use
Lemma 1 to show

(A.5)
∑

j∈St∪∂St

d̂jx
t
j =

∑
j∈St∪∂St

d̂jx
t+1
j

where d̂j is the degree of agent j in the truncated network at time t that only involves
agents in the set St ∪ ∂St. Next, we note that d̂j = dj for all j ∈ St and d̂j ≤ dj

for j ∈ ∂St. Since we also have St+1 = St ∪ ∂St, we can rewrite equation (A.5) as
follows:

(A.6)
∑
j∈St

djx
t
j +

∑
j∈∂St

[
d̂jx

t
j + (dj − d̂j)xt+1

j

]
=

∑
j∈St+1

djx
t+1
j

Now we use the definition the upper and lower Voronoi sets to derive the following
inequalities:

xj ≤ xtj ≤ xj

xj ≤ xt+1
j ≤ xj(A.7)

Both follow because j lies either on the “fat” boundary between Voronoi sets or
completely inside a Voronoi set. In the latter case both xtj and xt+1

j equal the value of
the closest seed and the inequalities are trivially true. Otherwise, the only seeds that
can possibly affect the opinion of j at times t and t+ 1 are the ones that determines
xj and xj. Since the opinion of j is always a convex linear combination of these seeds
the inequalities have to hold.

Since we have d̂j ≤ dj we obtain the inequality:

(A.8)
∑
j∈St

djx
t
j +

∑
j∈∂St

djxj ≤
∑

j∈St+1

djx
t+1
j ≤

∑
j∈St

djx
t
j +

∑
j∈∂St

djxj

Since the claim holds at time t we can deduce:

(A.9)
∑

j∈St+1

djxj ≤
∑

j∈St+1

djx
t+1
j ≤

∑
j∈St+1

djxj

This completes the inductive argument and hence the proof of Theorem 1.
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A.3. Proof of Proposition 2. Observe that the share of agents in the center is
o
((

2
3

)r)
→ 0 as r → ∞. Therefore, with probability approaching one, all seeds are

on the circle.
Condition on an allocation of seeds that are not on the central tree. These are

uniformly placed along the outer circle.
We need to compute the distance between the closest seed to a spoke and the

second closest seed to a spoke. In order to study this, we need the difference between
the first and second order statistics from k draws on a line segment of length

(
3
2

)r
.

Note that for a uniform distribution on [0, 1], this order statistic difference is going
to be some function of k, independent of r. And therefore, in our case, the distance
must be on the order O

((
3
2

)r)
.

Next, observe that it takes O (2r) steps for the nearest seed to go up the tree and
down the other ends along all other spokes, since the height is r.

This implies that of the 3× 2r−1 nodes at the bottom of the tree, all but o (1) are
infected with the signal from the nearest seed to the tree as r →∞.

A.4. Proof of Theorems 2. Our proof proceeds in three steps. We prove the result
for a slightly distinct seeding process first: we assume that every node in the graph
independently becomes a seed with probability k

n
. Hence, the expected number of

seeds is equal to k. We will show at the end that the result extends when there are
exactly k seeds randomly distributed on the graph.

Step 1: Fix the seed set S. For any seed i ∈ S we define the maximal Voronoi
set Ṽi as the union of the Voronoi set Vi and its immediate boundary. Note, that
V i ⊂ Ṽi. We also define ṽi = |Ṽi|

n
.

Using Theorem 1 we can upper-bound the variance in the limit belief x∞ as follows:

(A.10) var(x∞) ≤ d2σ2∑
i

ṽ2
i

This follows because v∗i ≤ dvi ≤ dṽi. We can upper-bound the link-weighted share of
agents in the Voronoi set with dvi because the maximum degree is d by assumption.
Therefore, we can focus on finding a bound for ∑i ṽ

2
i .

Now consider the following thought experiment: draw two random nodes z and z′

and consider the event that both of them are in the same maximal Voronoi set. We
define the random indicator variable Izz′ which equals 1 iff z and z′ are in the same
maximal Voronoi set.
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Lemma 2. The following holds:

(A.11) var(x∞) ≤ 2d2σ2Ez,z′ (Izz′)

Proof. We first note that the probability that both points are in a specific Voronoi
set Ṽi equals ṽ2

i . However, the probability that both points are in some Voronoi set
is not simply ∑

i ṽ
2
i because the maximal Voronoi sets overlap at their boundaries.

For any two distinct seeds i and j denote the pair-wise overlap of the two associated
maximal Voronoi sets with Ṽij = Ṽi

⋂
Ṽi and ṽij = |Ṽij |

n
. We then have:

(A.12) Ez,z′ (Izz′) =
∑
i

ṽ2
i −

∑
i6=j

ṽ2
ij

From this we obtain: ∑
i

ṽ2
i = Ez,z′ (Izz′) +

∑
i6=j

ṽ2
ij

≤ 2Ez,z′ (Izz′)(A.13)

This proves the lemma. �

Lemma 2 provides us with the following upper bound for the expected variance in
the limit belief:

(A.14) ES [var(x∞)] ≤ 2d2σ2ES [Ez,z′ (Izz′)] = 2d2σ2Ez,z′ [ES (Izz′)]

Note, that we are changing the order of summation to obtain the right-hand side
equality. This is a key step in the proof because it allows us to focus on first bounding
ES (Izz′) which is the probability that two specific points z and z′ are in the same
Voronoi set (when taking the expectation over all seed sets).18 As we will see in Step
2 this probability can be bounded from above using a simple geometric argument.

Step 2: In this step we fix z. We denote the distance between z and z′ with d(z, z′)
and attempt to upper-bound the following expectation:

(A.15) 1
n

∑
z′|d(z,z′)≤rmax

ES (Izz′)

We prove the following lemma:

Lemma 3. There is a constant C such that:

(A.16) 1
n

∑
z′|d(z,z′)≤rmax

ES (Izz′) ≤
C

k

18We are grateful to Bobby Kleinberg for this insight.
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Figure 7. Bounding ES (Izz′)

z z’

x

Left Panel

z z’

Right Panel

Proof. We first prove a mini-lemma: consider two points x and x′ and assume that
d(z, x′) < d(z, x)− 2. Then z cannot be part of the maximal Voronoi set Ṽx. Recall,
that the maximal Voronoi set includes all the closest (and equidistant points) plus
a boundary. Therefore, a point z that belongs to Voronoi set Ṽx can be closer to a
distinct seed x′ but by at most a difference in length of 2.

Now fix a point z and consider the second point z′ at distance r = d(z, z′) = 1, 2..
from z. We want to bound the probability of the event Izz′ where both points lie in
the same Voronoi set (taking the expectation over all seed assignments). If z and z′

are in the same maximal Voronoi set then there must be a seed x such that z, z′ ∈ Ṽx.
Consider the ball Bz(d(z, x)−3) as indicated in the left panel of Figure 7: there can be
no other seed x′ inside this ball because otherwise z would not belong to the maximal
Voronoi set Ṽx (by our mini-lemma above). Similarly, the ball Bz′(d(z′, x)−3) cannot
contain any seeds.

This implies that at least a [(d(z, x)− 3)m + (d(z′, x)− 3)m] nodes cannot contain
seeds. According to the triangle inequality we also have:

(A.17) d(z, x) + d(z′, x) ≥ d(z, z′) = r

Due to the convexity of the polynomial function rm we can therefore deduce:

(A.18) a [(d(z, x)− 3)m + F (d(z′, x)− 3)m] ≥ 2a(r/2− 3)m

The right panel of Figure 7 illustrates the simple geometric intuition for this inequal-
ity: the two tangential, equal-sized discs always cover a smaller area that the two
discs on the left panel.
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We can now complete the proof:
1
n

∑
z′|d(z,z′)≤rmax

ES (Izz′) = 1
n

rmax∑
r=1

∑
z′|d(z,z′)=r

ES (Izz′)

≤ 1
n

rmax∑
r=1

∑
z′|d(z,z′)=r

(
1− k

n

)2a(r/2−3)m

(A.19)

The inequality follows because whenever z and z′ are in the same Voronoi set then
at least 2a(r/2− 3)m nodes cannot contain seeds.

Since
(
1− k

n

)n
≤ exp(−k) we obtain:

1
n

∑
z′|d(z,z′)≤rmax

ES (Izz′) ≤
1
n

rmax∑
r=1

∑
z′|d(z,z′)=r

exp
(
−k2a(r/2− 3)m

n

)
(A.20)

There are at most AF (r) such points at distance r or less. Moreover, the function
exp

(
−k 2a(r/2−3)m

n

)
is decreasing in r. Therefore, the left-hand side will be maximized

if there are exactly A(rm − (r − 1)m) nodes at distance r:

1
n

∑
z′|d(z,z′)≤rmax

ES (Izz′) ≤
1
n

rmax∑
r=1

exp
(
−k2a(r/2− 3)m

n

)
A [rm − (r − 1)m]

Using the mean-value theorem and the fact that rm is convex we know that rm− (r−
1)m ≤ mrm−1:

1
n

∑
z′|d(z,z′)≤rmax

ES (Izz′) ≤
1
n

rmax∑
r=1

A exp
(
−k2a(r/2− 3)m

n

)
mrm−1(A.21)

Next, note that rm−1 ≤ C 1
2(r/2 − 3)m−1 for some constant C > 0. We therefore get

(for some constant C ′):

1
n

∑
z′|d(z,z′)≤rmax

ES (Izz′) ≤
1
n

rmax∑
r=1

AC exp
(
−k2a(r/2− 3)m

n

)
m

1
2(r/2− 3)m−1

≤ AC ′
ˆ ∞

0
exp(−2akx)dx

For the last step we approximate the infinite sum with the corresponding integral and
use the chain rule. This finally gives us:

1
n

∑
z′|d(z,z′)≤rmax

ES (Izz′) ≤
AC ′

2ak(A.22)

This proves our lemma. �
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Step 3: By combining the previous 2 steps we obtain:

ES [var(x∞)] ≤ 2d2σ2 1
ρ

AC ′

2ak
The factor 1

ρ
enters because we have only focused on the case where z and z′ are

at most rmax apart (and hence Bz(rmax) covers just more than a share ρ of the
network). Take any slice size ρn which does not intersect with Bz(rmax) (of which
there are at most 1/ρ) – then one can see the probability that z and z′ are in the
same Voronoi set is bounded above by the same bound as for Lemma 3.

This completes the proof of Theorem 2.

A.5. Proof of Theorems 3. Our proof proceeds in four steps.
Step 1: We replicate the proof of step 1 of Theorem 2. We again focus on maximal

Voronoi sets and we take into account that the maximum degree in the rewired graph
is d+ 1 instead of d. We therefore obtain:

(A.23) ES,R(η) [var(x∞)] ≤ 2(d+ 1)2σ2Ez,z′

[
ES,R(η) (Izz′)

]
Step 2: We next show that the probability that two random points z and z′ are

in the same Voronoi set (averaged across all seed assignments with k seeds and all
rewirings) is approximately 1

k
(which proves the theorem).

To see the intuition for this result we consider a fixed k and large n. We construct
the r-balls around the k seeds as well as the two points z and z′ and let r increase.
As soon as the r-ball around z overlaps with any of the r-balls around the seeds, we
found the Voronoi set assignment for z and the shortest path to the corresponding
seed (same argument for z′). Because n is large, this shortest path involves at least one
rewired link with high probability. However, as long as the r-balls around the seeds
are of comparable size, there is a similar number of rewired links in any r-ball. Since
rewired links connect random points, the conditional probability that any particular
rewired link belong to the r-ball around any particular seed has to be approximately
1
k
.
In the following we make this intuition precise through two two sub-steps. First,

we show that the r-balls around different grow at approximately the same rate as
long as the r-balls around the seeds abd the points z and z′ have volume less than
√
n. Second, we show that as soon as the balls reach size

√
n they will intersect with

high probability and each of the two points z and z′ will intersect with the r-balls
around the seeds with approximately equal probability.
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Step 2.1: We start with a lemma that show that all of these k+ 2 r-balls grow at
similar rates.

Lemma 4. Consider the class G(a,A,m, d, ρ) of social networks and an associated
R(η) rewiring. Then there are positive constants C1 to C4 and θ such that for any
graph g ∈ G(a,A,m, d, ρ) and any node z ∈ g we have

C1 exp(C3r) ≤ ER(η)|Br(z)| ≤ C2 exp(C3r)

with probability greater than θ > 0 for r ≤ ln(n)
2C3

.

Hence, the balls expand at an exponential rate and the relative size of balls around
different two different nodes will node exceed C3/C1 (ratio of larger to smaller ball)
with probability that’s bounded away from 0 as long as the balls do not exceed
size o(

√
n). The proof follows readily from Rosenblat and Mobius (2004). The key

intuition is that (a) as the balls grow the growth rates become less noisy and (b) the
balls have volume less than

√
n and hence the extent of overlap can be made as small

as desired because only a share (k+2)
√
n

n
of nodes belongs to some r-ball.

Step 2.1: We now show that even though the r-balls have volume less than
√
n for

r ≤ ln(n)
2C3

the probability that they intersect somewhere becomes large exactly when
the balls reach size

√
n.

Consider the single step from r to r + 1: the number of new nodes around z that
have potential connections to the ball around seed x equals Dz exp(−C3r) for some
constant C1 ≤ Dz ≤ C3. Each such node connects to the outer layer of the ball
around x with probability ηDx exp(−C3r)

n
for some constant C1 ≤ Dx ≤ C3. Hence, the

probability that none of these new connections connects to the x-ball is equal to:

(A.24)
(

1− ηDx exp(C3r)
n

)Dz exp(C3r)

=
1− η

n
Dx exp(C3r)

 n
Dx exp(C3r)

DxDz exp(2C3r)
n

Recall that Dx exp(C3r) ≤
√
n. We therefore express the probability of no new

connections as:

(A.25) exp
(
−ηDxDz exp(2C3r)

n

)

For r = ln(n)
2C3

this probability is bounded below by exp(−ηC2
2) and above by exp(−ηC2

1)
and is therefore strictly between 0 and 1.
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Therefore, node z will connect with the closest seed as soon as the ball around z

reaches size O(
√
n). Since the probability of connecting to any of seeds is bounded

away from 0 the node is closest to any specific seed x with probability C/k.
This argument holds for both z and z′ independently and hence completes step 2.
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