
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

37

Naked Objects Framework

ABSTRACT

With more and more business systems designed using object
oriented approach, written using object oriented languages like
Java and interfaces created through various tools, there is need for
such systems to show the quintessence of object orientation,
which is „behavioural completeness‟. This paper discusses Naked
Objects Framework (NOF), which is an open source prototyping

tool based on Java that auto generates an entire system that is
behaviourally complete by plainly defining behaviourally rich
objects that can be easily accessed by the user. The resulting
object oriented interface is very user friendly and allows both the
developer and the client to equally contribute in the requirements
specification phase.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications –
elicitation methods, tools

D.2.2 [Software Engineering]: Design Tools and techniques –
Object-oriented methods

H.5.2 [User Interfaces]: Prototyping

General Terms

Performance, Design

Keywords

Naked Objects Framework, behavioral completeness, prototyping,

object oriented user interface, drag and drop, web view, domain
objects, actions, services, repositories, agility.

1. INTRODUCTION
Naked Objects is an open source application development
platform for Java. The Naked Objects Framework is used to create

business systems from behaviorally complete business objects.
Initially created as a prototyping tool for user interface, it is now
used as for prototyping the entire object model with the inclusion
of persistence, sharing and distribution of objects.

It is called „Naked Objects‟ because all that is to be created are the
domain models as „Plain Old Java Objects‟ (POJO).Two things
have made this possible. The first is that there is no application-

specific user interface code - the UI for both systems is created

100% automatically from the business object definitions. The
second is that the Naked Objects approach encourages very good

object-oriented design, specifically, very high levels of
polymorphism.

Following are the three principles of Naked Objects pattern:

1. All business logic should be encapsulated onto the
domain objects.

2. The user interface must completely reflect the domain
objects including all user actions such as creating and
retrieving domain objects.

3. The user interface creation must be entirely automated
from domain objects.

The main focus has been on creating agile systems so that they

support changing business requirements resulting in good levels
of reusability and thereby reducing development time.

The visual appeal of the interface supports even a non-IT user to
be involved in the design specification phase. The feature of
authorization control ensures that an entire organization can make
use of the same system hence supporting uniformity throughout.

2. OBJECT ORIENTATION IN NAKED

OBJECTS FRAMEWORK

The Object Oriented approach towards development of software
systems has been around for a long time. It has gained immense
popularity because every object mirrors a real world entity thus
helping the programmer to visualize the system very effortlessly.

Many business systems designed using an object – oriented
methodology support features such as encapsulation and
inheritance but miss out on a very important concept of
„behavioural completeness‟. It means that every software object
must not only represent the properties of the corresponding real –
world entity but also implement their behaviours. This does not
imply that all possible behaviours must be modelled but the data
and procedure should not be separated i.e. they should only be

properties of the object and not implemented elsewhere in the
system.

Naked Objects Framework supports this principle through

behaviourally rich objects that reflect real – world business
domain. Each object is represented in the form of an icon and
behaviours as actions on pop – up menus. Thus NOF captures the
central idea of an Object Oriented User Interface and at the same
time allows the objects to be exposed directly to the user rather
than hiding them under a UI. The user can directly operate upon
the business objects or their classes without the interference of

Aruna Raja
Usha Mittal Institute of Technology,

SNDT Women’s University, Santacruz
(W), Mumbai - 400 049

Devika Lakshmanan
Usha Mittal Institute of Technology,

SNDT Women’s University, Santacruz
(W), Mumbai - 400 049

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

38

any menus, scripts or dialog boxes making it user friendly and
hassle free.

3. MULTIPLE VERSIONS

3.1 Drag and Drop
Each domain object is represented in the form of an icon and
methods as actions on pop-up menu. Since it makes heavy use of
Drag and Drop, it is labeled as „DND‟ user interface as shown in
figure 1.

Figure 1. DND Version

3.2 Web View
Web view is implanted on a web browser seen in figure 2. The
object‟s properties are on the right with the action menu on the
left. Unlike DND where we drag and drop objects, here drop
down menu is used to select objects from a range of valid options.

The Web View look can be easily customized through Cascading
Style Sheets though it isn‟t as expressive as Drag and Drop

Figure 2. Web View Version

4. CONCEPTUAL DIAGRAM
The entire NOF can be summarized by the conceptual diagram
shown below:

Figure 3. Conceptual Diagram of NOF

The various components of NOF as shown in figure 1 are as
follows:

Domain Objects- Behaviourally rich business objects that are
represented as icons on the screen. Double clicking on an icon
opens a detailed view of its corresponding attributes and relations.
Right clicking produces a pop-up menu with actions that can be

invoked on the object.

Title- Name associated with each instance of Domain object that
appears next to the icon. It helps the user to identify objects and
retrieve objects from object store.

Properties- Parameters of the Domain objects in the form of
fields such as name, id etc.

Actions- Behaviours of the business objects that are represented
in the form of pop-up menus.

Fixtures- Contains data to be launched each time the application

is run during demos.

Services- It defines functions that cannot be applied to single
instance. E.g.: Find developer, Show all etc. They are defined
independently so that their implementation can be changed
without affecting the objects that use the services.

Repositories- Complex services required to be defined by user.
These are implemented through object stores like Hibernate and
XML.

Factories- Services like object creation, which involve common
steps is built in Naked Objects Framework through factories.

5. WORKING WITH NAKED OBJECTS

FRAMEWORK
Being an approach to domain driven design, to create application
using NOF the programmer needs to identify and define the basic
artifacts like the Objects, Services, and Factories etc that define
the Domain model under consideration.

A Defect Tracking System has been created to understand the
implementation process with more ease.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

39

5.1 Defect Tracking System
This business system must manage the various defects logged by
the QA team of the organization. It should allow the user to
register any new Defects identified. So it should also let user to
include any new developer into the system.

5.2 Implementation Details
Identifying and defining the basic artifacts for the above system:

5.2.1 Domain Objects
Developer and Defect can be identified as the main domain
objects for the system defined. The Developer object should allow
the user to include any new developer into the system and conduct
various operations like finding developers by name or id or also
delete them from the system if required. The Defect object helps
to register any new defects identified. One of the compulsory
fields while registering a defect is to allocate a developer from the
set of developers in the system.

A separate java source file needs to be created for each object
describing their properties and actions. These Domain objects
don‟t inherit from any other objects. However it is quiet useful to

extend them from AbstractDomainObject as it helps in reducing
several lines of code.

Figure 4. Domain Objects

5.2.1.1Developer Domain Object

The title associated with this domain object is obtained by the
combination of First and Surname entered by the user and appears
next to the icon.

The parameters for the object includes Business unit (BU), First
name, Surname, and a unique Id associated with the developer.
Also once added the id of a particular developer can‟t be changed.
BU is the unit of the organization to which the developer belongs.
Since abbreviations of BU are generally in use the field has been
set such that it only accepts capital letters. The first name and
surname fields have a max length set and are allowed to accept

alphabets alone. The id field accepts an id entered only if it is
unique and with a max length of 6 digits. Also once persisted this
field can‟t be changed.

5.2.1.2Defect Domain Object

The title associated with this domain object is obtained from the
name given to the defect.

The parameters for the object include Defect Name, Defect Id and
the Developer Name who is assigned the Defect. Defect Name

can be an alphanumeric name with white spaces allowed and a
max length of 15. The constraint placed on it states that the name
should never start directly by digits. Defect Id is a unique id given
to the defect with a must follow pattern „nnn-nnnnn‟ (where n
stands for whole number digits) for uniformity in the Business
system. Like in Developers, here too the id can‟t be changed once
the Defect is persisted. In the Developer name field the developer
is simply dragged and dropped in and thus there is no need to
setup constraints for the same.

Thus the properties and actions for each domain object was
defined in separate java source files namely: Developer.java and
Defect.java

Figure 5. Developer Object’s Properties

5.2.2 Services
Services for each Domain object needs to be specified in separate
java source file.

Some of the services made available for Developer object include:

showAll - which lists all the Developers present in the system.

findAllByName - which lists all the developers that have the
same characters in the last name as entered in the search string.

findByName - lists out the best matching developer that have the
same characters in the last name as entered in the search string.

findById - makes use of the unique id linked with each developer
to search for his/her existence.

newDeveloper - can be used by the user to create a new instance
of the domain object and it provides an expanding form with
fields for entering the value for parameters.

deleteDeveloper - helps to delete a persistent developer from the

objectstore used.

Some of the services made available for Defect object include:

showAll - It lists all the defects registered in the system.

findById – This returns the defect based on the unique Id entered.

newDefect – Helps the user to register a new defect.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

40

deleteDefect – Helps to delete a persistent defect.

Thus, the above mentioned services were defined for the objects
in the DeveloperRepository.java and DefectRepository.java files.

Figure 6. Services defined for Developer Object

5.2.3 Factories

Prototyping applications generally run in the non-persistent mode
it is beneficial to define fixtures. Fixtures specify data for the
domain objects that is uploaded each time the application is run.

Two java source files namely DevelopersFixture and
DefectsFixture were written for the application. Both classes were
extended from AbstractFixture class thereby leading to reduction
in lines of code.

For Developer object sample data like

newDeveloper("PTI","Aruna", "Raja", 62879)

and for Defect object sample data like

newDefect("Array out of Bounds", "355-

40311",getDeveloperRepository().findByName("

Lakshmanan"))

were uploaded.

5.2.4 Persistence

Its required to use different persistor incase persistence is desired
between each run of the application. There are a couple of
implementations available:

XML-persistor plugin – This can be used to store objects in a
series of XML files. This however isn't suitable for production
use, but at least the data doesn't disappear between runs. To use it,
just add xml-persistor to the pom.xml and use --persistor xml on

the command line.
Hibernate plugin – This can be used to store data in RDBMS.
JPA object store – It also persists to an RDBMS using JPA
annotations.

For the defect tracking system persistence was applied using xml
persistor.

Additionally, security can be added to the application using
authentication and authorization. Authentication can be specified

using a passwords file under a config directory. The username :
password pair is mentioned in the format specified thereby
allowing only valid entries to access the application.

Figure 7. Authentication

Also, Allow and/or Disallow files can be used for authorization to
control views as to decide who will get to see what. For this, roles

need to be specified additionally with the username : password
pair in the passwords file. Allow/Disallow files can be used to
clearly allow or disallow access to certain actions or services in
the objects as per the role played.

This system created can be viewed using the drag and drop
interface by running the command:

ant standalone-xml (As we are using xml persistor)

Also it can be seen using a HTML viewer by running the
command:

ant html standalone-xml and then clicking on the

following link:

http://localhost:8080/logon.app

6. ADVANTAGES AND DISADVANTAGES
Advantages

1. A faster development cycle

Conventional applications require 4 separate layers namely

presentation layer, controller layer, domain model layer and a
persistence layer to be developed. But using Naked Objects
all except behaviorally rich object layer is auto created from
it. Thus, it requires development of fewer layers.

2. Greater Agility

NOF supports flexibility in adding future changes in business
requirements by limiting the number of developed layers that
need to be synchronized. It improves agility due to higher

quality domain object modeling. This is achieved by
enforcing 1:1 correspondence between user presentation and
domain model. Few requests for changes can also be
accommodated in real time, hence taking rapid prototyping
to a new level. Since the prototype itself documents the

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

41

object model, time spent in creating, editing and maintaining
documentation is saved.

3. More empowering style of user interface

High levels of modality lead to problems for the users. This
is because they support „verb-noun‟ style of interaction
where the user selects the task before the data. Naked
Objects automatically create OOUI that follow a „noun-verb‟
style where users have select options for tasks on objects thus
avoiding accidental misuse of data.

4. Easier requirements analysis

Domain objects form a common language between the user
and the developer thus helps in better and clearer
understanding of the requirements. Due to faster
development cycle, it is possible to prototype functional
applications in real time using Naked Objects.

Disadvantage

NOF is suited for sovereign applications but not for transient
ones.

7. CONCLUSION
Being behaviorally rich, Naked Objects Framework is a complete
Object Oriented User Interface gaining popularity due to its visual
appeal and agility that allows flexibility and supports various

enhancements in the requirements phase. Both the developer and
the customer can work on the system real-time, making it more
interactive and the instant visual result keeps the customer
satisfied. Since the interface is auto generated and does not
require hundreds of lines of code to be written, it is gaining

interest even among non-IT users as it does not require high level
technical know-how.

In today‟s world where time is money and competition is high, the
market requires open source tools that provide instant results and

that appeal even to non technical users. Naked Objects
Framework serves as such a perfect solution for Rapid
Prototyping that has immense scope in the future.

8. ACKNOWLEDGMENTS
We would like to express our gratitude to Usha Mittal Institute of
Technology and Patni Computer Systems Ltd. for encouraging us
to take up this project activity as a part of the curriculum.

9. REFERENCES
[1] Richard Pawson and Robert Matthews, “Naked Objects”,

John Wiley & Sons Ltd., 2002.

[2] “Naked Objects”, May 2009 [Online]. Available:
http://www.nakedobjects.org/home/no_for_java_intro.shtml
[Accessed: May 14, 2009].

[3] Siegfried Bolz, “Create CRUD-Mashups rapidly with Naked
Objects and NetBeans”, May 2008 [Online]. Available:
http://blog.jdevelop.eu/2008/05/14/create-crud-mashups-
rapidly-with-naked-objects-and-netbeans/ [Accessed: June
10, 2009].

[4] “Naked Objects 3.0: Integration with Hibernate”, Sept 2006
[Online]. Available:

http://www.theserverside.com/tt/articles/article.tss?l=Naked
ObjectsHibernate [Accessed: June 10, 2009].

