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Abstract

Much of recent work on computer systems
has focused on providing transparent resource-

sharing in a distributed computing environ-

ment . Many of these systems use the server-

client model to provide access to data an d

services . As more distributed services are of-

fered and the demand for sharing increases i n
these environments, efficient management and

accessing schemes become crucial . Locating

services makes name service a critical part of

access management .

This report describes some of the work in
progress as part of the Universal Name Seman-

tics (UNS) project at the University of Michi-

gan. UNS was intended to explore issues in-

volved in providing client programs with seam-

less naming of objects across heterogeneous

name spaces . UNS is distinguished from othe r

heterogeneous naming systems in its attempt
to partially automate the translation proces s

by exploiting abstract similarity between name

spaces .

1 Introduction

Descriptive naming systems have become more

popular in recent years [11] . Their flexibilit y

facilitates item discovery by allowing incom-

plete queries . However, there are currently n o

data models for describing arbitrary services ,

i .e ., there is no complete set of attributes that
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is capable of describing any service . A print

server would have far different attributes than

an authentication or name server . The prin t

server could be described by its lines or pages

produces per minute, command language, and

paper size . An authentication server could b e

described by its administrative domain or peo-

ple it will authenticate, and the life time of it s

keys . Representing multiple services in a sin-

gle model would require using either the unio n

or intersection of these attributes . Using the

union would lead to considerable waste . Tak-

ing a print and an authentication service as an

example, the waste might appear insignificant ,

but as the number of service types increases ,

so will the waste . Alternatively, using the in-

tersection would most certainly underspecify

both services, i .e ., the attributes that the serv-

ices have in common may not be adequate t o

uniquely identify either service .

As more distributed services are offered an d

the demand for sharing increases, efficient man-

agement and access schemes become crucial .

Also, as the environment evolves, heterogeneit y

is usually unavoidable. This makes name trans-

lation an issue . The Universal Name Semantics

(UNS) project is a preliminary attempt to de-

sign a semantic service description model using

abstract similarity between services and nam e

spaces . The finished Name Semantic Mode l

(NSM) would be used to implement transla-

tors between heterogeneous name spaces . This
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paper describes some results of that work .

The remainder of this paper is structured a s

follows . In section 2, basic attribute-namin g

concepts are introduced . In section 3, the serv-

ice naming abilities of a number of state-of-the -

art naming systems are critiqued using evalu-

ation techniques introduced in section 2. Sec-

tion 4 describes techniques for providing het-

erogeneous name spaces . Section 5 describes

the work toward the UNS service naming ar-

chitecture. Finally, in section 6, we evaluate

the UNS work and discuss future directions .

2 Naming Concept s

Fundamental naming concepts are introduced

in this section. Much of the information pre-

sented here is contained in [16] ; the reader i s

directed there for a more thorough treatment .

A computer or software system can be

viewed, at some level, as an object manager .

Printing systems treat printers and files as ob-

jects; operating systems treat users, processes ,

and files as objects . Names are given to objects

so that users may specify these objects in the

system. For example, in UNIX one can thin k

of inodes as file object data structures under -

stood and managed by the operating system.

Users identify files (objects) by referring to file

names, which are strings of characters intelligi-

ble to humans .

A naming architecture [1] is a model for pro-

viding and administering names in a computer

system. One component of a naming architec-

ture is the name space or domain : the univers e

of all possible names for a particular naming ar-

chitecture . For example, the Internet mail sys-

tem name space is made up of strings such a s

` ravi@zip .eecs .umich.edu', where the right side

of the `@' symbol denotes the computer name

(zip .eecs .umich.edu) and the left side identi-

fies a user (ravi) on that computer . The com-

puter name portion of an email address is it-

self part of the internet naming architectur e

name space. The Internet host name space con-

sists of computers whose names are constructe d

from a concatenation of hierarchical domai n

names strings delimited by ` .' . For example ,

zip .eecs .umich .edu is the name for a computer

`zip' in the `eecs ' subdomain, which is in the

`umich' subdomain, which is in the `edu' sub-

domain .

A name resolution system or name serve r

is another (functional) component of a nam-

ing architecture . The primary function of the

name server is to store and bind/map names in

the name space to objects .

In the UNIX file system example, the namin g

architecture provides a mechanism for mappin g

file names in the user domain to inodes in the

system domain. Inode data can then be used

to physically locate and access the file . In this

example, inodes can be considered names in

another level of naming .

The context [16] is an (environment) object

that contains a particular mapping from names

to objects . A context is usually associated wit h

the name or the environment in which the name

is used, or the scope in which the name is valid .

Using different contexts will result in differen t

bindings . In addition, relative mapping may in-

volve a number of indirect bindings to reach the

actual object desired . In this situation many

contexts could be involved, each containing a

(partial) mapping to an object/name in an-

other context . The construction of Interne t

host names above is an example of a hierar-

chical names space that uses multiple contexts
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or domains.

The UNIX file system again serves as a good

example of how context is used . In the case

of a hierarchical file system, the current work-

ing directory serves as the current contest .

File names beginning with "/" are absolute

names and interpreted relative to the root di -

rectory. All other files are interpreted rela-

tive to the current working directory : i .e ., each

name/directory in the pathname of an object

serves as a context in which to search for th e

next name/directory .

A fiat name space can be considered a hierar-

chical name space with only one directory . The

list of ethernet addresses on a local network is

an example of a fiat name space .

A resolver is the user interface component

of the naming architecture . Given a name, th e

resolver will attempt to find the corresponding

object (to which the name is bound) by con-

sulting one or more name servers. Resolvers

are typically library routines which are linke d

into client code .

The UNIX file system example in this sec-

tion illustrates a typical name mapping issue

involving two domains ; the user-specified file

names and the file system inodes . Naming is-

sues, however, are encountered at all levels of

a computer system . Even subroutine calls in-

volve them, since each procedure called must be

located and address information substituted fo r

the name. In most systems the linker performs

this static binding immediately after compila-

tion. Newer systems allow dynamic bindin g

to routines at runtime. The latter approach

has the advantages of allowing libraries of com-

monly used routines to be shared among pro-

grams at runtime, thereby providing greater

flexibility. Naming is also an issue in computer

hardware. This report, however, will focus on

higher level service naming issues (e.g ., file sys-

tem names) . For more information on languag e

and hardware level naming, the reader is di-

rected to [16] and [5] .

2.1 Models for Scalability

It is less useful to discuss name service i n

small nondistributed environments, because

the name server's primary function is to facili-

tate communication in a widely distributed en-

vironment . Furthermore, heterogeneous nam-

ing requires somehow managing or merging a

number of name spaces into one . Even the

merger of small name spaces will result in a

large distributed system . These factors make

scalability a major issue in name space archi-

tecture design .

Below are some principal methods of provid-

ing distributed system scalability

[7][17] :

Hierarchical Administration: One of the

best distributed administration structure s

is the hierarchy. Many of the name sys-

tems presented will have hierarchical name

spaces and administrative models . In such

models, the administrative domains typ-

ically correspond to the name space do-

mains. At least one name server is respon-

sible for mapping all the names in a par-

ticular domain . This distributes the loa d

across servers . As domains grow, they can

be partitioned into subdomains. The hi-

erarchical model also distributes authority

or responsibility, so conceptually separate

domains can be maintained by indepen-

dent organizations.

Another advantage of hierarchical name
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spaces is that they tend to isolate faults .

Service disruptions in one branch of the

domain will not necessarily affect servic e

in another domain .

Partial Replication : This technique dis-

tributes multiple copies of frequently ac-

cessed information . Replication prevents

access bottlenecks at a single server as the

number of users increases . It also provides

a level of fault tolerance to any system . In

the event of server failure, all name service

requests can be redirected to the replica .

Relaxed Consistency Constraints : As up-

dates are made to information in the repli-

cated systems, small periods of data incon-

sistency exist . Inconsistency is tolerable

for many types of information, as long a s

all the replicas eventually converge .

Caching This is a general technique wher e

clients of a service keep local copies of in -

formation retrieved from previous queries .

Dynamic updates also affects system scala-

bility. As the system grows, propagating the ef-

fects of dynamic update degrades performance .

2.2 Descriptive Naming Issue s

Descriptive or attribute-based naming system s

have become more popular in recent years due

to their flexibility. Descriptive naming can b e

used to provide white-pages services to identify

users based on imprecise or incomplete descrip -

tions [3] ; more importantly, it can also provid e

yellow-page services for locating computationa l

resources based on properties or attributes of

the desired resource [3] . Locating objects based

on imprecise descriptions moves into the real m

of name discovery . If the name of an object is

not known, it can be discovered by describin g

the attributes of the object . This is particularl y

useful for systems like Cygnus at the Universit y

of Michigan [15] [4], where users provide a de-

scription to locate and use the desired service .

Because attribute-based name spaces are

flat, a user need not be concerned with pre-

cise pathname interpretation order, unlike in

hierarchical systems. Neufeld explores tech-

niques that provide the flexibility of descrip-

tive naming within a hierarchical name space

(Appendix A) .

One major issue to be resolved in descriptive

naming systems is whether it is necessary to

provide a set of attributes that completely de -

scribes all objects in the name space, and if so

what these attributes are .

The following are descriptive names for thre e

printers :

Printers :

(language=PS, type=laser ,

pages-per-min=60 )

Printer2 :

(language=PS, type=laser ,

pages-per-min=60, ink=blue ,

paper-size=8 .5-by-il )

Printer3 :

(language=ascii ,

type=inkjet ,

pages-per-min=60, ink=blue )

If we consider Printer2 as having a complet e

set of attributes ; then the descriptions of th e

other printers are incomplete . There are case s

where a subset of the complete attributes might

be enough to describe a desired object . A user

wishing to print might query a name server ask-

ing for a printer with the following attributes :
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(language=PS, type=laser )

In this example the user does not care about

any other attributes, so a number of print-

ers can provide the service . If there is a spe-

cific attribute that is not wanted, the user

could explicitly say 'attr#value' . This, how-

ever, requires him or her to know all the pos-

sible attributes of the object . Furthermore ,

ambiguities may arise when new objects are

added whose attributes are a superset of th e

attributes of old objects . For example, adding

the new printer

Printer4 :

(language=PS, type=laser ,

pages-per-min=80, ink=blue ,

paper-size=8 .5-by-11 ,

location=EECS-4418 )

might cause ambiguities for a user who in th e

past used a complete attribute query and had

Printer2 returned .

2.3 Naming: People vs . Services

Previously, no distinction was made between

the various types of named data and the im-

pact of that data on the naming architecture .

In this section we will distinguish architectural

requirements for naming people (white-pages

data) and naming services (yellow-pages data) .

We will later use these requirements for eval-

uating the naming systems presented in sec-

tion 3 .

• Both WP and YP data usually only re-

quire a scaled-down version of a databas e

system.

• Modification patterns :

WP data infrequently modified. The YP

data is frequently subject to change with

the addition of a new services .

• Security requirements :

Are there differences between WP and Y P

security needs? The name server can be

used to store access rights data for any

object . System administrators can verify

user names and vital WP data when en -

tries are made . YP entries are more dy-

namic and harder to verify. During the

service development process, programmer s

may require frequent update access to the

YP database in order to test new systems .

It would be harder to have a single admin-

istrator oversee the YP database updat e

process .

If either YP or WP data are compromised ,

the data returned by the name server can -

not be trusted. This means, (1) the user

may unwittingly divulge sensitive data t o

an intruder, or (2) the data returned to

the user is most likely erroneous . For ex-

ample, a compromised WP service may re -

turn bad mail addresses, in order to inter-

cept mail ; a compromised YP service may

return false host address data for a remot e

file system, thereby leading the user t o

the intruder's erroneous file system . If the

service used has some authentication pro-

cedure of its own, this will lessen the effects

of a compromised name service . These

issues would stress the need for name-

service-wide security to guard against re-

ceiving false data and tampering with local

data .
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• Access pattern differences :

WP and hostname data typically have a

wider remote access pattern than YP data.

User names and mail addresses are re-

quired for worldwide mail delivery.

In contrast, services are primarily accesse d

by local users . This affects distributed se-

curity requirements . For example, if YP

were strictly for local use, there woul d

be no need for security measures to ex-

change data with foreign YP servers . Even

with restricted access to YP data, som e

form of data distribution might be needed

for fault tolerance or administrative effi-

ciency . In the future, remote access to

services is likely to become more common .

The number of distributed file systems and

databases as well as utility services fo r

managing data is increasing .

• Discovery pattern differences :

Discovery differs from lookup in the na-

ture of the query performed . When a nam e

lookup is performed, the unique (named)

object is usually known to whoever is

performing the lookup . The aim of the

lookup is to determine the value of some

attribute(s) of the object .

When a discovery query is performed, th e

subject of the query is typically unknown .

The aim of discovery is to determine th e

set of objects that have a certain set o f

attribute values .

The discovery requirements for WP and

YP data are similar . Attribute-based ar-

chitectures have proven superior for both

types of data [12) [13) . Although the

lookup and discovery queries for WP and

YP may be similar, the results may be

handled differently . For example, when

duplicate objects are returned from a WP

query, the user may need to further dis-

ambiguate the results to find the one true

object . In the YP case, the user is often

satisfied with any response and needs onl y

to choose one .

All of the above factors affect the naming ar-

chitecture design process . The ideal YP name

server will have the following features :

• Attribute-based :

Objects are in a flat name space and the

user is able to specify queries on any field

contained in an object data record .

• Modifiable :

The system should allow easy online mod-

ification by the administrator and possibl y

by service programmers .

• Distribution :

The system should provide replication and

distribution to facilitate remote access .

• Security :

The system security should control updat e

access to information contained in the sys-

tem. In addition, read restrictions to some

information might also be required . As

part of security, some form of authentica-

tion will also be necessary.

3 Previous Work

In this section we review a number of naming

systems, and evaluate them using the criteri a

introduced in section 2 .3 .
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3.1 Grapevine

Grapevine [2] was one of the first large-scale

distributed naming systems, and has made

many contributions to the general field of dis-

tributed computing . Grapevine is a distributed

systems environment that provides facilities

for delivery of electronic mail, and also offer s

authentication and access control services for

clients .

The Grapevine name server maintains a reg-

istration data base for mapping names (of

users, machines, or services) to information

about the name. The name of an entry in th e

registration database is called an RName . The

Grapevine namespace of RNames is a two-leve l

hierarchy, where every RName is a string of

the form F.R . R is the registry name and F

is the object name within the registry. Reg-

istries represent organizational, geographic, or

other potential administrative partions, an d

are the unit of replication and distribution in

Grapevine .

Grapevine 's two-level hierarchical name

space limits scalability . Another scaling prob-

lem is the pseudo registry, gv that contains in-

formation on all other registries . In a large dis-

tributed system, maintaining such a list cen-

trally (with or without replication) would b e

unfeasible .

The Grapevine registry commands are spe-

cific to mailing applications. Names in the

database are mailing addresses, lists, and othe r

associated mail delivery objects . There are no

general mechanism for creating and modifyin g

arbitrary attributes .

3.2 Clearinghouse

Clearinghouse (CH) is a distributed naming

service for arbitrary objects [10] that provides a

three-level hierarchical name space CH names

are of the form L :D:O, where L is the local-

name, D is the domain, and 0 is the organiza-

tion . An organization will typically be an au-

tonomous institution or corporate entity. Do-

main can be used to distinguish administrative ,

geographical, or other logical divisions . The lo-

calname is the domain-unique name of the ob-

ject . A CH lookup returns a list of object prop-

erties of the form <PropertyName, Property -

Type, Property Value> . Property names and

values are strings. There are two types of

PropertyTypes : item, which is an uninterpreted

block of data, and group, which is a set of CH

names .

CH has many of the scaling problems as-

sociated with Grapevine; for example, updat e

propagation delays will mean inconsistencies i n

some replicated databases . It does provide the

ability to define arbitrary objects and proper-

ties (attributes), and appears to also provide

the ability to perform attribute-based queries .

Finally, CH provides authentication and acces s

control lists to ensure database integrity.

3 .3 Sun Yellow-Page s

Sun's yellow-pages (Sun-YP) is a replicated —

but not distributed — key-value lookup service .

It is a three-level hierarchical name space of the

form Key, Map, Domain . The Domain rep -

resents the autonomous administration bound-

ary. Within a domain, there are an arbitrar y

number of maps, which correspond to objec t

structure types . For example, the host map

contains a binding from hostname (the Key )
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to the host IP address data .

Although Sun-YP allows replication, it doe s

not provide an update propagation protocol :

the user must design the propagation mecha-

nism to provide consistency. Even though Sun-

YP allows arbitrary attributes in the maps ,

lookups only use the designated single valu e

key when searching.

3.4 Univers

Univers is a lightweight relational databas e

that implements attribute-based naming tech-

niques . It is strictly concerned with resource

management, and does not implement any par-

ticular naming architecture . Systems such as

Profile [13] build a naming architecture usin g

Univers and the interpret function translator i t

provides .

Motivated by the need to maintain ambigu-

ous names in dynamic environments, Univer s

introduces the notion of an interpret function,

which is used to define search strategies durin g

resolution. Univers database entries are LISP-

like list structures . An example is :

((address 36 .1 .128 .16)

(architecture 68020 )

(service display) )

The access routines are also list structures ,

which allow users to define interpret func-

tions . The following example defines a YP-

like interpret function to find a set of host s

in the systemdb context that match the set

of mandatory attributes . The results are the n

ordered by the ypprime routine (not shown) .

Select type returns the named context, which

is similar to a table in a relational database sys-

tem .

*yp(type mandatory optional)

(define yp

(ypprime

(equal (arg 2 )

(select typ e

(get_context systemdb)

(arg 1) )

)

Univers provides a subset of the traditiona l

relational database management mechanisms .

It cannot be updated online ; all changes must

be made to human-readable database files, an d

then the system is restarted . Furthermore ,

there are no provisions for distribution or repli -

cation .

3 .5 Discussion

The advantages of a general attribute-base d

naming mechanism should be clear . However ,

none of the systems meets all the requirements

described in section 2.3 .

Grapevine has a number of scaling problems .

Further, the user must provide a registry nam e

(context) as part of the query . This techniqu e

limits the registries searched, but might not be

suitable for services . Finally, Grapevine does

not allow queries on arbitrary attributes .

Clearinghouse also requires users to provide

organizational and domain contexts in whic h

to limit the search .

Sun-YP has no provisions for distribution .

Replica updates are not designed as part of th e

system, and therefore typically require com-

plete map transfers .

Univers is only the database portion of a

name server, and provides no distributed man -
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agement .

Of all the systems, Clearinghouse comes the

closest to the ideal YP name server describe d

in section 2 .3 . However, it lacks scaling and th e

ability to query on arbitrary attributes .

In the next section we will introduce tech-

niques for managing a heterogeneous name

space, followed by a review of the UNS work .

4 Heterogeneous Naming

Managing a global name space in a heteroge-

neous distributed naming system can be a ma-

jor issue . Most research in heterogeneity is con-

cerned with machine architecture and networ k

differences . As one considers high-level applica-

tions, the list of alternatives becomes long . For

example, there are few transport layer proto-

col standards compared to the number of user

interface protocols .

High-level object naming is an importan t

part of distributed computing . The loca-

tion/access transparency goals of most dis-

tributed systems requires merging multiple

name spaces and naming mechanisms to pro -

vide a global name space . This heterogeneit y

brings all parts of the naming architecture into

conflict .

A number of methods for providing globa l

name spaces are discussed in this section, af-

ter which we describe the Heterogeneous Name

Service project .

Standardization: A single naming architec-

ture is imposed on all members of the net -

work community who desire naming serv-

ices. The standard would include a de-

scription of the name space, data struc-

tures, and resolver routines . As with

any standard, there are pros and cons .

If all members of the network use the

same systems, problems are reduced an d

maintenance is simplified . On the other

hand, standardization tends to entrench

bad ideas and designs. If standards can-

not be easily changed, the technology must

be fairly mature in order to develop a

good standard. Typically, by the tim e

the technology has completely matured ,

one or more organizations have indepen-

dently developed systems of their own . Of-

ten, one of these independently develope d

systems (with all its features and faults )

will be chosen as the standard . Finally ,

standards-making politics can also reduc e

the technology to the least common de-

nominator.

Clearly some form of standardization is

needed, so servers can at least know o n

which ports to begin looking for peers .

The question is, how far standards shoul d

go ?

Reregistration: Reregistration, like stan-

dardization, creates a new global nam-

ing architecture, but other naming archi-

tectures may co-exist with the new one .

Servers may reregister (enter) their names

with the new system. Clients who wish to

may use the new server and gain access to

the larger name space .

Reregistration gives new clients of th e

global server access to names in all the

reregistered servers . However, as names

are updated and added to the old native

servers, these names must also be reregis-

tered with the global server . So, reregis-

tration is a continuous process . Old client s

must be modified to take advantage of th e
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new global name server .

Fallback : In this method, new names ar e

added to the new global name server . Na-

tive servers continue to handle queries, but

are modified so names that are not found

are passed to the new server .

Fallback leaves old clients unchanged. The

drawback is that the native servers must

be modified to forward queries to the

global name server . Name inconsistency

can arise if the same name exists in mor e

than one old server . In this case, each use r

will access his or her respective (differing )

local bindings of the name .

Direct Access : The Direct Access method is

similar to reregistration . A new global

name space is created. Each name in the

new name space is mapped, usually by th e

new server, to a name in one of the existing

server name spaces . When queries come to

the new global servers they are directed t o

the native name servers .

Direct Access avoids the inconsistency

problem associated with fallback, but

requires all queries to perform time-

consuming accesses to the underlying na-

tive servers .

Heterogeneous Name Service (HNS) is th e

name server for the larger Heterogeneous Com-

puting System (HCS) project at the Universit y

of Washington [18] . HNS uses direct access ,

naming which allows existing name service sys-

tems to manage their local data. It then func-

tions as a global name service over all the local

name services .

The HNS global name space has tw o

parts . A context identifies the native name

server domain where the data can be found ,

and an individual name identifies the name

of the object in the native server, e .g . ,

`BIND,fiji .cs .washington .edu ' , defines a host

name that can be resolved by the BIND name

service . The right side of the comma is a valid

name in the BIND naming architecture . The

context portion maps to a single name serve r

or name space .

To query, a client would use a. resolver to

pass a global name to the local HNS . The clien t

would expect a particular data type as a re-

sponse : this data type is called the query class.

Upon receiving the query, HNS would map th e

(context, query class) pair to a name semanti c

manager (NSM) to handle the specific retrieval

of data from the native server determined by

the context . The client would then complet e

the query by making calls to the NSM . Using

an NSM, clients can query for names and serv-

ice without being concerned about the under -

lying name service used to resolve the query .

Note that the NSM is separated from both the

client and the HNS, which allows reconfigura-

tion without altering either . Adding new sys-

tems requires building a new NSM and regis-

tering its existence with HNS.

5 Universal Name Space

Approach

In this section we describe the initial approach

to designing a generic name space model . We

introduce the Name Semantic Model (NSM) ,

then discuss the difficulties that arose durin g

its design and implementation . The original

aim of the NSM project was to facilitate name

translation in a heterogeneous environment .
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5 .1 Naming Semantics Approach

This work is based on techniques of identifying

the generic attributes of heterogeneous systems

— abstract similarity . The method is based on

software classification [14] and language trans-

lation techniques described in [8] . The idea i s

to describe all the things that are named a s

objects in an object hierarchy .

We have ignored many of the implementa-

tion details regarding network packet transla-

tion, e .g ., data type and structure layout trans-

lation. Although this translation is necessary ,

it will not be discussed here . In this work we

are only concerned with the fundamental issues

of name translation . The goal is to design a

language for specifying names in the various ex-

isting naming architectures . At this point, the

work is still in progress . The next sections wil l

describe the preliminary work toward definin g

an abstract similarity between naming system s

and names in general .

5.1 .1 Name Space Structure

In this section, we propose a generic name

space architecture . We first make a distinc-

tion between the structure of the name spac e

(name space structure) and the manner i n

which names are composed at each context in

the structure (name structure) .

There is one basic name structure type : hi-

erarchical . In what is traditionally called a

fiat structure, the entire name space is visibl e

from a single context . This can be considered a

single-level hierarchy. In this work, hierarchical

names are constructed by concatenating vali d

names from subdomains or branches, which can

be thought of as contexts . In some hierarchi-

cal structures, links are allowed, forming a Di-

rected Acyclic Graph (DAG) . At any level in

the name space structure, objects are uniquely

identified by a content-sensitive name (CSN) ,

which is a name within the context or subdo-

main of that level .

We further propose to use only one nam e

structure: attribute-based . This is possible be-

cause nondescriptive naming systems can be

considered descriptive by defining the name a s

an attribute .

A completely qualified name (CQN) is a se-

quence of context-sensitive names . In the case

of the fiat name structure, a CQN would be th e

CSN at the top (and only) level . In a hierar-

chical structure, a CQN would be an ordere d

n-tuple of CSNs .

5.1.2 Syntactical Issue s

The first step in the translation is to find a

way to generalize the syntax used in the vari-

ous type of naming architectures. This initial

grammar allows us to define attribute-based hi-

erarchical systems. This language, however ,

could not be used to describe Profile names .

Profile names only contain values without th e

associated attributes ; the values in this version

must be associated with attributes .

name

: := level ldel can rdel

I ldel can rdel level

level

_ '+' I '+' integer I nil

can

: := name '_' value, can

I name '_' value

integer
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: := "numeric integer value "

name

"attribute name string "

value

"attribute value string "

Idel

"character string "

rdel

"character string "

The language is similar to regular expression

syntax. The plus-sign meaning `one or mor e

instances', and the side on which the plus-sign

appears indicates the direction of the name hi-

erarchy. With a plus-sign on the left side, the

root of the hierarchy would be the far-right

CSN. Also as part of the name space definition ,

the designer would supply delimiter characte r

strings (ldel and rdel) .

In the prototype language, the names in the

X.500 name space

(e .g ., "{C=UK}, {O=Telecom}, {OU=Sales ,

L=Ipswitch}, {CN=Smith}") would be repre-

sented as

(value=value)+, with the delimiter strings ,

"{" and "}" .

5.1.3 Semantic Issues

We move now to semantics, the most difficult

and important part of the translation process .

There are a number of obstacles to overcome i n

this area. In this work, we identify some of th e

semantic translation issues specific to namin g

systems, and offer structures and techniques fo r

handling name semantics .

The semantics problem can be divided into

two cases: translation between similar namin g

architectures, but with different name space in-

stances (Figure 1), and translation between dif-

ferent naming architectures (Figure 2) . In Fig-

ure 1, both naming architectures are the same .

However, the actual name spaces are different .

The challenge is how to convert xclock in NS1

to xclock in NS2 . In Figure 2, the architectures

of the name space are different : NS1 is hierar-

chical, while NS2 is flat . This architectural dif-

ference poses additional problems, which wil l

not be discussed in this paper .

Another example of the semantic translatio n

problem (between similar architectures) woul d

be translating between two flat attribute-base d

name spaces . If the first name space had types

login, name, room, and phone, and the secon d

name space had the types signon, name, office ,

and phone, it is clear that in general, translat-

ing between the two spaces is impossible . Uni-

versal Name Semantic (UNS) uses classification

techniques to define common abstract types .

Classification methods are used in many ar-

eas. Classification systems describe groupings

of similar objects and show relationships be-

tween dissimilar groups [14) . A simple clas-

sification structure looks like a hierarchy, bu t

more complex relationships can generate net -

work structures . Hierarchical classification re-

lationships are based on the principles of sub-

ordination and inclusion, while syntactical rela -

tionships relate two or more concepts belong-

ing to different hierarchies. The Dewey deci-

mal system is a typical enumerative hierarchi-

cal classification system . The system we pro-

pose is an enumerative hierarchy, where the

universe of objects is divided into successivel y

narrower classes.

Our work is also based on Lee and Malone' s
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Name Space : NS ~

uar

Name Space: NS 2

us r

selock selock

Figure 1 : Similar Name Architecture Translation

Name Space : NS 1

usr

Name Space: NS 2

object attributes :

TYPE :(binary,aacii,directoryl
SYSTEM : (strinq >
NAME : <strinq>

maniple name :

(type-binary,system•X11,name .xclock )

:clock

exanple name :

/uar/local/bin/X11/xcloek

Figure 2: Architectural Differences
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work on type hierarchies for communication . In

their technical report [8] they discuss possible

translation schemes for object systems from a

set theoretic view-point . For our purposes, the

languages of the communicating groups can be

considered sets of named objects . A group lan-

guage G i is used by a subset of users who work

together . Languages may vary in syntax, a s

well as in semantics captured by the structures .

A set overlap represents syntactic or semanti c

similarity. A common language, C, is define d

as a language that all language groups use to

communicate with one another .

The translation solution space is then de-

scribed as set relations between the com-

mon language C and any group language ,

Gi . Translation involves converting the object s

from one language to semantically equivalen t

objects in the target languages .

Considering the case where every group lan-

guage has the same relationship with the com-

mon language, there are six relationships tha t

will be evaluated with respect to the followin g

objectives :

Maximize Expressive Adequacy :

Presumably, each distinct group language

provides some function not provided b y

the other languages . Gi must be powerful

enough to express varying structures and

semantics .

Minimize Need for Consensus : Redesign

of Gi type structures should require mini-

mal consensus from other language groups .

Minimize Need for Updates :

Somewhat related to the consensus objec-

tive, updates are required when a modifi-

cation to one language affects translation

information maintained by another lan-

guage . Propagating these effects is costl y

from a communication and programmin g

standpoint, and should be minimized .

Five of the six set relationships are presented

and evaluated below :

C = 0: No Common Language : If there is

no common language, then the groups

wishing to communicate must perform

pair-wise translations . This requires that

each language maintain a translation "dic-

tionary" for all other languages .

This method provides flexibility to design

detail translations between any two lan-

guages, but suffers from the classic n(n— 1 )

translators problem .

Expressive Adequacy : Since each language

performs pair-wise translations, the sep-

arate languages Gi are free to represen t

structures in any manner .

Consensus : There is no need for consen-

sus, but this makes translation very costly .

Updates : Although consensus is not re-

quired for structure modifications, change s

must be propagated and customized to th e

dictionaries maintained by the other lan-

guages .

One difficulty that all translations will

have in fully preserving the semantics i s

managing ambiguity :

If there is a one-to-many mapping from a

language Gi structure X to a G; structure

Y, then there should be other characteris-

tics of X that allow unambiguous selectio n

of the Y to which X should be mapped .

C = Gi : Identical Group Languages :

This is the standardization case, where al l

groups use the same language .
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Expressive Adequacy and Consensus : Ex-

pressiveness is limited and the need fo r

consensus is high . All groups must agree

on all changes .

Updates : Update must be propagated t o

all languages, but this really amounts t o

a wholesale replacement and is more man-

ageable than the pair-wise case .

C fl Gi = 0: External Common Languages:

In this scheme, the languages are dis-

jointed from one another . Communication

between languages is performed by firs t

translating into the common language .

With this method, each group only needs

to know how to translate its own languag e

into and out of the common language .

This method suffers primarily from the

fact that the one-to-many problem is now

twofold . Translation from G i to C, as well

as translation from C to G1 , must be un-

ambiguous .

Expressive Adequacy : Separate group lan-

guages can once again be designed wit h

as much power as needed . The common

language design and modifications requir e

consensus, but typically changes to the

common language will be infrequent, re-

ducing the number of updates .

C C Gi : Internal Common Languages :

Every group has a portion of its language

that is shared with all the other groups .

Object hierarchies provide a good exam-

ple of this scheme . Base object types ca n

be shared at higher abstract levels . Ob-

jects are described as basic types with fur-

ther distinctions made within a group lan-

guage. For example, a file object might

have basic attributes shared by all groups ,

such as creation date and length . Any

group may create a subclass of the type

file, with more attributes to further distin-

guish files . When communicating withi n

the group, all the descriptive informatio n

accompanies the object . Inter-group com-

munications will only recognize the share d

object types; objects are translated t o

their nearest common "ancestor" .

Expressive Adequacy : Groups have muc h

flexibility in expressiveness, and are al -

lowed to add as many subtypes as they

require . However, groups cannot ignor e

distinctions made in the common hierar-

thy.

Consensus : Consensus is required onl y

among the objects in the common hierar-

chy.

Updates : Updates are required only of the

objects in the common hierarchy.

C D Gi : Superset : The common language is

a superset of the group languages . If dif-

ferent groups maintain different type hier-

archies, when one group receives an objec t

of unknown type, that type must be im-

ported . This scheme can be very similar

to having an external common language .

Expressive Adequacy : Expressive freedom

is excellent .

Consensus : There is little need for consen-

sus .

Updates : As with the external language

case, updates are costly because a change

to one language might require changes t o

the (n — 1) translators .

C fl Gi 0, C Gi : Intersection:
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Intersection is not discussed because it can

be considered as a combination of the five

schemes .

5 .2 The Name Semantic Mode l

In this section, we outline a prototype Nam e

Semantic Model (NSM) . The main concern

here is to construct a simple test case to deter-

mine if such a hierarchy is a feasible approach

to managing heterogeneous name architectures .

The NSM model is an enumerative classifica-

tion hierarchy [14] that defines objects with in-

heritance. For translation purposes the model

is very similar to Lee's Internal Common Lan-

guage model . We first define the common ob-

jects in the NSM, and then describe a sampl e

translation .

At the most basic level, we name objects .

Further, the group of objects is divided int o

(elementary) subsets of person, place, or sys-

tem . For simplicity, we will only consider ob-

jects needed to describe a portion of the UNI X

file system. Figure 3 illustrates a sample NSM .

Each node has a label that represents a type .

Arrows from the node are type attributes, and

lines between nodes form the class or type hi-

erarchy . An initial set of important NSM types

and attributes is described below .

place : For the moment the only type here is

directory . Place describes objects used t o

hold other objects . Country would be an

example of a place. This model has n o

attributes associated with place .

directory: This is the traditional file system

notion of a directory . It has attributes :

name : character string .

contents : one or more object types. For

example, the directory X11 might

contain documentation as well as bi-

naries, contents=exec,Sile .

system: This is a broad category used to de-

scribe large multi-component software o r

hardware packages.

admin: person or organization charged

with managing the system .

software : This describes entities other than

directories that exist in the file system .

file: Although executables exist as files, a dis-

tinction has been made between the two .

format: of type (ASCII, EBCDIC, . . . )

(exec)utable: This is a machine-interpretable

sequence of instructions .

(interp)reter: type of the interpreter

(machine) .

hardware : This is a physical device, possibl y

with a processor .

(arch)itecture : processor name .

To demonstrate the use of the model, we wil l

use the UNIX file system name space, and an-

alyze two similar name space structures wit h

differing name space instances (Figure 4) . In

both name spaces, each node or name in a di-

rectory must be defined as an instance of a n

object in the NSM . In this example, the nodes

are either directories or executables . It would

also be necessary to provide values for the at-

tributes inherited from the NSM type .

The translation process is outlined below :

1 . A Name Semantic Object (NSO) (an ob-

ject in the name space viewed as an objec t

in the NSM) is constructed by traversin g

the name space nodes on the way to the
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Name Semantic Mode l

objec t

•

person

	

place

•

directory

	

softwar

	

hardwa

name

Figure 3 : Sample Name Semantic Mode l

Name Space: NS

(nsmo-usr,typs-dir,contsnts-)

Name Space: NS 2

(neme-usr,typ.-dir,contsnts-systsm l

xclock

xcloc k

/usr/local/bin/X11 /xclodc

	

/usr/sparclbinlxdoc k

Figure 4 : Sample Name Spaces NS 1 & NS2
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object being translated . Starting from th e

root of the name space, traverse each CS N

accessing its type data in the NSM.

2 . N3) 1 is translated into NSM2 by process-

ing each object in NS0 1 [8]:

(a) For any object, if it is an instance

of a type shared between NSM1 an d

NSM2 , then the object's type remains

the same.

(b) If the object does not belong to a typ e

in NSM2 , then the object is automati-

cally translated into the most specifi c

supertype shared between NSM 1 and

NSM2 .

3 . Construct a name in NS2 . Traverse NS2

referring back to NSM2 to create CSN a t

each level .

Sample Translation

NSM is constructed by traversing the path-

name in NS1 (in Figure 4) . At each node in

the path, type information from NSM1 is used

to add a new node to NSM . When the traver-

sal is complete, the structure in Figure 5 wil l

have been created . In N.93 1 , the new subtyp e

machine represents the addition of a nonshared

type (not shown in Figure 3) . There are two

system nodes, one for the software object bein g

named and one for the hardware architecture

on which it runs . Although there are a number

of directories, to save space the place supertype

has not been replicated .

N501 is then passed to the name server fo r

NS2 . Each object in N517 1 is translated into

an object in NSM2 . The result will be an NS O

(NSM2 ) in NSM2 . One notable translation in

this example is that of machine in NSMi /NSn1

to executable in NSM2 . Since NSM2 does not

have the type machine, the objects below it

were translated into the nearest shared type ,

i .e ., executable . Attributes from machine were

moved to executable as well .

Finally, NS2 is traversed to create a name in

that name space . At each node in the name

space, type information for that node is com-

bined with type information from N.97 2 to de-

termine which subnodes/directories to include

in the path. If the process works correctly, the

object being translated should be located (and

the translation terminated) at or before a lea f

directory in NS2 . At d irectory /usr in NS2 , the

contents of each subdirectory would be a sys -

tem . At this point the translator would loo k

in the N.932 for any system names that match

those in the directory. The sparc system i s

chosen at this level . At the next level the bin

directory (containing executables) is chosen be-

cause the translator knows that the NS0 2 de -

scribes an executable object . At the last level ,

the translator will search the leaf directory fo r

a file with the name of the desired object .

5 .2.1 Implementation

The current implementation includes a yac c

name syntax grammar and graph manipulatio n

package . This version of the grammar is capa-

ble of processing name architectures with the

following forms :

name

. .= csn_name " / " name

I•can_name

csn_name

. .= value I name "_" value

I csn_name

name
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object

Figure 5 : NSn 1

object

name-uar •

	

•

	

•
contents-

	

name-

	

name- in

	

name- 11
local

	

contents-

	

contents-
contents-

	

exec

	

X11-sys
object s

contents- • na•

	

nabin

	

n•1

local

	

contents

	

contents-
contents-

	

exec

	

system
object s

name-uar

Figure 6 : N9T2
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: := "attribute name string "

value

"attribute value string "

Using the language described in section 5 .1 .2 ,

the system is capable of processing names of th e

form :

(value I name—value ) +

The graph package can be used to construc t

an NSM as well as a name space structure . The

NSM objects can include annotations or typ e

data (name-value data within brackets) . For

example, the NSM in Figure 3 would be entered

into the system as follows :

create nsm

object/system name=<default> ,

admin . . .]/software/executable

add object/system/software/fil e

[owner=<default>, . . . ]

add object/place/directory

There are number of other implementation

issues, which we discuss briefly below :

Defining the Name Space : The

graph package can be used to define the

NSM and the valid attributes . However ,

instead of defining the name space in th e

graph package (as was done in the exam-

ples), a UNIX file system name space ca n

be used . The translation program can be

made to operate directly on files in UNIX ,

e .g ., attributes can be associated with di -

rectories and files by including dot-files .

Exporting the Service: An RPC interface

can be used to export this service to users .

An alternative is to have resolvers connec t

to a well-known port .

Queries Packets : As mentioned in sec-

tion 5 .1, there are packet format issues to

overcome. The focus here has been on th e

translation of the information contained in

name service packet . One solution would

be to design a message format for the UNS

system and perform this conversion as par t

of the translation process .

Discovery: Users can discover named objects

by providing partial queries to the name

server .

6 Evaluation and Future

Work

The major problem with the UNS work has

been the lack of a clearly defined NSM. YP

objects have diverse types . Attempting to re-

late all the possible types and their attributes

in one semantic hierarchy has proven fruitless

thus far .

In looking at the requirements of providin g

an attribute-based system, two critical issue s

arise .

1 . Systems such as Profile and Univers pro-

vide attribute-based naming for fiat nam e

spaces, similar to relational databases . We

would like to provide the user with an in-

terface that accepts any unordered set of

attributes in a query, i .e ., provide the illu-

sion of a flat name space for query pur-

poses . This would either mean check-

ing multiple name spaces (possibly one for

each service type) or searching a single

very large name space — assuming ther e

is a way to combine the disparate serv-

ice types into one name space . In either

case a considerable amount of time is spen t
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searching the flat name space .

2 . To address the problem of combining the

disparate types into one name space, the

dynamic nature of service types is not sup -

ported by most relational database schem a

design techniques . Considerable waste can

be introduced if a single table is used t o

describe all services .

Based on these two issues, YP server design

becomes a data organization problem . Neufeld

[9] (cf. Appendix A) has explored some tech-

niques for combining the efficiency of hierarchi-

cal naming spaces with the simplicity and flex-

ibility of attribute-based naming . The Neufeld

methods have been used almost exclusively for

user or WP data. Future work will begin by

examining the Neufeld techniques to determine

their applicability to YP name spaces .
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A Appendix:

	

Neufeld

X .500

The X.500 model [9] combines a hierarchical

name space with descriptive naming. An X.500

name space is a d irectory database or Director y

Information Tree (DIT) . In a DIT, each node

or entry represents an ISO object such as coun-

try, organization, person, or application . Each

entry contains a set of attributes as defined by

the entry class . For any entry a number of the

attributes are defined as distinguished . Distin-

guished attributes are used to ensure unique-

ness among sibling entries . Together with thei r

values, the set of distinguished attributes for m

a Relative Distinguished Name (RDN) . A dis-

tinguished name for an object is a sequence of

RDNs .

X.500 descriptive names can be used to de-

scribe just enough about the object so as to dis-

tinguish it from all other objects in the name

space . In an example from [9] (Figure 7, a n

RDN for `Peter Smith' is {C=CA, Org=UBC ,

CN='Peter Smith'} . In this case neither Orga-

nizational units `Science' nor 'CS' were neede d

to describe the person .

To reduce the search space during name res-

olution, X .500 uses the concept of a regis-

tered name . A registered name is a set of

RDNs . Again from [9], in Figure 7, {C=CA ,

Org=UBC} is a registered name and no ob-

ject below {C=CA} may have org=UBC as an

RDN attribute . The resolution algorithm firs t

finds the object denoted by the largest regis-

tered subset of the attributes (in a query), an d

then uses the remaining attributes to search

below that object .

X.500 also provides replication and partition-

ing within a DIT. A Directory Service Agen t
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Figure 7: X.500 Directory Information Tre e

(DSA) may contain a portion of a DIT calle d

a naming contest .

The QUIPU implementation of X .500 [6]

provides authentication between the DSAs an d

the Directory User Agents (DUAs) or resolver

through which the DSAs and DIT are accessed .

QUIPU further provides Access Control List s

for each entry .
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