
NAMES AND OBJECTS

IN ~ U S CO~LrfER ~RKS

Louis POUZIN

Institut de Recherche en Informatique et Autc~atique

78150 - ROCQU~CODq~ (France)

ABSTRACT

Heterogeneous cc~outers do not use canpatible conventions for accessing resources.

The problem faced by networks of that type is to introduce a level of caTmonaiitywithout

disrupting existing operating systems and serviees. To that effect, several naming

schemes may be considered. The most appropriate is a mapping of local system names

into a global C-names space. This provides for a user tailored visibility of network

resources.

Basic objects involved in network cc~nunication are liaisons, i.e. bridging mechanisms

between objects in heterogeneous systems. Virtual terminals are more sophisticated

tools for handling terminal oriented data structures. Several techniques may be used

to name these objects. A simple and general one uses a pair of C-names.

O ~ aspects of name management include the use of short names within areas, and the

decoupling of names from physical resources. It is shown how reliability and resource

management are directly affected by the choice of a proper naming scheme. The CYCIADES

name structure is sumaarized as an application of the concepts presented.

Hh'±'EROGENEOUS COMpLr2ER NEI%~RK

Networks belong to distinct classes :

a - network of terminals accessing a single ccmputer

b - ~ication network, connecting pieces of equilm~/lt

c- network of computers.

E.g. TY~ would fall in category b, while ARPANET and CYCLADES fall in categoryc .

Topological diagrams are similar. Each of them appears as a collection of ccmputers

and terminal controllers interconnected through a store-and-forward cc~nunication

network. Differences lie in the kind of associations made possible for exchanging

information. Only temninal-cmmputer associations are possible in TY~PET. Hence, the

cmmplete set of cmmputing resources connected to the network is partitioned into

disjoint sub-sets. Each sub-set is attached to a particular computer, and only one

sub-set at a time is visible to each user.

Networks of ccmputers make the cc[~plete set of resources visible to each user. If

cc~puter systems are hcmogeneous, it is possible to consider all resources as dis-

tinct elements of a single set, because access mech~nis~s are identical on all cc~ou-

ters. Therefore, the partitionir~7 of resources among cc~outers is a matter of physi-

cal allocation without logical i~plications. This is similar to the partitioning of

files among several disk units within a single computer system.

Networks of heterogeneous ~uters raise new problems, because there is no ccsmon

access mechanis~n to resources, nor any consistent scheme for n~ming thenl° They are

not even necessarily similar.

The problem

Given a set of heterogeneous resources, without any cc~m~n exchange conventions, one

must define mechanisms providing for mutual access. These are usually called proto-

cols. Ideally, they should be added to existing cc~puter systesls, without requiring

modifications. Practically, seine adaptations may be necessary, but a complete over-

haul of operating systems is to be ruled out / .

The first problem encountered in designing co,non access protocols is the naming of

resources. This is the subject of this paper.

BASIC NEEDS

In order to be acceptable from an implementation point of view, cow, non access proto-

cols should leave r~ximum flexibility° They should be independent from the nature of

resources, and leave entire freedom as to specific control procedures that might be

required for accounting, security, etc.

Accessing all network resources as a single set requires a network-wide name space.

Furthermore, associations are to be set-up between resources. The si~lest kind of

association is a pairing. More cc~plicated kinds may be constructed out of pairs.

NAMING SCHEMES

Individual cc~puter systems make use of various naming schemes, which may be specific

for different types of resources. E.g. files, processes, peripherals. Names may have

a fixed or variable length, and follow specific conventions : alphabetic, numeric,

special characters, etc. It would be impractical to Change naming conventions in exis-

ting systems, because they are usually so ingrained in the des'lqn that any change is

a major upheaval.

From now on we shall term local names existing names in each cc~%0uter system. Network-

wide names shall be termed C-names. There may be several ways to construct C-names.

Hier_archy : each set of local names {Lj} is given a C-name C i . The network name

space is I<Ci> <Lj > } . In other words, a network name is obtainedby concate-

nation of a local name and a header designating uniquely a local set.

Allocation : Only a few resources are given permanent C-names, e.g. loggers. Each

one is associated with a set of local resources. Accessing a local resource re-

quires the following steps :

• access a C-named resource

• request access to a local resource by its local name

• get a C-name for the local resource

• access local resource by C-name

• after usage, release C-name.

_Ma_p2in ~ : each accessible local resource is given a C-nar~e. A mapping between

C-names and local names is performed within individual computer systems.

One might argue that the allocation technique is actually a ccmbination of hierarchy

and mapping. Other cc~sbinations are possible, introducing more cc~plexity. In practice,

network designers tend to cook up schemes that suit their implementation problems, ra-

ther than general use.

The hie_r_a~_ch~{ method is apparently the sit, lest one because a C-name may be parsed

instantly into a network nar~ and a local name. But it is only practical when local

names are rather hcmogeneous. Otherwise, C-names take so many different formats that

protocols become unwieldly and inefficient. In particular, the introduction of a new

set of local names may require modifications in a number of ne~a)rk access protocols,

when the characteristics of the new set have not been anticipated.

The allocation method is favored by a number of operating system-minded people. It has

the advantage of fitting within conventional single cc~puter structures. 5~Dst opera-

ting systems of the past ten years were designed as geocentric objects centralizing

all critical functions. Accessing resources is usually a multi-step process starting

frcm a well-known tree top, such a login procedure. This vision of a rigidly parti-

tioned universe is taken for granted by a number of computer professionals.

Advantages of the allocation method is that users access ccmlouters in their own fami-

liar way, as if there were no network. It is also contended that using a ~nall number

of C-names, for active resources only, saves overhead in network access machinery.

The deficiencies of this method may be derived frGm its advantages. Keeping network

resources rigidly partitioned into computer systems is putting a straitjacket on the

user, who would prefer a homogeneous visibility of all resources, with cc~puter boun-

daries fading out. In other words, the proper vision is a network of resources, rather

than a network of ccmputers.

In addition, the allocation method is scmewhat cumbersome in implementation, as it

requires the management of changing associations between C-names and local resources.

Due to transit delays and fuzzy states associated with any distributed system, there

appear transient conditions which require specific safeguards to prevent errors.

~e_ma_~nH method provides for a homogeneous name space in accessing any network

resource. It is similar to a telephone numbering plan. Mapping C-names onto local

nan, s is a matter of local implementation. This allo~s perfmg~ent or t6sloorary associa-

tions, or both. It is therefore more general than the allocation method. Any desira-

ble access control procedure can be triggered as part of the mapping process, not

just the login procedure. Such a facility makes it possible to offer homogeneous

network-wide access protocols for specific services, which may be available on dif-
2

ferent computers, e.g. co,oilers, editors, mail, help, distributed data base.

A criticism of the mapping method is that it takes overhead in scanning large tables

of C-names, when they are peiYnanently associated with local names. This is not well

substantiated. Indeed, a search is always necessary, whether the key is a C-name or

a local name, and there is no reason why searching by C-names should be less efficient.

Space occupied by the C-~%me table is not critical, as it can be on seconds_ry storage,

like any file directory.

Another criticism is that users prefer "symbolic names" rather than C-names. This ob-

jection is a typical misunderstanding of the method. Indeed, users (assumed human being@

always access a network through a local machinery (a terminal controller, or an intel-

ligent terminal). Therefore they only have to use their own local names. Whether they

prefer distant local D~mes, C-names, or their specific lingo is their choice, k~nichever

name they use is translated into a C-name to be sent to the appropriate computer system.

Therefore, the mapping method is the most flexible from a user standpoint as it does

not impose any specific local nan~ set for accessing resources.

A few examples of the flexibility inherent to the mapping method are following :

• A resource may be moved to a different ccmputer without its users knowing it.

• Users may choose loc~l names according to their own sy~boliem, e.g. in their native

tongue.

• Aliases are possible : short or long local names•

• H~sDnyms may be avoided, since homonyms %Duld appear when distant local names are

used.

OBJECTS

It has beccn~ custc~m~ry within operating systems to use specific objects for handling

cc~nunications between resources. This is justified by a number of needs, e.g. :

• asynchroniem beb~een processes

• control of access rights

• dynamic binding

• Buffering, formatting

Communications between resources are constrained to use specific tools : queues, mail-

boxes, etc. When resources are scattered over a network, the same needs hold, with

additional problems, such as :

• objects are managed by different systems

. ccrsnthnication conventions are not ccrnpatible

• there are new error conditions and recovery procedures.

In a single computer system resources may ccn~unicate through a single object, like

a queue. In a network, there are a minimum of two objects, one at each end. The inter-

face between a resource and its local communication object is a given characteristic

which may not be altered. Therefore, the problem in a network is to establish ca~mu-

nications between Objects ~%tich interface resources. Of course, objects are also a

variety of resource.

Matching object characteristics would require a specific conversion for any pair of

different objects. Therefore, a desirable objective is to devise a cc~mon object-to-

object set of conventions applicable at network level, and make local conversions,

when necessary.

LIAISONS

A basic building block for ~ications is a mechanism capable of transferring blocks

of information from one object to another, as if the two objects would share a ccna~n

buffer. Carrying out this function with all the necessary safeguards and error proce-

dures is the purpose of a transport protocol. Part of this protocol is devoted to the

setting up of a logical association or liaison, which is a bridge bet-~een the two ob-

jects. Buffers and state variables make up a liaison context. Thus, a liaison is a

network object interfacing with local objects at each end.

Designating a liaison at network level is not useful. What is necessary_ is that two

objects be able to set up a liaison, and then use it for exchanging blocks of informa-

tion.

Setting up a liaison requires that both objects know each other by a C-name of scme

sort• Thereafter, several cases may occur :

• Q_bjec_ts_~e_!i_~L_te__d__t_o as_~!e_!_~son

They only need to dicriminate between valid liaison messages and others, Received

messages may carry a unique identifier, e.g. a password, which has to be predefined.

It can be exchanged between objects ,,~en the liaison is set up.

o ~jects__~__s_etuL~t~!e!_~sons

Messages must carry some identifier per liaison, which is a pointer to one of the

contexts associated with each object. An index value is exchanged at set up time.

Each end may use a different index, It does not matter whether an object uses its

own or the other index when it sends messages, as long as this convention is known.

Index values may be assigned in monotonically increasing sequences. If the numbering

cycle is big enough as compared to the lifetime of a liaison, there should not be any

ambiguity. On the other hand, ~ x values may be assigned, released, and reused dyna-

mically. Since they are shared by two objects, there appear risks of transient condi-

tions in which errors may occur. This is similar to the dynamic allocation of C-names.

A way to eliminate all problems associated with liaison index manag~nent is to use a

pair of C-names as an index. As long as C-nanes are assigned in a stable or safe way,

liaisons may be identified without ambiguity. The only restriction is that only one

liaison at a time may be set up between any pair of objects ; but a single object may

set up multiple liaisons with other distinct objects. 3

Liaisons do not make any data or format conversion ; they are just a basic layer which

is always necessary for transferring data in a transparent mode.

VIRTUAL TERMINAL

The concept of virtual terminal has been brought about by the need to use a variety

of physical input-output devices in conjunction with a variety of cc~puter systems.

Problems associated with the physical characteristics of the devices are non-trivial,

and will not be covered here. Rather, the virtual terminal concept will only be intro-

duced as a network object.

Decoupling I-O devices from user programs is a typical feature of any operating system.

User languages address logical I-O objects, which are mapped at execution time onto

physical devices. The n~pping device is what is often called an access method.

In a network context, user programs and I-0 devices are normally attached to heteroge-

neous systems. Thus there is a need for a bridge between logical I-O devices as they

are seen frcm both ends. No general solution has yet been invented. However, typical

cases are usually trac%~ble.

Data produced or processed by a program are soaehow handled as pieces of a data struc-

ture. The ~apping of t~is structure onto a physical device is sometimes elusive becau-

se what is really aimed at is a mapping onto a mental image of the structure as seen

by a human user from the physical presentation on his terminal. When there is no human

user, e.g. for program-to-program ccna~hnication, only mechanized data structures are

involved. Assuming that these struct~es can be mapped into one another~ this mapping

would be the task of the virtual terminal protocol Thus, a virtual te~ninal may be

considered as a network object making a data structure accessible from two heteroge-

neous dc~ains.

Naming problems are the same as for liaisons, because a virtual terminal is only a

sophisticated logical association between two local objects. Since it uses normally

one liaison, the same designation can apply to both.

REGIONAL NAMF~

When the total space of network names becc~es very large, C-names becc~ne very long,

and may generate overhead or inconvenience. A counter-measure is to partition the

name-space into a hierarchy of subsets designated by area names. If the partitioning

is clever enough, mest liaisons fall %~ithin a single area boundary. This is typical

of telephone numbers. Thus, there are two or more C-name formats, depending on the

number of partition levels crossed by a liaison.

There are cases where an area boundary must cross a large number of liaisons. E .g.

it must follow an administrative boundary, or s~ne areas are too dense. A solution

is a partitioning in which each area owns a subset of names disjoint from its neighbors.

This means less names per area, thus more areas. But the advantage is that short names

may be used to con~nunicate not only within an area, but also with every neighbor area,

(fig. I)

F

Fig. i - NEIGHBOR AREAS

E.g. short nar~s may be used for liaisonsbe~een objects located in area A on one end

and objects located in any adjacent area B,C,D,E,F on the other end. Also area D may

use short names towards adjacent areas A,B,C,E,F.

This method is equivalent to a partitioning of the name space into large areas over-

lapping each other. The topological representaticn given here is just a logical model,

without geographical connotation. The distance bet~en objects on a diagram may be

interpreted as a measure in inverse proportion to their density of interccmrmnlication.

If this can be mapped onto a bidimensional representation, areas may be delineated

according to their topological properties. E.g. areas with 3 adjacent neighbors (trian-

gles) require 4 disjoint sets of short names. Areas with 6 adjacent neighbors (hexagons)

require 8 disjoint sets of short names.

Such methods are typical of telephone or telex numbering plans. They are intended to

reduce the burden of using long names tailored to a world-wide space.

PHYSICAL VS. LOGICAL N~ES

It became long ago standard practice in operating systems to designate objects by names

(e.g. files or I-O devices). In some cases nmaes are pointers or indexes in a table.

But it is extrele~y unusual that names be tightly associated with pieces of hardware.

On the contrary, names in telephone systems designate exchanges and physical subscri-

ber ports. As a result, telephone numbers change whenever a subscriber moves, or when

the telephone ccmpany redistribute its subscribers among new exchanges. This is par-

ticularly awkward, as telephone numbers are becoming the most frequent names used to

access businesses or individuals. This constraint was understandable when_ telephone

plant was entirely electromechanical. Since the introduction of ccreputers for circuit

switching, there is no technical justification for maintaining such an obsolete limi-

tation.

An essential by-product of logical naming is reliabilit$. Indeed, designating an object

by means of a physical equipment leading to it creates a dependency on the availability

of that equipment. Failure, maintenance, reconfiguration are bound to disrupt accessi-

bility and continuity of service. E.g. a telephone ~riber is cut off when his local

loop is disabled, because there cannot be any alternate access, due to the physical

connotation of telephone numbers.

When logical naming is used, it is possible to organize the access to objects through

alternate paths, depe/Iding on the availibility of physical resources. This allows for

higher reliability. E.q[. a data processing center offering services to a large popula-

tion of users, through a public transmission network, may be ~mposed of a duplex

ccmputer system connected by two separate circuits to two different exchanges. As long

as the circuits do not follow the same physical path, there is complete redundancy in

access gear, with a single name.

Another benefit of logical naming is a higher degree of flexibility in physical resour-

ce management, since there is no predefined allocation. Reconfigurations may be perfor-

med without service disruption. It is also possible to introduce classes of service,

for ~%ich specific resource management strategies can be devised, e.g. bulk, interactive,

real time.

THE CYCLADES NAME STRUCTURE

An application of the concepts presented in this paper is the CYCLADE~ computer network,
5

of which CIGALE is the packet switching sub-net.

10

The C-name structure follows :

, < Network >
!
I
!

I<-
I

I<- CYC~AOES

< name in other network>

< general name >i 1
<regional name > < port >~

< region > <node><faeility} i
j

Transport '

C ! G A L E -~6 Station -5,
!

The distinctive characteristics are :

- The name space includes all name spaces of other networks.

- The nan~ space includes specific addressable facilities within CIGALE nodes,

- All other names are hardware independent.

- At the CYCLADES level, C-Dames designate ports.

- At the CIGALE level~ C-names designate transport stations.

- Transport stations names are usually regional, but they can also be known as general

names at the whole CIC41LE level.

- C-names are independent of local names and are mapped locally.

CONCLUSIONS

An observation of existing computer and ccrsnunication networks shows that the naming

proble~ is usually not well understood. In most designs, names are just ad hoc conven-

tions tailored for limited implementation purposes, rather than being viewed as a cri-

tical tool for resource manage~nent at network level. This is all the more a concern

that planned public data networks do not appear more advanced in that matter than

antiquated telephone systems.

11

REFERENCES

1 - ZIMMERMANN H. - Insertion d'une station de transport dans un syst~ne d'exploitation
(Jan. 75), R@seau CYCLADES SCH 546. 8p.

2 - POUZIN L. - Access protocols in a network envirorm~nt. (Mar. 1975)
R@seau CYCLADES Sfi.~ 549. 2p.

3 - ZI~gdER~Z/~N H. - The CYCLADES end-to-end protocol, Fourth Data Ccsrsanications
Symposium, Qu6bec city, (Oct. 75) 6p.

4 - POUZIN L. - Presentation and major design aspects of the CYCLADES computer network,
3rd Data Ccmm. Syrup. IEEE Tanloa , Florida (Nov. 73) 80-87.

5 - POUZIN L. - CIC41IZ, the packet switching machine of the CYCLADES ~ter network,
IFIP Congress, Stockholm, (Aug. 74) 155-159.

