Names and Faces in the News
Tamara L. Berg, Alexander C. Berg, Jaety Edwards, Michael Maire, Ryan White, Yee-Whye Teh, Erik Learned-Miller and D.A. Forsyth

Yong Jae Lee
March $8^{\text {th }}, 2007$

Introduction

- Goal: Given an input image and an associated caption, detect the face(s) in the image and label it with the correct name(s) detected in the caption
- Motivation: Build a rich, reasonably accurate collection of labeled faces

Dataset

0.5 million news pictures with captions

- Various pose, illumination, expression
- Glasses, wigs, mustaches

Names

Extract names found in the captions
\lrcorner Identify two or more capitalized words followed by a present tense verb

Associate every face in an image to every name extracted

Faces

Faces

„"Face Detector" - K. Mikolajczyk
$-44,773$ face images of size 86×86
Biased to frontal views

Rectification of Face I mages

- Reduce within-class variance
- 5 SVM

Geometric blur applied to grayscale patches

- Affine transformation: least squares solution

Gradient Descent

Full Plane Affine Transformation

- I mages with poor rectification scores are removed from the dataset
$-44,773 \rightarrow 34,623$ face images
- Cropped to a region surrounding the eyes, nose and mouth
\lrcorner RGB pixel values \rightarrow Vector

Face Representation
\lrcorner Vectors in a space where same faces are close and diffferent faces are far apart
Discard components that are similar for all faces
\rightarrow Kernel PCA
\lrcorner Project data into space for discrimination \rightarrow LDA

Kernel PCA

\lrcorner Compute a kernel matrix, K
$\lrcorner K_{j}=$ value of kernel function comparing imagei and image

- But NxN Kernel Matrix... ~2* $10^{\wedge} 9$ image comparisons

Nystrom Approximation

Approximation to calculate the eigenvectors of K

$$
K=\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right]
$$

$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{(N-n) \times n}$ and $C \in \mathbb{R}^{(N-n) \times(N-n)}$
A: subset of images compared to themselves (1000 random images)
B : comparison A to rest of images in dataset
C: Approximated as $\hat{C}=B^{T} A^{-1} B$
$\Rightarrow \hat{K}=\left[\begin{array}{cc}A & B \\ B^{T} & \hat{C}\end{array}\right]$

LDA

Form an initial discriminant space - with single face detected in image with single name in caption

- Project all images into this space to discriminate different faces

Names and Faces

Faces and Names

- Each image now represented by vector and set of extracted names
- Modified K-means clustering

Prune clusters

- Nearest neighbor model
- Remove clusters with fewer than three images
Remove points with low likelihood to get low error rates
- Likelinood
$=\frac{P(\text { face is from assigned cluster })}{P(\text { face is not from assigned cluster })}$

Merge Clusters

Different names that correspond to same person
Similarity of Clusters: distance of their means

Follow-up

"Who's in the Picture?" - language model based on context
Assign a probability to each name based on context
\lrcorner Uses cues such as (L), (R), (C), location of the name in the caption, etc.

References

Tamara L. Berg, Alexander C. Berg, Jaety Edwards, Michael Maire, Ryan White, Yee-Whye Teh, Erik Learned-Miller and D.A. Forsyth, "Names and Faces in the News", Computer Vision and Pattern Recognition (CVPR), 2004
Tamara L. Berg, Alexander C. Berg, Jaety Edwards, D.A. Forsyth, "Who's in the Picture?", Neural Information Processing Systems (NIPS), 2004
Alexander C. Berg, Jitendra Malik, "Geometric Blur for Template Matching", Computer Vision and Pattern Recognition (CVPR) 2001, Hawaili, pp I.607-614

