Name Space Models for Locating Services *

Nigel Hinds and C. V. Ravishankar

Abstract

Much of recent work on computer systems
has focused on providing transparent resource-
sharing in a distributed computing environ-
ment. Many of these systems use the server-
client model to provide access to data and
services. As more distributed services are of-
fered and the demand for sharing increases in
these environments, efficient management and
accessing schemes become crucial. Locating
services makes name service a critical part of
access management.

This report describes some of the work in
progress as part of the Universal Name Seman-
tics (UNS) project at the University of Michi-
gan. UNS was intended to explore issues in-
volved in providing client programs with seam-
less naming of objects across heterogeneous
name spaces. UNS is distinguished from other
heterogeneous naming systems in its attempt
to partially automate the translation process
by exploiting abstract similarily between name
spaces.

1 Introduction

Descriptive naming systems have become more
popular in recent years [11]. Their flexibility
facilitates item discovery by allowing incom-
plete queries. However, there are currently no
data models for describing arbitrary services,

i.e., there is no complete set of attributes that

*IBM contact for this paper is Jacob Slonim, Centre
for Advanced Studies, IBM Canada Ltd., Dept. 61/894,
895 Don Mills Road, North York, Ontario M3C 1W3

This paper is available as IBM Canada Laboratory
Technical Report 74.074

299

is capable of describing any service. A print
server would have far different attributes than
an authentication or name server. The print
server could be described by its lines or pages
produces per minute, command language, and
paper size. An authentication server could be
described by its administrative domain or peo-
ple it will authenticate, and the life time of ils
keys. Representing multiple services in a sin-
gle model would require using either the union
or intersection of these attributes. Using the
union would lead to considerable waste. Tak-
ing a print and an authentication service as an
example, the waste might appear insignificant,
but as the number of service types increases,
so will the waste. Alternatively, using the in-
tersection would most certainly underspecify
both services, i.e., the attributes that the serv-
ices have in common may not be adequate to
uniquely identify either service.

As more distributed services are offered and
the demand for sharing increases, efficient man-
agement and access schemes become crucial.
Also, as the environment evolves, heterogeneity
is usually unavoidable. This makes name trans-
lation an issue. The Universal Name Semantics
(UNS) project is a preliminary attempt to de-
sign a semantic service description model using
abstract similarily between services and name
spaces. The finished Name Semantic Model
(NSM) would be used to implement transla-

tors between heterogeneous name spaces. This

paper describes some results of that work.
The remainder of this paper is structured as
follows. In section 2, basic attribute-naming
concepts are introduced. In section 3, the serv-
ice naming abilities of a number of state-of-the-
art naming systems are critiqued using evalu-
ation techniques introduced in section 2. Sec-
tion 4 describes techniques for providing het-
erogeneous name spaces. Section 5 describes
the work toward the UNS service naming ar-
chitecture. Finally, in section 6, we evaluate
the UNS work and discuss future directions.

2 Naming Concepts

Fundamental naming concepts are introduced
in this section. Much of the information pre-
sented here is contained in [16]; the reader is
directed there for a more thorough treatment.

A computer or software system can be
viewed, at some level, as an object manager.
Printing systems treat printers and files as ob-
Jects; operating systems treat users, processes,
and files as objects. Names are given to objects
so that users may specify these objects in the
system. For example, in UNIX one can think
of inodes as file object data structures under-
stood and managed by the operating system.
Users identify files (objects) by referring to file
names, which are strings of characters intelligi-
ble to humans.

A naming architecture 1] is a model for pro-
viding and administering names in a computer
system. One component of a naming architec-
ture is the name space or domain: the universe
of all possible names for a particular naming ar-
chitecture. For example, the Internet mail sys-
. tem name space is made up of strings such as
‘ravi@zip.eecs.umich.edu’, where the right side

300

of the ‘@’ symbol denotes the computer name
(zip.eecs.umich.edu) and the left side identi-
fies a user (ravi) on that computer. The com-
puter name portion of an email address is it-
self part of the internet naming architecture
name space. The Internet host name space con-
sists of computers whose names are constructed
from a concatenation of hierarchical domain

(38

names strings delimited by ¢.”. For example,
zip.eecs.umich.edu is the name for a computer
‘2ip’ in the ‘eecs’ subdomain, which is in the
‘umich’ subdomain, which is in the ‘edu’ sub-
domain.

A name resolution system or name server
is another (functional) component of a nam-
ing architecture. The primary function of the
name server is to store and bind/map names in
the name space to objects.

In the UNIX file system example, the naming
architecture provides a mechanism for mapping
file names in the user domain to inodes in the
system domain. Inode data can then be used
to physically locate and access the file. In this
example, inodes can be considered names in
another level of naming.

The contert [16] is an (environment) object
that contains a particular mapping from names
to objects. A context is usually associated with
the name or the environment in which the name
is used, or the scope in which the name is valid.
Using different contexts will result in different
bindings. In addition, relative mapping may in-
volve a number of indirect bindings to reach the
actual object desired. In this situation many
contexts could be involved, each containing a
(partial) mapping to an object/name in an-
other context. The construction of Internet
host names above is an example of a hierar-

chical names space that uses multiple contexts

or domains.

The UNIX file system again serves as a good
example of how context is used. In the case
of a hierarchical file system, the current work-
ing directory serves as the current contert.
File names beginning with “/” are absolute
names and interpreted relative to the root di-
rectory. All other files are interpreted rela-
tive to the current working directory: i.e., each
name/directory in the pathname of an object
serves as a context in which to search for the
next name/directory.

A flat name space can be considered a hierar-
chical name space with only one directory. The
list of ethernet addresses on a local network is
an example of a flat name space.

A resolver is the user interface component
of the naming architecture. Given a name, the
resolver will attempt to find the corresponding
object (to which the name is bound) by con-
sulting one or more name servers. Resolvers
are typically library routines which are linked
into client code.

The UNIX file system example in this sec-
tion illustrates a typical name mapping issue
involving two domains; the user-specified file
names and the file system inodes. Naming is-
sues, however, are encountered at all levels of
a computer system. Even subroutine calls in-
volve them, since each procedure called must be
located and address information substituted for
the name. In most systems the linker performs
this static binding immediately after compila-
tion. Newer systems allow dynamic binding
to routines at runtime. The latter approach
has the advantages of allowing libraries of com-
monly used routines to be shared among pro-
grams at runtime, thereby providing greater
flexibility. Naming is also an issue in computer

301

hardware. This report, however, will focus on
higher level service naming issues (e.g., file sys-
tem names). For more information on language
and hardware level naming, the reader is di-
rected to {16] and [5)].

2.1 Models for Scalability

It is less useful to discuss name service in
small nondistributed environments, because
the name server’s primary function is to facili-
tate communication in a widely distributed en-
vironment. Furthermore, heterogeneous nam-
ing requires somehow managing or merging a
number of name spaces into one. Even the
merger of small name spaces will result in a
large distributed system. These factors make
scalability a major issue in name space archi-
tecture design.

Below are some principal methods of provid-
ing distributed system scalability

(7017):

Hierarchical Administration: One of the
best distributed administration structures
is the hierarchy. Many of the name sys-
tems presented will have hierarchical name
spaces and administrative models. In such
models, the administrative domains typ-
ically correspond to the name space do-
mains. At least one name server is respon-
sible for mapping all the names in a par-
ticular domain. This distributes the load
across servers. As domains grow, they can
be partitioned into subdomains. The hi-
erarchical model also distributes authority
or responsibility, so conceptually separate
domains can be maintained by indepen-

dent organizations.

Another advantage of hierarchical name

spaces is that they tend to isolate faults.
Service disruptions in one branch of the
domain will not necessarily affect service
in another domain.

Partial Replication: This technique dis-
tributes multiple copies of frequently ac-
cessed information. Replication prevents
access bottlenecks at a single server as the
number of users increases. It also provides
a level of fault tolerance to any system. In
the event of server failure, all name service
requests can be redirected to the replica.

Relaxed Consistency Constraints: As up-
dates are made to information in the repli-
cated systems, small periods of data incon-
sistency exist. Inconsistency is tolerable
for many types of information, as long as
all the replicas eventually converge.

Caching This is a general technique where
clients of a service keep local copies of in-
formation retrieved from previous queries.

Dynamic updates also affects system scala-
bility. As the system grows, propagating the ef-
fects of dynamic update degrades performance.

2.2 Descriptive Naming Issues

Descriptive or attribute-based naming systems
have become more popular in recent years due
to their flexibility. Descriptive naming can be
used to provide white-pages services to identify
users based on imprecise or incomplete descrip-
tions [3]; more importantly, it can also provide
yellow-page services for locating computational
resources based on properties or attributes of
the desired resource [3]. Locating objects based
on imprecise descriptions moves into the realm

of name discovery. If the name of an object is

302

not known, it can be discovered by describing
the attributes of the object. This is particularly
useful for systems like Cygnus at the University
of Michigan [15] [4], where users provide a de-
scription to locate and use the desired service.

Because attribute-based name spaces are
flat, a user need not be concerned with pre-
cise pathname interpretation order, unlike in
hierarchical systems. Neufeld explores tech-
niques that provide the flexibility of descrip-
tive naming within a hierarchical name space
(Appendix A).

One major issue to be resolved in descriptive
naming systems is whether it is necessary to
provide a set of attributes that completely de-
scribes all objects in the name space, and if so
what these attributes are.

The following are descriptive names for three
printers:

Printeri:
(language=PS, type=laser,
pages-per-min=60)

Printer2:
(language=PS, type=laser,
pages-per-min=60, ink=blue,
paper-size=8.5-by-11)

Printer3:
(language=ascii,
type=inkjet,
pages-per-min=60, ink=blue)

If we consider Printer2 as having a complete
set of attributes; then the descriptions of the
other printers are incomplete. There are cases
where a subset of the complete attributes might
be enough to describe a desired object. A user
wishing to print might query a name server ask-

ing for a printer with the following attributes:

(language=PS, type=laser)

In this example the user does not care about
any other attributes, so a number of print-
ers can provide the service. If there is a spe-
cific attribute that is not wanted, the user
could explicitly say ‘attr#value’. This, how-
ever, requires him or her to know all the pos-
sible attributes of the object. Furthermore,
ambiguities may arise when new objects are
added whose attributes are a superset of the
attributes of old objects. For example, adding
the new printer ,

Printer4:
(language=PS, type=laser,
pages-per-min=60, ink=blue,
paper-size=8.6-by-11,
location=EECS-4418)

might cause ambiguities for a user who in the
past used a complete attribute query and had
Printer2 returned.

2.3 Naming: People vs. Services

Previously, no distinction was made between
the various types of named data and the im-
pact of that data on the naming architecture.
In this section we will distinguish architectural
requirements for naming people (white-pages
data) and naming services (yellow-pages data).
We will later use these requirements for eval-
uating the naming systems presented in sec-
tion 3.

e Both WP and YP data usually only re-
quire a scaled-down version of a database

system.

¢ Modification patterns:

303

WP data infrequently modified. The YP
data is frequently subject to change with
the addition of a new services.

Security requirements:

Are there differences between WP and YP
security needs? The name server can be
used to store access rights data for any
object. System administrators can verify
user names and vital WP data when en-
tries are made. YP entries are more dy-
namic and harder to verify. During the
service development process, programmers
may require frequent update access to the
YP database in order to test new systems.
It would be harder to have a single admin-
istrator oversee the YP database update

process.

If either YP or WP data are compromised,
the data returned by the name server can-
not be trusted. This means, (1) the user
may unwittingly divulge sensitive data to
an intruder, or (2) the data returned to
the user is most likely erroneous. For ex-
ample, a compromised WP service may re-
turn bad mail addresses, in order to inter-
cept mail; a compromised YP service may
return false host address data for a remote
file system, thereby leading the user to
the intruder’s erroneous file system. If the

‘service used has some authentication pro-

cedure of its own, this will lessen the effects
of a compromised name service. These
issues would stress the need for name-
service-wide security to guard against re-
ceiving false data and tampering with local
data.

o Access pattern differences:

WP and hostname data typically have a
wider remote access pattern than YP data.
User names and mail addresses are re-

quired for worldwide mail delivery.

In contrast, services are primarily accessed
by local users. This affects distributed se-
curity requirements. For example, if YP
were strictly for local use, there would
be no need for security measures to ex-
change data with foreign YP servers. Even
with restricted access to YP data, some
form of data distribution might be needed
for fault tolerance or administrative effi-
ciency. In the future, remote access to
services is likely to become more common.
The number of distributed file systems and
databases as well as utility services for
managing data is increasing.

Discovery pattern differences:

Discovery differs from lockup in the na-
ture of the query performed. When a name
lookup is performed, the unique (named)
object is usually known to whoever is
performing the‘lookup. The aim of the
lookup is to determine the value of some
attribute(s) of the object.

When a discovery query is performed, the
subject of the query is typically unknown.
The aim of discovery is to determine the
set of objects that have a certain set of
attribute values.

The discovery requirements for WP and
YP data are similar. Attribute-based ar-
chitectures have proven superior for both
types of data {12) [13). Although the
lookup and discovery queries for WP and
YP may be similar, the resuits may be

304

handled differently. For example, when
duplicate objects are returned from a WP
query, the user may need to further dis-
ambiguate the results to find the one true
object. In the YP case, the user is often
satisfied with any response and needs only
to choose one.

All of the above factors affect the naming ar-
chitecture design process. The ideal YP name
server will have the following features:

e Attribute-based:
Objects are in a flat name space and the
user is able to specify queries on any field
contained in an object data record.

e Modifiable:
The system should allow easy online mod-
ification by the administrator and possibly
by service programmers.

o Distribution:
The system should provide replication and
distribution to facilitate remote access.

o Security:
The system security should control update
access to information contained in the sys-
tem. In addition, read restrictions to some
information might also be required. As
part of security, some form of authentica-
tion will also be necessary.

3 Previous Work

In this section we review a number of naming
systems, and evaluate them using the criteria
introduced in section 2.3.

3.1 Grapevine

Grapevine [2] was one of the first large-scale
distributed naming systems, and has made
many contributions to the general field of dis-
tributed computing. Grapevine is a distributed
systems environment that provides facilities
for delivery of electronic mail, and also offers
authentication and access control services for
clients.

The Grapevine name server maintains a reg-
istration data base for mapping names (of
users, machines, or services) to information
about the name. The name of an entry in the
registration database is called an RName. The
Grapevine namespace of RNames is a two-level
hierarchy, where every RName is a string of
the form F.R. R is the registry name and F
is the object name within the registry. Reg-
istries represent organizational, geographic, or
other potential administrative partions, and
are the unit of replication and distribution in
Grapevine.

Grapevine’s two-level hierarchical name
space limits scalability. Another scaling prob-
lem is the pseudo registry, gv that contains in-
formation on all other registries. In a large dis-
tributed system, maintaining such a list cen-
trally (with or without replication) would be
unfeasible.

The Grapevine registry commands are spe-
cific to mailing applications. Names in the
database are mailing addresses, lists, and other
associated mail delivery objects. There are no
general mechanism for creating and modifying

arbitrary attributes.

305

3.2 Clearinghouse

Clearinghouse (CH) is a distributed naming
service for arbitrary objects [10] that provides a
three-level hierarchical name space CH names
are of the form L:D:0, where L is the local-
name, D is the domain, and O is the organiza-
tion. An organization will typically be an au-
tonomous institution or corporate entity. Do-
main can be used to distinguish administrative,
geographical, or other logical divisions. The lo-
calname is the domain-unique name of the ob-
ject. A CH lookup returns a list of object prop-
erties of the form <PropertyName, Property-
Type, PropertyValue>. Property names and
values are strings. There are two types of
PropertyTypes: item, which is an uninterpreted
block of data, and group, which is a set of CH
names.

CH has many of the scaling problems as-
sociated with Grapevine; for example, update
propagation delays will mean inconsistencies in
some replicated databases. It does provide the
ability to define arbitrary objects and proper-
ties (attributes), and appears to also provide
the ability to perform attribute-based queries.
Finally, CH provides authentication and access
control lists to ensure database integrity.

3.3 Sun Yellow-Pages

Sun’s yellow-pages (Sun-YP) is a replicated —
but not distributed - key-value lookup service.
It is a three-level hierarchical name space of the
form Key, Map, Domain. The Domain rep-
resents the autonomous administration bound-
afy. Within a domain, there are an arbitrary
number of maps, which correspond to object
structure types. For example, the host map

contains a binding from hostname (the Key)

to the host IP address data.

Although Sun-YP allows replication, it does
not provide an update propagation protocol:
the user must design the propagation mecha-
nism to provide consistency. Even though Sun-
YP allows arbitrary attributes in the maps,
lookups only use the designated single value
key when searching.

3.4 Univers

Univers is a lightweight relational database
that impleménts attribute-based naming tech-
niques. It is strictly concerned with resource
management, and does not implement any par-
ticular naming architecture. Systems such as
Profile [13] build a naming architecture using
Univers and the interpret function translator it
provides.

Motivated by the need to maintain ambigu-
ous names in dynamic environments, Univers
introduces the notion of an interpret function,
which is used to define search strategies during
resolution. Univers database entries are LISP-
like list structures. An example is:

((address 35.1.128.16)
(architecture 68020)
(service display))

The access routines are also list structures,
which allow users to define inierpret func-
tions. The following example defines a YP-
like interpret function to find a set of hosts
in the systemdb context that match the set
of mandatory attributes. The results are then
ordered by the ypprime routine (not shown).
Select_type returns the named context, which
is similar to a table in a relational database sys-
tem.

#yp(type mandatory optional)

306

(detine yp
(ypprime
(equal (arg 2)
(select_type
(get_context systemdb)
(axg 1))

(arg 3)

Univers provides a subset of the traditional
relational database management mechanisms.
It cannot be updated online; all changes must
be made to human-readable database files, and
then the system is restarted. Furthermore,
there are no provisions for distribution or repli-

cation.

3.5 Discussion

The advantages of a general attribute-based
naming mechanism should be clear. Bowever,
none of the systems meets all the requirements
described in section 2.3.

Grapevine has a number of scaling problems.
Further, the user must provide a registry name
(context) as part of the query. This technique
limits the registries searched, but might not be
suitable for services. Finally, Grapevine does
not allow queries on arbitrary attributes.

Clearinghouse also requires users to provide
organizational and domain contexts in which
to limit the search.

Sun-YP has no provisions for distribution.
Replica updates are not designed as part of the
system, and therefore typically require com-
plete map transfers.

‘Univers is only the database portion of a

name server, and provides no distributed man-

agement.

Of all the systems, Clearinghouse comes the
closest to the ideal YP name server described
in section 2.3. However, it lacks scaling and the
ability to query on arbitrary attributes.

In the next section we will introduce tech-
niques for managing a heterogeneous name
space, followed by a review of the UNS work.

4 Heterogeneous Naming

Managing a global name space in a heteroge-
neous distributed naming system can be a ma-
jor issue. Most research in heterogeneity is con-
cerned with machine architecture and network
differences. Asone considers high-level applica-
tions, the list of alternatives becomes long. For
example, there are few transport layer proto-
col standards compared to the number of user
interface protocols.

High-level object naming is an important
The loca-
tion/access transparency goals of most dis-

part of distributed computing.

tributed systems requires merging multiple
name spaces and naming mechanisms to pro-
vide a global name space. This heterogeneity
brings all parts of the naming architecture into
conflict.

A number of methods for providing global
name spaces are discussed in this section, af-
ter which we describe the Heterogeneous Name
Service project.

Standardization: A single naming architec-
ture is imposed on all members of the net-
work community who desire naming serv-
ices. The standard would include a de-
scription of the name space, data struc-

As with

any standard, there are pros and cons.

tures, and resolver routines.

307

If all members of the network use the
same systems, problems are reduced and
maintenance is simplified. On the other
hand, standardization tends to entrench
bad ideas and designs. If standards can-
not be easily changed, the technology must
be fairly mature in order to develop a
good standard. Typically, by the time
the technology has completely matured,
one or more organizations have indepen-
dently developed systems of their own. Of-
ten, one of these independently developed
systems (with all its features and faults)
will be chosen as the standard. Finally,
standards-making politics can also reduce
the technology to the least common de-

nominator.

Clearly some form of standardization is
needed, so servers can at least know on
which ports to begin looking for peers.
The question is, how far standards should
go?

Reregistration: Reregistration, like stan-
dardization, creates a new global nam-
ing architecture, but other naming archi-
tectures may co-exist with the new one.
Servers may reregister (enter) their names
with the new system. Clients who wish to
may use the new server and gain access to
the larger name space.

Reregistration gives new clients of the
global server access to names in all the
feregistered servers. However, as names
are updated and added to the old native
servers, these names must also be reregis-
tered with the global server. So, reregis-
tration is a continuous process. Old clients

must be modified to take advantage of the

new global name server.

Fallback: In this method, new names are
added to the new global name server. Na-
tive servers continue to handle queries, but
are modified so names that are not found
are passed to the new server.

Fallback leaves old clients unchanged. The
drawback is that the native servers must
be modified to forward queries to the
global name server. Name inconsistency
can arise if the same name exists in more
than one old server. In this case, each user
will access his or her respective (differing)
local bindings of the name.

Direct Access: The Direct Access method is
similar to reregistration. A new global
name space is created. Each name in the
new name space is mapped, usually by the
new server, to a name in one of the existing
server name spaces. When queries come to
the new global servers they are directed to

the native name servers.

Direct Access avoids the inconsistency
problem associated with fallback, but
requires all queries to perform time-
consuming accesses to the underlying na-
tive servers.

Heterogeneous Name Service (HNS) is the
name server for the larger Heterogeneous Com-
puting System (HCS) project at the University
of Washington [18]. HNS uses direct access,
naming which allows existing name service sys-
tems to manage their local data. It then func-
tions as a global name service over all the local
name services.

The HNS global name space has two
parts. A conlert identifies the native name

308

server domain where the data can be found,
and an individual name identifies the name
of the object in the native server, e.g.,
‘BIND,fiji.cs.washington.edu’, defines a host
name that can be resolved by the BIND name
service. The right side of the comma is a valid
name in the BIND naming architecture. The
context portion maps to a single name server
or name space.

To query, a client would use a resolver to
pass a global name to the local HNS. The client
would expect a particular data type as a re-
sponse: this data type is called the query class.
Upon receiving the query, HNS would map the
(context, query class) pair to a name semantic
manager (NSM) to handle the specific retrieval
of data from the native server determined by
the context. The client would then complete
the query by making calls to the NSM. Using
an NSM, clients can query for names and serv-
ice without being concerned about the under-
lying name service used to resolve the query.
Note that the NSM is separated from both the
client and the HNS, which allows reconfigura-
tion without altering either. Adding new sys-
tems requires building a new NSM and regis-
tering its existence with HNS.

5 Universal Name Space

Approach

In this section we describe the initial approach
to d&igning a generic name space model. We
introduce the Name Semantic Model (NSM),
then discuss the difficulties that arose during
its design and implementation. The original
aim of the NSM project was to facilitate name

translation in a heterogeneous environment.

5.1 Naming Semantics Approach

This work is based on techniques of identifying
the generic attributes of heterogeneous systems
— abstract similarity. The method is based on
software classification [14] and language trans-
lation techniques described in [8]. The idea is
to describe all the things that are named as
objects in an object hierarchy.

We have ignored many of the implementa-
tion details regarding network packet transla-
tion, e.g., data type and structure layout trans-
lation. Although this translation is necessary,
it will not be discussed here. In this work we
are only concerned with the fundamental issues
of name translation. The goal is to design a
language for specifying names in the various ex-
isting naming architectures. At this point, the
work is still in progress. The next sections will
describe the preliminary work toward defining
an abstract similarity between naming systems

and names in general.

5.1.1 Name Space Structure

In this section, we propose a generic name
space architecture. We first make a distinc-
tion between the structure of the name space
(name space structure) and the manner in
which names are composed at each context in
the structure (name structure).

There is one basic name structure type: hi-
erarchical. In what is traditionally called a
flat structure, the entire name space is visible
from a single context. This can be considered a
single-level hierarchy. In this work, hierarchical
names are constructed by concatenating valid
names from subdomains or branches, which can
be thought of as contexts. In some hierarchi-
cal structures, links are allowed, forming a Di-
rected Acyclic Graph (DAG). At any level in

309

the name space structure, objects are uniquely
identified by a contezt-sensitive name (CSN),
which is a name within the context or subdo-
main of that level.

We further propose to use only one name
structure: attribute-based. This is possible be-
cause nondescriptive naming systems can be
considered descriptive by defining the name as
an attribute.

A completely qualified name (CQN) is a se-
quence of context-sensitive names. In the case
of the flat name structure, a CQN would be the
CSN at the top (and only) level. In a hierar-
chical structure, a CQN would be an ordered
n-tuple of CSNs.

5.1.2 Syntactical Issues

The first step in the translation is to find a
way to generalize the syntax used in the vari-
ous type of naming architectures. This initial
grammar allows us to define attribute-based hi-
erarchical systems. This language, however,
could not be used to describe Profile names.
Profile names only contain values without the
associated attributes; the values in this version
must be associated with attributes.

name
::= level 1ldel csn rdel
| 1del csn rdel level

level

i:= ‘42 | ‘4’ integer | mnil
csn

::= name ‘=’ value, csn

| name ‘=’ value

integer

‘‘numeric integer value’’

name

1:= ‘‘attribute name string’’
value

1:= ‘‘attribute value string’’
ldel

1:= ‘‘character string’’
rdel

‘‘character string’’

The language is similar to regular expression
syntax. The plus-sign meaning ‘one or more
instances’, and the side on which the plus-sign
appears indicates the direction of the name hi-
erarchy. With a plus-sign on the left side, the
root of the hierarchy would be the far-right
CSN. Also as part of the name space definition,
the designer would supply delimiter character
strings (ldel and rdel).

In the prototype language, the names in the
X.500 name space
(e.g., “{C=UK}, {O=Telecom}, {OU=Sales,

=Ipswitch}, {CN=Smith}”) would be repre-
sented as

(value=value)+, with the delimiter strings,
u{n a.nd a}n.

5.1.3 Semantic Issues

We move now to semantics, the most difficult
and important part of the translation process.
There are a number of obstacles to overcome in
this area. In this work, we identify some of the
semantic translation issues specific to naming
systems, and offer structures and techniques for
handling name semantics.

The semantics problem can be divided into

310

two cases: translation between similar naming
architectures, but with different name space in-
stances (Figure 1), and translation between dif-
ferent naming architectures (Figure 2). In Fig-
ure 1, both naming architectures are the same.
However, the actual name spaces are different.
The challenge is how to convert xclock in NSy
to xclock in NS;. In Figure 2, the architectures
of the name space are different: NS, is hierar-
chical, while NS, is flat. This architectural dif-
ference poses additional problems, which will
not be discussed in this paper.

Another example of the semantic translation
problem (between similar architectures) would
be translating between two flat attribute-based
name spaces. If the first name space had types
login, name, room, and phone, and the second
name space had the types signon, name, office,
and phone, it is clear that in general, translat-
ing between the two spaces is impossible. Uni-
versal Name Semantic (UNS) uses classification
techniques to define common abstract types.

Classification methods are used in many ar-
eas. Classification systems describe groupings
of similar objects and show relationships be-
tween dissimilar groups [14]. A simple clas-
sification structure looks like a hierarchy, but
more complex relationships can generate net-
work structures. Hierarchical classification re-
lationships are based on the principles of sub-
ordination and inclusion, while syntactical rela-
tionships relate two or more concepts belong-
ing to different hierarchies. The Dewey deci-
mal system is a typical enumerative hierarchi-
cal classification system. The system we pro-
pose is an enumerative hierarchy, where the
universe of objects is divided into successively
narrower classes.

Our work is also based on Lee and Malone’s

Figure 1: Similar Name Architecture Translation

Name Space: NS

usr

example name:

/usr/local/bin/X11/xclock

Name Space: NS 2

object attributes:
TYPE: (binary,ascii,directory)

SYSTEM: <string>
NAMR: <string>

example name:
{type=binary, systemmX1l, name=xclock }

Figure 2: Architectural Differences

311

work on type hierarchies for communication. In
their technical report (8] they discuss possible
translation schemes for object systems from a
set theoretic view-point. For our purposes, the
languages of the communicating groups can be
considered sets of named objects. A group lan-
guage G; is used by a subset of users who work
together. Languages may vary in syntax, as
well as in semantics captured by the structures.
A set overlap represents syntactic or semantic
similarity. A common language, C, is defined
as a language that all language groups use to
communicate with one another.

The translation solution space is then de-
scribed as set relations between the com-
mon language C and any group language,
G;. Translation involves converting the objects
from one language to semantically equivalent
objects in the target languages.

Considering the case where every group lan-
guage has the same relationship with the com-
mon language, there are six relationships that
will be evaluated with respect to the following
objectives:

Maximize Expressive Adequacy:
Presumably, each distinct group language
provides some function not provided by
the other languages. G; must be powerful
enough to express varying structures and
semantics.

Minimize Need for Consensus: Redesign
of G; type structures should require mini-
mal consensus from other language groups.

Minimize Need for Updates:
Somewhat related to the consensus objec-
tive, updates are required when a modifi-
cation to one language aflects translation

information maintained by another lan-

312

guage. Propagating these effects is costly
from a communication and programming

standpoint, and should be minimized.

Five of the six set relationships are presented
and evaluated below:

C = 0: No Common Language: If there is
no common language, then the groups
wishing to communicate must perform
pair-wise translations. This requires that
each language maintain a translation “dic-
tionary” for all other languages.

This method provides flexibility to design
detail translations between any two lan-
guages, but suffers from the classic n(n—1)
translators problem.

Ezpressive Adequacy: Since each language
performs pair-wise translations, the sep-
arate languages G; are free to represent

structures in any manner.

Consensus: There is no need for consen-
sus, but this makes translation very costly.

Updates: Although consensus is not re-
quired for structure modifications, changes
must be propagated and customized to the
dictionaries maintained by the other lan-
guages.

One difficulty that all translations will
have in fully preserving the semantics is
managing ambiguity:

If there is a one-to-many mapping from a
language G; structure X to a G; struclure
.}”, then there should be other characteris-
tics of X that allow unembiguous selection
of the Y to which X should be mapped.

C = G;: 1dentical Group Languages:
This is the standardization case, where all

groups use the same language.

Ezpressive Adequacy and Consensus: Ex-
pressiveness is limited and the need for
consensus is high. All groups must agree
on all changes.

Updates: Update must be propagated to
all languages, but this really amounts to
a wholesale replacement and is more man-
ageable than the pair-wise case.

CNG; = 0: External Common Languages:

In this scheme, the languages are dis-
jointed from one another. Communication
between languages is performed by first
translating into the common language.
With this method, each group only needs
to know how to translate its own language
into and out of the common language.

This method suffers primarily from the
fact that the one-to-many problem is now
twofold. Translation from G; to C, as well
as translation from C to G;, must be un-
ambiguous.

Ezpressive Adequacy: Separate group lan-
guages can once again be designed with
as much power as needed. The common
language design and modifications require
consensus, but typically changes to the
common language will be infrequent, re-

ducing the number of updates.

C C G;: Internal Common Languages:

Every group has a portion of its language
that is shared with all the other groups.
Object hierarchies provide a good exam-
ple of this scheme. Base object types can
be shared at higher abstract levels. Ob-
Jjects are described as basic types with fur-
ther distinctions made within a group lan-

guage. For example, a file object might

313

have basic attributes shared by all groups,
such as creation date and length. Any
group may create a subclass of the type
file, with more attributes to further distin-
guish files. When communicating within
the group, all the descriptive information
accompanies the object. Inter-group com-
munications will only recognize the shared
object types; objects are translated to

their nearest common “ancestor”.

Ezpressive Adequacy: Groups have much
flexibility in expressiveness, and are al-
lowed to add as many subtypes as they
require. However, groups cannot ignore
distinctions made in the common hierar-
chy.

Consensus: Consensus is required only
among the objects in the common hierar-
chy.

Updates: Updates are required only of the
objects in the common hierarchy.

C D G;: Superset: The common language is

a superset of the group languages. If dif-
ferent groups maintain different type hier-
archies, when one group receives an object
of unknown type, that type must be im-
ported. This scheme can be very similar

to having an external common language.

Ezpressive Adequacy: Expressive freedom
is excellent.

Consensus: There is little need for consen-
sus.

Updates: As with the external language
case, updates are costly because a change
to one language might require changes to
the (n — 1) translators.

CNG; #0,C # Gi: Intersection:

Intersection is not discussed because it can
be considered as a combination of the five
schemes.

5.2 The Name Semantic Model

In this section, we outline a prototype Name
Semantic Model (NSM). The main concern
here is to construct a simple test case to deter-
mine if such a hierarchy is a feasible approach
to managing heterogeneous name architectures.
The NSM model is an enumerative classifica-
tion hierarchy [14] that defines objects with in-
heritance. For translation purposes the model
is very similar to Lee’s Internal Common Lan-
guage model. We first define the common ob-
jects in the NSM, and then describe a sample
translation.

At the most basic level, we name objects.
Further, the group of objects is divided into
(elementary) subsets of person, place, or sys-
tem. For simplicity, we will only consider ob-
jects needed to describe a portion of the UNIX
file system. Figure 3 illustrates a sample NSM.
Each node has a label that represents a type.
Arrows from the node are type attributes, and
lines between nodes form the class or type hi-
erarchy. An initial set of important NSM types
and attributes is described below.

place: For the moment the only type here is
directory. Place describes objects used to
hold other objects. Country would be an
example of a place. This model has no
attributes associated with place.

directory: This is the traditional file system
notion of a directory. It has attributes:

name: character string.

contents: one or more object types. For

example, the directory XII might -

314

contain documentation as well as bi-
naries, contents=exec,file.

system: This is a broad category used to de-
scribe large multi-component software or
hardware packages.

admin: person or organization charged
with managing the system.

software: This describes entities other than
directories that exist in the file system.

file: Although executables exist as files, a dis-
tinction has been made between the two.

format: of type (ASCII, EBCDIC, ...)

(exec)utable: Thisis a machine-interpretable
sequence of instructions.

(interp)reter: type of the interpreter
(machine).

hardware: This is a physical device, possibly
with a processor.

(arch)itecture: processor name.

To demonstrate the use of the model, we will
use the UNIX file system name space, and an-
alyze two similar name space structures with
differing name space instances (Figure 4). In
both name spaces, each node or name in a di-
rectory must be defined as an instance of an
object in the NSM. In this example, the nodes
are either directories or ezecutables. It would
also be necessary to provide values for the at-
tributes inherited from the NSM type.

The translation process is outlined below:

1. A Name Semantic Object (NSO) (an ob-
ject in the name space viewed as an object
in the NSM) is constructed by traversing

the name space nodes on the way to the

Name Semantic Model

object

executable

format

Figure 3: Sample Name Semantic Model

Name Space: NS 1 e Space: NS 2

{name=usr, type=dir,contents=) {name=usr, type=dir, content s=system}

contents=system}
Re=dir, contents=system}

dir,content s~exec)
{name=bi\, type=dir, content s=exec}

,type=dir,contents=X1ll-system}

{name=xclock, type=exec, system=Sparc}

/usrflocal/bin/X11/xclock lusr/sparc/bin/xclock

Figure 4: Sample Name Spaces NSy & NS;

315

object being translated. Starting from the
root of the name space, traverse each CSN
accessing its type data in the NSM.

2. NSO, is translated into NSM> by process-
ing each object in NSO, [8]:

(a) For any object, if it is an instance
of a type shared between NSM, and
NSM;, then the object’s type remains

the same.

(b) If the object does not belong to a type
tn NSMa, then the object is automati-
cally translaied into the most spéciﬁc
supertype shared beiween NSM, and
NSM,.

3. Construct a name in NS;. Traverse NS,
referring back to N30, to create CSN at
each level.

Sample Translation

NSO, is constructed by traversing the path-
name in NS (in Figure 4). At each node in
the path, type information from NSM; is used
to add a new node to NSO;. When the traver-
sal is complete, the structure in Figure 5 will
have been created. In N9, the new subtype
machine represents the addition of a nonshared
type (not shown in Figure 3). There are two
system nodes, one for the software object being
named and one for the hardware architecture
on which it runs. Although there are a number
of directories, to save space the place supertype
has not been replicated.

NSO, is then passed to the name server for
NS,. Each object in N30; is translated into
an object in NSM,. The result will be an NSO
(NSO;) in NSM,. One notable translation in
this example is that of machine in NSM; /NSO,

to executable in NSM,. Since NSM; does not »

316

have the type machine, the objects below it
were translated into the nearest shared type,
i.e., ezecutable. Attributes from machine were
moved to ezecutable as well.

Finally, NS, is traversed to create a name in
that name space. At each node in the name
space, type information for that node is com-
bined with type information from NSO; to de-
termine which subnodes/directories to include
in the path. If the process works correctly, the
object being translated should be located (and
the translation terminated) at or before a leaf
directory in NSz. At directory /usr in NSs, the
contents of each subdirectory would be a sys-
tem. At this point the translator would look
in the NSO, for any system names that match
those in the directory. The sparc system is
chosen at this level. At the next level the bin
directory (containing ezecutables) is chosen be-
cause the translator knows that the NSO, de-
scribes an ezecutable object. At the last level,
the translator will search the leaf directory for
a file with the name of the desired object.

5.2.1 Implementation

The current implementation includes a yacc
name syntax grammar and graph manipulation
package. This version of the grammar is capa-
ble of processing name architectures with the
following forms:

name
::= csn_name ‘‘/’’ name

| .csn_name
csn_name
::= value | name ‘‘=’?’ value

| csn_name

hame

name=usr

contents=

namesusr

content s=

object

place
name=X1l-sy:

admin=local

directiories

name= nme-;in
local contents= contents=
contents= exec X11-sys

objects

executablt(b

machine
nterp=Sparc

[}’hm-xclock

Figure 5: NSO,

object

place
names

admin=local

directiories are

name= in name=xX11
local contents= contents=
contents= exec system
objects

executabld

m—’nm-xcl ock

Figure 6: N,

317

rch=Sparc

()_’ interp=Sparc

::= ‘‘attribute name string’’

value

::= ‘‘attribute value string’’

Using the language described in section 5.1.2,
the system is capable of processing names of the
form:

(valuelname-value)+

The graph package can be used to construct
an NSM as well as a name space structure. The
NSM objects can include annotations or type
data (name-value data within brackets). For
example, the NSM in Figure 3 would be entered
into the system as follows:

create nsm
object/system[name=<defaunlt>,
admin...]/software/executable
add object/system/software/file
[owner=<default>, ...]
add object/place/directory

There are number of other implementation
issues, which we discuss briefly below:

Defining the Name Space: The

graph package can be used to define the
NSM and the valid attributes. However,
instead of defining the name space in the
graph package (as was done in the exam-
ples), a UNIX file system name space can
be used. The translation program can be
made to operate directly on files in UNIX,
e.g., attributes can be associated with di-
rectories and files by including dot-files.

Exporting the Service: An RPC interface
can be used to export this service to users.
An alternative is to have resolvers connect

to a well-known port.

318

Queries Packets: As mentioned in sec-
tion 5.1, there are packet format issues to
overcome. The focus here has been on the
translation of the information contained in
name service packet. One solution would
be to design a message format for the UNS
system and perform this conversion as part

of the translation process.

Discovery: Users can discover named objects
by providing partial queries to the name

Server.

6 Evaluation and Future
Work

The major problem with the UNS work has
been the lack of a clearly defined NSM. YP
objects have diverse types. Attempting to re-
late all the possible types and their attributes
in one semantic hierarchy has proven fruitless
thus far.

In looking at the requirements of providing
an attribute-based system, two critical issues

arise.

1. Systems such as Profile and Univers pro-
vide attribute-based naming for flat name
spaces, similar to relational databases. We
would like to provide the user with an in-
terface that accepts any unordered set of
attributes in a query, i.e., provide the illu-
sion of a flat name space for query pur-
poses. This would either mean check-
ing multiple name spaces (possibly one for
each service type) or searching a single
very large name space — assuming there

_is a way to combine the disparate serv-
ice types into one name space. In either

case a considerable amount of time is spent

searching the flat name space.

2. To address the problem of combining the
disparate types into one name space, the
dynamic nature of service types is not sup-
ported by most relational database schema
design techniques. Considerable waste can
be introduced if a single table is used to
describe all services.

Based on these two issues, YP server design
becomes a data organization problem. Neufeld
[9] (cf. Appendix A) has explored some tech-
niques for combining the efficiency of hierarchi-
cal naming spaces with the simplicity and flex-
ibility of attribute-based naming. The Neufeld
methods have been used almost exclusively for
user or WP data. Future work will begin by
examining the Neufeld techniques to determine
their applicability to YP name spaces.

References

[1] M. A. Bauer. Naming and name manage-
ment systems: A survey of the state of the
art. Technical Report #241, The Univer-
sity of Western Ontario, June 1989.

[2] A. Birrell, R. Levin, R. Needham, and
M. Schroeder. Grapevine: An exercise in
distributed computing. Communication of
the ACM, 25(4), April 1982.

[3] M. Bowman, L. Peterson, and A. Yeatts.
Univers: An attribute-based name server.
Technical Report, University of Arizona,
1989.

f4] R. N. Chang and C. V. Ravishankar. Lan-
guage support for an abstract view of net-
work service. Technical Report, University
of Michigan, Ann Arbor, 1989.

[5] B. Furht and V. Milutinovic. Microproces-
sor architectures for virtual memory man-
agement. In Tutorial: Computer Architec-

319

ture. IEEE Computer Society Press, New
York, NY, 1987.

{6] S. Kille. The design of quipu (version
2). Research Note RN/89/19, Department
of Computer Science, University College
London, March 1988.

[7] B. W. Lampson and H. Sturgis. Hints for
computer system design. In Proceedings
of 9th ACM Symposium on Operating Sys-
tems Principles, pages 33-48, July 1983.

(8] J. Lee and T. Malone. Partially shared
views: A scheme of communicating among
groups that use different type hierarchies.
CCSTR #111, MIT, Sloan School of Man-
agement, 1989.

[9] G. Neufeld. Descriptive naming in X.500.
In SIGCOMM ’89 Symposium, Communi-
cations Architectures and Protocols, pages
64-71, September 1989.

{10] D. Oppen and Y. Dalal. The clearing-
house: A decentralized agent for locat-
ing named objects in a distributed enviro-
ment. ACM Transactions on Office Infor-
mation Systems (TOIS), 1(3), July 1983.

{11] L. Peterson. An architecture for nam-
ing resources in large internet. TR 87-7,
University of Arizona, Tucson, November
1987.

[12] L. Peterson. A yellow-pages service.
In Proceedings of ACM SIGCOMM ’87
Workshop, August 1987,

[13] L. Peterson. The profile naming service.
ACM Transactions on Computer Sysiems,
6(4), November 1988.

[14] R. Prieto-Diaz and P. Freeman. Classi-
fying software for reusability. JEEE Soft-
ware, 4(1), January 1987.

[15] C. V. Ravishankar and R. N. Chang.
An attribute-based service-request mech-
anism for heterogeneous distributed sys-
tems. Technical Report, University of
Michigan, Ann Arbor, 1988.

(16) J. H. Saltzer. Naming and binding of
objects. In Operating Systems: An Ad-
vanced Course, pages 99-208. Springer-
Verlag, Berlin, 1979.

[17) M. F. Schwartz. Naming in Large, Hetero-
geneous Systems. PhD thesis, University
of Washington, August 1987.

(18] M. F. Schwartz, J. Zahorjan, and
D. Notkin. A name service for evolving,
heterogeneous systems. In Proceedings of
Operating Systems Conference ’87, 1987.

About the authors
Chinya V. Ravishankar is presently Assis-
tant Professor in the Electrical Engineering and
Computer Sciences Department at the Univer-
sity of Michigan. His research interests in-
clude distributed systems, programming lan-
guage design and implementation, and software
tools.

Ravishankar received his B.Tech. degree in
Chemical Engineering from the Indian Insti-
tute of Technology-Bombay, in 1975, and his
M.S. and Ph.D. degrees in Computer Science
from the University of Wisconsin-Madison in
1986 and 1987, respectively. He is a mem-
ber of ACM and IEEE. He can be reached at
the EECS Department, University of Michigan,
1301 Beal Avenue, Ann Arbor, MI 48109-2122,
or by e-mail at ravi@eecs.umich.edu.

Nigel Hinds is presently a Ph.D. precandidate
in Computer Science at the University of Michi-
gan. His research interests include distributed
systems, databases, and name service.

Nigel received his B.S. degree in Computer
Science from the University of Michigan, Ann
Arbor, in 1986. He can be reached at the EECS
Department, University of Michigan, 1301 Beal
Avenue, Ann Arbor, MI 48109-2122, or by e-
mail at nigel@eecs.umich.edu.

320

A Appendix: Neufeld

X.500

The X.500 model [9] combines a hierarchical
name space with descriptive naming. An X.500
name space is a directory database or Directory
Information Tree (DIT). In a DIT, each node
or entry represents an ISO object such as coun-
try, organization, person, or application. Each
entry contains a set of attributes as defined by
the entry class. For any entry a number of the
attributes are defined as distinguished. Distin-
guished attributes are used to ensure unique-
ness among sibling entries. Together with their
values, the set of distinguished attributes form
a Relative Distinguished Name (RDN). A dis-
tinguished name for an object is a sequence of
RDNs.

X.500 descriptive names can be used to de-
scribe just enough about the object so as to dis-
tinguish it from all other objects in the name
space. In an example from [9] (Figure 7, an
RDN for ‘Peter Smith’ is {C=CA, Org=UBC,
CN="‘Peter Smith’}. In this case neither Orga-
nizational units ‘Science’ nor ‘CS’ were needed
to describe the person.

To reduce the search space during name res-
olution, X.500 uses the concept of a regis-
tered name. A registered name is a set of
RDNs. Again from [9], in Figure 7, {C=CA,
Org=UBC} is a registered name and no ob-
ject below {C=CA} may have org=UBC as an
RDN attribute. The resolution algorithm first
finds the object -denoted by the largest regis-
tered subset of the attributes (in a query), and
then uses the remaining attributes to search
below that object.

X.500 also provides replication and partition-
ing within a DIT. A Directory Service Agent

o

Figure 7: X.500 Directory Information Tree

(DSA) may contain a portion of a DIT called
a naming contezt.

The QUIPU implementation of X.500 [6]
provides authentication between the DSAs and
the Directory User Agents (DUASs) or resolver
through which the DSAs and DIT are accessed.
QUIPU further provides Access Control Lists
for each entry.

321

