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Nakano positivity of singular Hermitian metrics and

vanishing theorems of Demailly–Nadel–Nakano type

Takahiro Inayama

Abstract

In this article, we propose a definition of Nakano semi-positivity of singular Hermitian
metrics on holomorphic vector bundles. By using this positivity notion, we establish
L2-estimates for holomorphic vector bundles with Nakano positive singular Hermi-
tian metrics. We show vanishing theorems which generalize both Nakano type and
Demailly–Nadel type vanishing theorems. As applications, we specifically construct
globally Nakano semi-positive singular Hermitian metrics for several bundles and prove
vanishing theorems associated with them.

1. Introduction

In algebraic and complex geometry, positivity notions for holomorphic vector bundles have played
an important role. Among them, a notion of positivity for singular Hermitian metrics has pro-
duced many significant results. On holomorphic line bundles, the positivity of a singular Her-
mitian metric corresponds to the plurisubharmonicity of the local weight. Hence, we can apply
complex-analytic methods to the research in the field of complex algebraic geometry. For holomor-
phic vector bundles, notions of singular Hermitian metrics were also introduced and investigated
(cf. [dCa98, BP08]).

However, it turns out that we cannot always define the curvature currents with measure coef-
ficients [Rau15]. Hence, we need to define positivity notions without using curvature currents. We
have such a characterization for Griffiths semi-positivity or semi-negativity (see Proposition 2.4).
On the other hand, it was not known how to define the Nakano positivity of singular Hermitian
metrics without using the expression of the curvature currents.

Our main purpose in this article is to propose definitions of the Nakano semi-positivity of
singular Hermitian metrics on vector bundles (Definitions 1.1 and 1.2) and to establish a vanishing
theorem (Theorem 1.5) which generalizes both the Nakano and the Demailly–Nadel vanishing
theorems. These definitions are based on L2-theoretic characterizations of positivity, which were
recently developed by the authors in [DWZZ18, DWZZ19, HI21, DNW21, DNWZ20].

Throughout this paper, we let X be an n-dimensional complex manifold, let E → X be
a holomorphic vector bundle of finite rank r > 0, and let h be a singular Hermitian metric on E
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(see Definition 2.10).

First, modifying the optimal L2-estimate condition in [DNWZ20], we define the following
positivity notions.

Definition 1.1. Suppose that h is a Griffiths semi-positive singular Hermitian metric. We say
that h is globally Nakano semi-positive in the sense of singular Hermitian metrics or simply
globally Nakano semi-positive if for any Stein coordinate system (Ω, ι) around any point x ∈ X
(see Definition 2.1) such that E|ι(Ω) is trivial on ι(Ω), for any Kähler form ωΩ on Ω, for any smooth
strictly plurisubharmonic function ψ on Ω, for any positive integer q such that 1 6 q 6 n, and for
any ∂̄-closed f ∈ L2

(n,q)

(
Ω, ι?E;ωΩ, (ι

?h)e−ψ
)
, there exists a u ∈ L2

(n,q−1)

(
Ω, ι?E;ωΩ, (ι

?h)e−ψ
)

satisfying ∂̄u = f and∫
Ω
|u|2(ωΩ,ι?h)e

−ψ dVωΩ 6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,ι?h)
e−ψ dVωΩ ,

where BωΩ,ψ =
[√
−1∂∂̄ψ ⊗ IdE ,ΛωΩ

]
. Here we suppose that the right-hand side is finite (for

detailed notation, see Notation in Section 2).

Definition 1.2. Suppose that h is a Griffiths semi-positive singular Hermitian metric. We say
that h is locally Nakano semi-positive in the sense of singular Hermitian metrics or simply locally
Nakano semi-positive if for any point x ∈ X, there exists an open neighborhood U of x such
that for any Stein coordinate system (Ω, ι) around x such that ι(Ω) ⊂ U and E|ι(Ω) is trivial,
the condition in Definition 1.1 is satisfied on Ω.

The condition in Definition 1.1 is a global property, and the condition in Definition 1.2 is
a local property. We clearly see that global Nakano semi-positivity implies local Nakano semi-
positivity. For smooth Hermitian metrics, the above definitions are equivalent (see Proposi-
tion 2.8). We consider globally Nakano semi-positive singular Hermitian metrics in this article.
We propose a problem related to the difference between the above definitions (see Question 7.5).

We explain the reason that we use the above condition to define Nakano positivity in Section 2.
Here we only assume that X is a complex manifold, not Hermitian or Kähler. Hence, we can
define Nakano semi-positivity in a general setting. That is one of the advantages of Definitions 1.1
and 1.2.

In this setting, we can show the following result, which is a generalization of Demailly and
Skoda’s theorem [DS80] in the singular setting.

Theorem 1.3 (Theorem 3.4). Let h be a Griffiths semi-positive singular Hermitian metric on E.
Then h⊗deth is globally Nakano semi-positive on E⊗detE. We can see that h⊗deth is locally
Nakano semi-positive as well.

Next, we consider the case when X admits a Kähler metric ωX . In this situation, we can
define strict Nakano positivity for singular Hermitian metrics in a simple way (see Definition
2.16). By using this notion, we prove the following L2-estimate.

Theorem 1.4. Let (X,ωX) be a projective manifold and a Kähler metric on X, and let q
be a positive integer. We assume that (E, h) is globally strictly Nakano δωX -positive on X
in the sense of Definition 2.16. Then for any ∂̄-closed f ∈ L2

(n,q)(X,E;ωX , h), there exists a

u ∈ L2
(n,q−1)(X,E;ωX , h) satisfying ∂̄u = f and∫

X
|u|2(ωX ,h) dVωX 6

1

δq

∫
X
|f |2(ωX ,h) dVωX .
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Nakano positivity and vanishing theorems

We also get the following vanishing theorem, which is a generalization of both the Nakano
vanishing theorem and the Demailly–Nadel vanishing theorem.

Theorem 1.5. Let (X,ωX) be a projective manifold and a Kähler metric on X. We assume that
(E, h) is globally strictly Nakano δωX -positive on X in the sense of Definition 2.16. Then the
qth cohomology group of X with coefficients in the sheaf of germs of holomorphic sections of
KX ⊗ E (h) vanishes for q > 0:

Hq(X,KX ⊗ E (h)) = 0 ,

where E (h) is the sheaf of germs of locally square-integrable holomorphic sections of E with
respect to h.

Here, we can prove that the sheaf E (h) is coherent when h is a Nakano positive or semi-
positive singular Hermitian metric (see Proposition 4.4). As an application of Theorems 1.3
and 1.5, we get the following result.

Theorem 1.6 (Theorem 4.6). Let (X,ωX) be a projective manifold and a Kähler metric on X.
We assume that h is strictly Griffiths δωX -positive on X (see Definition 2.15). Then the qth
cohomology group of X with coefficients in the sheaf of germs of holomorphic sections of KX ⊗
E (h⊗ deth) vanishes for q > 0:

Hq(X,KX ⊗ E (h⊗ deth)) = 0 .

Theorem 1.6 can be regarded as a generalization of the Griffiths vanishing theorem (cf.
[Dem12b, Chapter VII, Corollary 9.4]). If the Lelong number satisfies ν(deth, x) < 1 for all
points x ∈ X, this kind of result was obtained in [Ina20, Corollary 1.4]. We stress that, although
Definition 1.1 or 1.2 is one choice of a definition of singular Nakano semi-positivity, Theorem 1.6
is independent of these choices. Our formulation fits with the classical framework in this sense. In-
deed, we can prove that global Nakano semi-positivity, local Nakano semi-positivity, and Griffiths
semi-positivity for singular Hermitian metrics are all identical when dimX = 1 or rankE = 1
(see Section 5). Using Theorems 1.5 and 1.6, we can determine the non-existence of Nakano or
Griffiths positive singular Hermitian metrics on certain vector bundles (see Example 4.10).

As applications, we have the following results. First, we show the singular Nakano semi-
positivity of the following direct image bundle.

Theorem 1.7 (Theorem 6.2). Let U ⊂ Cn{t} and Ω ⊂ Cm{z} be bounded domains, and let ϕ be a

locally bounded plurisubharmonic function on U × Ω. We also let Ω be pseudoconvex. For each
t ∈ U , set A2

t :=
{
f ∈ O(Ω) | ‖f‖2t :=

∫
Ω |f |

2e−ϕ(t,·) < +∞
}

and A2 :=
∐
t∈U A

2
t . Then the

trivial vector bundle
(
A2, ‖ · ‖

)
is globally Nakano semi-positive in the sense of Definition 1.1.

This theorem is well known in the situation when ϕ is smooth, which was obtained by
Berndtsson [Ber09]. A key ingredient to prove the theorem is that singular Nakano semi-positivity
is preserved with respect to an increasing sequence (Proposition 6.1).

Next, we show the following theorem.

Theorem 1.8. Let (X,ωX) be a projective manifold and a Kähler metric on X. We assume
that E → X is a V-big vector bundle (see Definition 2.19). Then for any m ∈ N, there exists
a positive constant δ such that SmE ⊗ detE admits a globally strictly Nakano δωX -positive
singular Hermitian metric hm. Here SmE is the mth symmetric power of E. Then we also have

Hq(X,KX ⊗ SmE ⊗ det E (hm)) = 0
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form, q > 0, where SmE⊗det E (hm) is the sheaf of germs of locally square-integrable holomorphic
sections of SmE ⊗ detE with respect to hm.

This is one application of our vanishing theorem. This result was published by Iwai as [Iwa21,
Corollary 5.9] (it was communicated to Iwai by the author).

The organization of this paper is as follows. We start with a general discussion of smooth
and singular Hermitian metrics on holomorphic vector bundles in Section 2. Here we introduce
several Hörmander type conditions. In Section 3, we explain the result of Demailly and Skoda.
Here we also generalize the result in the singular setting. In Section 4, we establish L2-estimates
and vanishing theorems for holomorphic vector bundles with Nakano positive singular Hermitian
metrics. In Section 5, we verify that our definition of Nakano semi-positivity is an appropriate
positivity notion when we compare it with the definition of Griffiths semi-positivity. In Section 6,
we show applications of our main theorems and prove Theorems 1.7 and 1.8. Finally, in Section 7,
we propose some questions which might be worth thinking about.

2. Notation and preliminaries

Throughout this paper, we use the following notation and definitions.

Notation

• KX : the canonical line bundle of X

• dVω := ωn

n! : the volume form determined by ω

• E?: the dual bundle of E

• h?: the dual metric of h on E?

• O(E): the sheaf of germs of local holomorphic sections of E.

• Ck(p,q)(X,E) := Ck
(
X,∧(p,q)T ?X ⊗ E

)
for 0 6 k 6 +∞

• D(p,q)(X,E): the space of smooth sections of ∧(p,q)T ?X ⊗ E with compact support

• Lp(p,q)(X,E;ω, h): the space of Lp sections of ∧(p,q)T ?X ⊗ E with respect to ω and h

• 〈〈α, β〉〉(ω,h) :=
∫
X〈α, β〉(ω,h) dVω

• ‖α‖2(ω,h) := 〈〈α, α〉〉(ω,h)

• D′?ψ : the adjoint operator of D′ψ with respect to 〈〈·, ·〉〉(ω,he−ψ)

• ∂̄?ψ: the adjoint operator of ∂̄ with respect to 〈〈·, ·〉〉(ω,he−ψ)

• ∆′ψ := D′ψD
′?
ψ +D′?ψD

′
ψ,∆

′′
ψ = ∂̄∂̄?ψ + ∂̄?ψ∂̄ with respect to 〈〈·, ·〉〉(ω,he−ψ)

• Lω : C∞(p,q)(X,E)→ C∞(p+1,q+1)(X,E): the operator defined by ω ∧ ·
• Λω: the adjoint operator of Lω

• [·, ·]: the graded Lie bracket

• ∆n(p; r) := {(z1, . . . , zn) ∈ Cn | |zi − pi| < r} for p = (p1, . . . , pn) ∈ Cn

• ∆n
r := ∆n(0; r)

Definition 2.1. Let Ω be an n-dimensional Stein manifold and ι : Ω → X be a holomorphic
map from Ω to X. We say that (Ω, ι) is a Stein coordinate system around x0 ∈ X if and only if
the following conditions are satisfied:
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(1) The holomorphic map ι : Ω → X is injective; that is, Ω → ι(Ω) defines a biholomorphic
map.

(2) The set ι(Ω) is an open subset of X such that x0 ∈ ι(Ω).

By definition, every complex manifold admits a Stein coordinate system around any point.

2.1 Smooth Hermitian metrics. We explain some definitions and properties of smooth Her-
mitian metrics. In this subsection, we always assume that a Hermitian metric h is smooth.

Let Θ(E,h) be the Chern curvature tensor of (E, h). Taking local coordinates (z1, . . . , zn) of X
and an orthonormal frame (e1, . . . , er) of E, we can write

√
−1Θ(E,h) =

∑
16j,k6n,16λ,µ6r

cjk̄λµ̄dzj ∧ dz̄k ⊗ e?λ ⊗ eµ .

We identify the curvature tensor with a Hermitian form

Θ̃(E,h)(τ, τ) =
∑

16j,k6n,16λ,µ6r

cjk̄λµ̄τjλτ̄kµ

for τ =
∑

j,λ τjλ(∂/∂zi) ⊗ eλ ∈ TX ⊗ E on TX ⊗ E. Using this Hermitian form, we define the
following positivity notions.

Definition 2.2. Let (E, h) be a Hermitian vector bundle.

(1) It is said to be Griffiths positive (respectively, Griffiths negative) if we have Θ̃(E,h)(ξ⊗s, ξ⊗
s) > 0 (respectively, Θ̃(E,h)(ξ ⊗ s, ξ ⊗ s) < 0) for all non-zero elements ξ ∈ TX and s ∈ E.
We denote this by Θ(E,h) >Grif. 0 (respectively, Θ(E,h) <Grif. 0).

(2) It is said to be Nakano positive (respectively, Nakano negative) if we have Θ̃(E,h)(τ, τ) > 0

(respectively, Θ̃(E,h)(τ, τ) < 0) for all non-zero elements τ ∈ TX ⊗ E. We denote this by
Θ(E,h) >Nak. 0 (respectively, Θ(E,h) <Nak. 0).

Corresponding semi-positivity and semi-negativity are defined by relaxing the strict inequal-
ities.

We can associate the Nakano positivity of (E, h) with the positivity of the operator
[
√
−1Θ(E,h),Λω] from the following lemma.

Lemma 2.3 (cf. [Dem12b, Chapter VII, Lemma 7.2], [DNWZ20, Lemma 2.5]). Let (X,ω) be
a Kähler manifold. We have (E, h) >Nak. 0 (respectively, (E, h) >Nak. 0) if and only if the
Hermitian operator

[√
−1Θ(E,h),Λω

]
is positive definite (respectively, semi-positive definite) on

∧(n,1)T ?X ⊗ E.

We can define Griffiths positivity and negativity without using the curvature tensor. We have
the following result.

Proposition 2.4 (cf. [Rau15, Section 2]). The following properties are equivalent:

(1) The metric h is Griffiths semi-negative.

(2) The function |u|2h is plurisubharmonic for any local holomorphic section u of E.

(3) The function log |u|2h is plurisubharmonic for any local holomorphic section u of E.

(4) The dual metric h? on E? is Griffiths semi-positive.
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We can treat the above conditions (2) and (3) without using the curvature tensor. Hence, we
use these conditions to define the Griffiths semi-positivity and semi-negativity of singular Her-
mitian metrics (see Definition 2.13). On the other hand, we do not know such a characterization
of Nakano positivity.

Recently, new positivity notions defined via the Hörmander Lp-estimate were widely investi-
gated. These studies can be regarded as a converse of Hörmander’s estimate, which is essentially
due to Andreotti and Vesentini [AV65] and Hörmander [Hör65] (see also Theorem 2.9). Initially,
Berndtsson established a converse of Hörmander’s L2-estimate for a continuous function on a
1-dimensional domain and used this result to prove the complex Prékopa theorem in [Ber98].
In [HI21], Hosono and the author introduced the twisted Hörmander condition for holomorphic
vector bundles on an n-dimensional domain.

Definition 2.5 ([HI21, Definition 3.3]). Let h be a singular Hermitian metric on E → Ω over
a domain Ω ⊂ Cn. We say that (E, h) satisfies the twisted Hörmander condition if for any
positive integer m, for any smooth strictly plurisubharmonic function ψ on Ω, and for any ∂̄-
closed f =

∑
j fjdz1 ∧ · · · ∧ dzn ∧ dz̄j ∈ D(n,1)

(
Ω, E⊗m

)
, there exists a u ∈ C∞(n,0)

(
Ω, E⊗m

)
satisfying ∂̄u = f and∫

Ω
|u|2(ωΩ,h⊗m)e

−ψ dVωΩ 6
∫

Ω

∑
16i,j6n

〈
ψij̄fi, fj

〉
(ωΩ,h⊗m)

e−ψ dVωΩ ,

where we assume that the right-hand side is finite. Here
(
ψij̄
)

16i,j6n denotes the inverse matrix

of
(
∂2/∂zi∂z̄j

)
16i,j6n.

We remark that the matrix
(
ψij̄
)

16i,j6n corresponds to the inverse operator of BωΩ,ψ =[√
−1∂∂̄ψ⊗ IdE⊗m ,ΛωΩ

]
. Hosono and the author proved that this twisted Hörmander condition

implies Griffiths semi-positivity under some regularity assumptions ([HI21, Theorem 3.5], see
also [DNWZ20, Theorem 1.2]).

Then Deng, Ning, Wang, and Zhou introduced and improved various Hörmander type posi-
tivity notions for holomorphic vector bundles, which were called the multiple coarse Lp-estimate
condition and the optimal Lp-estimate condition in [DNWZ20]. We mention that the twisted
Hörmander condition above is something like a multiple optimal L2-estimate type condition. In
this paper, we focus on the optimal L2-estimate condition.

Definition 2.6 ([DNWZ20, Definition 1.1]). Assume that a Kähler manifold (X,ω) admits a
positive holomorphic line bundle and (E, h) is a (singular) Hermitian vector bundle (possibly of
infinite rank) over X. Then we say that (E, h) satisfies the optimal L2-estimate condition if for
any positive holomorphic line bundle (A, hA) on X and for any ∂̄-closed f ∈ D(n,1)(X,E ⊗ A),
there exists a u ∈ L2

(n,0)(X,E ⊗A) satisfying ∂̄u = f and∫
X
|u|2(ω,h⊗hA) dVω 6

∫
X

〈
B−1
hA
f, f

〉
(ω,h⊗hA)

dVω ,

where BhA =
[√
−1Θ(A,hA) ⊗ IdE ,Λω

]
and we assume that the right-hand side is finite.

Furthermore, the authors of [DNWZ20] succeeded in characterizing Nakano semi-positivity
by using the above condition. To be precise, they proved the following theorem.

Theorem 2.7 ([DNWZ20, Theorem 1.1]). Suppose that a Kähler manifold (X,ω) admits a pos-
itive holomorphic line bundle, (E, h) is a smooth Hermitian vector bundle over X, and θ ∈
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C0
(1,1)(X,End(E)) with θ? = θ. We assume that for any ∂̄-closed f ∈ D(n,1)(X,E ⊗ A) and for

any positive holomorphic line bundle (A, hA) such that
√
−1Θ(A,hA)⊗ IdE +θ >Nak. 0 on supp f ,

there exists a u ∈ L2
(n,0)(X,E ⊗A) satisfying ∂̄u = f and∫

X
|u|2(ω,h⊗hA) dVω 6

∫
X

〈
B−1
hA,θ

f, f
〉

(ω,h⊗hA)
dVω ,

where BhA,θ =
[√
−1Θ(hA,θ)⊗IdE+θ,Λω

]
and we assume that the right-hand side is finite. Then√

−1Θ(E,h) >Nak. θ.

Here we consider the case when θ = 0. In this situation, the condition in Theorem 2.7 is just
the optimal L2-estimate condition introduced in Definition 2.6. By applying and modifying this
theorem, we get the following proposition.

Proposition 2.8. Let h be a smooth Hermitian metric on E. We consider the following condi-
tions:

(1) The metric h is Nakano semi-positive.

(2) For any Stein coordinate system (Ω, ι) such that E|ι(Ω) is trivial on ι(Ω), for any Kähler
form ωΩ on Ω, for any smooth strictly plurisubharmonic function ψ on Ω, for any positive
integer q such that 1 6 q 6 n, and for any ∂̄-closed f ∈ L2

(n,q)

(
Ω, ι?E;ωΩ, (ι

?h)e−ψ
)
, there

exists a u ∈ L2
(n,q−1)

(
Ω, ι?E;ωΩ, (ι

?h)e−ψ
)

satisfying ∂̄u = f and∫
Ω
|u|2(ωΩ,ι?h)e

−ψ dVωΩ 6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,ι?h)
e−ψ dVωΩ ,

provided that the right-hand side is finite.

(3) The vector bundle (E, h) satisfies the optimal L2-estimate condition.

Then the condition (1) is equivalent to the condition (2). If X admits a Kähler metric ω and
a positive holomorphic line bundle on X, the above three conditions are equivalent.

Obviously, the above condition (2) corresponds to the condition in Definition 1.1. Theorem 2.7
and Theorem 2.9 below imply that the condition (1) is equivalent to the condition (3). The way
to prove that the condition (1) is equivalent to the condition (2) is essentially contained in the
proof of Theorem 2.7 in [DNWZ20]. However, our situation is slightly different. Hence, for the
sake of completeness, we show the equivalence of the conditions (1) and (2) here. In our situation,
the proof is a little bit simpler. Before giving a proof of Proposition 2.8, we prepare the following
L2-estimate theorem.

Theorem 2.9 (cf. [Dem82], [Dem12b, Chapter VIII, Theorem 6.1]). Let (X, ω̂) be a complete
Kähler manifold, ω be another Kähler metric which is not necessarily complete, and (E, h)→ X
be a Nakano semi-positive vector bundle. We also let Aq,ω,h =

[√
−1Θ(E,h),Λω

]
be the operator

in bidegree (n, q) for q > 1. Then for any ∂̄-closed f ∈ L2
(n,q)(X,E;ω, h), there exists a u ∈

L2
(n,q−1)(X,E;ω, h) satisfying ∂̄u = f and∫

X
|u|2(ω,h) dVω 6

∫
X

〈
A−1
q,ω,hf, f

〉
(ω,h)

dVω ,

where we assume that the right-hand side is finite.

Proof of Proposition 2.8. First, we assume that h is Nakano semi-positive. We take an arbitrary
Stein coordinate system (Ω, ι) such that E|ι(Ω) is trivial on ι(Ω), an arbitrary Kähler metric
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ωΩ on Ω, and an arbitrary smooth strictly plurisubharmonic function ψ on Ω. Considering the
twisted weight (ι?h)e−ψ, we have

√
−1Θ(ι?E,(ι?h)e−ψ) =

√
−1Θ(ι?E,(ι?h)) +

√
−1∂∂̄ψ ⊗ Idι?E and

Aq,ωΩ,(ι?h)e−ψ =
[√
−1Θ(ι?E,ι?h),ΛωΩ

]
+
[√
−1∂∂̄ψ ⊗ Idι?E ,ΛωΩ

]
= Aq,ωΩ,ι?h +BωΩ,ψ .

We have that (ι?h)e−ψ is Nakano positive on ι?E. Then Theorem 2.9 implies that for any q > 1
and for any ∂̄-closed f ∈L2

(n,q)

(
Ω, ι?E;ωΩ, (ι

?h)e−ψ
)
, we have a u ∈ L2

(n,q−1)

(
Ω, ι?E;ωΩ, (ι

?h)e−ψ
)

satisfying ∂̄u = f and∫
Ω
|u|2(ωΩ,ι?h)e

−ψ dVωΩ 6
∫

Ω

〈
A−1
q,ωΩ,(ι?h)e−ψ

f, f
〉

(ωΩ,ι?h)
e−ψ dVωΩ .

Since ι?h is also Nakano semi-positive, we have the inequality〈
A−1
q,ωΩ,(ι?h)e−ψ

f, f
〉

(ωΩ,ι?h)
6
〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,ι?h)
.

Therefore, we also have the estimate∫
Ω
|u|2(ωΩ,ι?h)e

−ψ dVωΩ 6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,ι?h)
e−ψ dVωΩ .

Next, we assume that the condition (2) holds. Suppose that h is not Nakano semi-positive at
some point x0 ∈ X. We take a Stein coordinate system (∆n

r , ι) such that ι(0) = x0 and E|ι(∆n
r ) is

trivial for some r > 0, take the standard Kähler metric ω0 =
√
−1∂∂̄|z|2 on ∆n

r , and take a frame
(e1, . . . , er) of ι?E on ∆n

r such that (e1, . . . , er) is orthonormal at 0 ∈ ∆n
r . Then (ι?E, ι?h) is not

Nakano semi-positive at 0 ∈ ∆n
r . For the sake of simplicity, we also write (E, h)(= (ι?E, ι?h))

on ∆n
r . Note that, by Lemma 2.3, the operator

[√
−1Θ(E,h),Λω0

]
is not semi-positive definite at

0 ∈ ∆n
r . Then there exists an f0 ∈ ∧(n,1)T ?∆n

r ,0
⊗ E0 such that〈[√

−1Θ(E,h),Λω0

]
f0, f0

〉
(ω0,h)

= 〈A1,ω0,hf0, f0〉(ω0,h) < 0 .

We fix a smooth strictly plurisubharmonic function ψ on ∆n
r . Then for any ∂̄-closed f ∈

D(n,1)(∆
n
r , E) ⊂ L2

(n,1)

(
∆n
r , E;ω0, he

−ψ), there exists a u ∈ C∞(n,0)(∆
n
r , E) satisfying ∂̄u = f and∫

∆n
r

|u|2(ω0,h)e
−ψ dVω0 6

∫
∆n
r

〈
B−1
ω0,ψ

f, f
〉

(ω0,h)
e−ψ dVω0 .

Therefore, we have∣∣〈〈B−1
ω0,ψ

f, f〉〉(ω0,he−ψ)

∣∣2 =
∣∣〈〈B−1

ω0,ψ
f, ∂̄u〉〉(ω0,he−ψ)

∣∣2
=
∣∣〈〈∂̄?ψ(B−1

ω0,ψ
f
)
, u〉〉(ω0,he−ψ)

∣∣2
6
∥∥∂̄?ψ(B−1

ω0,ψ
f
)
‖2(ω0,he−ψ)

∥∥u‖2(ω0,he−ψ)

6
∥∥∂̄?ψ(B−1

ω0,ψ
f)
∥∥2

(ω0,he−ψ)

∣∣〈〈B−1
ω0,ψ

f, f〉〉(ω0,he−ψ)

∣∣ .
In short, we have

∣∣〈〈B−1
ω0,ψ

f, f〉〉(ω0,he−ψ)

∣∣ 6 ∥∥∂̄?ψ(B−1
ω0,ψ

f
)∥∥2

(ω0,he−ψ)
for any ∂̄-closed f . By using

the Bochner–Kodaira–Nakano identity ∆′′ψ = ∆′ψ +
[√
−1Θ(E,he−ψ),Λω0

]
= ∆′ψ +A1,ω0,h +Bω0,ψ
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(cf. [Dem12a, Section 4.C, (4.6)]), we get∥∥∂̄?ψ(B−1
ω0,ψ

f
)∥∥2

(ω0,he−ψ)
= 〈〈∆′′ψ

(
B−1

(ω0,ψ)f
)
, B−1

(ω0,ψ)f〉〉(ω0,he−ψ) −
∥∥∂̄(B−1

(ω0,ψ)f
)∥∥2

(ω0,he−ψ)

6 〈〈∆′ψ
(
B−1

(ω0,ψ)f
)
, B−1

(ω0,ψ)f〉〉(ω0,he−ψ)

+ 〈〈A1,ω0,h

(
B−1

(ω0,ψ)f
)
, B−1

(ω0,ψ)f〉〉(ω0,he−ψ) + 〈〈f,B−1
(ω0,ψ)f〉〉(ω0,he−ψ) .

We then obtain

〈〈A1,ω0,h

(
B−1

(ω0,ψ)f
)
, B−1

(ω0,ψ)f〉〉(ω0,he−ψ) +
∥∥D′?ψ (B−1

(ω0,ψ)f
)∥∥2

(ω0,he−ψ)
> 0 .

We let f =
∑

j,λ fjλdz1 ∧ · · · ∧ dzn ∧ dz̄j ⊗ eλ ∈ C∞(n,1)(∆
n
r , E) be a ∂̄-closed (n, 1)-form with

constant coefficients such that f(0) = f0. We can take a positive constant R ∈ (0, r) such that〈[√
−1Θ(E,h),Λω0

]
f, f

〉
(ω0,h)

= 〈A1,ω0,hf, f〉(ω0,h) < −c

on ∆n
R for some positive constant c > 0.

Choose a cut-off function χ ∈ D(0,0)(∆
n
R,R) such that 0 6 χ 6 1 and χ|∆n

R/2
≡ 1. We define

v ∈ D(n,0)(∆
n
r , E) by

v = (−1)n
∑
j,λ

fjλz̄jχdz1 ∧ · · · ∧ dzn ⊗ eλ

and define g by ∂̄v = g. Then g ∈ D(n,1)(∆
n
r , E) and g = f on ∆n

R/2. Set φ(z) = |z|2−R2/4. Then

we have B(ω0,mφ) = m· . We define αm := B−1
(ω0,mφ)g = (1/m)g. Considering the commutation

relation
√
−1[Λω0 , ∂̄] = D′?mφ (cf. [Dem12a, Section 4.C, (4.5)]), we obtain D′?mφαm = 0 on ∆n

R/2

and |D′?mφαm|(ω0,h) 6 C/m for some positive constant C > 0 on ∆n
R \ ∆

n
R/2. We also have

〈A1,ω0,hαm, αm〉(ω0,h) < −c/m2 on ∆n
R/2 and 〈A1,ω0,hαm, αm〉(ω0,h) 6 C ′/m2 for some C ′ > 0 on

∆n
R \∆

n
R/2 since g has compact support in ∆n

R. Set C ′′ := C2 + C ′. To summarize, we obtain

0 6 〈〈A1,ω0,h

(
B−1

(ω0,mφ)g
)
, B−1

(ω0,mφ)g〉〉(ω0,he−mφ) + ‖D′?mφ
(
B−1

(ω0,mφ)g
)
‖2(ω0,he−mφ)

= 〈〈A1,ω0,hαm, αm〉〉(ω0,he−mφ) + ‖D′?mφαm‖2(ω0,he−mφ)

=

∫
∆n
R/2

〈A1,ω0,hαm, αm〉(ω0,h)e
−mφ dVω0 +

∫
∆n
R\∆

n
R/2

〈A1,ω0,hαm, αm〉(ω0,h)e
−mφ dVω0

+

∫
∆n
R\∆

n
R/2

|D′?mφαm|2(ω0,h)e
−mφ dVω0

6 − c

m2

∫
∆n
R/2

e−mφ dVω0 +
C ′′

m2

∫
∆n
R\∆

n
R/2

e−mφ dVω0

for any m ∈ N. Hence, we get

−c
∫

∆n
R/2

e−mφ dVω0 + C ′′
∫

∆n
R\∆

n
R/2

e−mφ dVω0 > 0 .

Since φ < 0 on ∆n
R/2 and φ > 0 on ∆n

R \∆
n
R/2, the first term has a negative upper bound which

is independent of m:

−c
∫

∆n
R/2

e−mφ dVω0 < −c
∣∣∆n

R/2

∣∣ .
The second term goes to zero as m→ +∞ by Lebesgue’s dominated convergence theorem. Then
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for sufficiently large m� 1, we have

−c
∫

∆n
R/2

e−mφ dVω0 + C ′′
∫

∆n
R\∆

n
R/2

e−mφ dVω0 < 0 ,

which gives a contradiction. Consequently, we can conclude that h is Nakano semi-positive
on ∆n

r .

2.2 Singular Hermitian metrics. In this subsection, we consider the case when a Hermitian
metric has singularities. First, we introduce the definition of singular Hermitian metrics on vector
bundles.

Definition 2.10 ([BP08, Section 3], [HPS18, Definition 17.1], [PT18, Definition 2.2.1], and
[Rau15, Definition 1.1]). We say that h is a singular Hermitian metric on E if h is a measurable
map from the base manifold X to the space of non-negative Hermitian forms on the fibers
satisfying 0 < deth < +∞ almost everywhere.

We introduce ideal sheaves, a notion related to that of singular Hermitian metrics.

Definition 2.11 ([Nad90]). Let h be a singular Hermitian metric on a holomorphic line bundle
L→ X and ϕ be the local weight of h; that is, h = e−ϕ locally. Then we define the ideal subsheaf
I (h) ⊂ OX of germs of holomorphic functions as follows:

I (h)x :=
{
fx ∈ OX,x | |fx|2e−ϕ is locally integrable around x

}
.

We can easily verify that Definition 2.11 is independent of the choice of local weights. In
[Nad90], Nadel proved that I (h) is coherent by using the Hörmander L2-estimate. We can also
define a higher-rank analog of the multiplier ideal sheaf I (h).

Definition 2.12 (cf. [dCa98]). Let h be a singular Hermitian metric on a holomorphic vector
bundle E → X. We define the ideal subsheaf E (h) of germs of local holomorphic sections of E
as follows:

E (h)x :=
{
sx ∈ O(E)x | |sx|2h is locally integrable around x

}
.

In [HI21], Hosono and the author prove that E (h) is coherent if h satisfies the twisted
Hörmander condition above. They can also show that E (h) is coherent when h is a Nakano
semi-positive singular Hermitian metric (cf. Proposition 4.4).

The Chern curvature tensor Θ(E,h) of a smooth Hermitian metric h can be locally defined by
∂̄
(
h−1∂h

)
. On a holomorphic line bundle, the Chern curvature of a positive or negative singular

Hermitian metric can also be defined in the sense of currents. However, for a holomorphic vector
bundle E with rank E > 2, it is not possible to define the Chern curvature current with measure
coefficients in general. This phenomenon was observed by Raufi in [Rau15]. Before showing the
example, we introduce the definitions of Griffiths semi-negativity and Griffiths semi-positivity.

Definition 2.13 ([BP08, Definition 3.1], [PT18, Definition 2.2.2], and [Rau15, Definition 1.2]).
We say that a singular Hermitian metric h is

(1) Griffiths semi-negative if |u|h is plurisubharmonic for any local holomorphic section u ∈
O(E) of E,

(2) Griffiths semi-positive if the dual metric h? on E? is Griffiths semi-positive.
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This definition arises from a characterization of Griffiths semi-positivity (see Proposition 2.4).
Raufi found the following example.

Theorem 2.14 ([Rau15, Theorem 1.5]). Let E be the trivial vector bundle ∆ × C2 over ∆ :=
∆1

1 ⊂ C. Let h be the singular Hermitian metric

h =

(
1 + |z|2 z

z̄ |z|2
)
.

Then h is Griffiths semi-negative, and Θ(E,h) is not a current with measure coefficients.

This result implies that we cannot define positivity or negativity by using the Chern curvature
currents. Furthermore, strict positivity or negativity is not generally formulated. If there is a
Kähler metric on X, we can define strict Griffiths positivity as follows.

Definition 2.15 ([Ina20, Definition 2.6]). Let ωX be a Kähler metric on X. We say that a sin-
gular Hermitian metric h is strictly Griffiths δωX -positive if for any open subset U and for any
Kähler potential ϕ of ωX on U , that is,

√
−1∂∂̄ϕ = ωX on U , the metric heδϕ is Griffiths

semi-positive on U .

We can characterize the Nakano semi-positivity of singular Hermitian metrics by using Propo-
sition 2.8 (see Definition 1.1). We can also define the strict Nakano δωX -positivity of singular
Hermitian metrics as follows.

Definition 2.16. Let (X,ωX) be a Käher manifold. We say that h is globally (respectively,
locally) strictly Nakano δωX -positive if for any open subset U and for any Kähler potential ϕ
of ωX , that is,

√
−1∂∂̄ϕ = ωX on U , the metric heδϕ is globally (respectively, locally) Nakano

semi-positive on U in the sense of Definition 1.1 (respectively, Definition 1.2).

Remark 2.17. We consider the following condition related to the condition (2) in Proposition 2.8
for k > 1.

(2 − k): For any Stein coordinate system (Ω, ι) such that E|ι(Ω) is trivial on ι(Ω), for any
Kähler form ωΩ on Ω, for any smooth strictly plurisubharmonic function ψ on Ω, for any positive
integer q such that 1 6 q 6 k, and for any ∂̄-closed f ∈ L2

(n,q)(Ω, ι
?E;ωΩ, (ι

?h)e−ψ), there exists

a u ∈ L2
(n,q−1)(Ω, ι

?E;ωΩ, (ι
?h)e−ψ) satisfying ∂̄u = f and∫

Ω
|u|2(ωΩ,ι?h)e

−ψ dVωΩ 6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,ι?h)
e−ψ dVωΩ ,

provided that the right-hand side is finite.

The proof of Proposition 2.8 suggests that we only have to consider all (n, 1)-forms f , not
all (n, q)-forms for 1 6 q 6 n. However, the conditions (2− 1), . . . , (2− n) are equivalent to one
another under the assumption that h is smooth. Hence, in this paper, we adopt the seemingly
stronger condition (2 − n) (= Definition 1.1) to define the global Nakano semi-positivity of
singular Hermitian metrics. In relation to this remark, we propose Question 7.4 in Section 7.

2.3 Big vector bundles. In this subsection, to prove Theorem 1.8 and prepare the notion of
big vector bundles. We let X be a projective manifold.

Definition 2.18 ([BKK+15, Section 2]). We define the base locus of E as the set

Bs(E) :=
{
x ∈ X | H0(X,E)→ Ex is not surjective

}
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and the stable base locus of E as the set

B(E) :=
⋂
m∈N

Bs
(
SmE

)
.

For an ample line bundle A, we also define the augmented base locus of E by

BA+(E) :=
⋂

p/q∈Q

B
(
SqE ⊗A−p

)
.

Note that BA+(E) does not depend on the choice of the ample line bundle. Hence, we write B+(E)
for simplicity.

With this notation, we introduce the following definitions. We let π : P(E) → X denote the
projective bundle of rank 1 quotients of E and OP(E)(1) denote the universal quotient of π?E
over P(E).

Definition 2.19 ([BKK+15, Theorem 1.1, Definition 6.1]). We say that

(1) E is L-big if OP(E)(1) is big on P(E),

(2) E is V-big (or Viehweg-big) if B+(E) 6= X.

We remark that if E is V-big, then E is L-big as well [BKK+15, Corollary 6.5]. In order to
prove Theorem 1.8, we need the following proposition.

Proposition 2.20 ([BKK+15, Proposition 3.2]). We keep the notation above. Then

π(B+(OP(E)(1))) = B+(E) .

3. Demailly and Skoda’s theorem in the singular setting

In this section, we prove Theorem 1.3, which is a generalization of Demailly and Skoda’s result.
Before proving that, we explain Demailly and Skoda’s result.

Theorem 3.1 ([DS80]). Let h be a smooth Hermitian metric on E. If (E, h) is Griffiths semi-
positive, then (E ⊗ detE, h⊗ deth) is Nakano semi-positive.

Taking a smooth approximating sequence {hν}∞ν=1 of h, we give a proof of Theorem 1.3. Our
main approximation technique is based on the following proposition obtained by Berndtsson and
Paun.

Proposition 3.2 (cf. [BP08, Proposition 3.1], [Rau15]). Let E be a trivial vector bundle over
a polydisc U and h be a Griffiths semi-positive singular Hermitian metric on E. Then there exists
a sequence of smooth Hermitian metrics {hν}∞ν=1, with positive Griffiths curvature, increasing
to h on smaller polydiscs.

We remark that Proposition 3.2 is valid if U is not a polydisc but a domain. A sequence of
smooth Hermitian metrics approximating h is obtained through the convolution of h with an
approximate identity. In this way, we can only get an approximating sequence when E is a trivial
vector bundle over a domain in Cn.

To prove Theorem 1.3, we also need the following theorem.

Theorem 3.3 ([Siu76, Corollary 1]). Let X be a Stein submanifold of CN for some N > n =
dimX. Let i : X → CN be an inclusion map. Then there exists an open neighborhood U of X
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in CN such that U is a holomorphic retraction of X, that is, there exists a holomorphic map
p : U → X such that p ◦ i = idX .

Then we give a proof of the following result.

Theorem 3.4. Let h be a singular Hermitian metric on E. If (E, h) is Griffiths semi-positive,
then (E ⊗ detE, h ⊗ deth) is globally Nakano semi-positive in the sense of singular Hermitian
metrics.

Proof. It is clear that the Griffiths semi-positivity of h yields the Griffiths semi-positivity of
h ⊗ deth (cf. [Rau15, Proposition 1.3]). Then it is enough to show that (E ⊗ detE, h ⊗ deth)
satisfies the condition in Definition 1.1.

Let (Ω, ι) be an arbitrary Stein coordinate system of X such that (E ⊗ detE)|ι(Ω) is trivial

on ι(Ω). Since Ω can be properly embedded into CN for some large N , we can regard Ω as a
submanifold of CN without any loss of generality. From Theorem 3.3, we take an open neighbor-
hood U of Ω in CN and a holomorphic map p : U → Ω which defines a holomorphic retraction
of Ω, that is, p ◦ i = idΩ, where i : Ω → CN is an inclusion map. Since (E ⊗ detE)|ι(Ω) is a
trivial bundle, ι?(E ⊗ detE) and p?ι?(E ⊗ detE) are also trivial on Ω and U . Thanks to [PT18,
Lemma 2.3.2], the metrics ι?h and p?ι?h are also Griffiths semi-positive. For the sake of clarity,
we omit the map ι and simply write (E, h)(= (ι?E, ι?h)) on Ω.

Since E ⊗ detE is trivial on Ω, we fix a holomorphic global frame (e1, . . . , er) of E ⊗ detE
on Ω. Then (det(E⊗detE), det(h⊗deth)) ∼=

(
(detE)⊗r+1, (deth)⊗r+1

)
is also trivial on Ω with

respect to the frame e1 ∧ · · · ∧ er. We define the function Ψ by

|e1 ∧ · · · ∧ er|(deth)⊗r+1 = e−Ψ .

Since (deth)⊗r+1 is Griffiths semi-positive (cf. [Rau15, Proposition 1.3]), the function Ψ is
plurisubharmonic on Ω. We construct the metric h⊗deth eΨ/(r+1) on E⊗detE. We can easily see
that h⊗ deth eΨ/(r+1) is Griffiths semi-positive (for a detailed proof, see Proposition 3.5 below).
From Proposition 3.2, we get a sequence of smooth Hermitian metrics {hν}∞ν=1, with positive
Griffiths curvature, increasing to p?

(
h⊗deth eΨ/(r+1)

)
on p?(E⊗detE) over any relatively com-

pact subdomain of U . Set gν := i?hν . Since p ◦ i = idΩ, the sequence {gν}∞ν=1 is also a sequence
of smooth Hermitian metrics, with positive Griffiths curvature, increasing to h ⊗ deth eΨ/(r+1)

on E ⊗ detE over any relatively compact subset of Ω. We also have that {det gν}∞ν=1 becomes a
sequence of smooth Hermitian metrics, with positive curvature, increasing to(

det(E ⊗ detE), det
(
h⊗ deth eΨ/(r+1)

))
=
(
(detE)⊗r+1, (deth)⊗r+1erΨ/(r+1)

)
∼=
(
C, e−Ψ/(r+1)

)
(cf. [Rau15, the proof of Proposition 1.3]). Then, from the result of Demailly–Skoda (Theo-
rem 3.1), the sequence {gν ⊗det gν}∞ν=1 is a sequence of smooth Hermitian metrics, with positive
Nakano curvature, increasing to h⊗ deth on E ⊗ detE over any relatively compact subset of Ω.
Here we regard gν ⊗ det gν as the metric on E ⊗ detE via the trivialization of (detE)⊗r+1 for
every ν ∈ N.

Then we take an arbitrary Kähler metric ωΩ, an arbitrary smooth strictly plurisubharmonic
function ψ, and an arbitrary ∂̄-closed f ∈ L2

(n,q)

(
Ω, E ⊗ detE;ωΩ, h ⊗ deth e−ψ

)
for any q > 0

on Ω. We also take a Stein exhaustion {Ωj}∞j=1 of Ω, where Ωj is a relatively compact Stein
subdomain. We assume that∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h⊗deth)
e−ψ dVωΩ < +∞ .
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Since {gν ⊗ det gν}∞ν=1 is an increasing sequence on any relatively compact subset, we have∫
Ωj

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,gν⊗det gν)
e−ψ dVωΩ < +∞

for fixed j ∈ N. Thanks to Hörmander’s L2-estimate for smooth Hermitian metrics (cf. Theo-
rem 2.9) and the proof of Proposition 2.8, we get a solution uν ∈ L2

(n,q−1)

(
Ωj , E ⊗ detE;ωΩ,

gν ⊗ det gνe
−ψ) of ∂̄uν = g such that∫

Ωj

|uν |2(ωΩ,gν⊗det gν)e
−ψ dVωΩ 6

∫
Ωj

〈
A−1
q,ωΩ,gν⊗det gνe−ψ

f, f
〉

(ωΩ,gν⊗det gν)
e−ψ dVωΩ

6
∫

Ωj

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,gν⊗det gν)
e−ψ dVωΩ

6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h⊗deth)
e−ψ dVωΩ < +∞

since gν ⊗ det gν is Nakano semi-positive. For fixed ν0, the sequence {uν}ν>ν0 is bounded in
L2

(n,q−1)

(
Ωj , E⊗detE;ωΩ, gν0 ⊗det gν0e

−ψ) due to the monotonicity of {gν ⊗det gν}∞ν=1. Hence,

we can obtain a weakly convergent subsequence in L2
(n,q−1)

(
Ωj , E ⊗ detE;ωΩ, gν0 ⊗ det gν0e

−ψ).
By using a diagonal argument, we get a subsequence {uνk}∞k=1 of {uν}∞ν=1 converging weakly
in L2

(n,q−1)

(
Ωj , E ⊗ detE;ωΩ, gν0 ⊗ det gν0e

−ψ) for any ν0. We denote by uj the weak limit of

{uνk}∞k=1. Then uj satisfies ∂̄uj = f on Ωj and∫
Ωj

|uj |2(ωΩ,gν0⊗det gν0 )e
−ψ dVωΩ 6

∫
Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h⊗deth)
e−ψ dVωΩ

for each ν0. Taking weak limits as ν0 → +∞ and using the monotone convergence theorem, we
have the estimate∫

Ωj

|uj |2(ωΩ,h⊗deth)e
−ψ dVωΩ 6

∫
Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h⊗deth)
e−ψ dVωΩ .

Repeating the above argument and taking the weak limit as j → ∞, we get a solution u ∈
L2

(n,q−1)

(
Ω, E ⊗ detE;ωΩ, h⊗ deth e−ψ

)
of ∂̄u = f such that∫

Ω
|u|2(ωΩ,h⊗deth)e

−ψ dVωΩ 6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h⊗deth)
e−ψ dVωΩ

on Ω. Consequently, we can conclude that h ⊗ deth is Nakano semi-positive in the sense of
singular Hermitian metrics.

Proposition 3.5. Let the notation be the same as that in the proof of Theorem 3.4. Then the
metric h⊗ deth eΨ/(r+1) is Griffiths semi-positive on E ⊗ detE.

Proof. We have to show that log |u|h?⊗deth?e−Ψ/(r+1) is plurisubharmonic for any local holomor-
phic section u ∈ O(E? ⊗ detE?) of E? ⊗ detE?. Let (e?1, . . . , e

?
r) be the global dual frame of

(e1, . . . , er). We also take a local frame of (ε1, . . . , εr) of E and let (ε?1, . . . , ε
?
r) be the local dual

frame. Fixing these frames, it is enough to show that

log
(
|u|h? |ε?1 ∧ · · · ∧ ε?r |deth?e

−Ψ/(r+1)
)

= log |u|h? + log |ε?1 ∧ · · · ∧ ε?r |deth? |e1 ∧ · · · ∧ er|1/(r+1)
(deth)⊗r+1

is plurisubharmonic. Since h? is Griffiths semi-negative, log |u|h? is a plurisubharmonic function.
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We define a local holomorphic function f by f(ε?1 ∧ · · · ∧ ε?r)⊗r+1 = e?1 ∧ · · · ∧ e?r . Then we obtain

(r + 1) log |ε?1 ∧ · · · ∧ ε?r |deth? |e1 ∧ · · · ∧ er|1/(r+1)
(deth)⊗r+1

= log |ε?1 ∧ · · · ∧ ε?r |r+1
deth? |e1 ∧ · · · ∧ er|(deth)⊗r+1

= log

(
|(ε?1 ∧ · · · ∧ ε?r)r+1|(deth?)⊗r+1

|e?1 ∧ · · · ∧ e?r |(deth?)⊗r+1

)
= log |f | .

Since f 6= 0, this term is a harmonic function. Therefore, we have completed the proof.

If X admits a Kähler metric ωX , we can also prove the following theorem.

Theorem 3.6. Let ωX be a Kähler form on a Kähler manifold X. If (E, h) is strictly Griffiths
δωX -positive, then (E ⊗ detE, h⊗ deth) is strictly Nakano (r + 1)δωX -positive.

Proof. We take an arbitrary open subset U and any Kähler potential ϕ of ωX on U . We also
take a Stein coordinate system (Ω, ι) of U . We then use the same notation as in the proof of
Theorem 3.4. By the definition of the strict Griffiths δωX -positivity, we have that heδϕ is Griffiths
semi-positive. Hence, from Theorem 1.3, we get that

heδϕ ⊗ det
(
heδϕ

)
= h⊗ deth e(r+1)δϕ

is globally Nakano semi-positive in the sense of singular Hermitian metrics on U . Thus we can
conclude that h⊗ deth is strictly Nakano (r + 1)δωX -positive on X.

4. L2-estimates and vanishing theorems

In this section, we give an L2-estimate and a vanishing theorem for holomorphic vector bundles
with strictly Nakano positive singular Hermitian metrics. Then we prove Theorems 1.4, 1.5,
and 1.6. In this section, we assume that X is a projective manifold and ωX is a Kähler form
on X. First of all, we show Theorem 1.4.

Proof of Theorem 1.4. Choose an arbitrary ∂̄-closed f ∈ L2
(n,q)(X,E;ωX , h) for q > 0. By Serre’s

GAGA [Ser56], there exists a proper Zariski open subset Z 6= ∅ such that E|Z is trivial over Z.
We can also take Z such that Z is Stein and ω is ∂∂̄-exact on Z. Then (Z, i) is a Stein coordinate
system of X such that E|Z is trivial on Z, where i : Z → X is the natural inclusion map. We fix
a Kähler potential ϕ of ωX on Z; that is, ϕ satisfies

√
−1∂∂̄ϕ = ωX . Then we have〈

[BωX ,δϕ,ΛωX ]f, f
〉

(ωX ,h)
= δq|f |2(ωX ,h) ,〈[

B−1
ωX ,δϕ

,ΛωX
]
f, f

〉
(ωX ,h)

=
1

δq
|f |2(ωX ,h) .

Thanks to the definition of the strict Nakano δωX -positivity, for any smooth strictly plurisub-
harmonic function ψ on Z, we can obtain a u ∈ L2

(n,q−1)(Z,E;ωX , he
δϕ−ψ) satisfying ∂̄u = f

and ∫
Z
|u|2(ωX ,h)e

δϕ−ψ dVωX 6
∫
Z

〈
B−1
ωX ,ψ

f, f
〉

(ωX ,h)
eδϕ−ψ dVωX

if the right-hand side is finite. Taking ψ = δϕ, we get a solution u ∈ L2
(n,q−1)(Z,E;ωX , h) of
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∂̄u = f such that∫
Z
|u|2(ωX ,h) dVωX 6

∫
Z

〈
B−1
ωX ,δϕ

f, f
〉

(ωX ,h)
dVωX

=
1

δq

∫
Z
|f |2(ωX ,h) dVωX 6

1

δq

∫
X
|f |2(ωX ,h) dVωX < +∞ .

Letting u = 0 on X \ Z, we have u ∈ L2
(n,q−1)(X,E;ωX , h), ∂̄u = f , and∫

X
|u|2(ωX ,h) dVωX 6

1

δq

∫
X
|f |2(ωX ,h) dVωX

from Lemma 4.1 below.

Lemma 4.1 (cf. [Ber10, Lemma 5.1.3]). Let X be a complex manifold, and let S be a complex
hypersurface in X. Let u and f be (possibly bundle-valued) forms in L2

loc of X satisfying ∂̄u = f
on X \ S. Then the same equation holds on X (in the sense of distributions).

Remark 4.2. Lemma 4.1 holds when h is smooth. However, since we assume that h is Griffiths
semi-positive, we can locally take a sequence of smooth Hermitian metrics increasing to h from
Proposition 3.2. Thus, f and u are L2

loc forms with respect to some smooth Hermitian metric.
Therefore, we can apply Lemma 4.1.

Using Theorem 1.4, we prove Theorem 1.5. Before proving Theorem 1.5, we state the following
vanishing theorem for holomorphic line bundles, a result obtained by Nadel in [Nad90] and
generalized by Demailly in [Dem93].

Theorem 4.3 ([Nad90], [Dem93], and [Dem12a, Section 5.B, (5.11)]). Let (X,ωX) be a Kähler
weakly pseudoconvex manifold, and let L → X be a holomorphic line bundle equipped with
a singular Hermitian metric h of weight ϕ. We assume that

√
−1Θ(L,h) > εω for some continuous

positive function ε on X. Then

Hq(X,KX ⊗ L⊗I (h)) = 0 for q > 0 .

We also mention the following result related to the coherence of E (h).

Proposition 4.4 (cf. [HI21, Theorem 1.4]). Let h be a globally (or only locally) Nakano semi-
positive singular Hermitian metric and E (h) be the sheaf of germs of locally square-integrable
holomorphic sections of E with respect to h. Then E (h) is a coherent subsheaf of O(E).

In the paper [HI21], Hosono and the author prove Proposition 4.4 in the case when h is
positively curved in the sense of the twisted Hörmander condition. Although that condition (cf.
Definition 2.5) is slightly different from the definition of singular Nakano semi-positivity, the
proof of Proposition 4.4 is almost the same as the proof in [HI21]. Hence, we only mention a
sketch of the proof here for the sake of clarity.

Proof of Proposition 4.4. Since the result is local, we fix an arbitrary polydisc ∆ ⊂ X which
trivializes E = Cr. Fix coordinates (z1, . . . , zn) on ∆. Let H0

(2,h)(∆,C
r) be the space of the

square-integrable Cr-valued holomorphic functions with respect to h on ∆. Then H0
(2,h)(∆,C

r)

generates a coherent ideal sheaf F ⊂ O(Cr). First, we will show that

E (h)x ⊂ Fx + E (h)x ∩mk+1
x · O(Cr)x

84



Nakano positivity and vanishing theorems

for any k ∈ N, where x ∈ ∆ and mx is a maximal ideal of O(Cr)x. Take an element f =
t(f1,x, . . . , fr,x) ∈ E (h)x. Let θ be a cut-off function around x. We consider a ∂̄-closed Cr-valued
(n, 1)-form α = ∂̄(θfdz). We also take a smooth strictly plurisubharmonic function ψδ(z) =
(n+ k) log

(
|z− x|2 + δ2

)
+ |z|2. By the definition of the global Nakano semi-positivity of (E, h),

we can solve ∂̄-equations with the estimate of L2-norms on ∆. Then we get solutions {uδ}δ
satisfying ∂̄uδ = α and the L2-estimates with respect to the weight ψδ. Taking δ → 0 and weak
limits of the subsequence of {uδ}δ, we obtain a Cr-valued (n, 0)-form udz satisfying ∂̄(udz) = α
and ∫

∆

|u|2h
|z − x|2(n+k)

(√
−1∂∂̄|z|2

)n
n!

< +∞ .

Set F = θf − u. We have F ∈ H0
(2,h)(∆,C

r) and fx − Fx = ux ∈ E (h)x ∩mk+1
x · O(Cr)x.

Then, due to the Artin–Rees lemma, we get a positive integer l such that

E (h)x ∩mk+1
x · O(Cr)x = mk−l+1

x

(
ml
x · O(Cr) ∩ E (h)x

)
holds for k > l − 1. Hence, it follows that

E (h)x = Fx + mk−l+1
x

(
ml
x · O(Cr) ∩ E (h)x

)
⊂ Fx + mx · E (h)x ⊂ E (h)x

for k > l − 1. Thanks to Nakayama’s lemma, we obtain Fx = E (h)x.

Applying Theorem 1.4, we can prove Theorem 1.5.

Proof of Theorem 1.5. Let L q be the sheaf of germs of (n, q)-forms u with values in E and
with square-integrable coefficients such that |u|2(ωX ,h) is locally integrable, ∂̄u can be defined in

the sense of currents with square-integrable coefficients, and |∂̄u|2(ω,h) is locally integrable. Then(
L •, ∂̄

)
is a resolution of the sheaf KX ⊗ E (h) because we can solve the ∂̄-equation locally by

applying Theorem 1.4 on any small polydisc. Hence, L • is a resolution by acyclic sheaves.

The compactness of X yields that locally integrable sections are also integrable on X. Hence,
by using Theorem 1.4 globally, we also get Hq(Γ(X,L •)) = 0 for q > 0. Consequently, we can
conclude that Hq(X,KX ⊗ E (h)) = 0 for q > 0.

Remark 4.5. We see that the L2-estimate in Theorem 1.4 also holds in the situation when the
base manifold X is Stein. Hence, we can apply Theorem 1.4 on any small polydisc in the above
proof.

As an application of Theorems 1.5 and 3.6, we obtain the following theorem, which generalizes
the Griffiths vanishing theorem.

Theorem 4.6. Let (X,ωX) be a projective manifold and a Kähler metric on X. If h is strictly
Griffiths δωX -positive in the sense of Definition 2.15 on X, then

Hq(X,KX ⊗ E (h⊗ deth)) = 0 .

Here we introduce the notion of the Lelong number of a singular Hermitian metric on a holo-
morphic line bundle. Usually, the Lelong of a plurisubharmonic function of ϕ at a point x ∈ X
is defined by

lim inf
z→x

ϕ(z)

log |z − x|
for some coordinates (z1, . . . , zn) around x. We also denote by ν(ϕ, x) the Lelong number of ϕ
at x ∈ X. It is known that this number is independent of the choice of local coordinates.
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For a semi-positive singular Hermitian metric g on a holomorphic line bundle L, we can also
define the Lelong number ν(g, x) of g at x by

ν(g, x) := lim inf
z→x

− log g(z)

log |z − x|
.

Here we regard g(z) as a local semi-positive function. Since g is semi-positive, − log g(z) is
locally a plurisubharmonic function. Thus, the above definition is reasonable. We repeat that
this definition is independent of the choice of local coordinates.

There is a relationship between the Lelong number of ϕ and the integrability of e−ϕ. We
introduce the following important result obtained by Skoda in [Sko72].

Lemma 4.7 ([Sko72]). Let ϕ be a plurisubharmonic function. If ν(ϕ, x) < 1, then e−2ϕ is inte-
grable around x.

We consider the strictly Nakano δωX -positive or strictly Griffiths δωX -positive singular Her-
mitian metric h again. We recall that deth is a semi-positive singular Hermitian metric on detE
(cf. [Rau15, Proposition 1.3]). If the Lelong number of deth satisfies some good inequalities,
we have E (h) = O(E) or E (h ⊗ deth) = O(E ⊗ detE). These properties imply the following
vanishing theorems.

Theorem 4.8. Let (X,ωX) be a projective manifold and a Kähler metric on X. We also let h
be a globally strictly Nakano δωX -positive singular Hermitian metric on E. If ν(deth, x) < 2 for
any point x ∈ X, we have E (h) = O(E) and

Hq(X,KX ⊗ E) = 0 for q > 0 .

Proof. By the definition of the Lelong number of a singular Hermitian metric on a holomorphic
line bundle, we have ν

(
1
2 log deth?, x

)
< 1 for every x ∈ X. From Lemma 4.7, the function

e− log deth? = 1/deth? is locally integrable. Locally, we see that h = (1/deth?)ĥ?, where ĥ? is the
adjugate matrix of h?. Since h? is Griffiths semi-negative, each element of ĥ? is locally bounded
[PT18, Lemma 2.2.4]. Then it follows that |u|2h is locally integrable for any local holomorphic
section u ∈ O(E) of E. Therefore, we can conclude from Theorem 1.5 that E (h) = O(E) and
Hq(X,KX ⊗ E) = 0 for q > 0.

Repeating the above argument and using Theorem 1.6, we can also prove the following theo-
rem.

Theorem 4.9 ([Ina20, Corollary 1.4]). Let (X,ωX) be a projective manifold and a Kähler metric
on X. We also let h be a strictly Griffiths δωX -positive singular Hermitian metric on E. If
ν(deth, x) < 1 for any point x ∈ X, we have E (h⊗ deth) = O(E ⊗ detE) and

Hq(X,KX ⊗ E ⊗ detE) = 0 for q > 0 .

As an application of Theorems 4.8 and 4.9, we can show that certain vector bundles cannot
admit Nakano or Griffiths δωX -positive singular Hermitian metrics. Here is an example.

Example 4.10. Let (Pn, ωFS) be the n-dimensional projective space and the Fubini–Study metric
on Pn, where n > 2. Let Q be the vector bundle of rank n over Pn defined by

0→ O(−1)→ Cn+1 → Q→ 0 ,

86



Nakano positivity and vanishing theorems

where Cn+1 is the trivial vector bundle of rank n+ 1 and O(−1) is the tautological line bundle.
There exist isomorphisms

detQ ∼= O(1) and TPn ∼= Q⊗ detQ .

Then we can conclude that Q does not admit any Griffiths δωFS-positive singular Hermitian
metrics whose Lelong number is less than 1 at every point (cf. [Ina20, Example 5.2]) and TPn does
not admit any globally Nakano δωFS-positive singular Hermitian metrics whose Lelong number
is less than 2 at every point for any δ > 0. Indeed,

Hq
(
Pn,KPn ⊗ TPn

) ∼= C 6= 0

if q = n− 1 (cf. [Dem12b, Chapter VII, Example 8.4]).

5. Properties of Nakano semi-positivity

In this short section, we discuss the validity of the definition of Nakano semi-positive singular
Hermitian metrics. We show the following results.

Proposition 5.1. Let L→ X be a holomorphic line bundle on a complex manifold X. We also
let h be a (Griffiths) semi-positive singular Hermitian metric on L. Then h is globally Nakano
semi-positive in the sense of singular Hermitian metrics.

Proposition 5.2. Let S be a Riemann surface and E → S be a holomorphic vector bundle on S.
We also let h be a Griffiths semi-positive singular Hermitian metric on E. Then h is globally
Nakano semi-positive in the sense of singular Hermitian metrics.

If h is smooth, Griffiths semi-positivity is equivalent to Nakano semi-positivity in the settings
of Propositions 5.1 and 5.2. These propositions imply that our definition of the Nakano semi-
positivity of singular Hermitian metrics is appropriate when we compare it with already known
positivity notions. Repeating the argument in the proof of Theorem 1.3, we can prove the above
propositions. Here we use the same notation as in the proof of Theorem 1.3.

Proof of Proposition 5.1. Let (Ω, ι) be a Stein coordinate system of X such that L|ι(Ω) is trivial
on ι(Ω). We simply write (ι?L, ι?h) = (L, h) on Ω. We take an arbitrary Kähler metric ωΩ, an
arbitrary smooth plurisubharmonic function ψ, and a global holomorphic frame s of L on Ω. We
define the plurisubharmonic function ϕ on Ω by |s|h = e−ϕ. By using a usual regularization tech-
nique of convolution or Proposition 3.2 and repeating the argument in the proof of Theorem 1.3,
we get a sequence of smooth plurisubharmonic functions {ϕν}∞ν=1 that is decreasing to ϕ on any
relatively compact subset of Ω. Then, taking an exhaustion of Ω, we can obtain the estimate∫

Ω
|u|2ωΩ

e−(ϕ+ψ) dVωΩ 6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉
ωΩ
e−(ϕ+ψ) dVωΩ

for any ∂̄-closed f ∈ L2
(n,q)

(
Ω, L;ωΩ, he

−ψ) with the solution u ∈ L2
(n,q−1)

(
Ω, L;ωΩ, he

−ψ) of

∂̄u = f . Consequently, we have completed the proof.

Proof of Proposition 5.2. We obtain a sequence of smooth Hermitian metrics, with Griffiths pos-
itive curvature, increasing to h on any relatively compact subset again. Since S is a Riemann
surface, hν is also Nakano semi-positive. Hence, repeating the argument in the proof of Theo-
rem 1.3, we get ∫

Ω
|u|2(ωΩ,h)e

−ψ dVωΩ 6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h)
e−ψ dVωΩ
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for any ∂̄-closed f ∈ L2
(1,1)

(
Ω, E;ωΩ, he

−ψ) with the solution u ∈ L2
(1,0)

(
Ω, E;ωΩ, he

−ψ) of

∂̄u = f .

6. Applications

In this section, as applications of our definitions and main theorems, we show several results.
First, we prove that Nakano semi-positivity is preserved with respect to an increasing sequence.
This phenomenon is first mentioned in [Ina21]. Here we explicitly state the detailed proof.

Proposition 6.1. We let h be a singular Hermitian metric on E → X. Assume that there exists
a sequence of smooth Nakano semi-positive metrics {hν}∞ν=1 increasing to h pointwise. Then h
is globally Nakano semi-positive in the sense of Definition 1.1.

Proof. It is well known that Griffiths semi-positivity satisfies this property. Hence, we know that h
is Griffiths semi-positive, and it is enough to show that h satisfies the condition in Definition 1.1.

Fix a Stein coordinate system (Ω, ι) that trivializes E|Ω ∼= Ω × Cr, a Kähler form ωΩ on Ω,
a smooth strictly plurisubharmonic function ψ on Ω, and a ∂̄-closed f ∈ L2

(n,q)

(
Ω, E;ωΩ, he

−ψ).
Here we omit ι for simplicity.

Since hν is Nakano semi-positive, we get a solution uν of ∂̄uν = f satisfying∫
Ω
|uν |2(ωΩ,hν)e

−ψ dVωΩ 6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,hν)
e−ψ dVωΩ

6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h)
e−ψ dVωΩ < +∞

for each ν ∈ N. Note that the right-hand side of the inequality above has an upper bound inde-
pendent of ν. We also remark that {uν}ν>j forms a bounded sequence in L2

(n,q)

(
Ω, E;ωΩ, hje

−ψ)
due to the monotonicity of {hν}. Hence, we can get a weakly convergent subsequence {uνk}∞k=1

by using a diagonal argument and the monotonicity of {hν}. We have that {uνk}∞k=1 weakly
converges in L2

(n,q)

(
Ω, E;ωΩ, hνe

−ψ) for every ν. Hence, the weak limit denoted by u∞ satisfies

∂̄u∞ = f and ∫
Ω
|u∞|2(ωΩ,h)e

−ψ dVωΩ 6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h)
e−ψ dVωΩ

due to the monotone convergence theorem, which completes the proof.

This proposition also holds for globally strictly Nakano δωX -positive metrics when X has
a Kähler metric ωX . As an application of Proposition 6.1, we prove the Nakano semi-positivity
of some sort of direct image bundle, which corresponds to a singular version of Berndtsson’s
result [Ber09].

Theorem 6.2. Let U ⊂ Cn{t} and Ω ⊂ Cm{z} be bounded domains and ϕ be a locally bounded

plurisubharmonic function on U × Ω. We also let Ω be pseudoconvex. For each t ∈ U , set A2
t :={

f ∈ O(Ω) | ‖f‖2t :=
∫

Ω |f |
2e−ϕ(t,·) < +∞

}
and A2 :=

∐
t∈U A

2
t . Then

(
A2, ‖ · ‖

)
is globally

Nakano semi-positive in the sense of Definition 1.1.

Proof. Note that ϕ is a plurisubharmonic function on some open neighborhood of U × Ω and
bounded on U × Ω. Take an approximating sequence of smooth plurisubharmonic functions
{ϕν}∞ν=1 decreasing to ϕ on U ×Ω. We also let ‖ · ‖ν denote a Hermitian metric on A2 associated
with ϕν . Then

(
A2, ‖ ·‖ν

)
is Nakano semi-positive thanks to Berndtsson’s theorem [Ber09]. Since
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‖ · ‖ν is increasing to ‖ · ‖, due to Proposition 6.1, we can conclude that
(
A2, ‖ · ‖

)
is globally

Nakano semi-positive.

Remark 6.3. The local boundedness of ϕ is just a technical assumption which ensures that A2

is a trivial bundle of infinite rank.

Remark 6.4. In our formulation in this article, we only deal with a finite-rank vector bundle, but
the vector bundle A2 is of infinite rank. However, we can naturally extend Definition 1.1 and the
characterization in Proposition 2.8 to the case when E is of infinite rank. Thus the proof above
is fine. See [DNWZ20, Theorem 1.1, Section 2.3] for the detailed explanation.

As an analog of Theorem 6.2 in the global setting, we propose the following conjecture.

Conjecture 6.5. Let f : X → Y be a projective surjective morphism between complex mani-
folds. Suppose that there exists a holomorphic line bundle with a singular Hermitian metric of
semi-positive curvature (L, h) over X. Then the pushforward sheaf f?(KX/Y ⊗L⊗I (h)) admits
a canonical singular Hermitian metric which is globally Nakano semi-positive in the sense of
Definition 1.1.

It is known that the pushforward sheaf has a canonical “Griffiths” semi-positive singular
Hermitian metric [HPS18, Theorem 21.1].

Next, we consider the following situation.

Proposition 6.6. Let h be a Griffiths semi-positive singular Hermitian metric on E → X.
Suppose that there exists a proper analytic subset S ⊂ X such that X \ S is Stein and h is
globally Nakano semi-positive on X \ S. Then h is globally Nakano semi-positive on X as well.

Proof. Take an arbitrary Stein coordinate system Ω ↪→ X that trivializes E|Ω ∼= Ω × Cr, a
Kähler metric ωΩ, a smooth strictly plurisubharmonic function ψ on Ω, and a ∂̄-closed form
f ∈ L2

(n,q)

(
Ω, E;ωΩ, he

−ψ). We only need to consider the case when Ω ∩ S 6= ∅. Since Ω \ S is

also Stein and E|Ω\S is trivial, we can solve the equation ∂̄u = f with the estimate∫
Ω\S
|u|2(ωΩ,h)e

−ψ dVωΩ 6
∫

Ω\S

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h)
e−ψ dVωΩ

6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h)
e−ψ dVωΩ < +∞

on Ω \ S. Set u = 0 on S. Repeating the argument in the proof of Theorem 1.4, we have
u ∈ L2

(n,q−1)

(
Ω, E;ωΩ, he

−ψ), ∂̄u = f on Ω, and∫
Ω
|u|2(ωΩ,h)e

−ψ dVωΩ 6
∫

Ω

〈
B−1
ωΩ,ψ

f, f
〉

(ωΩ,h)
e−ψ dVωΩ .

This completes the proof.

Note that Proposition 6.6 holds for globally strictly Nakano δωX -positive singular Hermitian
metrics when X is a Kähler manifold. Applying it, we can prove Theorem 1.8.

Proof of Theorem 1.8. Since E is a V-big vector bundle, thanks to Definition 2.19 and Proposi-
tion 2.20, we can construct a singular Hermitian metric ĥ on OP(E)(1), a positive constant ε > 0,

and a proper analytic subset Ŝ ⊂ P(E) satisfying the following conditions:

(1) The metric ĥ is smooth on P(E) \ Ŝ.
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(2) We have
√
−1Θ

(OP(1),ĥ)
> εωP(E), where ωP(E) is a fixed Kähler metric on P(E).

(3) π
(
Ŝ
)
6= X.

Consider the isomorphism π?(KP(E)/X ⊗OP(r+m)) ∼= SmE ⊗ detE, where KP(E)/X = KP(E) ⊗
π?
(
K−1
X

)
is the relative canonical bundle. Then SmE⊗detE admits the L2-metric hm associated

with ĥm. We fix an analytic subset S ( X such that X \ S is Stein and S ⊃ π
(
Ŝ
)
. Due to the

construction above, hm is smooth on X \ S and Griffiths semi-positive on X [BP08, PT18].
Moreover, hm is smooth Nakano positive on X \ S thanks to [Ber09] and actually has global
strict Nakano δωX -positivity for some δ > 0. In order to prove the latter property, we take a
sufficiently small open subset U ⊂ X \ S such that ωX is ∂∂̄-exact on U and take its potential
ϕU , that is,

√
−1∂∂̄ϕU = ωX |U . Taking a positive constant δ > 0 satisfying

√
−1Θ

(OP(1),ĥ)
> εωP(E) >

δ

m
π?ωX ,

we see that ĥe(δ/m)(π?ϕU ) is semi-positive on π−1(U), which means that hme
δϕU is Nakano semi-

positive on U . Then, applying Proposition 6.6, we can conclude that hm is a globally strictly
Nakano δωX -positive “singular” Hermitian metric over X. The vanishing theorem is a direct
corollary of Theorem 1.5.

7. Related problems

In the last section, we propose important problems related to the main theorems.

We begin by considering Proposition 3.2. This regularization technique is a fundamental
tool to study Griffiths semi-positive singular Hermitian metrics. However, the way to regular-
ize a Nakano semi-positive singular Hermitian metric is not known. We propose the following
problem.

Question 7.1. Let E be a trivial vector bundle over a polydisc ∆ ⊂ Cn, and let h be a Nakano
semi-positive singular Hermitian metric on E. Can we construct a sequence of smooth Hermitian
metrics, with Nakano positive curvature, increasing to h on any smaller polydiscs?

Next, we consider the Demailly–Nadel type vanishing theorem. In general, this vanishing
theorem is established on weakly pseudoconvex manifolds. Then we can expect that the main
theorems also hold on weakly pseudoconvex manifolds.

Question 7.2. Let (E, h) be a holomorphic vector bundle and a strictly Nakano positive singular
Hermitian metric over a weakly pseudoconvex manifold X. Can we obtain L2-estimates and
vanishing theorems with coefficients in E on X?

Now, we consider the definition of Nakano semi-positivity. In this article, we assume the
Griffiths semi-positivity of Nakano semi-positive singular Hermitian metrics. In the smooth set-
ting, it is clear that a Nakano semi-positive Hermitian metric is always Griffiths semi-positive.
However, in the singular setting, we do not know whether Nakano semi-positivity yields Griffiths
semi-positivity.

Question 7.3. We let h satisfy the condition in Definition 1.1 without assuming the Griffiths
semi-positivity of h. Can we say that h is Griffiths semi-positive?

There exists a result related to Question 7.3 (cf. [HI21, Theorem 3.5] and [DNWZ20, Theo-
rem 1.2]).
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We continue by considering the conditions {(2− k)}16k6n in Remark 2.17. As already men-
tioned, these conditions are equivalent to one another when h is a smooth Hermitian metric. We
expect that this equivalence is also valid when h is a singular Hermitian metric.

Question 7.4. Can we prove the equivalence of the conditions {(2 − k)}16k6n in the case when
h is a singular Hermitian metric?

Last, we consider the equivalence of the global Nakano semi-positivity and the local Nakano
semi-positivity.

Question 7.5. Can we show the equivalence of the global Nakano semi-positivity in Definition 1.1
and the local Nakano semi-positivity in Definition 1.2 for singular Hermitian metrics?

If we can construct a sequence as in Question 7.1, we can also answer Questions 7.3 and 7.4
affirmatively by using the regularization technique. In fact, Questions 7.3 and 7.4 have positive
answers if h is smooth. In that case, if we can take a sequence of smooth Hermitian metrics
with Nakano positive curvature, we can give positive answers to these questions by repeating the
argument in the proof of Theorem 1.3. Therefore, Question 7.1 is crucial.
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Ser56 J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6
(1956), 1–42; doi:10.5802/aif.59.

Siu76 Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), no. 1,
89–100; doi:10.1007/BF01390170.

Sko72 H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans Cn, Bull. Soc. Math. France
100 (1972), 353–408; doi:10.24033/bsmf.1743.

Takahiro Inayama inayama takahiro@ma.noda.tus.ac.jp inayama570@gmail.com
Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science,
2641 Yamazaki, Noda, Chiba, 278-8510, Japan

92

http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
https://doi.org/10.1007/s11425-021-1873-y
https://arxiv.org/abs/2001.01762
https://doi.org/10.1007/BFb0097764
https://doi.org/10.1007/BFb0097764
https://arxiv.org/abs/1809.10371
https://doi.org/10.1016/j.crma.2019.04.006
https://doi.org/10.1007/s11425-019-1654-9
https://doi.org/10.1007/BF02391775
https://doi.org/10.1090/conm/712/14346
https://doi.org/10.1090/conm/712/14346
https://doi.org/10.1307/mmj/1573700740
https://doi.org/10.1307/mmj/1573700740
https://doi.org/10.5802/crmath.168
https://doi.org/10.5802/afst.1666
https://doi.org/10.2307/1971429
https://doi.org/10.1090/jag/702
https://doi.org/10.1007/s11512-015-0212-4
https://doi.org/10.5802/aif.59
https://doi.org/10.1007/BF01390170
https://doi.org/10.24033/bsmf.1743
mailto:inayama_takahiro@ma.noda.tus.ac.jp
mailto:inayama570@gmail.com

	Introduction
	Notation and preliminaries
	Smooth Hermitian metrics
	Singular Hermitian metrics
	Big vector bundles

	Demailly and Skoda's theorem in the singular setting
	L^2-estimates and vanishing theorems
	Properties of Nakano semi-positivity
	Applications
	Related problems
	References

