
Lawrence Berkeley National Laboratory
Recent Work

Title
Named Entity Recognition and Normalization Applied to Large-Scale Information 
Extraction from the Materials Science Literature.

Permalink
https://escholarship.org/uc/item/7r45h4mf

Journal
Journal of chemical information and modeling, 59(9)

ISSN
1549-9596

Authors
Weston, L
Tshitoyan, V
Dagdelen, J
et al.

Publication Date
2019-09-01

DOI
10.1021/acs.jcim.9b00470
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7r45h4mf
https://escholarship.org/uc/item/7r45h4mf#author
https://escholarship.org
http://www.cdlib.org/


doi.org/10.26434/chemrxiv.8226068.v1

Named Entity Recognition and Normalization Applied to Large-Scale
Information Extraction from the Materials Science Literature

Leigh Weston, Vahe Tshitoyan, John Dagdelen, Olga Kononova, Kristin Persson, Gerbrand Ceder, Anubhav

Jain

Submitted date: 04/06/2019 • Posted date: 05/06/2019

Licence: CC BY-NC-ND 4.0

Citation information: Weston, Leigh; Tshitoyan, Vahe; Dagdelen, John; Kononova, Olga; Persson, Kristin;

Ceder, Gerbrand; et al. (2019): Named Entity Recognition and Normalization Applied to Large-Scale

Information Extraction from the Materials Science Literature. ChemRxiv. Preprint.

Over the past decades, the number of published materials science articles has increased manyfold. Now, a

major bottleneck in the materials discovery pipeline arises in connecting new results with the previously

established literature. A potential solution to this problem is to map the unstructured raw-text of published

articles onto a structured database entry that allows for programmatic querying. To this end, we apply

text-mining with named entity recognition (NER), along with entity normalization, for large-scale information

extraction from the published materials science literature. The NER is based on supervised machine learning

with a recurrent neural network architecture, and the model is trained to extract summary-level information

from materials science documents, including: inorganic material mentions, sample descriptors, phase labels,

material properties and applications, as well as any synthesis and characterization methods used. Our

classifer, with an overall accuracy (f1) of 87% on a test set, is applied to information extraction from 3.27

million materials science abstracts - the most information-dense section of published articles.Overall, we

extract more than 80 million materials-science-related named entities, and the content of each abstract is

represented as a database entry in a structured format. Our database shows far greater recall in document

retrieval when compared to traditional text-based searches due to an entity normalization procedure that

recognizes synonyms. We demonstrate that simple database queries can be used to answer complex

\meta-questions" of the published literature that would have previously required laborious, manual literature

searches to answer. All of our data has been made freely available for bulk download; we have also made a

public facing application programming interface (https://github.com/materialsintelligence/matscholar) and

website http://matscholar.herokuapp.com/search for easy interfacing with the data, trained models and

functionality described in this paper. These results will allow researchers to access targeted information on a

scale and with a speed that has not been previously available, and can be expected to accelerate the pace of

future materials science discovery.

http://doi.org/10.26434/chemrxiv.8226068.v1
https://chemrxiv.org/authors/Leigh_Weston/6797093
https://chemrxiv.org/authors/John_Dagdelen/5736083
https://chemrxiv.org/authors/Anubhav_Jain/5749439
https://chemrxiv.org/authors/Anubhav_Jain/5749439


File list (1)

download fileview on ChemRxivNER_chemrxiv.pdf (1.87 MiB)

https://chemrxiv.org/ndownloader/files/15330239
https://chemrxiv.org/articles/Named_Entity_Recognition_and_Normalization_Applied_to_Large-Scale_Information_Extraction_from_the_Materials_Science_Literature/8226068/1?file=15330239


Named Entity Recognition and Normalization Applied to Large-Scale Information

Extraction from the Materials Science Literature

L. Weston,1 V. Tshitoyan,2 J. Dagdelen,1, O. Kononova,2 K. A. Persson,1, G. Ceder2 and A. Jain1
1Lawrence Berkeley National Laboratory, Energy Technologies Area,

1 Cyclotron Road, Berkeley, CA 94720, United States and
2Lawrence Berkeley National Laboratory, Materials Science Division,

1 Cyclotron Road, Berkeley, CA 94720, United States
(Dated: June 4, 2019)

Over the past decades, the number of published materials science articles has increased many-
fold. Now, a major bottleneck in the materials discovery pipeline arises in connecting new results
with the previously established literature. A potential solution to this problem is to map the
unstructured raw-text of published articles onto a structured database entry that allows for pro-
grammatic querying. To this end, we apply text-mining with named entity recognition (NER),
along with entity normalization, for large-scale information extraction from the published materials
science literature. The NER is based on supervised machine learning with a recurrent neural net-
work architecture, and the model is trained to extract summary-level information from materials
science documents, including: inorganic material mentions, sample descriptors, phase labels, mate-
rial properties and applications, as well as any synthesis and characterization methods used. Our
classifier, with an overall accuracy (f1) of 87% on a test set, is applied to information extraction
from 3.27 million materials science abstracts – the most information-dense section of published ar-
ticles. Overall, we extract more than 80 million materials-science-related named entities, and the
content of each abstract is represented as a database entry in a structured format. Our database
shows far greater recall in document retrieval when compared to traditional text-based searches
due to an entity normalization procedure that recognizes synonyms. We demonstrate that sim-
ple database queries can be used to answer complex “meta-questions” of the published literature
that would have previously required laborious, manual literature searches to answer. All of our
data has been made freely available for bulk download; we have also made a public facing appli-
cation programming interface (https://github.com/materialsintelligence/matscholar) and website
(http://matscholar.herokuapp.com/search) for easy interfacing with the data, trained models and
functionality described in this paper. These results will allow researchers to access targeted infor-
mation on a scale and with a speed that has not been previously available, and can be expected to
accelerate the pace of future materials science discovery.

I. INTRODUCTION

Presently, the vast majority of historical materials sci-
ence knowledge is stored as unstructured text across mil-
lions of published scientific articles. The body of research
continues to grow rapidly; the magnitude of published
data is now so large that individual materials scientists
will only access a fraction of this information in their
lifetime. With the increasing magnitude of available ma-
terials science knowledge, a major bottleneck in materials
design arises from the need to connect new results with
the mass of previously published literature.

Recent advances in machine learning and natural lan-
guage processing have enabled the development of tools
capable of extracting information from text on a massive
scale. Of these tools, named entity recognition (NER)
[1] is currently one of the most widely used. Histor-
ically, NER was developed as a text-mining technique
for extracting information, such as the names of people
and geographic locations, from unstructured text, such as
newspaper articles [1]. The task is typically approached
as a supervised machine learning problem, in which a
model learns to identify the key quantities in a sentence;
in this way, documents may be represented in a struc-
tured format based on the information contained within

them. In the past decade, NER has become an impor-
tant feature for text mining within the chemical sciences
[2, 3].

In addition to entity recognition, a major challenge lies
in mapping each entity onto a unique database identifier
in a process called entity normalization. This issue arises
due to the many ways in which a particular entity may
be written. For example, “age hardening” and “precip-
itation hardening” refer to the same process. However,
training a machine to recognize this equivalence is espe-
cially challenging. A significant research effort has been
applied to entity normalization in the biomedical domain;
for example, the normalization of gene names has been
achieved by using external databases of known gene syn-
onyms [4]. No such resources are available for the mate-
rials science domain, and entity normalization has yet to
be reported.

In the field of materials science, there has been sig-
nificant effort to apply NER to extracting inorganic ma-
terials synthesis recipes [5–8]; furthermore, a number of
chemistry-based NER systems are capable of extracting
inorganic materials mentions [9–12]. Some researchers
have relied on chemical NER in combination with lookup
tables to extract mentions of materials properties or pro-
cessing conditions [13, 14]. However, there has been no
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large-scale effort to extract summary-level information
from material science texts. Materials informatics re-
searchers often make predictions for many hundreds or
thousands of materials [15, 16], and it would be extremely
useful for researchers to be able to ask large-scale ques-
tions of the published literature, such as: “for this list of
10,000 materials, which have been studied as a thermo-
electric, and which are yet to be explored?” An exper-
imental materials science researcher might want to ask:
“what is the most common synthesis method for oxide
ferroelectrics? And, give me a list of all documents re-
lated to this query”. Currently, answering such questions
requires a laborious and tedious literature search, per-
formed manually by a domain expert. However, by repre-
senting published articles as structured database entries,
such questions may be asked programmatically, and can
be answered in a matter of seconds.
In the present report, we apply NER along with en-

tity normalization for large-scale information extraction
from the materials science literature. We apply infor-
mation extraction to over 3.27 million materials science
journal articles; we focus solely on the article abstract,
which is the most information-dense portion of the ar-
ticle and also readily available from various publisher
application programming interfaces (e.g., Scopus). The
NER model is a neural network trained using 800 hand-
annotated abstracts and achieves an overall f1 score of
87%. Entity normalization is achieved using a supervised
machine learning model that learns to recognize whether
or not two entities are synonyms with an f1 score of 95%.
We find that entity normalization greatly increases the
number of relevant items identified in document query-
ing. The unstructured text of each abstract is converted
into a structured database entry containing summary-
level information about the document: inorganic materi-
als studied, sample descriptors or phase labels, mentions
of any material properties or applications, as well as any
characterization or synthesis methods used in the study.
We demonstrate how this type of large-scale information
extraction allows researchers to access and exploit the
published literature on a scale that has not previously
been possible. In addition, we release the following data
sets: (i) 800 hand-annotated materials science abstracts
to be used as training data for NER [17], (ii) JSON files
containing details for mapping named entities onto their
normalized form [18], and (iii) the extracted named en-
tities, and corresponding digital object identifier (DOI),
for 3.27 million materials science articles [19]. Finally,
we have released a public facing website and API for in-
terfacing with the data and trained models, as outlined
in Section. V.

II. METHODOLOGY

Our full information-extraction pipeline is shown in
Fig. 1. Detailed information about each step in the
pipeline is presented below, along with an analysis of

extracted results. Machine learning models described be-
low are trained using the Scikit-learn [20], Tensorflow [21]
and Keras [22] python libraries.

A. Data collection and preprocessing

Document collection. This work focuses on text-mining
the abstracts of materials science articles. Our aim is to
collect a majority of all English-language abstracts for
materials-focused articles published between the years
1900 and 2018. To do this, we create a list of over 1100
relevant journals indexed by Elsevier’s Scopus and collect
articles published in these journals that fit these criteria
via the Scopus and ScienceDirect APIs [24], the Springer-
Nature API [25], and web scraping for journals published
by the Royal Society of Chemistry [26] and the Electro-
chemical Society [27]. The abstracts of these articles (and
associated metadata including title, authors, publication
year, journal, keywords, doi, and url) are then each as-
signed a unique ID and stored as individual documents
in a dual MongoDB/ElasticSearch database. Overall, our
corpus contains more than 3.27 million abstracts.
Text preprocessing. The first step in document prepro-

cessing is tokenization, which we performed using Chem-
DataExtractor [9]. This involves splitting the raw text
into sentences, followed by the splitting of each sentence
into individual tokens. Following tokenization, we devel-
oped several rule-based pre-processing steps. Our pre-
processing scheme is outlined in detail in the supplemen-
tal material (S.1); here, we provide a brief overview. To-
kens that are identified as valid chemical formulae are
normalized, such that the order of elements and com-
mon multipliers do not matter (e.g. NiFe is the same
as Fe50Ni50); this is achieved using regular expression
and rule based techniques. Valence states of elements
are split into separate tokens (e.g. Fe(III) becomes two
separate tokens, Fe and (III)). Additionally, if a token is
neither a chemical formula nor an element symbol, and if
only the first letter is uppercase, we lowercase the word.
This way chemical formulae as well as abbreviations stay
in their common form, whereas words at the beginning
of sentences as well as proper nouns are converted to
lowercase. Numbers with units are often not tokenized
correctly with ChemDataExtractor. We address this in
the processing step by splitting the common units from
numbers and converting all numbers to a special token
<nUm>. This reduces the vocabulary size by several
tens of thousand words.
Document selection. For this work, we focus on inor-
ganic materials science papers. However, our materials
science corpus contains some articles that fall outside the
scope of the present work; for example, we consider ar-
ticles on polymer science or biomaterials to not be rele-
vant. In general, we only consider an abstract to be of
interest (i.e., useful for training and testing our NER al-
gorithm) if the abstract mentions at least one inorganic
material along with at least one method for the synthe-
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FIG. 1: Workflow for named entity recognition. The key steps are as follows: (i) documents are collected and added to our
corpus, (ii) the text is preprocessed (tokenized and cleaned), (iii) for training data, a small subset of documents are labeled
(SPL = symmetry/phase label, MAT = material, APL = application), (iv) the labelled documents are combined with word
embeddings (Word2vec [23]) generated from unlabelled text to train a neural network for named entity recognition, and finally
(v) entities are extracted from our text corpus.

sis or characterization of that material. For this reason,
before training an NER model, we first train a classifier
for document selection. The model is a binary classi-
fier capable of labeling abstracts as “relevant” or “not
relevant”. For training data, we label 1094 randomly se-
lected abstracts as “relevant” or “not relevant”; of these,
588 are labeled as “relevant”, and 494 are labeled “not
relevant”. Details and specific rules used for relevance
labeling are included in the supplemental material (S.3).
The labeled abstracts are used to train a classifier; we
use a linear classifier based on Logistic Regression [28],
where each document is described by a term frequency
– inverse document frequency (tf-idf) vector. The clas-
sifier achieves an accuracy (f1) score of 89% based on
5-fold cross validation. Only documents predicted to be
relevant are considered as training/testing data in the
NER study; however, we perform NER over the full 3.27
million abstracts regardless of relevance. We are cur-
rently developing text-mining tools that are optimized
for a greater scope of topics (e.g., the polymer literature).

B. Named Entity Recognition

Using NER, we are interested in extracting specific en-
tity types that can be used to summarize a document.
To date, there have been several efforts to define an on-
tology or schema for information representation in ma-
terials science (see Ref. [29] for a review of these ef-
forts); in the present work, for each document we wish
to know what was studied, and how it was studied. To
extract this information, we design seven entity labels:
inorganic material (MAT), symmetry/phase label (SPL),
sample descriptor (DSC), material property (PRO), ma-
terial application (APL), synthesis method (SMT), and
characterization method (CMT). The selection of these
labels is somewhat motivated by the well-known material
science tetrahedron: “processing”, “structure”, “proper-
ties”, and “performance”. Examples for each of these
tags are given in the supplemental material (S.4), along
with a detailed explanation regarding the rules for anno-
tating each of these tags.
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Using the tagging scheme described above, 800 ma-
terials science abstracts are annotated by hand; only
abstracts that are deemed to be relevant based on the
relevance classifier described earlier are annotated. The
annotations are performed by a single materials scien-
tist. We stress that there is no necessarily “correct” way
to annotate these abstracts, however to ensure that the
labelling scheme is reasonable, a second materials sci-
entist annotated a subset of 25 abstracts to assess the
inter-annotator agreement, which was 87.4%. This was
calculated as the percentage of tokens for which the two
annotators assigned the same label.
For annotation, we use the inside-outside-beginning

(IOB) format [30]. This is necessary to account for multi-
word entities, such as “thin film”. In this approach, there
are special tags representing a token at the beginning
(B), inside (I), or outside (O) of an entity. For exam-
ple, the text fragment “Thin films of SrTiO3 were de-
posited”, would be labeled as (token; IOB-tag) pairs in
the following way: (Thin; B-DSC), (films; I-DSC), (of;
O), (SrTiO3; B-MAT), (were; O), (deposited; O).
Before training a classifier, the 800 annotated abstracts

are split into training, development (validation) and test
sets. The development set is used for optimizing the hy-
perparameters of the model, and the test set is used to
assess the final accuracy of the model on new data. We
use an 80% -10% -10% split, such that there are 640, 80,
and 80 abstracts in the train, development, and test sets
respectively.

C. Neural Network model

The neural network architecture for our model is based
on that of Lample et al. [31]. A schematic of this archi-
tecture is shown in Fig. 2(a). We explain the key features
of the model below.
The aim is to train a model in such a way that ma-

terials science knowledge is encoded; for example, we
wish to teach a computer that the words “alumina” and
“SrTiO3” represent materials, whereas “sputtering” and
“MOCVD” correspond to synthesis methods. There are
three main types of information that can be used to
teach a machine to recognize which words correspond to
a specific entity type: (i) word representation, (ii) local
(within sentence) context, and (iii) word shape.
For (i), word representation, we use word embeddings.

Word embeddings map each word onto a dense vector of
real numbers in a high-dimensional space. Words that
have a similar meaning, or are frequently used in a sim-
ilar context, will have a similar word embedding. For
example, entities such as “sputtering” and “MOCVD”
will have similar vector representations; during training,
the model learns to associate these word vectors as syn-
thesis methods. The word embeddings are generated us-
ing the Word2vec approach of Mikolov et al. [23]. The
embeddings are 200-dimensional and are based on the
skip-gram approach; word embeddings are generated by

Thin      films        of         SrTiO3 were    deposited

LSTM LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM LSTM

Conditional Random Fields

B-DSC    I-DSC    O       B-MAT      O           O

Word 

embeddings 

Char-LSTM

output

Forward-LSTM 

output 

Backward-LSTM

output

…

…(a)

(b)

LSTM LSTM LSTM LSTM LSTM LSTM
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S r T i O 3

Forward-char-LSTM 

output 

Backward-char-LSTM

output

Char-LSTM

output

…

…

FIG. 2: Neural network architecture for named entity recog-
nition. The colored rectangles represent vectors that are in-
puts/outputs from different components of the model. The
model in (a) represents the word-level bi-directional LSTM,
that takes as input a sequence of words, and returns a se-
quence of entity tags in IOB format. The word-level features
for this model are the word embeddings for each word, which
are concatenated with the output of the character-level LSTM
run over the same word. The character-level LSTM is shown
in (b). This model takes a single word such as “SrTiO3”, and
runs a bi-directional LSTM over each character to encode the
morphological properties of each word.

training on our corpus of 3.27 million materials science
abstracts. More information about the training of word
embeddings is included in the supplemental information
(S.2).
For (ii), context, the model considers a sentence as a

sequence of words, and it takes into account the local
context of each word in the sentence. For example, in
the sentence “The band gap of is 4.5 eV”, it is
quite clear that the missing word is a material, rather
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than a synthesis method or some other entity, and this
is obvious from the local context alone. To include such
contextual information, we use a recurrent neural net-
work (RNN), a type of sequence model that is capable of
sequence-to-sequence (many-to-many) classification. As
traditional RNNs suffer from problems in dealing with
long-range dependencies, we use a variant of the RNN
called Long Short-Term Memory (LSTM) [32]. In order
to capture both forward and backward context, we use
a bi-directional LSTM; in this way, one LSTM reads the
sentence forwards, and the other reads it backwards, with
the results being combined.
For (iii), word shape, we include character-level infor-

mation about each word. For example, material formulae
like “SrTiO3” have a distinct shape, containing upper-
case, lowercase and numerical characters, in a specific
order; this word shape can be used to help in entity clas-
sification. Similarly, prefixes and suffixes provide useful
information about entity type; for example, the suffix
“ium”, for example in “strontium”, is commonly used
for elemental metals, and so a word that has this suf-
fix has a good chance of being part of a material name.
In order to encode this information into the model, we
use a character-level bi-directional LSTM over each word
[Fig. 2(b)]. The final outputs from the character-level
LSTM are concatenated with the word embeddings for
each word; these final vectors are used as the word rep-
resentations for the word-level LSTM [Fig. 2(a)].
For the word-level LSTM, we use pre-trained word em-

beddings that have been trained on our corpus of over
3.27 million abstracts. For the character-level LSTM, the
character embeddings are not pretrained, but are learned
during the training of the model.
The output layer of the model is a Conditional Ran-

dom Fields (CRF) classifier, rather than a typical soft-
max layer. Being a sequence-level classifier, the CRF is
better at capturing the strong inter-dependencies of the
output labels [33].
The model has a number of hyperparameters, includ-

ing the word- and character-level LSTM size, the charac-
ter embedding size, the learning rate, and drop out. The
NER performance was optimized by repeatedly training
the model with randomly selected hyperparameters; the
final model chosen was the one with the highest accuracy
when assessed on the development set.

D. Entity Normalization

After entity recognition, the final step is entity nor-
malization. This is necessarily required as each entity
may be written in numerous forms; for example, “TiO2”,
“titania”, “AO2 (A = Ti)” and “titanium dioxide”, all
refer to the same specific stoichiometry: TiO2. For doc-
ument querying, it is important to store these entities
in a normalized format, so that a query for documents
that mention “titania”, also returns documents that men-
tion “titanium dioxide”. In order to normalize material

mentions, we convert all material names into a canonical
normalized formula. The normalized formula is alpha-
betized and divided by the highest common factor of the
stoichiometry. In this way, “TiO2”, “titania”, and “ti-
tanium dioxide” are all normalized to “O2Ti”. In some
cases, multiple stoichiometries are extracted from a sin-
gle material mention; for example, “ZrxTi1−xO3 (x = 0,
0.5, 1)” is converted to “O2Ti”, “O4TiZr” and “O2Zr”.
When a continuous range is given, e.g, 0 ≥ x ≤ 1, we
increment over this range in steps of 0.1. Material men-
tions are normalized using regular expressions, rule-based
methods, as well as by making use of the PubChem look
up tables [34]; the final validity checks on the normalized
formula are performed using the pymatgen library [35].
Normalization of other entity types is also crucial for

comprehensive document querying. For example, “chem-
ical vapor deposition”, “chemical-vapour deposition”,
and “CVD” all refer to the same synthesis technique,
i.e., they are synonyms for this entity type. In order to
determine that two entities have the same meaning, we
trained a classifier that is capable of determining whether
or not two entities are synonyms.
The model uses the word embeddings for each entity as

features; after performing NER, each multi-word entity
is concatenated into a single word, and new word em-
beddings are trained such that every multi-word entity
has a single vector representation. For synonym detec-
tion, each data instance is an entity pair, and so the word
embeddings for the two entities are concatenated before
being fed into the model. In addition to the word em-
beddings, which mostly capture the context in which an
entity is used, several other hand-crafted features are in-
cluded (supplemental S.5). To train the model, 10000
entity pairs are labelled as being either synonyms or not
(see supplemental S.6). Using this data, a binary random
forest classifier is trained to be able to predict whether
or not two entities are synonyms of one another.
Using the synonym classifier, each extracted entity can

be normalized to a canonical form. Each entity is stored
as its most frequently occurring synonym (we exclude
acronyms as a normalized form); for example, “chemi-
cal vapor deposition”, “chemical-vapour deposition”, and
“CVD” are all stored as “chemical vapor deposition”, as
this is the most frequently occurring synonym that is not
an acronym.

III. RESULTS

A. NER classifier performance

Using the trained classifier, we are able to accurately
extract information from materials science texts. The
NER classifier performance is demonstrated in Fig. 3;
the model can clearly identity the key information in the
text.
Model performance can be assessed more quantita-

tively by assessing the accuracy on the development and



6

FIG. 3: Example predictions of the materials science NER
classifier. The highlighting indicates regions of text that the
model has associated with a particular entity type.

test sets. We define our accuracy using the f1 score,
which is the harmonic mean of precision (p) and recall
(r),

p =
tp

tp + fp
, (1)

r =
tp

tp + fn
, (2)

f1 = 2
p · r

p+ r
, (3)

where, tp, fp, and fn represent the number of true posi-
tives, false positives, and false negatives, respectively. We
use the CoNLL scoring system, which requires an exact
match for the entire multi-word entity [36]; for example,
if a CMT (characterization method) is labeled “photolu-
minescence spectroscopy”, and the model only labels the
“photoluminescence” portion as a CMT, the entire entity
is considered as being labeled incorrectly.
The accuracy of our neural network model is presented

in Table I. We include the overall f1 score as well as the
score for each entity type for both the development and
test sets. The accuracy on the development and test sets
is similar, suggesting that the model has not been overfit
to the development set during hyperparameter tuning.
The overall f1 score on the test set is 87.04%. This score
is fairly close to the current state of the art NER system
(90.94%) [31] based on the same neural network archi-
tecture (which is trained and evaluated on hand-labelled
newspaper articles [36]). However, we caution against a
direct comparison of scores on these tasks, as the model-
ing of materials science text is expected to be quite differ-
ent than newspaper articles. The f1 score of 90.30% for
inorganic material extraction is as good or better than
previously reported chemical NER systems. For exam-
ple, Mysore et al. achieved an f1 score of 82.11% for
extraction material mentions [6]; Swain et al. reported
an f1 score of 93.4% for extracting chemical entity men-
tions [9], however their model is not specifically trained
to identify inorganic materials. The f1 scores for other
entity tags are all over 80%, suggesting that the model is
performing well at extracting each entity type. Materials
mentions and sample descriptors have the highest scores;

this is most likely due to their frequency in the training
set and because these entities are often single tokens. We
note that this work makes available all 800 hand-labelled
abstracts for the testing of future algorithms against the
current work.

TABLE I: Accuracy metric f1 for named entity recognition
on the development and test sets. Results are shown for
the total, material (MAT), phase (SPL), sample descriptor
(DSC), property (PRO), application (APL), synthesis method
(SMT), and characterization (CMT) tags. Also shown is the
total number extracted for each entity type over the full cor-
pus of abstracts.

Accuracy (f1)

Label Dev. set Test set Extracted (millions)

Total 87.09 87.04 81.23

MAT 92.58 90.30 19.07

SPL 85.24 82.05 0.53

DSC 91.40 92.13 9.36

PRO 80.19 83.19 31.00

APL 80.60 80.63 7.46

SMT 81.32 81.37 5.01

CMT 86.52 86.01 8.80

B. Entity normalization

Following entity extraction, the next step is entity nor-
malization. The trained random forest binary classifier
exhibits an f1 score of 94.5% for entity normalization.
The model is assessed using 10-fold cross-validation with
a 9000:1000 train/test split. The precision and recall of
the model are 94.6% and 94.4%, respectively, when as-
sessed on this test set. While these accuracy scores are
high, we emphasize that the training/test data are gen-
erated in a synthetic manner (see supplemental material
S.6), such that the test set has roughly balanced classes.
In reality, the vast majority of entities are not synonyms.
By artificially reducing the number of negative test in-
stances, the number of false positives is also artificially
reduced, and so the actual precision and f1 scores are
overestimated. In production, we find that the model is
prone to making false-positive predictions. In terms of
false positives, the two most common mistakes made by
the synonym classifier are: (i) when two entities have an
opposite meaning but are used in a similar context, e.g.
“p-type doping” and “n-type doping”, or (ii) when two
entities refer to related but not identical concepts, e.g,
“hydrothermal synthesis” and “solvothermal synthesis”.
In order to overcome the large number of false pos-

itives, we perform a final, manual error check on any
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normalized entities. If an entity is incorrectly normal-
ized, the incorrect synonym is manually removed, and
the entity is converted to the most frequently occurring
correct prediction of the ML model. With this manual
error check, the precision of the overall approach is close
to 100%. The full list of normalized entities is provided
as Supporting Information.

C. Text-mined information extraction

We run the trained NER classifier described in Sec. II C
over our full corpus of 3.27 million materials science ab-
stracts. The entities are normalized using the procedure
described in Sec. IID. Overall, more than 80 million
materials-science-related entities are extracted; a quan-
titative breakdown of the entity extraction is shown in
Table I.
After entity extraction, the unstructured raw-text of

an abstract can be represented as a structured database
entry, based on the entity tags contained within it. We
represent each abstract as a document in a non-relational
(NoSQL) MongoDB [37] database collection. This type
of representation allows for efficient document retrieval
and allows the user to ask summary-level or “meta-
questions” of the published literature. In section IV,
we demonstrate several ways by which large-scale text
mining allows for researchers to access the published lit-
erature programmatically.

IV. APPLICATIONS

A. Document retrieval

Online databases of published literature work by allow-
ing users to query based on some keywords. In the sim-
plest case, the database will return documents that con-
tain an exact match to the keywords in the query. More
advanced approaches may employ some kind of “fuzzy”
matching; for instance, many text-based search engines
are built upon Apache Lucene [38], which allows for fuzzy
matching based on edit distance. While advanced ap-
proaches to document querying have been developed, to
date there has been no freely-available “materials-science
aware” database of published documents; i.e., there is no
materials science knowledge base for the published lit-
erature. For example, querying for “BaTiO3” in Web
of Science returns 19,134 results, where as querying for
“barium titanate” returns 12,986 documents, and query-
ing for “TiBaO3” returns only a single document. Ideally,
all three queries should return the same result (as is the
case for our method), as all three queries are based on
the same underlying stoichiometry.
We find that that by encoding materials science knowl-

edge into our entity extraction and normalization scheme,
performance in document retrieval can be significantly
increased. In Fig. 4, the effectiveness of our normalized

FIG. 4: Recall statistics for document retrieval are generated
by performing 1000 queries for each for each database. Re-
sults are shown for the entities that have been properly nor-
malized using the scheme described in Sec. IID (Ents. Norm),
as well as for non-normalized entities (Ents. Raw).

entity database for document retrieval is explored. To
test this, we created two databases, in which: (i) each
document is represented by the normalized entities ex-
tracted, and (ii) each document is represented by the
non-normalized entities extracted. We then randomly
choose an entity of any type, and query each database
based on this entity to see how many documents are
returned. The process of querying on a randomly se-
lected entity is repeated 1000 times to generate statis-
tics on the efficiency of each database in document re-
trieval. This test is also performed for two-entity queries,
by randomly selecting two entities and querying each
database. We note that because the precision of of our
manually checked normalization is close to unity, this test
effectively measures the relative recall (Eq. 2) of each
database (by comparing the false-negative rate).
From Fig. 4, it is clear that normalization of the entities

is crucial for achieving high recall in document queries.
When querying on a single entity, the recall for the nor-
malized database is about 5 times higher than for the
non-normalized case. When querying on two entities this
is compounded, and the non-normalized database only
returns about 2% of the documents that are returned
from the normalized database. Our results highlight that
a domain-specific approach such as the one we described
can greatly improve performance. As described in Sec-
tion V, we have built a materials-science aware document
search engine that can be used to more comprehensively
access the materials science literature.

B. Material search

In the field of materials informatics, researchers often
use machine learning models to predict chemical compo-
sitions that may be useful for a particular application.
A practical major bottleneck in this process comes from
needing to understand which of these chemical composi-
tions have been previously studied for that application,
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FIG. 5: A screenshot of the materials search functionality
on our web application, which allows one to search for ma-
terials associated with a specified keyword (ranked by count
of hits) and with element filters applied. The application re-
turns clickable hyperlinks so that users can directly access the
original research articles.

which typically requires painstaking manual literature re-
view. In section I, we posed the following example ques-
tion “for this list of 10,000 materials, which have been
studied as a thermoelectric, and which are yet to be ex-
plored?”. Analysis of the extracted named entities can be
a useful tool in automating the literature review process.
In Fig 5, we illustrate how one can analyze the co-

occurrence of various property/application entities with
specific materials on a large scale. Our web application
has a “Materials Search” functionality. Users can enter a
specific property or application entity, and the Materials
Search will return a table of all materials that co-occur
with that entity, along with document counts and the
corresponding DOIs. As demonstrated, the results can
be further filtered based on composition; in the example
shown in Fig 5, all of the known thermoelectrics com-
positions that do not contain lead are returned. The
results can then by downloaded in comma-separated val-
ues (CSV) format, to allow for programmatic literature
search.

C. Guided literature searches and summaries

One major barrier for accessing the literature is that
researchers may not know a priori what are the relevant
terms or entities to search for a given material. This
is especially true for researchers that may be entering
a new field, or may be studying a new material for the
first time. In Fig. 6, we demonstrate how “materials
summaries” can be automatically generated based on the
entities. The summaries show common entities that co-
occur with a material; in this way, a researcher can learn
how a material is typically synthesized, common crystal
structures, or how and for what application a material
is typically studied. The top entities are presented along
with a score (0 – 100%), indicating how frequently each
entity co-occurs with a chosen material. We note that

the summaries are automatically generated without any
human intervention or curation.
As an example, in Fig. 6 summaries are presented for

PbTe and BiFeO3. PbTe is most frequently studied as
a thermoelectric [39], and so many of the entities in the
summary deal with the thermoelectric and semiconduct-
ing properties of the material, including dopability. PbTe
has a cubic (rock salt, fcc) structure as the ground state
crystal structure under ambient conditions [40]. PbTe
does have some metastable phases such as orthorhom-
bic [41], and this is also reflected in the summary; some
of the less-frequently-occurring phases (i.e., scores less
than 0.01) arise simply due to co-occurrence with other
materials, indicating a weakness of the co-occurrence as-
sumption.
The summary in Fig. 6(b) for BiFeO3 mostly reflects

the extensive research into this material as a multiferroic
(i.e., a ferromagnetic ferroelectric) [42]. The summary
shows that BiFeO3 has several stable or metastable poly-
morphs, including the rhombohedral (hexagonal) and or-
thorhombic [43], as well as tetragonal [44] and others;
these phases are all known and have been studied in some
form. BiFeO3 is most frequently synthesized by either sol
- gel or solid state reaction routes, which is common for
oxides.
The types of summaries described above are very pow-

erful, and can be used by non-domain experts to get an
initial overview of a new material or new field, or for
domain experts to gain a more quantitative understand-
ing of the published literature or broader study of their
topic (e.g., learning about other application domains that
have studied their target material). For example, knowl-
edge of the most common synthesis techniques is often
used to justify the choice of chemical potentials in ther-
modynamic modelling, and these quantities are used in
calculations of surface chemistry [45] and charged point
defects [46] in inorganic materials.
We note that there may be some inherent bias in the

aforementioned literature summaries that may arise due
to the analysis of only the abstracts. For example, more
novel synthesis techniques such as “molecular beam epi-
taxy” may be more likely to be mentioned in the abstract
than a more common technique such as “solid-state re-
action”. This could be easily overcome by performing
our analysis on full text rather than just abstracts (see
Sec. VI for a discussion on the current limitations and
future work).

D. Answering meta-questions

Rather than simply listing which entity tags co-occur
with a given material, one may want to perform more
complex analyses of the published literature. For exam-
ple, one may be interested in multifunctional materials;
a researcher might ask “which materials have the most
diverse range of applications?”. To answer such a ques-
tion, the co-occurrence of each material with the different
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FIG. 6: Automatically generated materials summaries for PbTe (a) and BiFeO3 (b). The score is the percentage of papers that
mention each entity at least once.

applications can be analyzed.

In order to ensure that materials with diverse applica-
tions are uncovered, we first perform a clustering analy-
sis on the word embeddings for each application entity
that has been extracted. Clustering on the full 200-
dimensional word embeddings gives poor results – this
is common for clustering of high-dimensional data. Im-
proved results are obtained by reducing the dimensions
of the embeddings using Principal Component Analysis
(PCA) [47] and t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [48]. It is found that t-SNE provides
qualitatively much better clusters than PCA; t-SNE does
not necessarily preserve the data density or neighbor
distances, however empirically this approach often pro-
vides good results when used with certain clustering al-
gorithms. Each word embedding is first reduced to three
dimensions using t-SNE [48], and then a clustering anal-
ysis is performed using Density-based Spatial Clustering
of Applications with Noise (DBSCAN) [49]. The results
of this analysis is shown in Fig. 7(a) (the data is reduced
to two dimensions for the purposes of plotting). The DB-
SCAN algorithm finds 244 distinct application clusters.
In Fig. 7(a), the applications found in one small cluster
are highlighted – all of the entities in this cluster relate
to solid-state memory applications.

To determine which materials have the most diverse
applications, we look at co-occurrence of each material
with entities from each cluster. The top 5000 most com-

monly occurring materials and applications are consid-
ered. We generate a co-occurrence matrix, with rows
representing materials and columns representing appli-
cation clusters. A material is considered to be relevant
to a cluster if it co-occurs with an application from that
cluster in at least 100 abstracts. The results of this anal-
ysis is are presented in Fig. 7(b). Based on this analysis,
the most widely used materials are SiO2, Al2O3, TiO2,
steel and ZnO. In Fig. 7(c) and (d), the most impor-
tant applications for SiO2 and steel are shown in a pie
chart. The labels for each segment of the chart are cre-
ated by manually inspecting the entities in each cluster
(we note that automated topic modeling algorithms could
also be used to create a summary of each application
cluster [50], not pursued here). For SiO2, the most im-
portant applications are in catalysis and complimentary
metal-oxide semiconductor (CMOS) technologies (SiO2

is an important dielectric in CMOS devices); for steel,
the most important applications are in various engineer-
ing applications. However, both materials have widely
varied applications across disparate fields.

Being able to answer complex meta-questions of the
published literature can be a powerful tool for re-
searchers. With all of the corpus represented as a struc-
tured database, generating an answer to these questions
requires only a few lines of code, and just a few seconds
for data transfer and processing – this is in comparison
to a several-weeks-long literature search performed by a
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FIG. 7: (a) Word embeddings for the 5000 most commonly mentioned applications are projected onto a two-dimensional
plane. The coloring represent clusters identified by the DBSCAN algorithm. The applications from one of these clusters are
highlighted – all applications in this cluster relate to solid-state memory devices. In (b), the materials with the largest number
of applications are plotted; the same is plotted in (c), however the data has been normalized to account for the total number
of material mentions.

domain expert that would have been previously required.

V. DATABASE AND CODE ACCESS

All of the data associated with this project has
been made publicly available, including the 800 hand-
annotated abstracts used as training data for NER [17],
as well as JSON files containing the information for en-
tity normalization [18]. The entire entity database of 3.27
million documents is available online for bulk download
in JSON format [19].
We have also created a public facing API to access the

data and functionality developed in this project; the code
to access the API is available via the Github repository
(https://github.com/materialsintelligence/matscholar).
The API allows users to not only access the entities in
our data set, but also to perform NER on any desired
materials science text. Finally, we have developed a web
application, http://matscholar.herokuapp.com/search,
for non-programmatic access to the data. The web

application has various materials-science aware tools for
accessing the published literature.

VI. SUMMARY AND DISCUSSION

Using the information extraction pipeline shown in
Fig. 1, we have performed information extraction on
over 3.27 million materials science abstracts with a high
degree of accuracy. Over 80 million materials-science-
related entities were extracted, and each abstract is rep-
resented as a structured document in a database col-
lection. The entities in each document are normalized
(i.e., equivalent terms grouped together), greatly increas-
ing the number of relevant results in document retrieval.
Text-mining on such a massive scale provides tremen-
dous opportunity for accessing information in materials
science.
One of the most powerful applications of text mining

is in information retrieval, which is the process of accu-
rately retrieving the correct documents based on a given
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query. In the field of biomedicine, the categorization
and organization of information into a knowledge base
has been found to greatly improve efficiency in informa-
tion retrieval [51, 52]. Combining ontologies with large
databases of published literature allows researchers to im-
part a certain semantic quality onto queries, which is far
more powerful than simple text-based searches that are
agnostic to the domain. We have stored the digital object
identifier (DOI) for each abstract in our corpus, such that
targeted queries can be linked to the original research ar-
ticles. In addition to information retrieval, an even more
promising and novel aspect of text mining on this scale,
is the potential to ask “meta-questions” of the literature,
as outlined in Sec. IVB and Sec. III C. The potential
to connect the extracted entities of each document and
provide summary-level information based on an analysis
of many thousands of documents can greatly improve the
efficiency of the interaction between researchers and the
published literature.
We should note some limitations of the present infor-

mation extraction system, and the prospects for improve-
ment. First, certain issues arise as a result of only ana-
lyzing the abstracts of publications. Not all information
about a publication is presented in the abstract; there-
fore, by considering only the abstract, the recall in docu-
ment retrieval can be reduced. Second, the quantitative
analysis of the literature, as in Fig. 6, can be affected.

This can be overcome by applying our NER system to
the full text of journal articles. The same tools developed
here can be applied to full text, provided that the full
text is freely available. A second issue with the current
methodology is that the system is based on co-occurrence
of entities, and we do not perform explicit entity relation
extraction. By considering only co-occurrence, recall is
not affected, but precision can be reduced. We do note
that all of the other tools available for querying the ma-
terials science literature rely on co-occurrence.

Despite these limitations, we have demonstrated the
ways in which large-scale text mining can be used to
develop research tools, and the present work represents
a first step towards artificially intelligent and program-
matic access to the published materials science literature.
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