
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

5-26-2000

Naming and sharing resources across administrative boundaries Naming and sharing resources across administrative boundaries

Jonathan R. Howell
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation

Howell, Jonathan R., "Naming and sharing resources across administrative boundaries" (2000).

Dartmouth College Ph.D Dissertations. 1.

https://digitalcommons.dartmouth.edu/dissertations/1

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/1?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth Computer Science Technical Report TR2000-378 <ftp://ftp.cs.dartmouth.edu/TR/TR2000-378.ps.Z>

Naming and sharing resources
across administrative boundaries

A Dissertation

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

by

Jonathan R. Howell

DARTMOUTH COLLEGE

Hanover, New Hampshire

26 May 2000

Examining Committee:

David Kotz (chairman)

Robert Gray

Doug McIlroy

Margo Seltzer

Roger Sloboda
Dean of Graduate Studies

ii

for Andy

iii

iv

Abstract

I tackle the problem of naming and sharing resources across administrative boundaries. Con-
ventional systems manifest the hierarchy of typical administrative structure in the structure
of their own mechanism. While natural for communication that follows hierarchical pat-

terns, such systems interfere with naming and sharing that cross administrative boundaries,
and therefore cause headaches for both users and administrators. I propose to organize re-

source naming and security, not around administrative domains, but around the sharing
patterns of users.

The dissertation is organized into four main parts. First, I discuss the challenges and
tradeoffs involved in naming resources and consider a variety of existing approaches to

naming.
Second, I consider the architectural requirements for user-centric sharing. I evaluate

existing systems with respect to these requirements.
Third, to support the sharing architecture, I develop a formal logic of sharing that cap-

tures the notion of restricted delegation. Restricted delegation ensures that users can use the

same mechanisms to share resources consistently, regardless of the origin of the resource, or
with whom the user wishes to share the resource next. A formal semantics gives unambigu-

ous meaning to the logic. I apply the formalism to the Simple Public Key Infrastructure
and discuss how the formalism either supports or discourages potential extensions to such

a system.
Finally, I use the formalism to drive a user-centric sharing implementation for distributed

systems. I show how this implementation enables end-to-end authorization, a feature that
makes heterogeneous distributed systems more secure and easier to audit. Conventionally,

gateway services that bridge administrative domains, add abstraction, or translate protocols
typically impede the flow of authorization information from client to server. In contrast,
end-to-end authorization enables us to build gateway services that preserve authorization

information, hence we reduce the size of the trusted computing base and enable more
effective auditing. I demonstrate my implementation and show how it enables end-to-end

authorization across various boundaries. I measure my implementation and argue that its
performance tracks that of similar authorization mechanisms without end-to-end structure.

I conclude that my user-centric philosophy of naming and sharing benefits both users
and administrators.

v

vi

Contents

Abstract v

I Introduction 1

1 Introduction 3

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Overview . 4

II Naming 7

2 Naming 9

2.1 Qualities of naming systems . 9

2.1.1 User cost of establishing a name binding 9

2.1.2 Mnemonic value of a name binding 10

2.1.3 Semantic value of a name binding 10

2.1.4 Performance of name resolution . 11

2.1.5 User cost of sharing a name binding 11

2.1.6 User cost of managing storage . 11

2.2 Design and qualities of existing systems . 11

2.2.1 Global namespaces . 12

2.2.2 Plan 9 . 12

2.2.3 Sollins’ negotiated names . 13

2.2.4 Query-based naming . 13

2.3 Design of Snowflake naming . 14

2.4 Implementation of Snowflake naming . 14

2.4.1 Infrastructure . 14

2.4.2 Applications . 17

2.4.3 System structure . 17

2.5 Qualities of Snowflake naming . 18

2.5.1 Cost of establishing a name binding 18

2.5.2 Mnemonic value of name bindings 19

2.5.3 Semantic value of name bindings . 20

vii

2.5.4 Performance of name resolution . 21

2.5.5 User cost of sharing name bindings 21

2.5.6 User cost of managing storage . 22

III Sharing Overview 25

3 Sharing 27

3.1 Mandatory and discretionary access controls 27

3.2 Qualities of security models . 28

3.2.1 Consistent sharing . 28

3.2.2 Transitive delegation . 28

3.2.3 Restricted delegation . 28

3.2.4 Auditable access control . 28

3.2.5 User cost of sharing . 29

3.2.6 User cost of administration . 29

3.2.7 Performance . 29

3.2.8 Formal model of sharing . 29

3.3 Design and qualities of existing systems . 30

3.3.1 Formal models . 30

3.3.2 Systems . 33

3.4 Design of Snowflake sharing . 34

3.4.1 Restricted transitive delegation . 35

3.4.2 Arbitrary principals . 35

3.4.3 Groups . 35

3.4.4 Conjunctions . 36

3.4.5 Quoting principals . 36

3.5 Preview of the sharing chapters . 36

IV Sharing Formalism 37

4 The logic and semantics of restricted delegation 39

4.1 Definition of restricted delegation . 39

4.2 Semantics of
T
⇒ . 41

4.2.1 The
T
→ relation . 43

4.2.2 The
T
⇛ relation . 43

4.2.3 Relationships among the relations 44

4.3 Additional benefits of
T
⇒ . 45

4.3.1 Supplanting controls . 45

4.3.2 Supplanting roles . 45

4.3.3 Formalizing statement expiration . 46

viii

5 The semantics of SPKI names 47

5.1 The logic of names . 47
5.1.1 Local namespaces. 48

5.1.2 Left-monotonicity. 48
5.1.3 Distributivity. 48

5.1.4 No quoting axiom. 49

5.1.5 Nonidempotence. 49
5.2 The semantics of names . 50

5.3 Challenges in the name semantics . 50

5.4 Abadi’s semantics for linked local namespaces 52

6 The semantics of authorization tag notation 55

6.1 Overview . 55

6.2 Bytestrings and atoms . 56

6.3 Auths . 56
6.4 Closure of auths under intersection . 57

6.5 Tags . 60

6.5.1 The null tag . 60
6.5.2 Lists have an initial bytestring element 60

6.5.3 Special tags cause havoc . 60

6.5.4 Semantics of special tags . 61
6.6 The meaning of intersection . 62

6.7 Order dependence . 63
6.7.1 Handling non-bytestring attribute names 64

6.7.2 Interference between ordered and named attributes 64

6.7.3 Intersection of lists containing named attributes 65
6.7.4 Recommendations for the use of ordered and named attributes . . . 65

6.8 Analogy with Dedekind cuts . 65

7 Modeling SPKI 67

7.1 Delegation control . 67
7.2 Restriction . 68

7.3 Linked local namespaces . 68

7.4 Threshold subjects . 69
7.5 Auth tags . 69

7.6 Tuple reduction . 69

7.7 Validity conditions . 69
7.8 Safe extensions . 70

7.9 Dangerous extensions . 71
7.10 Related work . 72

V Sharing Implementation 73

8 End-to-end authorization 75

8.1 Spanning administrative domains . 75

ix

8.2 Spanning network scales . 77

8.3 Spanning levels of abstraction . 78

8.4 Spanning protocols . 79

9 Infrastructure 81

9.1 Statements . 81

9.2 Principals . 81

9.3 Proofs . 82

9.4 The prover . 83

10 Channels 87

10.1 Secure channels . 87

10.1.1 How channels work . 88

10.1.2 A channel optimization . 89

10.2 Local channels . 90

10.3 Signed requests . 91

10.3.1 Signed request optimization . 91

10.3.2 Server authorization . 93

10.3.3 Server implementation . 94

10.3.4 Client implementation . 94

11 Applications 97

11.1 Protected web server . 97

11.2 Protected database . 97

11.3 Quoting protocol gateway . 98

12 Measurement 101

12.1 Experimental methodology . 101

12.2 RMI authorization with Snowflake . 102

12.3 HTTP authorization with Snowflake . 103

12.3.1 Client baseline . 104

12.3.2 Server baseline . 104

12.3.3 Network baseline . 106

12.3.4 Snowflake costs . 106

12.3.5 Comparison with SSL costs . 107

12.4 Gateway authorization . 108
12.5 Observations . 108

12.5.1 Comparable operations . 109

12.5.2 The performance-security tradeoff 110

12.5.3 Slow libraries . 110

12.5.4 Performance lessons . 111

13 Qualities of Snowflake sharing and security 113

13.1 Consistent sharing . 113
13.2 Transitive delegation . 113

13.3 Restricted delegation . 113

x

13.4 Auditable access control . 113

13.5 User cost of sharing . 114

13.6 User cost of administration . 114

13.7 Performance . 114

13.8 Formal model of sharing . 115

VI Summary 117

14 Related work 119

14.1 Microkernels . 119

14.2 Retrofitting existing architectures . 120

14.3 Single-system-image clusters . 120

14.4 Distributed file systems . 121

14.5 Worldwide systems . 121

15 Conclusion and Contributions 123

16 Future work 125

16.1 End-to-end secrecy . 125

16.2 Applications . 125

16.3 Performance . 126

Acknowledgements 127

A Proofs 129

A.1 Construction of φT . 129

A.2 Equivalence of φwT and φ+
T definitions of

T
⇒ 129

A.3 An undesirable semantics for
T
⇒ . 130

A.4 Proof of soundness . 130

A.5 Relationships among the restricted relations 139

B Review: the logic of belief 143

B.1 Compound principals . 147

B.1.1 The nature of principal relations . 148

B.1.2 Trust . 148

B.2 Further reading . 149

C Review: the original Calculus for Access Control 151

C.1 The calculus of principals . 153

C.2 The “speaks for” relation . 153

C.3 Access Control Lists . 155

C.4 Higher-level operators . 155

C.5 Roles and the “ as ” operator . 155

C.5.1 Semantics for Roles . 156

C.6 Delegation and the “ for ” operator . 157

xi

D Review: The Simple Public Key Infrastructure 159

D.1 Certificate types . 159

D.2 The SPKI 5-tuple . 160
D.3 The SPKI 4-tuple . 161

D.4 Tuple reduction . 161

Volume Two

E Snowflake software documentation

F Experimental data

xii

List of Figures

2.1 The layers of software that constitute the Snowflake naming implementation. 15

2.2 Factoring naming services into a separate layer of system architecture . . . 18

2.3 The same namespace can capture names at multiple levels of abstraction. . . 19

2.4 An order-of-magnitude comparison showing the overhead associated with us-

ing RMI as a distribution substrate. 22

5.1 An example that shows when inherited names can become idempotent. . . . 49

8.1 A resource server contains an ACL that refers directly to Alice, a user in the

same administrative domain. 76

8.2 With restricted delegation, Alice can introduce the remote principal Bob, and
describe what authority he has over her resources. 76

8.3 When Alice connects to a resource server from the same machine, the server
may trust the kernel to correctly identify her 77

8.4 Alice’s request for a high-level resource involves not only her authority over

the final low-level resource, but some interaction with the service providing a
level of abstraction. 78

8.5 Gateways are necessary to translate between protocols, but they frequently
impede the flow of authorization information. 79

9.1 A hypothetical SPKI sequence. 83

9.2 A structured proof that shows that a name defined by a client (KC · N) is
bound to a particular document (HD). 84

9.3 A look inside Alice’s Prover. 85

10.1 Treating a channel as a principal . 88

10.2 How my ssh RMI channel is integrated with Snowflake’s authentication service. 88

10.3 The HTTP authorization protocol. 92

10.4 An HTTP authorization challenge message from a Snowflake server. 93

10.5 A response message from a Snowflake proxy. 94

10.6 The browser’s interface to the Snowflake HTTP user agent 95

11.1 A transaction involving a quoting gateway. 98

12.1 The cost of introducing Snowflake authorization to RMI. 102

12.2 The cost of introducing Snowflake authorization to HTTP. 105

xiii

12.3 This graph compares Snowflake client authorization, server (document) au-
thentication, and standard SSL authentication. 106

A.1 In this example, T = {s}. Notice that B �
T
→ A. 131

A.2 A counterexample showing why two delegations for sets S and T do not imply

a delegation for set S ∪ T (Result E7). 135
A.3 A model that demonstrates Result E9. 136

A.4 A counterexample that shows B
T
⇛ A does not imply B

T
⇒ A. 140

A.5 A counterexample that shows B
T
⇒ A does not imply B

T
⇛ A. 141

A.6 Examples that show why the relation
T
→ is weaker than

T
⇒ and

T
⇛. 141

B.1 A model of eight worlds (circles), illustrating the relationship between the

accessibility relation for A (arrows) and the modal operator (A believes). . 145

C.1 Roles reduce relations with which they are composed. 157

xiv

List of Tables

4.1 The symbols used to represent sets in this dissertation. 40

5.1 A guide to translating between Abadi’s notation and mine 52

6.1 Pairwise possibilities for set intersection. 58

6.2 Pairwise possibilities for set intersection in the presence of the range and
prefix auth constructors. 62

12.1 Hardware and software configurations used in my experiments. 101

12.2 A setup and bandwidth experiment for RMI. Results from experiments where
client and server are on separate hosts appear on lines marked remote. . . 103

12.3 Disabling caches reveals the cost of proof generation, transmission and veri-
fication. 104

12.4 Performance baselines for HTTP 1.0. 104
12.5 A setup and per-request experiment that reveals the baseline cost of a single

HTTP/1.1 request. 105
12.6 Snowflake HTTP client authorization performance. 107
12.7 Snowflake HTTP server authorization performance. 108

12.8 The SSL setup and bandwidth experiment. 109
12.9 The cost of a single request over SSL. 109

xv

xvi

Part I

Introduction

1

Chapter 1

Introduction

As computing resources become increasingly ubiquitous, users find that they have access

to more and more resources, and that these resources are supplied by a variety of different
organizations. Conventional systems descend from the time-sharing tradition and organize

resources into administrative domains. A user connects to an administrative domain (“logs
in”) and can then access the resources from that domain uniformly and easily. To access

resources in other domains, however, the user must jump through hoops of varying naming
and authorization mechanisms. Access to resources in other administrative domains is less

uniform and more difficult than access to resources in the local domain.

In contrast, I propose to organize resources not around administrative domains, but
around users. Ideally, each user has seamless access to all of the resources he or she is per-

mitted to use. Resources must still change hands from those who supply them to those who
use them, but instead of mediating this handoff with an asymmetric relationship between

administrators and users, all sharing is from one user to another. An “administrator” is no
longer a special entity, but simply a role that one user takes on when sharing resources with

another. This approach banishes the concept of “administrative domain” from mechanism
to policy. Users access resources provided to them by multiple “suppliers” (other users in
the role of administrators); hence resource naming and authorization is uniform and simple.

I call the project Snowflake.

1.1 Motivation

Organizing resource administration around user-to-user sharing has benefits for both users
and administrators.

A user typically does not care about which administrative domain contains a resource he

wants to use; he just wants consistent access to the resource. Communication and resource
sharing should correspond to the structure of real relationships, which are not limited by

organizational hierarchy. If a user has complete control over the names he uses for resources
and the specification of sharing resources with others, then administrative domains will not

interfere with his work. Naturally, administrative structure will still affect users, but only
in policy, not in mechanism.

Administrators benefit from my approach, as well. A central task in system adminis-

3

4 CHAPTER 1. INTRODUCTION

tration is sharing, just like what users do, but perhaps with more responsibility. Therefore,
the mechanisms for administration should be the same; only the policies should change to

reflect the administrator’s heightened responsibility in the social organization. An added
benefit is that a new administrator would have an easier transition from his role as a user

by adding responsibility incrementally to his sharing tasks.

1.2 Contributions

The contributions this project makes to distributed computing are:

1. the observation that resource naming and security mechanisms should be organized
around user-to-user sharing, not administrative domains, to make resource access
uniform and simple in a world where users access resources from a variety of sources,

2. an enumeration of qualities needed for naming and sharing to span administrative

domains,

3. a path-based naming mechanism that reflects user-to-user relationships rather than
administrative hierarchy,

4. a path-based authorization mechanism, backed by a thorough formalism, that reflects

user-to-user relationships, not administrative hierarchy,

5. an end-to-end approach to authorization that has benefits even within administrative

domains,

6. a proposal for a specific layering of application and system software that helps ensure
that naming and authorization remain uniform across applications and systems, and

7. a prototype system with applications that demonstrates the naming and sharing mech-

anisms at work and illustrates how my model compares with conventionally-organized
systems and applications.

1.3 Overview

The dissertation is divided into four parts.

In Part II, I describe how to name resources independently of administrative domains,
and compare my approach to related approaches.

Part III describes how to share resources and protect them independently of adminis-
trative domain. It outlines the axes along which a sharing design should be measured, and

presents an overview of the design for sharing in Snowflake.
Part IV details a formal semantics for sharing that meets the goals presented in the

preceding part. Chapter 4 develops the semantics, Chapter 5 adds semantics for strongly-

authenticated names, and Chapter 6 adds semantics for delegation restriction sets. In
Chapter 7 I connect the semantics to an existing sharing implementation called the Simple

Public Key Infrastructure (SPKI) and then extend its applicability to meet the sharing
goals of Snowflake.

1.3. OVERVIEW 5

In Part V, I discuss my implementation of Snowflake sharing. I establish its relevance to
general end-to-end authorization problems, including that of authorizing resources across

administrative domains, in Chapter 8. Then I describe the infrastructure I built to support
sharing in Chapter 9, and the channels and applications that use that infrastructure in

Chapters 10 and 11. I measure the performance characteristics of my implementation in
Chapter 12.

Part VI summarizes the dissertation. In Chapter 14, I discuss related work with similar
goals. I present the conclusions of my work in Chapter 15, and propose future directions in

Chapter 16.
In Appendix A I prove statements presented in Part IV. Appendix B reviews modal

logic, Appendix C reviews the Calculus for Access Control, and Appendix D reviews the
Simple Public Key Infrastructure; since my work rests heavily on each of these topics, I
include these appendices to provide the reader a convenient and concise introduction.

In the second volume, Appendix E documents the software described in the body of the
dissertation. Appendix F contains plots of the experimental data that are summarized in

in Chapter 12.

6 CHAPTER 1. INTRODUCTION

Part II

Naming

7

Chapter 2

Naming

In this chapter, I describe and motivate important qualities I desire in a naming system.

Then I describe some existing systems, pointing out the relevant design choices they embody,
and how those choices affect the qualities of the resulting system. Finally, I describe the
naming system I built and tested, and the qualities it exhibits. I make design tradeoffs to

better provide resource naming that spans administrative domains.

2.1 Qualities of naming systems

Saltzer andWatson provide thorough surveys of naming issues [Sal78, Wat81]. In designing a
naming system to span administrative domains, I consider making different design tradeoffs

than have been made in conventional systems. In this section I establish six qualitative
measures of a naming system, so that I have a standard by which to evaluate my design.

2.1.1 User cost of establishing a name binding

“User cost” is the per-operation effort a user must expend plus the learning curve the user

must overcome to perform some operation. In this case, the operation is the binding of a
name in his namespace to a resource.

Content-based naming systems, for example, have low user cost for establishing name

bindings: the user need only create or modify a resource. The content-based naming system
considers the new content of the resource, and any query on the terms or objects appearing

in the new content will turn up the modified resource: the “name” (terms or objects) has
been automatically bound to the resource by virtue of its appearance in the resource (see

Section 2.2.4).

A medium cost is found in systems where users rename resources within a single naming
system. For example, Unix soft links have medium user cost: the user need only know the
name (at the same level of abstraction) of the target resource to grant it a new name.

Naming systems exhibit high user costs for establishing name bindings when they require

a user to specify the target resource in some other (generally lower-level) naming system.
For example, before one can name a resource in a Plan 9 file system, one must mount the

file system, an operation outside the consistent naming scheme of Plan 9 [PPD+95]. To
establish a name binding, the user needs to know about a separate naming scheme, the

9

10 CHAPTER 2. NAMING

addresses of file systems. Likewise, to name a resource in the namespace of URLs, one
typically needs to know the address (lower-level name) for the resource in terms of the DNS

name of the server machine and the file system path on that machine.

2.1.2 Mnemonic value of a name binding

The mnemonic value of a name binding refers to the meaning of the symbolic name to
a human user, or to the human reader of code that invokes the name. In systems that
embed location information into names, we would expect names to have less mnemonic

value. Although perhaps they convey location information consistently, they cannot convey
other information as conveniently, nor can resources be grouped by properties other than

location. Content-based naming systems encode the content of resources into their names,
which one would expect to be quite mnemonic. Sometimes, however, one may want to

name a resource based on a property orthogonal to the resource’s content, such as where
the resource came from, or how it should be processed next.

2.1.3 Semantic value of a name binding

A name should convey some meaning about the resource it names. While meaning may
contribute to memorability (mnemonic value), by semantic value I refer specifically to the

meaning that a program may automatically infer from a name. Programs often depend on
conventionally-structured names to find particular resources.

In a conventional Unix-like environment, names are bound to location. A program
may have to look for a resource under three different names in two naming systems: the file

/usr/lib/program.defaults for system-wide default options, the file $HOME/.program.rc
for user-specific options, and the environment variable $PROGRAM CONFIG for invocation-

specific options. These three names correspond to three separate locations: administrator-
controlled persistent storage, user-controlled persistent storage, and user-controlled tran-

sient environment storage.
One factor affecting both mnemonic and semantic value of names is name consistency ;

in my case, the consistency of names across administrative boundaries. By name consis-

tency, I mean the property that a name consistently maps to the resource, and a resource
consistently has the same name. Imagine writing a document with a bibliography. If the

name of the file containing the bibliography changes depending on whether the typesetting
program is running in the same domain as the user or not, then the bibliography may only

be used in its “home” environment.
When the naming system does not encourage name consistency, individual applications

may support name consistency through application-specific means. For example, IMAP-
based mail readers hide from the user the fact that the mail store and its folders may be in

a different administrative domain than the mail reader client program. Application-specific
naming, of course, only helps with a specific application. I argue that the naming system
should promote name consistency transparently to applications, so that all applications

automatically reflect the benefits of consistent names.
Content-based and query-based naming systems can have trouble providing programs

with semantic value. The naming lookup operation in such systems generally may return
zero, one, or more results, depending on how many resources matched the query. Zero

2.2. DESIGN AND QUALITIES OF EXISTING SYSTEMS 11

results may mean either that no such resource exists in the scope of the query, or that some
matching resource may exist, but that the resource was unavailable or slow when the query

was performed. The programmer must be prepared for these ambiguities at each lookup
operation, and they often add unfortunate complexity. I describe systems that provide more

deterministic semantics as having robust queries.

2.1.4 Performance of name resolution

By performance I mean literally the computational cost and latency associated with re-
solving a name to a resource. When systems embed location information in names, they

preclude some levels of indirection, and hence inherently achieve higher performance.

2.1.5 User cost of sharing a name binding

How difficult is it for a user to share a resource with another? Ideally, one shares a resource
the same way one invokes it, using the same name.

2.1.6 User cost of managing storage

Every resource is implemented by some underlying resource. Some resources are imple-
mented in firmware or hardware (disk blocks, RAM pages, CPU cycles, sheets of printed

paper). Other resources are abstract, built from a portion of some underlying software-
accessible resource. A process or task is made from (multiplexed) CPU cycles and RAM
pages. A file is made from disk blocks and a RAM cache. We build increasingly abstract

resources from underlying concrete resources; the challenge is to manage the underlying
resources to ensure they are available in sufficient supply for the abstract resources we

desire.

What does this mean for naming? If a name is bound to an abstract resource, a user

may need to manage the concrete resources that support the abstract resource. How does
he name the concrete resources? In naming systems that embed location in resource names,

the name of the abstract resource can often be reverse-mapped to provide a name in some
lower-level naming system for the concrete resource. Such systems may have heterogeneous

naming levels, one for each level of resource abstraction. As an example, consider Unix
paths. If a file creation fails due to a disk space shortage, one may use the mount table to

discover the name of the concrete resource (the disk partition) corresponding to the abstract
resource (the directory) that exhibited the resource shortage.

2.2 Design and qualities of existing systems

Having highlighted six important qualities of naming systems, I now explore several existing

systems in detail and highlight both their strong and weak qualities. This presentation
focuses on qualities that enable or interfere with naming across administrative boundaries.

12 CHAPTER 2. NAMING

2.2.1 Global namespaces

A common naming structure assumes that all names belong to a single global namespace.
Global namespaces are natural for some scope, but invariably they must be extended to

add functionality or integrate multiple “global” namespaces into a larger system.

For example, Unix mount tables integrate multiple file systems into a directory tree.
As a result, each resource pathname reflects its storage location in its prefix. Similarly,

the Unix r-commands form names as hostname:path/on/host. A common contemporary
idiom is a set of machines with file systems cross-mounted with NFS; here too resources

with common location have a common prefix [SGK+85, LS90]. The same is true of AFS
volumes. Although AFS is a distributed protocol, individual volumes (whose resources have

names with common prefixes) reside on a single server host [HKM+88]. World-wide web
uniform resource locators (URLs) have the same problem; they encode both the network

location of the host and the location of the service on the host. Managing storage of web
resources involves manipulating names in the underlying file system, a level of abstraction

below URL names.

Symbolic links can be used to hide the locations of files in global namespaces. For
example, another common idiom is to group files by home directories. With some effort,

a system administrator can arrange for the path /home/bob to always refer to Bob’s home
directory, even when the directory changes locations.

In each of these examples, either the mnemonic and semantic value of names suffers

(because names must contain location information of little value to the human or program
using the name), or the user must bind a new name to the resource to abstract away the
location information. But a typical user is only allowed to bind names in certain parts of

the global namespace, such as his home directory. When an administrator binds a short
pathname (one that has no embedded location) to a resource, that binding only affects

a single host; he must expend effort binding the name on every host for it to appear
consistently. Worse yet, short names can only be bound by the administrator, limiting

their applicability to within a single administrative domain.

The Sprite cluster operating system provides administrators with a way to bind names
consistently across an entire cluster [OCD+88, WO86]. Users are still limited to creating

bindings under the prefixes they control, however, and the solution only works within an
administrative domain, since its tools are per-cluster, not per-user.

2.2.2 Plan 9

In Plan 9, all name bindings (at the file name level, which is used pervasively in Plan 9)
visible to a user may be defined by the user [PPD+95]. A tree of named resources is
implemented by a file system. The Plan 9 notion of file system refers only to the read-write

interface to resources, not to their nature as static files; resources in a file system may
be arbitrarily abstract. A user has control over the name bindings his programs see by

configuring his mount table. As in Unix, the mount table describes how the trees of named
resources in file systems are assembled into the name tree visible to the calling program.

Unlike Unix, in Plan 9 each process can have its own mount table, so that a user may
control the name bindings visible in the applications he runs.

Plan 9 names have good mnemonic and semantic value. The difficulties are the user

2.2. DESIGN AND QUALITIES OF EXISTING SYSTEMS 13

costs of establishing and sharing name bindings. To establish a name binding within a file
system, one simply uses conventional file system operations to create or rename resources.

If the file system is not writable by the user, however, he may have to replace the file
system in his mount table with another file system that allows him to change the bindings

he sees. The replacement file system may point to resources in the original file system.
Thus, establishing name bindings is sometimes expensive.

More importantly, the user cost of sharing Plan 9 name bindings is high. One can only

share a resource by name if one is sure the named path in the recipient’s mount table refers
to equivalent resources. Otherwise, one must communicate the appropriate mount table or

file system name (in a lower-level “address space”) to the recipient before the name becomes
meaningful.

2.2.3 Sollins’ negotiated names

Karen Sollins’ dissertation surveys several approaches to naming in distributed systems.
Based on a sociological evaluation of how humans name entities by an iterative mechanism,

she proposes that humans using computer applications and programs themselves should
similarly negotiate names for resources. She argues that in so negotiating names, groups of

clients of the naming system will arrive at names that have high mnemonic value [Sol85].

The cost of establishing a (shared) name binding in Sollins’ system, then, is fairly high.
Names that are not negotiated in advance to be sharable cannot be shared among users

without engaging in the negotiation protocol. Sharing a set of names (a context) requires the
recipient to aggregate the received context with his existing context; by Sollins’ description,

the aggregation algorithm is complex. It is also unclear how useful negotiated names are
among a group of entirely programmatic entities, since they are based on a social construct.

2.2.4 Query-based naming

In query-based naming systems, one names a resource according to its attributes or its
contents. Naming resources by content provides zero-cost name binding, since the creation
or modification of a resource defines its names. Examples of query-based systems include

the semantic file system [GJSJ91] and Gopal and Manber’s hybrid file system [GM98].

Naming resources by attributes involves some effort in defining appropriate attributes,
but produces names with high mnemonic and semantic value. The Placeless system is

notable because it allows users to define their own attribute-based names for any resource
[dLPT+99]. Other attribute-query naming systems include Active Names [VDAA99], the

Intentional Naming System [AWSBL99], and Jini [Wal98].

Both kinds of query-based systems have performance challenges and difficulties manag-
ing storage due to the indirect nature of the names. Query-based naming is most beneficial

when queries cover a large scope; but to achieve acceptable robustness, queries of large
scope must have nondeterministic semantics, which erode the semantic value of the names.

14 CHAPTER 2. NAMING

2.3 Design of Snowflake naming

Snowflake’s design for naming aims to enable users to name and share resources with mini-

mal interference from administrative boundaries. With that goal in mind, I consider certain
qualities of the naming system more important than others.

The mnemonic and semantic value of name bindings should be high. Specifically, I wish
to avoid tying them to location or administrative structure. The user cost of establishing

a name binding should be fairly low, and the user cost of sharing a name binding with
another user should be low. To achieve these goals, I place only secondary importance on

the performance of resolving a query and the user costs of managing storage.

2.4 Implementation of Snowflake naming

The implementation of my naming design involved implementing both the infrastructure
to support the design as well as applications to demonstrate the structure of the imple-
mentation and its impact on program design. Figure 2.1 shows the organization of the

components of the Snowflake naming implementation.

2.4.1 Infrastructure

The naming infrastructure in Snowflake consists of the interfaces that the architecture
indicates, implementations of those interfaces, and client-side support routines that enhance

the application programming interface. I chose to implement Snowflake in Java to exploit
Remote Method Invocation, a choice that avoided the need to implement my own remote-
procedure-call mechanism [AG97, WRW96].

The Directory interface

I built a naming interface, and several implementations of that interface, in Java. I call
the interface Directory, since namespace usually refers to the set of all names that can
be specified in a given naming system. A Directory maps string name components to

arbitrary object references. By convention, the slash character (/) appearing in a name
is interpreted as a component separator, but the primary Directory interface maps raw

strings to references with no notion of distinguished characters. The Directory interface
is Remote, meaning that implementations of names (the level below Snowflake naming)

may automatically employ Java Remote Method Invocation (RMI). An address (a name
at a level below semantic names) in RMI consists of a hostname, port number, and object

identifier, so an RMI address has a loose notion of location or storage.
I also built implementations of the name interface; that is, objects that store name-

to-object bindings in a variety of forms. The HashNS object, for example, implements the
minimum functionality, mapping a string name to an arbitrary Remote object reference.
HashNS makes no effort to ensure that the resource is Remote, but unless it is, it has no

globally accessible address, and hence is not usable by programs residing in other Java
Virtual Machines (JVMs). The Proxy object transparently redirects requests to another

namespace. The redirection is invisible to any client that does not explicitly inquire about
the type of the Proxy object. Two classes Query and TimeQuery, part of a Snowflake

2.4. IMPLEMENTATION OF SNOWFLAKE NAMING 15

NamespaceSupport toolkit

TreeQuery

sf.rmi.UnicastRemoteObjectSf toolkit,

Union

java.io adaptor

Proxy

javac

HashNS

vi

UnixAdaptor

DirectoryListener

DirectoryUpdateMulticaster
DirectoryVersionUpdater

graphical namespace browsergb

Directory

Symlink

Container

HashContainer
UnixContainer

Program

shell
cat
cp
ln
ls
mkrem

Query

in
te

rf
ac

es
im

p
le

m
en

ta
ti

on
s

sy
st

em
se

rv
ic

es

Java Remote Method Invocation

Object Persistence

ap
p
li
ca

ti
on

s
cl

ie
n
t

to
ol

k
it

shell

calendar

Symlink

Figure 2.1: The layers of software that constitute the Snowflake naming implementation.

The interfaces (in italics) determine the structure of the system; all name bindings are held
in implementations of the Directory interface. Grey boxes indicate external components

used in my environment.

calendar application, resolve lookup requests by querying an external (web-based) calendar
service and packaging the replies as Remote objects. A Union is a name space that gives

a view of several other name spaces, overlaid over one another. It is analogous to union
mounts in Plan 9 or 4.4 BSD Unix.

The Directory implementations rely on a toolkit called NamespaceSupport that pro-

vides parsing of pathnames into lists of component names and default implementations of
recursive name-resolution methods.

The Container interface

Another interface called Container extends Directory; it is the interface to storage man-
agement in Snowflake. The UnixContainer is an implementation of Container that al-

locates only file-type objects and stores them in the Unix file system; the objects that
implement the file resources supply special Remote versions of Java streams to make them

usable by clients in any location. A more versatile HashContainer allocates or copies objects
into virtual memory in the same JVM that implements the HashContainer. I implemented

16 CHAPTER 2. NAMING

a checkpointer sophisticated enough to save all of the state of a JVM, so that objects are
stored persistently across machine crashes and reboots [How99]. The checkpointer provides

the object persistence service in Figure 2.1.

The DirectoryListener interface

The DirectoryListener interface extends the Directory interface to enable ap-
plications to discover when name bindings in a Directory change. I built a

DirectoryUpdateMulticaster that distributes update events when they occur, and a
DirectoryVersionUpdater that polls näıve Directorys and generates update events when
their bindings change.

The client toolkit

Clients of the Directory interface use a naming toolkit called Sf that provides client ser-

vices, such as a convenient interface to name resolution, automatic re-resolution of symbolic
links, and automatic re-resolution of names when RMI connections are broken. Notably,

the Sf class contains only convenience methods for name resolutions. It stores no name
bindings, to ensure that name bindings are always sharable.

Sf also maintains a per-thread “current root directory” context to provide program-
mers with a convenient dynamically-scoped abstraction analogous to the current working
directory in Unix. The Sf current directory, however, is actually the client’s current root

directory, and thus the entire space is under the control of the process. The notion of a
current working directory (the location where a user expects program operations to occur

by default) is implemented as a binding to the name cwd in the current root directory.

The Sf lookup tools automatically recognize and resolve special Symlinkmarker objects.

A Symlink is simply a type recognized by Sf that carries a new symbolic name to resolve
to find the desired resource.

When a low-level RMI connection breaks, the Sf toolkit can attempt to reacquire a
valid reference to the server object by re-resolving the name that found the object in the

first place. To enable this functionality, a Snowflake object extends sf.rmi.Unicast-

RemoteObject. When its stub loses its connection to the implementation, the stub will

automatically rebind to the implementation by name. The stub keeps track of the name
lookup that initially resolved to produce itself, as well as the Directory in which that lookup

occurred. What happens if that Directory object has also become disconnected? Since
Directory implementations typically extend sf.rmi.UnicastRemoteObject, the process

automatically recurses upward to the first name binding that is still intact, then drills back
down, re-resolving names, until the stub with the broken reference has acquired a fresh
reference.

Hence objects can change location, and the dynamic sf.rmi.UnicastRemoteObject

stubs will fault and automatically rediscover the new locations of their implementations.

Most importantly, the re-resolution uses the name path by which the object was originally
referred, so that the semantics of those names are preserved. Rob Pike says that the Plan 9

project happened upon the same solution to a similar problem: determining a meaningful
value for pwd (print working directory) in Plan 9’s per-user namespaces [Pik00]. Note that

2.4. IMPLEMENTATION OF SNOWFLAKE NAMING 17

I made the feature optional because it changes the semantics of RMI: A stub may rebind
and find itself attached to a different implementation than before.

This service is especially important for my persistent containers, because whenever they
fail and restart, the objects inside acquire new RMI addresses, regardless of whether the

container is restarted on the same host.

2.4.2 Applications

To demonstrate and experiment with the naming infrastructure, I wrote several applica-
tions. I describe them here, and discuss the lessons I learned from their implementation in
Section 2.5. The first is a basic shell that provides the user with a command-line interface

to a namespace. The shell prepends to typed commands the string cmd/ and resolves the
resulting name in its own name space. The resulting object implements a simple Program

interface that specifies a run method. The shell makes a shallow copy of its current names-
pace, binds the name argv to the typed arguments, and the names stdin and stdout to

its I/O streams. Then the shell invokes the Program, passing it the freshly-synthesized
namespace as an argument.

I built a calendar application that uses the Query name space resource to query an

external calendar and display the results. The Union name space can be used to merge two
calendars from separate sources into a single virtual resource.

I modified the java.io package to resolve name requests through the Sf toolkit. This
change causes ordinary Java applications to see Snowflake names rather than the default

namespace supplied by the underlying operating system. I built this adaptor specifically
to enable the Java compiler javac to read Java files from and write class files to Snowflake
containers.

I also wrote a Unix application adaptor that uses the /proc debugging interface to
interpose on a running process’ system calls. I based the technique and the interposition

code on UFO [AISS98]. The adaptor catches name-related system calls such as open()

and stat(), and routes them through the Snowflake client interface. For open() calls, the

adaptor returns a synthetic file descriptor, and maintains a table that maps each synthetic
descriptor to the corresponding object returned from the Snowflake name resolution. Read
and write calls to a synthetic descriptor are converted to method calls on the input and

output stream interfaces of the underlying Snowflake object.

The adaptor’s namespace is overlaid with a lazily-created tree of the UnixContainer

objects described above, so that when the application looks for a file resource in the Unix
namespace, it finds it through the Unix container. Because every namespace is a Snowflake

namespace, the user is free to install arbitrary objects at any pathname seen by the ap-
plications. I use the adaptor, for example, to run vi on text-file objects in the Snowflake
namespace.

2.4.3 System structure

Observe that no application needs to know anything about handling naming across adminis-

trative boundaries. Instead, each application works with names in a simple namespace. The
user’s namespace is a separate layer below all Snowflake applications that arranges name

18 CHAPTER 2. NAMING

distribution as needed. Therefore, an application cannot distinguish between resources
hosted in one administrative domain from those living in another.

Contrast this architecture with conventional application structure. In conventional sys-

tems, there is no distinct layer responsible for distributed naming, and the problem is
solved either by the operating system or by applications. An application may rely upon the

operating system to support distribution, in which case the application is bound into an
intra-administrative-domain name space. Alternatively, an application may provide its own

notion of name distribution that can span administrative domains. The disadvantage of the
latter approach is that it only applies to some applications, and with each application the
user must learn to configure the new application to handle distributed naming to exploit

its benefits.

My applications, then, emphasize the value of a system architecture that factors naming
and sharing out of the system and out of applications. Figure 2.2 illustrates this structure.

Resources Resources ResourcesResources

D i s t r i b u t i o n

D i s t r i b u t i o n

Access Control Access Control

D i s t r i b u t i o n

Naming

Access Control

Naming

instance
ApplicationApplication

instance Application

Figure 2.2: Factoring naming services into a separate layer of system architecture ensures
that naming is both user-centric and consistent across applications.

2.5 Qualities of Snowflake naming

My experience with the applications in Section 2.4.2 gives me a yardstick by which to
evaluate Snowflake’s approach to naming. Let us examine how Snowflake naming measures

up along the axes of Section 2.1.

2.5.1 Cost of establishing a name binding

The cost of establishing a name binding is medium. Users must do so explicitly, but the

bindings may always be established in terms of other Snowflake-level names. There is no
“file system mounting.” When a resource such as a persistent object store is created, it is

2.5. QUALITIES OF SNOWFLAKE NAMING 19

given an initial Snowflake name with a low-level semantic meaning like “this resource is a
container and it lives in Sudikoff Laboratory and it is backed up daily.” As the resource is

allocated, abstracted, or aggregated into other resources, the resulting resources are given
new names with a higher-level semantic meaning. Notably, the new names are specified

in terms of the lower-level Snowflake names. Although multiple semantic levels of name
meaning still exist because that is how abstract resources are built from concrete resources,

they are all Snowflake names, and the same tools are used to establish the bindings from
each level to the one below. Figure 2.3 illustrates.

/

bib

unix thesis

home

dfk jonh

thesismacros

Figure 2.3: The same namespace can capture names at multiple levels of abstraction. In

this Snowflake namespace, lower-level names (thin lines) embed location information, since
they reflect location in a Unix file tree. The abstract name “/thesis” is implemented (thick

lines) in terms of the lower level names, using a Union directory. Names at both levels of
abstraction are Snowflake names.

2.5.2 Mnemonic value of name bindings

Because a user may establish any name bindings he wishes, and because a user controls for
all of the bindings he sees, a user may establish as strong a mnemonic value in his names

as desires, modulo the following two limitations.

First, many programs expect to find resources under specific names by convention; to

interact with such a program, the user must accept the program’s idea of the name of
the resource, which may not be so mnemonic for the user. This problem reflects the issue

20 CHAPTER 2. NAMING

of communication between the user and the author of the program; it is independent of
whether one uses Snowflake’s naming model or another approach.

Second, bindings map strings to objects. The range of the mapping is generous: a
mapped object may implement arbitrary interfaces, and it may implement multiple explicit

interfaces so that it takes on an appropriate form for different client programs and users.
The domain of the mapping, however, is limited to textual strings. Perhaps for some

applications, colors or shapes or arbitrary multidimensional objects would make appropriate
names. Furthermore, any aggregation of meaning of names must be done by the single object

to which that name maps, such as by the the aggregating Union Directory. Query-based
systems have a system-wide notion of aggregation, so that an object may “participate” in

the implementation of a name simply by conforming to the query.

2.5.3 Semantic value of name bindings

Snowflake names are indeed useful to programs. Snowflake programs communicate
arguments and common resources (I/O streams) to one another by storing them at
conventionally-determined names in the namespace. Because all names are user-determined,

there is no resource a program can depend on that the user (or calling program) does not
have the opportunity to redefine. By letting the user define any name, Snowflake’s naming

model ensures that programs need only look at one name to find a particular resource;
contrast this situation with that in Section 2.1.3.

As I discussed in Section 2.1.3, name consistency, the notion that the same name can be
used consistently to find a given resource, contributes to both mnemonic and semantic value.

Since Snowflake names are implemented by RMI addresses with global scope, since users
may define any name binding, and since name bindings may encode high levels of semantic

meaning, Snowflake names certainly enable a user to use consist names for resources from
different administrative domains. The last property is probably the most important for
ensuring consistency: once names are decoupled from storage or location, they are easier to

use consistently.

Application transparency also encourages name consistency. Since the name binding

process is hidden from applications, not implemented by them, the same names in the
Snowflake namespace can be used across all applications. The alternative is applications

that implement their own cross-domain naming schemes; while these applications may
achieve mnemonic and semantic benefits within their own scope, the user does not ex-

perience the same benefits consistently across applications. By factoring naming binding
out of applications, I have avoided this pitfall.

Are queries robust? Because names are bound directly to an implementing resource,
queries are deterministic. One of the possible outcomes of a query is a failure due to dam-
age to the distributed system (e.g., Java RMI’s RemoteException), but that condition is

explicitly reported. Query robustness contributes to semantic value by providing program-
matic users of the naming interface with deterministic outcomes that are easier to reason

about than the outcome of query-based systems. For most applications, this simplicity is
desirable.

2.5. QUALITIES OF SNOWFLAKE NAMING 21

2.5.4 Performance of name resolution

Two aspects of the structure of Snowflake names have important performance implications:
indirection and cachability. Furthermore, Snowflake’s implementation carries with it certain

overhead.

First, since Snowflake names do not encode location, there are generally one or more
levels of indirection between a name presented for resolution and the location of the imple-

menting object. With respect to indirection, “you pay for what you get:” the more abstract
the name, the greater the cost involved in resolving the levels of indirection. The benefit

is that all of the levels of indirection appear within the same naming scheme and are all
controllable by users.

Indeed, in most systems each level of indirection adds an incremental cost. But in

heterogeneous naming systems, the cost can be high, requiring the deployment of a new
mechanism to introduce indirection. For example, URLs are resolved through a series of

heterogeneous layers. One of those layers is the domain name embedded in the URL. To add
a layer of indirection to heterogeneously-resolved URLs, web providers must resort to using

round-robin DNS servers or IP-rewriting routers. In Snowflake’s homogeneous naming,
there is always an opportunity to replace a name with one with higher-level meaning; there

is no need to hack a lower-level addressing scheme to provide indirection.

The second aspect of Snowflake structure that affects performance is cachability. The
objects returned by name resolutions can be arbitrary objects, hence they can have arbitrary

semantics that may or may not preclude caching of the local implementation of the object.
In my prototype, there is no protocol that communicates or negotiates whether a name
resolution may be cached. Certainly an object can support its own caching. Since Snowflake

allows arbitrary names to be replaced, a user can always ignore the object’s cachability
semantics and install a cache in front of the object, even when he does not control the

underlying object.

In any case, it is fundamentally difficult to provide general cache service for objects
with arbitrary semantics. The problems of identifying a “unit” of resource and its identity

are complex in a distributed system with arbitrary object semantics [MKD+00]. I do not
argue that caching in the presence of indirection and aliasing is easy, only that indirection

happens anyway, so users might as well exploit indirection with per-user names.

The performance (system cost) of resolving a query in the Snowflake implementation
is fairly high compared with native operating-system naming, because my implementation

depends upon the slow Java substrate. The prototype carries the overhead of Java Se-
rialization (call parameter marshalling) and RMI (IP connection setup and multiplexing

overheads), summarized in Figure 2.4.

2.5.5 User cost of sharing name bindings

Because binding implementations always happen on the implementation side of the
Snowflake naming interface, and because those implementations are Remote objects, they

are accessible to any caller. Therefore, users may share bindings directly. Bob may define
a Snowflake name friends/alice in his namespace, mapped to the top of Alice’s naming

tree. If Alice wants Bob to read a resource she calls research/paper, then Bob’s name for
that resource is simply friends/alice/research/paper.

22 CHAPTER 2. NAMING

1 ns 1 µs 1 ms 1 s

C function call

C getpid()

Java local method call

Java Serialize

Java Remote method call

optimized
unoptimized

Figure 2.4: An order-of-magnitude comparison showing the overhead associated with using
RMI as a distribution substrate. The “Java Serialize” experiment marshals a single value

for network transmission; this result shows that most of the overhead associated with RMI
is due to parameter marshalling. The experiments were performed on the system described

in Table 12.1; the x-axis is scaled logarithmically. Optimized C measurements are compiled
with gcc -O9 versus no optimization; optimized Java are run with the Sun just-in-time
compiler sunwjit versus the standard interpreter.

This cost of sharing names is somewhat more expensive than in systems where all users
see the same name tree, since Bob’s name for Alice’s resource depends on Bob’s name for

Alice; that is the cost of increasing the mnemonic value of the names. The cost is lower
than that in Plan 9, where although names are mnemonic, sharing them requires that Alice

communicate to Bob how to mount the same Plan 9 file systems that Alice has mounted.
The difference is that file system mounts in Plan 9 are not name bindings (at the same level

as most Plan 9 names), thus they cannot be directly shared among users.

2.5.6 User cost of managing storage

Managing storage in Snowflake can be unintuitive. Once names are at a higher semantic
level where storage is abstracted away, to manage storage the user must regress to the

names that have storage information encoded in them. This user cost is the same one that
appears when using symbolic links or location-hiding abstractions in conventional systems.

Because Snowflake makes it is so convenient to add abstraction with another level of naming,
managing storage often has a higher user cost in Snowflake than in conventional systems.

In my implementation, class evolution presents the primary storage-management diffi-
culty. My persistent Java stores store not only the object data, but the class definitions of

objects, so upgrading the classes involves exporting the data out of the objects into a new
JVM and discarding the old JVM.

2.5. QUALITIES OF SNOWFLAKE NAMING 23

In summary, since Snowflake focuses on accessing resources across administrative do-
mains, it makes different qualitative trade-offs than do conventional systems. Snowflake

places a premium on the mnemonic and semantic value of names and the ease with which
users can share names. These traits come at a cost in performance and increased difficulty

in storage management.

24 CHAPTER 2. NAMING

Part III

Sharing Overview

25

Chapter 3

Sharing

In this chapter, I describe important qualities I might desire in a sharing system. Then I

describe some existing systems, pointing out the relevant design choices they embody, and
how those choices affect the qualities of the resulting system. Finally, I describe the sharing
system I built and tested, and the qualities it exhibits. I make design tradeoffs to better

achieve the goal of resource sharing that spans administrative domains.

The dual of the problem is often called “protection” or “security.” I use the term “shar-

ing” to highlight the user’s goal in using the system: to share resources with others. I
assume my work will be used where policy allows users to share resources across adminis-

trative domains and then consider how to provide security given that assumption.

3.1 Mandatory and discretionary access controls

Much of the literature refers to this problem as the “security problem.” Security models

come in different strengths. Some attempt to prevent any information from flowing where it
does not belong; military multilevel security (MLS) falls into this category. Loscocco et al.
argue that mandatory access control is desirable because it limits the burden for security

to the system security policy administrator, rather than leaving it up to possibly malicious
or careless users [LSM+98].

The very goal of my research, however, is to enable users to access and share resources
across administrative boundaries. Therefore, we must consider situations where limiting

the security burden to a site administrator is not only impractical, but undesirable. For
my purposes, I assume that users can be trusted to exercise discretion in how they use

resources. If Alice explicitly shares a resource with Bob, she not only trusts Bob to use
the resource responsibly, but she also trusts Bob’s discretion in how he further shares the
resource. To use it effectively, perhaps Bob must pass on access to the resource to a program

or another person. For example, Alice might ask Bob to print out a poster of a current
engineering design. To complete the task, Bob further delegates to a trustworthy print

shop his authority to view the design. The sharing problems I address, therefore, inherently
involve transitive trust relationships.

27

28 CHAPTER 3. SHARING

3.2 Qualities of security models

Having outlined the scope of security problems I want to tackle in my sharing system, I

now pinpoint the specific qualities I require.

3.2.1 Consistent sharing

The mechanism of sharing resources is independent of the administrative association of the

sharer and the recipient; therefore, the task of sharing should be consistent regardless of
whether the sharer and recipient are in the same administrative domain or separated by

an administrative boundary. Sharing policy, however, may certainly reflect administrative
associations. Because “sharing” a resource in an electronic environment often means autho-

rizing a server to give access to a third party, consistent sharing implies enabling resource
servers to reason about previously unknown third parties. This requirement contrasts with

many conventional systems, wherein a server need only reason about the set of principals
known inside a given administrative domain.

3.2.2 Transitive delegation

A user may share any resource to which he has access with another user, including those
resources granted to the user by others. To exploit this quality requires trust in delegates

to use a resource responsibly, but ensures that all sharing can be performed with the same
mechanism.

The assumption of transitive delegation is a subtle philosophical point. The designers of

the Simple Public Key Infrastructure present arguments for three possibilities: no control
over transitive delegation, boolean control, and integer control [EFL+99, pp. 15–16]. I

argue that no attempt to control further delegation is truly meaningful. When one user
trusts another to use a resource, that second party can circumvent any delegation control

by proxying requests for a third party. For the system to claim to prevent such transitive
delegation is to misrepresent the capabilities of the system. I show in Section 7.1 how my

logic can model boolean delegation control, but I argue that a misleading security feature
is a security hole.

3.2.3 Restricted delegation

When sharing a resource with others, a user may always restrict the recipient’s access to
the resource. That is, when a user receives a resource from another, he should always be

able to treat the restricted resource as a “smaller” first-class resource, share it again with
a third party (transitive sharing), and specify a restriction on how the third party may use
the shared resource.

3.2.4 Auditable access control

When resources are shared, the originating resource server can audit how the ultimate
resource user came to have access to the resource. In an environment where users must

trust delegates to use a resource responsibly, the resource owner should have some auditing
mechanism to discover when and how his trust has been abused.

3.2. QUALITIES OF SECURITY MODELS 29

Because every resource, even one received through a restricted delegation, should be
“first class,” every user sharing a resource should have some opportunity to audit the

accesses that involve the virtual resource he shared, but not necessarily the original resource
from which it derives. That is, if Alice shares a resource with Bob, and Bob shares it with

Charlie, Bob should be able to audit Charlie’s use of the resource due to Bob’s delegation.
Bob may or may not be allowed to audit use of the underlying resource; that decision

belongs to Alice. I describe how Snowflake makes such auditing possible in Section 13.4.

3.2.5 User cost of sharing

How much trouble is it for one user to share a resource with another? User cost is perhaps
more important with sharing than with naming, because not only can a high user cost

interfere with the users’ computing experience, it can encourage users to circumvent the
sharing system, compromising security. The user cost of sharing is evaluated by examining

what a user must do to make a resource accessible to another user, and what the second
user must do to access the shared resource.

3.2.6 User cost of administration

The administrative cost of a sharing mechanism is largely a function of previous qualities:

the auditability of access control and the user cost of sharing. Auditability affects admin-
istrators because administrators are responsible to monitor the security of their resources.

The user cost of sharing affects administrators in two ways: first, as part of their tasks,
administrators must share resources with users; second, administrators must educate users

about how to share resources securely.

3.2.7 Performance

Sharing affects performance because it conceptually involves security checks every time a
resource is accessed. Different sharing systems invoke different strengths of checks at each

access. Performance penalties should be weighted according to the frequency of invocation:
common-case accesses to local resources should count more heavily than infrequent accesses

to remote resources, for example.

3.2.8 Formal model of sharing

Sharing and security systems frequently have ad hoc designs that seem to satisfy common
sense; however, common sense can often mislead us. This risk is especially dangerous in

security, where we are concerned not with good average-case behavior, but with worst-case
behavior in the presence of an adversary.

Formal models for security provide one overriding benefit: unambiguous communication.
A formal model clearly communicates between the designer of a system, its implementors,

and its users what promises the system makes and what the consequences of certain actions
in the system will be.

Formal models are not a panacea for security problems. Any given formal model is a
model, and hence abstracts away some details of a system that may hide security flaws.

30 CHAPTER 3. SHARING

Furthermore, a formal model requires interpretation to be applied in a real environment; if
the users of the system do not understand the interpretation of the model, they are likely

to misapply it and become surprised when the “promises” they mistakenly inferred from
the model are not upheld.

With these caveats, however, a formal model can provide many benefits. Because a

model rests on a firm mathematical foundation, it is easier for people to evaluate its creator’s
claims of validity. Because a formalmodel provides a level of abstraction, it helps the model’s

users understand details of a complex implementation in terms of a simpler model. Real
systems invariably grow. If we wish to extend an ad hoc system, we must re-evaluate how

the extension interacts with the entire system, to ensure that it does not indirectly introduce
security holes or surprises. A formal model can warn us immediately if a proposed extension

would nullify prior promises of the model, or it can assure us that the extension fits neatly
into the model and introduces no surprising interactions at the level of abstraction of the
model.

3.3 Design and qualities of existing systems

In this section, I consider relevant related approaches to resource sharing and security.

These fall into two categories: formal models of security, and system architectures that
implement security.

3.3.1 Formal models

Formal models have been designed to prove a variety of properties of security architectures
and systems. Some models are designed to prove properties about access to read and write

information within a single system. Some models show properties of protocols (in which the
parties may be mutually distrusting, or the communications channel may be untrustworthy),

and range in detail from simply showing that the communicating parties each know who
the opposite party is, to showing that the protocol preserves the secrecy of information.

In this section, I will discuss some relevant security models, and how they relate to my

problem of sharing resources across administrative boundaries.

Military security

U.S. military security is concerned with the security of information in a single (albeit large)
organization; it applies to all information in the military, whether it is maintained on paper,

in computers, or in people’s heads. The military security model is concerned not only with
accesses to resources, but with the ultimate flow of information. The military uses two

axes to specify the clearance of users to see information and the protection category of that
information. The vertical axis is called the sensitivity level of the information. Military law
prohibits the downward flow of sensitive information to users with insufficient clearance;

these are called mandatory access controls, and military computer systems are required to
enforce them. Along the horizontal axis, information belongs to compartments that define

who has a need to know the information. The military expects individuals to exercise
discretion in assigning and enforcing these horizontal restrictions, and military computer

3.3. DESIGN AND QUALITIES OF EXISTING SYSTEMS 31

systems must assist users in applying discretionary access control. Landwehr gives a fine
overview of military security [Lan81, pp. 248–250].

The military standard is indeed concerned with allowing appropriate sharing, without
unintended transfer, of information resources. This standard, however, is too strong for my
purpose. The very notion of military security implies a centralized, top-down administrative

structure that defines where information should and should not flow. Administrative en-
forcement of mandatory controls or restrictions on the flow of information conflicts with my

requirements of consistent and transitive sharing across administrative boundaries. Note
that I may address the restricted problem of access to resources (including information re-

sources) without addressing the larger and more subtle problem of information flow, since
information may flow out of one resource into another.

Landwehr discusses several formal models that attempt to capture various aspects of

the military security model, including the high-water-mark model, the take-grant model,
and information-flow models [Lan81]. The take-grant model is the closest to the one I am

interested in, as it directly models delegations of permission from one user to the next.

The access-control matrix

The access-control matrix is a commonly accepted general model intended to capture all

possible sharing configurations in a system composed of a collection of subjects (users) and
objects (resources). In its generality, it captures all models of sharing, but does not lend

much intuition.

“The access matrix model ... has great flexibility and wide applicability. It is
difficult, however, to prove assertions about the protection provided by systems

that follow this model without looking in detail at the particular subjects, ob-
jects, modes of access, and rules for transforming the access matrix.” [Lan81,

pp. 256–7]

In summary, just about any access-control problem can be cast into the general access-

matrix model, but the resulting model provides little insight into the problem.

Models that ensure secrecy

One class of formal models includes those that can show that a protocol does not leak its

secret inputs. Abadi and Gordon’s spi calculus extends an abstract concurrent language,
the pi calculus, to include cryptographic primitives. In the spi calculus, one shows that a

protocol is secure (has a specific property) by showing that it is isomorphic to a simpler
protocol that embodies just that property [AG99]. Abadi extends the spi calculus with

typing [Aba97]. Types indicate whether variables hold public or secret information, and
rules determine how processes propagate type classifications from inputs to outputs. Gray
and Syverson develop a formal system based on modal logic that can prove guarantees about

information flow in multilevel-secure systems, including information flowing through covert
channels [GS98]. Although useful in evaluating the security of hop-by-hop communications

protocols, these models are intricate and cannot easily be applied to the transitive sharing
I desire to support.

32 CHAPTER 3. SHARING

Models that ensure authentication

Members of another class of formal models can show that a communication protocol en-

sures that its participants arrive at accurate knowledge about those with whom they are
communicating; or, more precisely, that they know certain properties about the messages

they receive. These protocols may not ensure that specific information remains secret.

Burrows, Abadi, and Needham developed a seminal formal logic for analyzing protocols

that has come to be known as “BAN logic” [BAN90]. The logic models principals (active
entities engaging in a protocol), encryption keys, and messages traveling over an insecure

public channel. Statements in the logic represent the secrecy of keys, the freshness of
messages, and principals’ beliefs about such statements.

A proof in the logic can show that when honest participants begin a protocol with

particular beliefs, they do not arrive at inappropriate beliefs as a result of executing the
protocol. An example of an inappropriate belief might be principal A believing that a key is

a secret between herself and principal B, when in fact principal C has managed to discover
the key. One may uncover a flaw in a protocol by being unable to prove some assertion

about the development of principals’ beliefs, or by discovering that such a proof requires
strong assumptions that are unlikely to be met in practice.

The BAN paper itself provided a logic (a set of proof rules) but no formal semantics; the
work was criticized for the omission. Abadi and Tuttle later remedied the shortcoming by
developing a formal semantics [AT91]; in the process, they discovered attractive refinements

to the original logic. Bleeker and Meertens define an alternate semantics for BAN logic
[BM97].

Syverson argues that for certain security requirements, a logic alone is not likely to
produce a positive proof. To verify such properties, he says, we need to use a model checker

that checks all semantic models and verifies that a given property is valid [Syv93]. Lowe
takes just this approach. He uses a model checker to verify that principals in a protocol

correctly authenticate one another. The model checker is used to verify a small system, and
a hand-developed proof reduces any larger system to the small system [Low96]. Heintze and

Tygar describe a model-based approach to verify that protocols are secure [HT96]. Their
system can show that the composition of two secure protocols is itself secure.

The Calculus for Access Control is a simpler system than BAN logic, and as such it is

not as generally applicable to validating existing protocols [ABLP93]. It has been applied
to some systems, however, such as Kerberos [LABW92, p. 285] and Java stack inspection

[WF98]. It does guide the generation of protocols based on the primitives of the calculus,
and can model intricate sharing patterns, including transitivity. The Calculus for Access

Control is primarily concerned with authenticating principals. Lehti and Nikander argue
that authorization is the ultimate goal, and that separating authorization into authentica-

tion and a second access-control step is both unnecessary and risky [LN98].

Massacci’s work on role-based access control defines a semantics for an access-control
logic similar to that of Lampson et al. [Mas97]. It has semantic limitations that allow the

use of decisions based on tableaux methods. The use of tableaux methods always provides
proof of authentication or a counter model that shows that no proof exists. In a distributed

system, this latter feature is not as practical as one might hope, since not all relevant
statements may be simultaneously available for inspection.

3.3. DESIGN AND QUALITIES OF EXISTING SYSTEMS 33

Each of these models satisfies my requirement for a formal model of sharing. Of those
listed, the Calculus for Access Control most closely matches my goals of Section 3.2. In

particular, it models transitive sharing well, and I can easily extend its semantics to reason
about restricted delegation. In Part IV, I do so, and show how the extended system applies

to the goal of spanning administrative boundaries.

3.3.2 Systems

In this section, I consider architectures that attempt to implement various security models.
Some systems implement explicit models such as those in the previous section; other sys-
tems approach security in an ad-hoc fashion. Some systems provide a generic substrate that

supports a variety of policies. The distributed trusted operating system is a distributed real-
ization of the access-matrix model, designed to enable research into security policies [CL98].

The Flask architecture provides a similarly flexible platform for fine-grained, hierarchical
access policies [SSL+99]. The other systems I study here approach security either primarily

as an authorization problem or primarily an as authentication problem.

Authorization

Sollins describes the problem of transitive restricted delegation as “cascaded authentica-
tion,” and provides a motivating example for its use [Sol88]. She proposes as a solution

a mechanism called passports. I will show that passports can be modeled in my system
as accreting chains of restricted delegations. Passports do allow a feature I do not sup-

port: integer control over how a recipient may further delegate received authority. Because
passports authenticate only servers, the implementation requires special-case treatment of

channels, which my system models explicitly. Varadharajan et al. propose a more general
mechanism that incorporates both symmetric and asymmetric encryption [VAB91].

Neuman’s proxies are tokens that express delegation; his restricted proxies are analogous

to the concept of restricted delegation developed herein [Neu93]. Kerberos version 5 includes
support for restricted proxies.

The PolicyMaker system is designed to flexibly describe users’ trust requirements, in-
cluding how they have delegated that trust to others [BFL96]. (The authors use the term

“trust” the same way I use “authorization.”) Delegations in PolicyMaker may include
arbitrary code to check the validity of a delegation; that code has access to the entire

access-control decision context in making its decision.

The Simple Public Key Infrastructure is a distributed-system security scheme focused

primarily on authorization, and only secondarily on authentication. SPKI certificates im-
plement restricted delegation. In SPKI, every principal is a public key, and is referenced

either directly by its key or indirectly by a name defined by another key. SPKI confines
itself to reasoning about principals identified by public keys, so it is more applicable in the
wide area than on a single machine. Chapter 7 describes how ad-hoc features of SPKI,

such as the online revalidation mechanisms, can be cast as applications of the standard
components of my system, reducing the complexity of applications that use them.

The CRISIS security architecture is designed to provide a substrate of authentication
and authorization services to wide-area applications. It includes features of the Calculus

34 CHAPTER 3. SHARING

for Access Control such as delegation and roles, as well as a notion of restricted delegation
[BVAD98].

These authorization systems are mechanisms with only informally-described semantics.
As such, there is no obvious route to generalize their applicability to other situations. For

example, they have specific notions of principal (generally tied to a specific encryption
mechanism or authentication server) that do not generalize to support, e.g., channels or

compound principals that describe the authority of cooperating entities. In contrast, the
Taos operating system contained authorization mechanisms based on the general logic of

the Calculus for Access Control [LABW92, WABL94]. I borrow the formal foundation
of the Calculus for Access Control and extend it to support my requirement of restricted

delegation.

Authentication

The global authentication service of Birrell et al. was a predecessor to that used in Taos;
like that system, Birrell’s service is hierarchical and hence has a constrained notion of
administrative domain [BLNS86].

The goal of a public-key infrastructure is to determine the identity or authority of the
holder of a public key. Mione concisely surveys several public-key infrastructures [Mio98a,

Mio98b].

The ssh secure shell utility is designed to provide users with a way to securely authenti-

cate themselves to remote hosts across untrusted networks [Ylo96, YKS+98]. The ssh tools
are drop-in replacements for the Unix rsh utilities, which were designed to be secure in a

trusted network where a system administrator controls what is attached to the wire. The
development of ssh was driven by the ubiquitous misuse of rsh in untrustworthy networks.

Kerberos is a widely-deployed network authentication system based on encrypted com-
munication with trusted authentication servers. It has a hierarchical notion of administra-

tive domains [NT94]. Lampson et al. model basic Kerberos features in the Calculus for
Access Control.

3.4 Design of Snowflake sharing

In this section, I discuss the design of sharing features in the Snowflake prototype. First, I
define three terms central to the literature on certificates. A principal is an entity that may

control a resource and give or receive delegations; common examples are users, machines,
and programs. An issuer is a principal that holds a resource and is delegating access rights

for the resource to another. A subject is the principal that benefits from a delegation. Notice
that a single principal can take on either the role of issuer or subject; in fact, because we

are concerned with transitive sharing, we expect this case to be common.

To achieve my goal of sharing across administrative boundaries, I need a system focused
on the qualities described in Section 3.2. The transitive sharing quality quickly narrows the

field; the Calculus for Access Control [LABW92] immediately stands out. I also, however,
need to satisfy the restricted delegation quality. The Calculus for Access Control depends

on ACLs for restricting delegation, which interferes with the “restriction at every sharing
link” requirement.

3.4. DESIGN OF SNOWFLAKE SHARING 35

Therefore, I extend the formal model behind the Calculus for Access Control to support
restricted delegation. That extension is the subject of Chapter 4. The new model together

with the implementation ideas in the Calculus for Access Control combine to suggest a
system architecture with the desired qualities.

The authorization systems in Section 3.3.2 have architectures close to that suggested

by my formal model. Of those, SPKI’s architecture is the closest and best justified by the
model. Its goals, however, are different than mine. It is a public-key infrastructure suitable
mainly for long-haul networks, but I want a system that is equally applicable locally and

remotely to reduce the user cost of sharing. Therefore, Snowflake’s architecture incorporates
features of the SPKI architecture where convenient, and, in fact, its implementation derives

from a SPKI implementation.

3.4.1 Restricted transitive delegation

Snowflake sharing is centered on the concept of restricted transitive delegation: one user
(or other principal) shares a resource with another, possibly restricting what the recipient

may do with the shared resource. The resource(s) shared are specified as a subset of all of
the resources available to the issuer. So, for example, by giving a subject an unrestricted

delegation, the issuer makes the subject as powerful as himself.

For example, suppose that when Alice logs in to a computer at sleepycat.com, a local

authentication server identifies her as the principal alice@sleepycat.com. I describe the
principal with a symbolic string representation for exposition; the principal in this example

is identified by the authentication server, not by a forgeable string. With a delegation,
Alice can establish that alice@sleepycat.com has authority over alice@harvard.edu, so

that she can manipulate her resources at the university as easily as those at her company.
With restricted delegation, Alice can enable Bob to read her thesis without granting him
authority over all of her resources.

3.4.2 Arbitrary principals

As in SPKI, Snowflake principals can be public keys, for example, when they need to be

universally recognized, but they may also be all sorts of other entities. A principal may also
be an arbitrary symbol whose identity is maintained by an online agent. Such principals

are analogous to user IDs in Unix or protected capabilities, and are useful because they
admit time- and space-efficient implementations. A principal may also represent a channel

as in the Calculus for Access Control, so that a program can express its confidence in the
messages arriving on different channels. More examples of principals appear below.

3.4.3 Groups

One can create a group of principals with a common set of powers by creating a symbolic
principal that delegates its authority to each member of a set of other principals. By the

transitive property, delegating to the group principal is equivalent to delegating to the
members of the group.

36 CHAPTER 3. SHARING

3.4.4 Conjunctions

The recipient of a delegation may be the conjunction of several principals, which means
that the delegation cannot be used to perform any action unless all of the named recipients

agree to the action. My implementation supports SPKI’s generalized “threshold subjects,”
wherein the issuer specifies that k of n subjects must agree to invoke the delegation. In

Section 7.4, I show that threshold subjects are formally equivalent to basic conjunction.

3.4.5 Quoting principals

I use quoting principals as described in [LABW92]: a multiplexed gateway, performing

trusted actions on behalf of a set of mutually distrusting clients, can intentionally quote
the clients to explicitly declare on whose behalf a given action is requested. Each client

then delegates authority not to the gateway itself, but to the compound principal “gateway
quoting client.”

Multiplexed gateways are used for features such as resource aggregation, protocol con-

version, proxies, and user interfaces; such a service must pass authority through from the
client to the resource implementation, but should not have to make access-control decisions

of its own. Quoting allows the server to more easily defer the access-control decision to the
ultimate implementation of a resource, which reduces the opportunity for a security flaw in

the multiplexed gateway.

3.5 Preview of the sharing chapters

In Part IV I develop the formalism that supports this design. Chapter 4 introduces the

formal logic and semantics of restricted delegation. In Chapter 5, I extend the formalism
to support the notion of local names originated in SPKI. I develop a separate semantics

to clarify the notions of primitive permissions and restriction sets in Chapter 6. Chapter 7
applies these formalisms to model SPKI, and in Section 7.9, I propose extensions to SPKI

and support or reject them based on the formalisms.
In Part V, I broaden the application of the formalism from SPKI to an implementa-

tion of Snowflake’s sharing properties. I begin in Chapter 8 by discussing how spanning
administrative domains is a special case of a more general problem I call end-to-end au-
thorization. Chapters 9 through 11 discuss the infrastructure, channels, and applications

I built to implement and demonstrate the Snowflake sharing model. I quantify its perfor-
mance implications in Chapter 12. Chapter 13 evaluates Snowflake sharing with respect to

the qualities outlined in Section 3.2.

Part IV

Sharing Formalism

37

Chapter 4

The logic and semantics of
restricted delegation

In this chapter, I introduce the formal logic and semantics of restricted delegation. I assume

that the reader is familiar with the basic operation of modal logic, the Calculus for Access
Control, and the semantics that support it. I provide a brief introduction to modal logic in
Appendix B, and an overview of the Calculus for Access Control in Appendix C.

Formulas labeled with a P, S, L, or A prefix are from the Calculus for Access Control,
and are defined in Appendix C. I label formulas developed in this chapter with an E prefix

to indicate that they are part of my extended logic. I label formulas developed in Chapter 6
with a T prefix to indicate that they are part of the separate tag semantics.

The semantics given in [ABLP93] uses symbols that are conventional in the modal logic
community but may surprise those from other backgrounds. The reader should be aware

that I use the symbol �� for logical implication, and the symbol ⇒ for the “speaks-for”
operator on principals. Table 4.1 summarizes the notation I use for sets in the following

sections.

4.1 Definition of restricted delegation

Lampson et al. mention in passing the idea of a restricted speaks-for operator [LABW92,
p. 272]. In this section, I introduce my speaks-for-regarding operator, which formalizes the

notion of the restricted speaks-for operator. It is written B
T
⇒ A, and read “B speaks for A

regarding the set of statements in T .” T is any subset of Σ∗. The desired meaning is that

when σ ∈ T ,

B
T
⇒ A �

�((B saysσ) �
�(A saysσ))

The power of the speaks-for-regarding operator
T
⇒ is that A can delegate a subset of

its authority without modifying any ACLs. Contrast the situation with the use of roles in
the Calculus for Access Control (see Appendix C.5), where to delegate authority over a

restricted subset of her resources, a user had to define a role and install that role in the
ACLs of each resource to be shared.

39

40 CHAPTER 4. THE LOGIC OF RESTRICTED DELEGATION

Set Example
members

Description

Σ s, t The set of primitive propositions. They represent
resources.

Σ∗ σ, τ

s ∧ t

The set of well-formed formulas (statements)

constructed from Σ, ∧, ¬, A says, and B ⇒ A

2Σ∗

S, T, V The set of sets of statements

P A,B The set of primitive principals. They represent
agents, including people, machines, programs, and

communications channels.

P ∗ A,B
A ∧B

The set of compound principals constructed from P ,
∧, |, and ·N

N N The set of local names

Table 4.1: The symbols used to represent sets in this dissertation.

Restricted speaks-for is transitive:

⊢ (C
T
⇒ B) ∧ (B

T
⇒ A) ��(C

T
⇒ A) (Axiom E1)

We expect the ∧ operation on principals to be monotonic over
T
⇒:

⊢ (B
T
⇒ A) �

�(B ∧ C)
T
⇒ (A∧ C) (Axiom E2)

Restricted control over two principals is the same as restricted control over their con-
junct:

⊢ (C
T
⇒ A) ∧ (C

T
⇒ B) ≡ C

T
⇒ (A∧ B) (Axiom E3)

Let U be the universe of all well-formed formulas; that is, those formulas over which a
modelM defines E . Restricted speaks-for degenerates to the original speaks-for when the
restriction set is the set of all statements:

⊢ (B
U
⇒ A) ≡ (B ⇒ A) (Axiom E4)

If Bob speaks for Alice regarding a set of statements T , he surely speaks for her regarding
a subset T ′ ⊆ T :

⊢ (B
T
⇒ A) �

�(B
T ′

⇒ A) (Axiom E5)

Using Axiom E5, a chain of delegations can be collapsed to a single delegation, connecting
the head principal in the chain to the tail, whose restriction set is the intersection of the

restriction sets of each of the original delegations.

⊢ (C
S
⇒ B) ∧ (B

T
⇒ A) �

�(C
S∩T
⇒ A) (Theorem E6)

4.2. SEMANTICS OF
T
⇒ 41

This is not to say that C may not speak for A regarding more statements than those in the
intersection; I address this topic further in Section 7.9.

If we have two restricted delegations from Alice to Bob, we might expect Alice to speak
for Bob with respect to the union of the restriction sets. Because of the semantics I choose

for
T
⇒, however, this intuition does not hold.

(B
S
⇒ A) ∧ (B

T
⇒ A) � �

�B
S∪T
⇒ A (Result E7)

In Section 4.2.1, I describe a relation weaker than
T
⇒ for which the intuitive statement holds.

The quoting operator on principals (|) is monotonic in both arguments over⇒. Quoting

is still monotonic over
T
⇒ in its left argument:

⊢ (B
T
⇒ A) ��C|B

T
⇒ C|A (Axiom E8)

My semantics does not justify monotonicity in the right argument, however:

(B
T
⇒ A) � ��B|C

T
⇒ A|C (Result E9)

Hence, when quoting others, principals cannot automatically invoke the same delegated

authority they have when speaking directly. The same counterexample that shows Result E9
shows the same property for the weak speaks-for-regarding relation defined in Section 4.2.1,
so it seems that the notion of quoting simply does not mix easily with restricted delegation.

This result appears to limit the usefulness of quoting, because principals cannot employ
quoting with the same ease as in the Calculus for Access Control.

We can salvage some of the convenience of quoting, however, by propagating the quoted
principal through the restriction set. Let T ∗ be the closure of T with respect to the propo-

sitional operators ¬ and ∧: T ⊆ T ∗, and if σ, τ ∈ T ∗, then ¬σ ∈ T ∗ and σ ∧ τ ∈ T ∗. Fur-
thermore let TC be the closure of T with respect to the modal operator C says: T ⊆ TC,

and if σ ∈ TC, then (C saysσ) ∈ TC. Now (T ∗)C is the modal closure applied to the
propositional closure of some original set T . With these definitions, we can justify this

axiom:

⊢

(

B
(T ∗)C
⇒ A

)

�
�

(

B|C
T
⇒ A|C

)

(Axiom E10)

When T = U , this axiom reduces to showing right-monotonicity for the original speaks-for

relation. This axiom means that A’s restricted delegation to B must explicitly include any
“quotes” of C about which it is willing to believe B. It seems awkward, but it is a useful

result. Why? Because in any possible-worlds semantics wherein (B
T
⇒ A) �

�(B|C
T
⇒ A|C)

for all principals C, the relation representing A depends on every other principal relation.

The introduction of malicious principals with cleverly-chosen relations into such a system
can effectively expand T until T = U .

4.2 Semantics of
T
⇒

I use a semantics based on possible worlds, modeling a system with a model M =
〈W,w0, I, J〉 whose components are defined as in [ABLP93]. The semantic definition of

42 CHAPTER 4. THE LOGIC OF RESTRICTED DELEGATION

T
⇒ is based on the notion of projecting a model into a space where only the statements in

set T are relevant. The idea behind this definition is that if one were to take the “quotient”
of a modelM with respect to the dual of T , the resulting modelM would be concerned only

with statements in T . B ⇒ A in M should be equivalent to B
T
⇒ A in the original model.

The model M is a projection of M that only preserves information about statements in T .
We begin the construction by defining an equivalence relation ∼=T :W ×W that relates

two worlds whenever they agree on all statements in T :

w ∼=T w′ iff
(

∀σ ∈ T, w ∈ E(σ) iff w′ ∈ E(σ)
)

(Definition E11)

Then we define the mapping φT :W →W that takes worlds from the original model to

equivalence classes under ∼=T :

φT (w) = φT (w
′) iff w ∼=T w′ (Definition E12)

The equivalence classes belong to a set W = 2T ; notice that worlds (equivalence class
representatives) inM cannot be confused with those inM . Section A.1 gives a construction

of φT (w).

Next we extend φT to the function φwT : 2
W → 2W that maps a set of worlds Sw ⊆ W

to a set of equivalence class representatives in the projected model:

φwT (Sw) = {w | ∃w ∈ Sw, w = φT (w)} (Definition E13)

I use bar notation (w) to indicate an equivalence class representative (member of a world

of a projected model) as opposed to a member of W in the original model.
We can now give a semantic definition of restricted delegation:

E(B
T
⇒ A)

=

W if ∀w0

(

φwT (R(A)(w0)) ⊆
φwT (R(B)(w0))

)

∅ otherwise
(Definition E14)

For the justifications of several of the axioms it is more convenient to shift the projection

(φ) operation to one side of the subset relation. To do so, we define

φ+
T (R) =

{

〈w0, w
′
1〉

∣

∣ ∃w1
∼=T w′

1, 〈w0, w1〉 ∈ R
}

(Definition E15)

Think of φ+
T as a function that introduces as many edges as it can to a relation without

disturbing its projection under T .

We can use φ+
T to give an equivalent definition of

T
⇒:

E(B
T
⇒ A) =

{

W if R(A) ⊆ φ+
T (R(B))

∅ otherwise
(Definition E16)

The symbolic gymnastics of moving the projection to the right side of the ⊆ relation is

equivalent to the definition in terms of φwT , but it makes some of the proofs more concise.
Section A.2 shows the equivalence.

4.2. SEMANTICS OF
T
⇒ 43

A casual intuition for this definition is that φT projects from the full model M down
to a model in which worlds are only distinguished if they differ with regard to the truth

of statements in T . If we collapse away the accessibility arrows that do not say anything
about what is happening in T , and A’s relation is a subset of B’s relation in the projection,

then A believes everything B believes about statements in T . This intuition is exactly what
we want for restricted delegation.

What happens if we take an alternative semantic definition for restricted delegation? I
explore one seemingly-natural but undesirable alternative in Appendix A.3. Presently, in

Sections 4.2.1 and 4.2.2, I explore two intriguing possibilities.

4.2.1 The
T
→ relation

Abadi mentions a weaker version of the speaks-for operator, B → A,1 that is true exactly

when B saysσ ��A saysσ. Note however that A may have some different reason than B

to say σ. Semantically, A may consider a totally different set of worlds possible; it just
happens that σ is still true in those worlds. For that reason, B ⇒ A is a stronger relation

than B → A. The former requires a special (subset) relationship to appear in the model.
I define Abadi’s → operator as:

E(B → A) =

W if ∀w ∈W, σ ∈ Σ∗,

R(B)(w) ⊆ E(σ) �
�R(A)(w)⊆ E(σ)

∅ otherwise

and extend the definition to allow restriction:

E(B
T
→ A) =

W if ∀w ∈W, σ ∈ T,

R(B)(w) ⊆ E(σ) ��R(A)(w)⊆ E(σ)
∅ otherwise

These are not particularly exciting definitions; they simply state just what the axiom says:

(B → A) = (B saysσ ��A saysσ)

It is obvious that weak speaks-for-regarding degenerates into Abadi’s unrestricted →
operator, since U = Σ∗:

B
U
→ A ≡ B → A

4.2.2 The
T

⇛ relation

Having witnessed a weaker relation →, one may wonder why Abadi et al. preferred a
definition of speaks-for (⇒) that was stronger than it needed to be. The intuition seems

1Read “B weakly speaks for A.”

44 CHAPTER 4. THE LOGIC OF RESTRICTED DELEGATION

to be that the stronger semantics captures the fact that A understands B’s reasons for

believing various statements. My
T
⇒ is “strong” in the same sense, and it degenerates to ⇒

when T = U .
My first attempt to build a strong speaks-for-regarding relation, however, ended up too

strong. I call the definition below the “mighty” speaks-for-regarding:

E(B
T
⇛ A) =

W if ∀w ∈W,

R(A)(w)−
⋂

σ∈T

E(σ) ⊆ R(B)(w)

∅ otherwise

The idea here is that if a subset relationship restricts A to say everything B says, then
permitting A’s relation to grow a little permits A to not say some of the statements B says

(those not in T). The definition above preserves the desired relationship: if B saysσ, every
world B can see has σ true; because A can only see those worlds and other worlds where

σ is true, A saysσ. So A has no “reasons” (edges to possible worlds) to not say σ that B
does not also have.

The
T
⇛ relation seemed promising because it degenerates into⇒ when T = U . It appears

too strong, however. For example, if T = {s,¬s}, then ∩T E(s) = ∅, so any B
T
⇛ A would

imply B ⇒ A. The semantic requirements are so strong that many interesting choices of T

are not meaningful. In fact, I present
T
⇛ here precisely because it emphasizes the importance

of having a satisfying semantics to lend intuitive meaning to the logic. I explore this issue
further in Section 7.9.

4.2.3 Relationships among the relations

Both
T
⇒ and

T
⇛ are strictly stronger than

T
→:

B
T
⇒ A �

�B
T
→ A

B
T
→ A � �

�B
T
⇒ A

B
T
⇛ A ��B

T
→ A

B
T
→ A � ��B

T

⇛ A

The
T
⇒ relation is certainly not stronger than

T
⇛; it seems that it should be strictly weaker,

but a corner case prevents it from being so:

B
T
⇒ A � �

�B
T
⇛ A

B
T
⇛ A � ��B

T
⇒ A

I establish each of these relationships in Section A.5.

4.3. ADDITIONAL BENEFITS OF
T
⇒ 45

I introduced the weak and mighty speaks-for-regarding relations to demonstrate the

consequences of the choice of formal models. Like Abadi et al., I adopt the
T
⇒ version of

the relation.

4.3 Additional benefits of
T
⇒

Introducing the
T
⇒ operator to the logic not only provides the important feature of restricted

delegation, but it simplifies the logic by replacing the controls operator, replacing roles,

and providing a formal mechanism for the treatment of expiration times.

4.3.1 Supplanting controls

Now that we have the restricted speaks-for relation, we can dispense with the special
controls operator for building ACLs.

Consider Abadi et al.’s special identity principal 1 (see Appendix C.5.1). Because it

believes only truth, (1 sayss) ��s for all statements s. That is, there is an implicit principal
that controls all statements. We can replace every statement of the form A controls s with

an equivalent one: A
{s}
⇒w0

1. This statement ensures that if A sayss, then at the actual
world w0 of the model, 1 sayss. Since the 1 relation only contains edges from a node to
itself, this condition can only be satisfied by selecting an actual world w0 where s is true.

4.3.2 Supplanting roles

Roles as originally defined are attractive, but they have the significant difficulty that in-
troducing a new restricted role R2 involves finding all of the objects that role should be

allowed to touch, and adding A as R2 to each of those ACLs. When one of those objects
does not allow ACL modifications by A, it is impossible for A to express the desired new
role. The SPKI document gives a vivid example that shows how ACL management can

become unwieldy [EFL+99, p. 17].

With the speaks-for-regarding relation, A can introduce a new role R2 for itself by

allowing (A as R2)
T2⇒ A. In fact, roles are no longer necessary at all, but the as and for

operator, or operators like them, may still be useful for building tractable implementations.

Roles, as semantically defined by Abadi et al., can also have surprising consequences
because they belong to a global “namespace.” Imagine that both Alice and Bob use the
role Ruser in their ACLs. That means that the same relation R(Ruser) encodes both the

way that A as Ruser is weaker than A, and the way that B as Ruser is weaker than B.

Let us build a model for a concrete example. Our model has two worlds, ws and ws,
where s is true and s is false, respectively. Assume that neither Alice nor Bob begin by

believing s: ¬A sayss and ¬B sayss. Our model must have the relations:

〈w0, ws〉 ∈ R(A)

〈w0, ws〉 ∈ R(B)

(w0 is a placeholder for whichever world is the actual world.) Now assume Alice’s doppel-
ganger (A as Ruser) sayss. To model this, we need R(A as Ruser) = R(A) ◦ R(Ruser) to

46 CHAPTER 4. THE LOGIC OF RESTRICTED DELEGATION

include only worlds where s is true. We want to preserve ¬A sayss, or else it would be
the case that (A as Ruser) ⇒ A. That means we cannot change A’s relation; so our only

recourse is to use R(Ruser) to sever the edges leading to ws:

〈ws, ws〉 �∈ R(Ruser)

But because Ruser is also used by Bob, we arrive at:

ws �∈ (R(B) ◦ R(Ruser))(w0)

ws �∈ R(B as Ruser)(w0)

Since B as Ruser has no edges to the world ws where s is false, the model supports the

statement (B as Ruser) sayss. Using a common role has caused unexpected crosstalk
between one principal and another.

4.3.3 Formalizing statement expiration

Lampson et al. treat expiration times casually in [LABW92, p. 270]: “Each premise has a
lifetime, and the lifetime of the conclusion, and therefore of the credentials, is the lifetime

of the shortest-lived premise.” It is likely that a formal treatment of lifetimes would be
time-consuming and unsurprising, but the lifetimes are an unsightly element glued onto an

otherwise elegant logical framework. Fortunately, the
T
⇒ relation allows us to dispense with

lifetimes.
Consider that primitive statements such as s are meant to encode some operation in a

real system (see Appendix C.3). Assume that each s describes not only an operation, but

the effective time the operation is to take place.2 Further, assume a restriction set T in a

delegation B
T
⇒ A includes restrictions on the times of the operations under consideration.

After the last time allowed by the set, the delegation remains logically valid, but becomes

useless in practice. Furthermore, restrictions on T can be more than expiration times; one
can encode arbitrary temporal restrictions, such as only allowing a delegation to be valid

on Friday afternoons.

2Like Lampson et al., I ignore the issue of securely providing loosely synchronized clocks.

Chapter 5

The semantics of SPKI names

In this chapter, I provide a semantic underpinning for SPKI names. For the reader unfamil-
iar with SPKI, I supply a concise overview in Appendix D. SPKI names are user-centric.

They are also secure because they are defined in terms of delegation. These properties make
SPKI names an attractive solution to the problem of sharing resource across administrative

boundaries.

Before I can adopt them, however, I must supply a suitable semantics. Recall from
Section 4.3.2 how roles share a global “namespace,” and the danger of crosstalk between

applications of the same role. SPKI names have the same dangerous property: identical
names have different meaning depending on the “scope” in which they appear. Hence

treating names as roles will not do; I must extend the logic and semantics to model names.

I introduce to the logic a new set of primitive names, N . I also extend principal ex-
pressions to include those of the form A · N , where A is an arbitrary principal expression

and N ∈ N . A · N is read “A’s N .” For example, if Alice is represented by the logical
principal A, and Nbarber is the symbolic name “barber,” then A ·Nbarber is a principal that

represents “Alice’s barber.” That is, A ·Nbarber represents whoever it is that Alice defines
as her barber. Should Bob delegate authority to the principal A ·Nbarber, he is relying on a

level of symbolic indirection defined by Alice. Should Alice change who has authority over
A ·Nbarber, she has redefined the subject of Bob’s delegation.

Because · only accepts a principal as its left argument, there is no ambiguity in the order
of operations;A·N1·N2 can only be parenthesized (A·N1)·N2. For example, “Alice’s barber’s
butcher” is “(Alice’s barber)’s butcher.” Parenthesizing the expression the other way, as

“Alice’s (barber’s butcher),” is unnatural because it requires the ungrounded subexpression
“(barber’s butcher).”

5.1 The logic of names

What properties do we want names to have? There are five: namespaces should be local
(user-centric), name binding should be monotonic over speaks-for, name binding should

distribute over principal conjunction, quoting and names have no particular relation, and
name application may be nonidempotent.

47

48 CHAPTER 5. THE SEMANTICS OF SPKI NAMES

5.1.1 Local namespaces.

First, a principal should control the meaning of any names defined relative to itself:

∀ principals A, names N :

(A says (B
T
⇒ A ·N)) ��(B

T
⇒ A ·N)

I do not take this statement as an axiom for the same reason that Abadi, Lampson et al. do
not accept the handoff axiom [LABW92, p. 715], [ABLP93, p. 273]. In particular, my se-

mantics does not support it. Instead, as with the handoff axiom, I allow the implementation
to assume appropriate instances of it.

5.1.2 Left-monotonicity.

Second, name application should be monotonic over speaks-for. If Alice binds her name

“barber” to Bob, and Bob binds his name “butcher” to Charlie, then we want “Alice’s
barber’s butcher” to be bound to Charlie.

⊢ (B ⇒ A) �
�(B ·N ⇒ A ·N) (Axiom E17)

Using this rule, we can write the following to capture the desired intuition:

(B ⇒ A ·Nbarber)
��

B ·Nbutcher⇒ A ·Nbarber ·Nbutcher

5.1.3 Distributivity.

We combine the following pair of results

⊢ (A ∧ B) ·N ⇒ (A ·N) ∧ (B ·N) (Theorem E18)

⊢ (A ·N) ∧ (B ·N)⇒ (A ∧ B) ·N (Axiom E19)

to show that names distribute over principal conjunction:

⊢ (A ∧ B) ·N = (A ·N) ∧ (B ·N) (Theorem E20)

Here is a motivating example: If Alice has two doctors Emily and Fred, and Bob visits

doctors Fred and George, then who is “(Alice and Bob)’s doctor?”

E ⇒ A ·Ndoctor

F ⇒ A ·Ndoctor

F ⇒ B ·Ndoctor

G⇒ B ·Ndoctor

Applying Theorem E20, we conclude:

F ⇒ (A ∧B) ·Ndoctor

That is, Fred is the only person who serves as both people’s doctor.

5.1. THE LOGIC OF NAMES 49

5.1.4 No quoting axiom.

The principal (A|B) · N can be written, but I have yet to find a meaningful intuitive
interpretation for it. (A|B) ·N bears no obvious relation to (A ·N)|(B ·N), for example. I
allow the principal in the logic, but I offer no axioms for extracting quoting from inside a
name application.

5.1.5 Nonidempotence.

Finally, application of names should not be always idempotent. Unless some other speaks-
for statement causes it, there is no reason that “Bob’s barber’s barber” should speak for

“Bob’s barber.” I was initially tempted to model name application (·) with role application,
because roles satisfy Axiom E17; however, roles are idempotent.

It may be the case, though, that the application of a name can become idempotent. Take
the example in Figure 5.1. In this example, let the symbol N stand for the name “barber.”

A

A ·N B

A ·N ·N B ·N C

A ·N ·N ·N B ·N ·N C ·N

Figure 5.1: An example that shows when inherited names can become idempotent. Each

arrow represents a speaks-for relationship; the text explains each arrow in more detail.

The upper solid left arrow represents an explicit statement made by Alice: A says B ⇒
(A · N); that is, Bob may serve as Alice’s barber, and do anything “Alice’s barber” is
allowed to do. Similarly, the other solid left arrow represents Bob delegating Charlie as his

barber. It turns out Charlie and Bob work in the same barber shop and cut each other’s
hair. The swooping solid arrow on the right represents Charlie delegating the responsibility
of “Charlie’s barber” to Bob. So A ·N is “Alice’s barber,” and is controlled by her barber

Bob. A ·N ·N is “Alice’s barber’s barber,” and is controlled by her barber’s barber Charlie.
Bob also has some control over “Alice’s barber’s barber,” since he is free to change his

barber from Charlie to another.
An interesting thing happens at the next level of name application. The literal name

“Alice’s barber’s barber’s barber,” who we know as Bob, is actually equal to “Alice’s barber’s
barber.” It is not that Bob becomes equal to Charlie, but that ·N has become idempotent.

In our case, both Charlie and Bob have control over A ·N · N , so any further application
of ·N introduces no new restrictions on the resulting principal. The derived principal is

equal to the parent principal. This conclusion is both intuitive, and valid in the semantics
I present next, but cannot be proven using the logic.1

1I accept incompleteness. Abadi et al. mention that the original logic was incomplete. The
T
⇒ relation cer-

50 CHAPTER 5. THE SEMANTICS OF SPKI NAMES

5.2 The semantics of names

Names and name application cannot be modeled with the roles and the quoting opera-

tor, because quoting a role is always idempotent. Furthermore, using the same role for
multiple uses of the same name by different principals introduces crosstalk as described in

Section 4.3.2.
Instead, I model names as follows. First, add a new element K to the tuple that defines

a model. A model with naming consists of:

M = 〈W,w0, I, J, K〉

The new interpretation function K : P × N → 2W×W maps a primitive principal A and
a name N to a relation. The idea is that principals only define the first level of names in

their namespaces; all other names are consequences of chained first-level name definitions.
Next extend R to define the relations for principals formed through name application.

We want to define R(A · N) as the intersection of several other sets, each requirement
ensuring a desired property. The definition, however, would end up circular (at requirement

(I), with equal principals) if it were expressed in terms of set intersection. Instead, we define
R(A·N) as the largest relation (subset of 2W×W) satisfying all of the following requirements:

R(A ·N) ⊆ R(B ·N) (I)

(∀B : R(A) ⊆ R(B))

R(A ·N) ⊆ K(A,N) (II)

(when A ∈ P)

R(A ·N) ⊆ R(B ·N) ∪R(C ·N) (III)

(when A = B ∧ C)

(Definition E21)

Requirement (I) supports Axiom E17. Requirement (II) applies only to primitive princi-

pals, and allows each primitive principal to introduce definitions for first-level names in that
principal’s namespace. A system implementing instances of the handoff rule does so con-

ceptually by modifying K(A,N). Requirement (III) only applies to principal expressions
that are conjunctions, and justifies Theorem E20.

There is no question some such largest relation exists. Since each requirement is a
subset relation, at least the empty set satisfies all three. There is an upper bound, since

every relation is a subset of the finite set W ×W . Finally, the largest relation must be
unique. For if there were two such relations, then any element in one must belong to

the other, since it belongs to every set on the right-hand side of a subset relation in the
requirements, and we arrive at a contradiction.

5.3 Challenges in the name semantics

In my semantics, as in Abadi’s, left-monotonicity (Axiom E17) turns out to be surprisingly
powerful. In this section I consider how to temper it. I also consider a stronger version

tainly does not help matters, considering that completeness would involve introducing finite-set mathematics
to the logic.

5.3. CHALLENGES IN THE NAME SEMANTICS 51

of left-monotonicity, generalized to the restricted-speaks-for relation, and discuss why it is
undesirable.

The semantics I have chosen here have subtle consequences. Axiom E17 is a dangerous

axiom, because it lets principals modify other principal relations without limiting their own.
For example, if B = W ×W , then B speaks for every principal A, since R(A) ⊆ R(B).
Now if B assigns a name in its namespace (B says C ⇒ B ·N), we must modify our model
to ensure that R(B · N) ⊆ R(C). Because B · N is a different principal than B, with an
independent relation, R(B) is not affected. But requirement (I) asserts that all principals
that B speaks for inherit B’s names; therefore we can conclude that C ⇒ A · N for every

principal A. This result is not satisfying; the semantics has failed to capture the notion
that A does not mean to give its power away to any principal B silent enough to speak for
A, but only to principals that it somehow delegates to “directly.”

One way to repair this problem is to ensure that B’s relation is weakened whenever it
says something about its local namespace, so that only a principal “intentionally” inheriting
B’s other beliefs will inherit B’s name bindings as well. For example, suppose that when
B says C ⇒ B ·N , we also assume that there is some statement s that represents the idea
C ⇒ B · N , and that B says s. Now, unless another principal A specifically allows B to
speak for it (including about the special statement s), requirement (I) does not cause A to
inherit B’s name binding for N .

I am not especially satisfied with the intuitive value of this repair, and I continue to
search for a more satisfying semantics for names that avoids the pitfalls I have identified in

my own semantics and in Abadi’s.

One may also wonder why I restrict the condition of requirement (I) to the complete
speaks-for relation, and do not include the restricted speaks-for relation:

R(A ·N) ⊆ φ+
T (B ·N) (∀B : R(A) ⊆ φ+

T (R(B)))

This proposal would mean that if B has limited power over A, then B ·N should have the

same power over A ·N . There are two reasons I avoid this definition.
First, the result is not intuitive. If Bob speaks for Alice with regard to stock trading

(Bob is Alice’s broker), should Bob’s barber speak for Alice’s barber with regard to stock
trading? It may be a moot question, since no one is likely to delegate permission over

stock trading to the symbolic name “Alice’s barber,” but in any case the proposal seems
unnatural.

Second, the semantics suggest that the proposal is troublesome. If we replace require-

ment (I) with the proposal, suddenly almost every principal, by its choice of local name
bindings, has some degree of control over every other principal’s names. One can define

a function that, given two relations R(A) and R(B), returns a subset of 1 which when
composed with R(B · N), produces an upper bound for R(A · N) by considering every
choice of T . It turns out that this upper-bound usually ends up surprisingly small, giving

barely-related principals a high degree of control over one another’s names. Furthermore,
the repair I suggest above (introducing a special statement s to capture intentional delega-

tions) does not help, because the upper-bound function considers every T , including those
that disregard s.

52 CHAPTER 5. THE SEMANTICS OF SPKI NAMES

Abadi’s notation My notation

S Σ
µ : S ×W → {true , false} I : Σ→ 2W

ρ : N ×W → 2W K : P ×N → 2W×W

a ∈ W w ∈W

principals p, q A,B ∈ P ∗

n ∈ N N ∈ N
[[n]]a = ρ(n, a) R(A ·N)(w) = K(A, N)(w)

[[p′s n]]a R(A ·N)(w)

Table 5.1: A guide to translating between Abadi’s notation and mine

I initially thought it arbitrary that SPKI allowed restricted authorizations but only

unrestricted name bindings. In the light of my current semantics, however, I cannot justify
extending name bindings to allow restriction.

5.4 Abadi’s semantics for linked local namespaces

Abadi gives an alternate logic and semantics for SPKI-style linked local namespaces [Aba98].

(He refers to SDSI, from which SPKI 2.0 derives.) Abadi’s notation diverges from that used
in the Calculus for Access Control [ABLP93], but the semantics are the same. Table 5.1

helps translate the notation. My semantics differs in three interesting ways.
First, SPKI has special global names, so that if NG is a global name, A · NG = NG.

The result is that the same syntactic construct can be used to bind a local name to another
local name or to a globally-specified name. All names in linking statements are implicitly

prefixed by the name of the speaking principal; but if the explicitly mentioned name is
global, the prefix has no consequence. I consider this syntactic sugar, and leave it to an

implementation to determine from explicit cues (such as a key specification or a SDSI global
name with the special !! suffix) whether a mentioned principal should be interpreted as local
to the speaker.

Second, Abadi’s logic adopts the handoff rule for names, which he calls the “Linking”
axiom. Here it is, translated to my terminology:

A says (B ⇒ (A ·N)) �
�(B ⇒ (A ·N))

He validates the axiom by the use of composition to model name application, with which I

disagree.
The third and most important way my semantics differs from Abadi’s is that Abadi’s

semantics models name application as quoting (composition). Each unqualified (local) name
is mapped to a single relation. This property can introduce crosstalk between otherwise
unconnected principals; recall the example from Section 4.3.2. Even when a name relation

is not constrained to be a role, the same problem arises. For example, let N represent the
name “doctor.” Imagine that Bob assigns Charlie to be his doctor: C ⇒ B|N . This is fine;

Charlie should be able to do some things on Bob’s behalf, but not everything: If B|N
T
⇒ B,

then Charlie can do the things in T .

5.4. ABADI’S SEMANTICS FOR LINKED LOCAL NAMESPACES 53

Enter Alice, who is not only omniscient (A = 1), but serves as her own doctor (A ⇒
A|N). Abadi’s semantics requires that R(1) ◦ R(N) ⊆ R(1). At worst, R(N) = R(1),
causing B|N = B, enabling Charlie’s doctor to make investment decisions on Charlie’s
behalf. At best, R(N) ⊂ R(1), and B|N begins spouting off random statements, some of

which may be in T , making Bob believe random statements.2 My semantics escapes this
fate by assigning to each use of a name its own relation, then ensuring the correct subset

relationships remain among those relations.
In summary, defining a meaningful semantics to local applications of names from the

same global namespace is nontrivial. My semantics depends on an existential definition
involving the “largest set satisfying the requirements,” and is therefore more opaque than

illuminating. Despite its limitations, I feel that it is better than an alternative that implies
undesirable consequences.

2Specifically, those statements in T where φT (R(B|N)) = ?.

54 CHAPTER 5. THE SEMANTICS OF SPKI NAMES

Chapter 6

The semantics of authorization tag
notation

My logic requires a notation for propositions and sets of propositions. An important part
of SPKI are user-defined tags that can represent either. SPKI tags are attractive because,

when used as sets, users may extend them to arbitrarily fine granularity, ensuring that users
can always refine delegations they wish to share. SPKI provides a prose description of how

tags are to be intersected, which gives the user a rough idea about the meaning of tags.

In this chapter, I derive a formal language for tags and show that tags are (almost) closed

under intersection. In addition to clarifying the SPKI notion of tag, the semantics serves two
important purposes: First, the proofs of closure imply an unambiguous implementation of
tag intersection. Second, the semantics shows that tags have a desirable property I depend

upon for my formalization of SPKI’s properties in Section 7.9.

6.1 Overview

One confusing aspect of tags is that they serve to represent both single requests and del-
egation restrictions (sets of requests to be permitted). How do they do this? The short

answer is containment. Most tags represent an infinite set of finite strings. Let us call those
strings atoms, the indivisible unit of privilege. A request to be verified is a set of atoms; the

intuition is that executing the request requires that the requester have at least a certain set
of privileges. A permission describes another set of atoms. If the permission’s set contains

the request’s set, then the permission grants at least each of the atoms required for the
request.

Why use infinite sets of atoms? For extensibility. In general, a permission is represented
by a tag, an infinite set of atoms. Therefore, it can always be further subdivided into more-

specific permissions, each still represented by an infinite subset of the original permission’s
atoms.

Given this motivation for the structure of tags, I construct tags from the ground up

using grammars. I begin by defining bytestrings and the atomic finite strings I have called
atoms.

55

56 CHAPTER 6. THE SEMANTICS OF AUTHORIZATION TAG NOTATION

6.2 Bytestrings and atoms

Let Σ be the natural alphabet of our system; in our case, let it be the set of 256 octets. Let
B be the set of all finite-length strings of octets, Σ∗:

B := σB (∀σ ∈ Σ)

| ε

This is the set SPKI calls “bytestrings.” Next we extend Σ with three metasymbols to
unambiguously demarcate the list structure of an atom: Σ′ = Σ∪{ , , }. Now define the
mutually-recursive sets of expressions (E), lists of expressions (L), and non-empty lists of
expressions (N):

E := B

| L

L := N

| ε

N := E N

| E

The gymnastics with the non-empty lists serve to prevent lists from ending with a just
before the ; this feels right but it is not important for the development of the semantics.

We define the set of all atoms to be exactly the set of expressions derived by the grammar

for E. Notice that every atom is a finite object with an unambiguous tree structure defined
by the special delimiters { , , }. Every internal node is a list, and every leaf node is a
bytestring.

6.3 Auths

Recall that a tag, which specifies either a request or a set of delegated permissions, represents

a (usually infinite) set of atoms. A tag is the finite notation for a request or a restriction
set; I call the (usually infinite) set that a given tag represents an auth. Our next task is to

define the set of auths, each a subset of E. In the next section, I show that the set of SPKI
tags is, with a few exceptions, isomorphic to the set of auths I define here.

6.4. CLOSURE OF AUTHS UNDER INTERSECTION 57

We first define the base-case auths:

Anull = ∅ (Definition T1)

A∗ = E (Definition T2)

Abs(b) = {b} (∀b ∈ B)

(Definition T3)

A0 = Anull

⋃

A∗

⋃

b∈B

Abs(b) (Definition T4)

Then we extend it recursively. Aset and Alist are defined in terms of other auths, and the
set of auths Aj includes all those sets and lists composed only using auths from earlier

definitions (Aj−1):

Aset(a1, . . .ak)

=
⋃

1≤i≤k

ai (Definition T5)

Alist(a1, . . .ak)

=

x1 x2 . . . xk · · · xn
such that

xi ∈ ai ∀i, 1 ≤ i ≤ k

xi ∈ E ∀i, k < i

(Definition T6)

Aj = Aj−1
⋃

Aset(a1, . . .ak) ∀ai ∈ Aj−1
⋃

Alist(a1, . . .ak) ∀ai ∈ Aj−1

(∀j > 0)

(Definition T7)

Finally, the set A of auths is the union of all Aj.
Observe that every member a ∈ A is indeed a member of 2E. We prove this property

inductively. Clearly Anull and A∗ are members of the power set of E. By rule E := B,
every singleton set Abs belongs to the power set of E. This argument shows the base case,

A0 ∈ 2
E.

An auth introduced at any set Aj is either an Aset or an Alist. If it is an Aset, it is formed

of the union of other ai from Aj−1. By the induction hypothesis, each ai is a subset of E,
and hence their union is as well. If the new auth is instead defined by Alist, it is composed
of strings x1 . . . xn . Each xi belongs to E, either by its requirement to belong to a

subset ai of E, or by its requirement to belong to E itself. By rule E := L , we know
that E includes any list formed of other members of E, which ensures that every such string

x1 . . . xn is indeed in E.

6.4 Closure of auths under intersection

The proof that A is closed under intersection is constructive, and in fact leads directly to

a concrete implementation of tag intersection. Put another way, this proof provides direct
intuition why the SPKI tag intersection procedure is meaningful.

58 CHAPTER 6. THE SEMANTICS OF AUTHORIZATION TAG NOTATION

ax
ay Anull A∗ Abs(b) Alist(. . .) Aset(. . .)

Anull I I I I I

A∗ I II II II II
Abs(b) I II III IV VI

Alist(. . .) I II IV V VI
Aset(. . .) I II VI VI VI

Table 6.1: Pairwise possibilities for set intersection. Roman numerals indicate the proof

section that handles the given case. The emphasized entries in the upper-left corner are the
cases handled in the base case of the inductive proof.

Given any two members ax, ay ∈ A, we wish to exhibit az = ax ∩ ay, with az ∈ A. We
know that there exist ix and iy such that ax ∈ Aix and ay ∈ Aiy ; let us assume we have the

smallest such ix and iy. We show by induction over max(ix, iy) that ax ∩ ay ∈ A; that is,
there exists some positive integer j such that ax ∩ ay ∈ Aj .

The base case of the induction has max(ix, iy) = 0; that is, ax ∈ A0 and ay ∈ A0. We
show in cases I, II, and III that ax ∩ ay ∈ A0; all possibilities for the base case appear in

the italicized upper-left-hand corner of Table 6.1.

The induction hypothesis assumes for all ix, iy < n, there exists a j ′ such that ax ∩ ay ∈
Aj′ . Our task, given ax ∈ Aix and ay ∈ Aiy with ix, iy ≤ n, is to exhibit j such that
ax ∩ ay ∈ Aj. We do so by constructing a set equal to the intersection using one of the

five auth formulas Anull, A∗, Abs(b), Aset, or Alist. Then we demonstrate that the set given
by the formula is in some Aj. The choice of formula depends on how ax and ay came to

belong to Aix and Aiy . For example, if ix (the smallest index for which ax ∈ Aix) is zero,
then we know either ax = Anull, ax = A∗, or ax = Abs(b) for some bytestring b. Otherwise,
if ix > 0, then ax = Alist(. . .) or ax = Aset(. . .). The same options are possible for ay. To

construct the intersection, we must consider all of the pairwise possibilities. Table 6.1 maps
each possibility to a proof case below. Notice we reuse base cases I and II in the inductive

step.

Case I. Either ax = Anull = ∅ or ay = Anull = ∅, so their intersection is empty, and

can be represented by Anull. Anull = ∅ belongs to A0.

Case II. Assume without loss of generality (WOLOG) that ax = A∗ = E (if instead it

is ay = A∗, the proof works symmetrically). Then ax ∩ ay = ay. Since ay ∈ Aiy , we have
ax ∩ ay ∈ Aiy .

Case III. Both ax and ay are singleton bytestrings. If they contain the same bytestring
b, then their intersection is clearly ax ∩ ay = Abs(b) = ax, which we know to be in Aix.

Otherwise, the bytestrings are different, the singleton sets intersect to ∅, and we have
ax ∩ ay = ∅ = Anull ∈ A0.

Case IV. Assume WOLOG that ax = Alist(. . .) and ay = Abs(b). Then every member
of ax is a string beginning with the special list delimiter , but the single member of ay
does not. Therefore their intersection is null, a member of A0.

Case V. Let ax = Alist(c1 . . . cj), and ay = Alist(d1 . . . dk). Assume WOLOG j ≤ k. By

6.4. CLOSURE OF AUTHS UNDER INTERSECTION 59

Definition T6, the intersection ax ∩ ay =

x1 x2 . . . xk · · · xn
such that

xi ∈ ci ∀i, 1 ≤ i ≤ j

xi ∈ E ∀i, j < i

xi ∈ di ∀i, 1 ≤ i ≤ k

xi ∈ E ∀i, k < i

We can rewrite the conditions as:

x1 x2 . . . xk · · · xn
such that
xi ∈ ci ∩ di ∀i, 1 ≤ i ≤ j

xi ∈ E ∩ di ∀i, j < i ≤ k

xi ∈ E ∩E ∀i, k < i

Since ax, ay ∈ Ai, we know by Definition T7 that c1 . . . cj ∈ Ai−1 and d1 . . . dk ∈ Ai−1. Let

ei =

{

ci ∩ di ∀i ≤ j

di ∀j < i ≤ k

The induction hypothesis gives us j ′ such that ei ∈ Aj′ . We can now write the intersection
as

ax ∩ ay = Alist(e1 . . . ek)

=

x1 x2 . . . xk · · · xn
such that

xi ∈ ei ∀i, 1 ≤ i ≤ k

xi ∈ E ∀i, k < i

Because ei ∈ Aj′ , we conclude that ax ∩ ay ∈ Aj′+1.

Case VI. Assume WOLOG ax = Aset(a1 . . . ak). Let az = Aset(a1 ∩ ay, a2 ∩ ay, . . .ak ∩
ay). To see that az = ax ∩ ay, observe that for any auth a,

a ∈ ax ∩ ay

≡ a ∈ ax ∧ a ∈ ay

≡ (∃i ≤ k, a ∈ ai) ∧ a ∈ ay

≡ ∃i ≤ k, (a ∈ ai ∧ a ∈ ay)

≡ ∃i ≤ k, (a ∈ ai ∩ ay)

≡ a ∈ ax

We know ai ∈ Axi−1 for i ≤ k, since ax ∈ Axi
. By the induction hypothesis we know that

there exist j1 . . . jk such that am ∩ ay ∈ Ajm for m ≤ k. Let j = maxm(jm) + 1. Because

Aj−1 contains every Ai for i ≤ j − 1, we have am ∩ ay ∈ Aj−1 for all m ≤ k. By our
construction of az, az ∈ Aj .

60 CHAPTER 6. THE SEMANTICS OF AUTHORIZATION TAG NOTATION

Having covered every possible combination of ax and ay, we have shown the induction,
and hence that A is closed under intersection. Furthermore, the cases above guide an

implementation of tag intersection: given any two tags, we know which constructor (such
as Alist) was used to create it, since tags are represented as such constructions. We can

immediately apply the techniques in the preceding cases to discover a tag construct that
represents the intersection of the input tags.

6.5 Tags

Tags in SPKI are approximately isomorphic with auths. There are three exceptions, related
to null tags, a special requirement on lists, and the special range and prefix tags.

6.5.1 The null tag

The first exception is that SPKI has no representation for the null tag (Anull). The result

is that the SPKI documentation must tread clumsily around the issue by saying that two
authorization tags “fail to intersect,” rather than intersecting to a null set. By including

the null set, we promote “failure” to a first-class object representable in the system.

6.5.2 Lists have an initial bytestring element

The second exception is that lists in SPKI tags must always have at least one element, and
the first element can only be a non-empty bytestring. One can readily redefine B, E and

Alist to satisfy this constraint. The basic structure of A does not change; we depend only
on each Aj ’s membership in 2

E.

6.5.3 Special tags cause havoc

The third exception is that SPKI has special tags range and prefix that define infinite
subsets of the set of bytestrings. We may readily extend the auth structure A by prefix,

but with range present, A is no longer closed under intersection. Consider for example the
SPKI tags:

(tag (* range numeric ge 0.5 le 0.5))

(tag (* prefix 000))

Their intersection is Arange(f(x) = {true if 0.5 ≤ x ≤ 0.5}) ∩ Aprefix(000), which we know
belongs to E. We can see, however, that it does not belong to A. The set contains an

infinite number of bytestrings. We cannot construct it with an Aprefix, or we would end
up with numeric values other than 0.5; we cannot construct it with an Arange or we would

have prefixes other than 000. The only other way to introduce bytestrings is Abs, which
introduces only one at a time. We may union together any finite number of bytestrings with
each application of Aset, but by no Aj will we have constructed the infinite set of bytestrings

necessary to describe the intersection of the tags in the example.
Indeed, the trouble is concentrated in the range form. The intersection of two ranges

with different ordering specifications can be an infinite set of bytestrings not representable
with the range or prefix form.

6.5. TAGS 61

How can we escape the dilemma? We can omit the range special form, but that would
not provide a satisfying model of SPKI. We could introduce an intersection operator analo-

gous to the union operator Aset, but that would be a hack. Since A is otherwise closed under
intersection, an intersection operator should never be used except when intersecting these

curious bytestring expressions, for it would only lead to needlessly larger representations
for auths. The final option, that I adopt, is to accept the incompleteness of tags. Assume

t3 = t1 ∩ t2, that is, the tag-intersection procedure run on tags t1 and t2 produces tag t3.
Let A(t) be a function mapping a tag to the auth it represents, a typically-infinite subset of

E. If tags are complete, then A(t3) = A(t1) ∩ A(t2). If we must sacrifice the completeness
of tags, we still know that A(t3) ⊆ A(t1) ∩A(t2). This provides assurance that the autho-

rization procedure is at least still sound: we will not conclude a chained delegation confers
authority (atoms) that is not conferred by both members of the chain.

Treating the intersection of a range with a range or prefix as null should not be

terribly limiting in practice. When either form is used, it is specifying a value for some field
with a particular interpretation; it is likely that in a real system any given field would only

have one meaningful mode of comparison.

6.5.4 Semantics of special tags

SPKI contains several special forms for tags: (*) represents the auth A∗. (* set ...)

represents the auth Aset(...). (* prefix ...) and (* range ...) represent (possibly
infinite) sets of bytestrings. To model these tags, we need to extend the base definition of

A:

Aprefix(p) = {b | b = ps, s ∈ Σ} (Definition T8)

Arange(f) = {b | f(b) = true} (Definition T9)

A0 = Anull
⋃

A∗
⋃

b∈B
Abs(b)

⋃

p∈B
Aprefix(p)

⋃

b∈f Arange(f)

(Definition T10)

The function f : Σ∗ → {true, false} selects a range of bytestrings, and is used here as an
abbreviation to hide that complexity. The function depends on the specified ordering (alpha,

numeric, time, binary, or date), the (optional) low and high bounds, and bits specifying
whether each bound is exclusive or inclusive.

The matrix of intersection cases must now be extended to support the new possibili-

ties (see Table 6.2). This extension of course will no longer show the completeness of A
under intersection (unless Arange is removed). But it is still useful as a thorough guide to

intersecting tags.

Case VII. In this case, assume ax = Abs(b) = {b} and ay = Aprefix(p) or ay = Arange(f).
This case is similar to case III: if b ∈ ay, then the intersection is az = Abs(b) = ax; otherwise

it is ∅ = Anull.

Case VIII. We have ax = Aprefix(px) and ay = Aprefix(py). Assume WOLOG |px| > |py|
(px is a longer string). If py is a prefix of px (that is, px = pys), then ax∩ay = ax: if b ∈ ax,

62 CHAPTER 6. THE SEMANTICS OF AUTHORIZATION TAG NOTATION

ax
ay Anull A∗ Abs(b) Aprefix Arange Alist(. . .) Aset(. . .)

Anull I I I I I I I

A∗ I II II II II II II
Abs(b) I II III VII VII IV VI

Aprefix I II VII VIII IX X VI

Arange I II VII IX IX X VI

Alist(. . .) I II IV X X V VI
Aset(. . .) I II VI VI VI VI VI

Table 6.2: Pairwise possibilities for set intersection in the presence of the range and prefix

auth constructors. The emphasized entries are additions beyond Table 6.1.

b = pxs
′ = pyss

′, so b ∈ ay. Otherwise, when py is not a prefix of px, the intersection is
empty: b ∈ ay implies b = pys, and we know py disagrees at some symbol position with px,

so b �∈ ax.

Case IX. Set ax is a range and set ay is a range or a prefix. Often we will treat
the intersection as null (to preserve the soundness of auths). In a specific circumstance,

when both ax and ay are ranges specified with the same ordering function, we can readily
construct a range equal to the intersection by taking the more restrictive of the bounds

from each input range.
Case X. Assume WOLOG ax is a list and ay is a range or prefix. In this case, every

string in ax begins with the list delimiter , and every string in ay begins with a symbol in
the octet alphabet (Σ), so the intersection is null.

Notice that only case IX spoils the completeness property; striking Arange from our

definition removes its row and column from the matrix, eliminating any reference to case
IX.

6.6 The meaning of intersection

The SPKI documentation describes the intersection of two authorization tags as having

two possible outcomes: a new tag or a failure to intersect. These results are meant to be
interpreted differently depending on whether the intersection operation was between two
delegations, or between a delegation and a specific request.

In the former case, the desire is that the tag that is the product of the intersection

represents no more authority than either argument tag delegated by itself, and that if the
intersection fails, then the combination of the delegations is worthless.

In the latter case, the desired interpretation is that should the intersection succeed at

all, the request must be authorized by the delegation tag. This interpretation makes sense if
every request is more specific than any delegated permission; the only intersection possible

is to return the request tag.
My semantics lends a concrete interpretation in both cases. When intersecting delegated

permissions, it returns exactly the subset of atoms granted by both input tags (modulo the
incompleteness introduced by the range form, in which case it returns a subset of the

6.7. ORDER DEPENDENCE 63

intersection of the atoms). If the tags have a null intersection, we treat that object just like
any other; however, because it is an empty set of atoms, it is worthless in that no request

will be authorized by it.

SPKI’s AIntersect procedure for tag intersection suggests that a delegation tag includes

a permission if the intersection of the two is non-null. My tag semantics tells us that to
ensure that such intersection is meaningful, one must ensure that all permissions are finer-

grained than the sets described by any delegation. Such restriction hampers the elegant
extensibility of tags. In contrast, when authorizing requests, we intersect the delegation tag

with the request tag, and test whether the result equals the request tag. If so, we conclude
that all of the (typically infinite) set of atoms demanded by the request are granted by

the delegation. If not, we conclude that some smaller (possibly empty) set of atoms were
granted; in any case, they are not sufficient to justify granting the request.

Set containment provides a concrete, mathematically sound interpretation for specifying

authorizations in an infinitely-extensible fashion.

6.7 Order dependence

The semantics of SPKI tags specifically depend on the order of elements in a list; intersection

of two lists involves pairwise intersection of each list’s elements. Because lists are implicitly
followed by an arbitrarily-long supply of A∗s, lists are extensible in that a new property can
be defined for the list and assigned to the next unused position in the list.

For example, imagine that one is defining a tag format for delegating access to a database
of employee records. A first-cut tag format might look like:

(employee

(id (*))

(salary (*))

)

Such a definition gives users of the system the ability to delegate to others rights such as the

right to inspect only employee records with a specific ID number (employee (id 01247)

(*)), or those of employees earning more than $50,000 (employee (*) (salary (range

gt 50000))). Because tags are extensible, one may later decide that the ability to select

employees based on anniversary year is useful, so the definition is extended to:

(employee

(id (*))

(salary (*))

(anniversary (*))

)

Because list tags are followed by implicit (*) members, all existing delegation tags continue

to be meaningful even when the new format is deployed.

What happens, however, if two independent organizations want to extend the format in-
dependently? In our example, perhaps one department of the corporation wishes to add the

anniversary extension (and does so for their internal applications), and another department
adds an extension representing hair color to the tag format used in their applications. The

64 CHAPTER 6. THE SEMANTICS OF AUTHORIZATION TAG NOTATION

resulting extensions do not necessarily compromise security (since each sublist is annotated
with the name of the attribute it refers to), but the extensions may never be used together:

that third spot in the employee list can only contain one sublist.

There is an attractive solution. The semantic definition of auths does not preclude
assigning elements to locations in lists with arbitrarily high indices. Therefore, when as-

signing a new extension such as anniversary, we could simply assign it to the index of the
employee list given by the ordinal value of the bytestring “anniversary.” This approach,

however, is not desirable with the current definition of tag representations. A tag using
that anniversary extension, for example, would contain some 1.2× 1026 instances of (*)

to place the (anniversary ...) sublist in the correct location.

To make the solution work, I propose a simple extension to SPKI’s special-form tags,

the named-attribute (named) form:

(* named (attribute-name ...))

An named-attribute tag expression always has a single list argument. The first element of

the list is a bytestring (a requirement in SPKI), which I call the attribute-name, and the
remainder of the list is the associated value. Let ord(b) be the ordinal value of a bytestring

b. A list containing a (* named (attribute ...)) special form would represent the list
in which the argument of the special form appears at position ord(attribute) in the list.

6.7.1 Handling non-bytestring attribute names

My general semantics does not require lists to begin with a bytestring. We can easily define
an ordering over Σ′ rather than just Σ, and compute the location of the attribute in the

parent list based on the ordinal value of the attribute name, even when that “name” is
itself a list. This fix does not handle lists containing sets. The use of sets as attribute

names would require some canonical ordering of the members in the set. Their use would
also require a unique representation for any auth containing a set. It turns out that such a

representation is indeed possible, formed by bubbling every set operator out of the inside of
lists and joining them. This canonical form makes small tags into large ones; for example, (a

(* set b c d) e) becomes (* set (a b e) (a c e) (a d e)). Fortunately, the ord()
function is only a theoretical construct used in the semantics; it would never be needed in
any implementation of auth intersection.

6.7.2 Interference between ordered and named attributes

With the definition given above, one might cause an unexpected interaction between named

attributes and attributes specified by their order when their positions in the list coincide.
For example, if ord(A) = 65, one might construct a list with sixty-five attributes specified

in order, as well as a named attribute (* named (A cat)). The named attribute and the
sixty-fifth ordered attribute would coincide, and so far I have given no specification for how
to map a list tag to an Alist when the tag specifies multiple auths for the same position in

the list.

The semantic solution is simple: let the nth ordered attribute appear at location 2n− 1
in the list, and let each named attributed appear at location 2 · ord(attribute-name) in the

6.8. ANALOGY WITH DEDEKIND CUTS 65

list. There are an infinite supply of odd and even list locations, and they do not interfere
with one another.

What should an implementation do with a tag that specifies the same named attribute
twice? It seems natural that the list location should contain the intersection of the associated

values.

6.7.3 Intersection of lists containing named attributes

In any real implementation, of course, we cannot expand a list containing named attributes

into its semantic form, since the length of the list grows exponentially with the length of
the names of the attributes. We expect the lists to be sparse, so a sparse representation of
the lists should work well. Store explicit position indices (attribute-names where defined,

and the list index otherwise) alongside the corresponding values, with the entire collection
sorted by position. The intersection routine walks the lists simultaneously and invokes itself

recursively whenever it encounters two values with the same attribute-name or position
index. As in the basic list-intersection routine, if only one list specifies a value for a given

position, the other list’s value is assumed to be A∗, and the intersection is the explicitly
specified value.

6.7.4 Recommendations for the use of ordered and named attributes

In the SPKI RFC, the authors suggest that while lists can be used to name attributes, one

can omit the names for compactness. In their example,

(ftp (host ftp.clark.net) (dir /pub/cme))

becomes:

(ftp ftp.clark.net /pub/cme)

The rationale is that attributes are position-dependent, so there is no ambiguity when the
attribute names (host and dir) are dropped.

Indeed, any correct mechanical implementations can infer the meaning of the values by
their position in the list. It is likely, however, that a human implementor may incorrectly

infer the intent of the values, perhaps because he only has access to example attribute values
but not the names.

I recommend that attributes be supplied with names whenever possible. Whether at-
tribute positions are specified by order or by a named-attribute special form is immaterial;

that decision is one of expediency, and can be made based on the likelihood that a given
attribute will be omitted from a tag specification. Providing names that document the

meanings of values, however, helps avoid ambiguity, especially in a structure that is in-
tended to be extensible in the future and by unknown parties. My recommendation is an
example of principle 1 from [AN96]: “Every message should say what it means.”

6.8 Analogy with Dedekind cuts

This perspective on SPKI auth tags has a pleasant analogy to Dedekind’s construction of
the real numbers [BM91, pp. 15–17]. Each real number α is defined by an infinite set of

66 CHAPTER 6. THE SEMANTICS OF AUTHORIZATION TAG NOTATION

rational numbers less than α; the result is continuity. The rationals are totally ordered.
Every Dedekind cut respects that ordering by containing every rational less than any other

rational contained in the cut; that is, there are no “gaps” in a Dedekind cut.
In the construction of auths as sets of atoms presented here, atoms can be partially

ordered, and auths respect that ordering by containing every atom less than any atom
contained in the auth. The result is a kind of density corresponding to the continuity of

the real numbers. Any two unequal reals have another real between them; by analogy,
any list auth can be arbitrarily subdivided into smaller auths along an arbitrary number

of dimensions. This limitless extensibility makes SPKI auth tags adaptable to changing
environments.

Chapter 7

Modeling SPKI

The original Calculus for Access Control is useful because its principals are general enough to
model several parts of a computing system, from users to trusted servers to communications

channels. By adding the ability to restrict authority with any delegation, I make the calculus
powerful enough to be useful across administrative domains. Perhaps the most convincing

evidence of this power is how well my extended calculus can model SPKI, an access-control
system designed to span administrative domains.

Appendix D reviews the structure of SPKI. To formally model SPKI with my extended

calculus, I first give a construction that models the delegation-control bit.

7.1 Delegation control

The SPKI document gives the motivation for including a delegation-control bit in SPKI

certificates. I disagree with the argument and fall in favor of no delegation control, and
for the same reasons as described in the document: delegation control is futile, and its

use tempts users to divulge their keys or install signing oracles to subvert the restriction.
Such subversion not only nullifies delegation control, but forfeits the benefits of auditability

provided by requiring proofs of authorization. Despite my opinion, I present a construction
that models delegation control.

To model the delegation-control feature we wish to split the says modality into two

separate modalities: “utterance,” which represents a principal actually making a statement,
and is never automatically inherited by other principals, and “belief,” which is inherited

transitively just as says is. Not only is introducing a new logical modality clumsy, but it
would require us to support a dubious axiom, undermining the simplicity of the semantics.

Instead, we resort to an equivalent construct: we split each “real” principal A we wish to
model into subprincipals Au and Ab. Au shall say only the things that A utters (statements
that are actually signed by A’s key; recall that all certificate-issuing principals in SPKI are
keys), and Ab shall say all of the things that A believes. A may inherit her beliefs from
other principals (because she has delegated to other subjects the authority to speak on her

behalf), and furthermore A should believe anything she utters. This last condition replaces
the clumsy axiom we wished to avoid; instead we enforce it by explicitly assuming the

67

68 CHAPTER 7. MODELING SPKI

following statement for all principals A and statements s:

⊢ Au says s ��Ab sayss (Assumption E22)

Certificates issued by a concrete principal A are statements uttered by A asserting

things that A believes, so we model them as statements about Ab said by Au. The desirable
outcome is that no principal can delegate authority to make herself utter something (make

Au say something); she may only utter the statement directly (by signing it with her key).

7.2 Restriction

Recall that a SPKI 5-tuple includes five fields: issuer, subject, delegation-control bit, autho-

rization, and validity dates. Let I and S represent the issuer and subject principals. Let TA
represent the set of primitive permissions represented by the authorization S-expression, and

TV the set of primitive permissions limited by the validity dates (assuming the effective-time
encoding of Section 4.3.3). The 5-tuple can be represented this way if its delegation-control

bit is set:

Iu saysSb
TA∩TV⇒ Ib

or this way if not:

Iu saysSu
TA∩TV⇒ Ib

A 4-tuple has a name field (N) and no authorization field or delegation-control bit. It

would be encoded:

Iu saysSb
TV⇒ Ib ·N

It seems natural that a delegation bit is meaningless for a name binding, for in SPKI, a
name principal can never utter a statement directly, only a key principal can. It is surprising,

however, that SPKI name-binding certificates omit the authorization field. Why not allow
a principal to say the following?

Iu says (Sb
{shampoo}
⇒ Ib ·Nbarber)

As it turns out, my semantics does not support such restricted name bindings (see Sec-

tion 5.3).

7.3 Linked local namespaces

The subject principals in the keys above may be either keys (each directly represented by a

primitive principal) or a string of names grounded in a key. Hence namespaces are “local”
in that names are meaningless except relative to a globally unambiguous key; namespaces

are “linked” in that the naming operation may be repeated: If K1 ·N1 resolves to K2, then
K1 ·N1 ·N2 is the same as K2 ·N2, perhaps defined as some K3.

7.4. THRESHOLD SUBJECTS 69

I give a logic and semantics for linked local namespaces in Section 5. We model the SPKI
name subject “george: (name fred sam)” with the principal expression Kgeorge · N“fred” ·
N“sam”. Substituting the principal expression for Sb, a 4-tuple takes on the general appear-
ance:

Iu says ((KS ·N1 · · ·Nk)
TV⇒ Ib ·N0)

7.4 Threshold subjects

A threshold subject is a group of n principals who are authorized by a certificate only
when k of the principals agree to the requested action. Such certificates are really just an

abbreviation for a combinatorially-long (nk) list of conjunction statements. For example, a
certificate with a 2-of-3 threshold subject naming principals P1, P2, and P3 and an issuer

A can be represented as:

P1 ∧ P2 ⇒ A

P1 ∧ P3 ⇒ A

P2 ∧ P3 ⇒ A

Hence the logic easily captures threshold subjects, although any tractable implementation

would obviously want to work with them in their unexpanded form.

7.5 Auth tags

The “auth tags” used in authorization fields in SPKI represent sets of primitive statements.
Therefore, we simply model them using mathematical sets.

7.6 Tuple reduction

The SPKI access-control decision procedure is called “tuple reduction.” A request is granted
if it can be shown that a collection of certificates reduce to authorize the request. The

reduced tuple’s subject must be the key that signed the request; the tuple’s issuer must
represent the server providing the requested service; and the specific request must belong

to the authorization tag of the reduced tuple.
It is clear that tuple reduction is sound with respect to the extended logic. When 5- and

4-tuples are encoded in the logic as shown in Chapter 5 and Section 7.2, tuple-reduction
simply constructs a proof from several applications of Theorem E6 and Axiom E17.

7.7 Validity conditions

An optional validity condition, such as a certificate revocation list, a timed revalidation list,
or a one-time revalidation, can be encoded in the logic using a conjunction. For example, a

certificate requiring a timed revalidation would be interpreted

A says (B ∧ (R|H1))⇒ A

70 CHAPTER 7. MODELING SPKI

to mean that the revalidation principal R must verify that this certificate (with hash H1)
is valid. Principal R signs a revalidation instrument I with a short validity interval TV

R says I
TV⇒ R

and a given revalidation instrument would agree with all valid outstanding certificates:

I says 0⇒ I |H1

I says 0⇒ I |H2

...

The principal 0 has relation R(0) = ∅, so that every principal speaks for 0. Using the
logic, we can reason that

0⇒ I |H1
TV⇒ R|H1

and since B = B ∧ 0, B
TV⇒ A. Notice the treatment of a certificate’s hash as a principal.

In the logic, principals are general entities and can be used to represent many objects and

actors.
Negative certificate revocation lists can be handled similarly; an implementation exam-

ining a revocation list would conclude I says 0 ⇒ I |H1 for any H1 not present in the
list.

One-time revalidations are meant to be interpreted as having a zero validity interval. A
system verifying a request s creates a nonce E, understanding E says s, and sends it to the

revalidator R. R replies with a statement meant to be interpreted

R says E
{s}
⇒ R|H1

Now both B and E
{s}
⇒ R|H1 say s, so A sayss. Any future request of the same sort will

require another revalidation, for its s will have a different effective time.

7.8 Safe extensions

My semantics suggests that SPKI may be safely extended to support a variety of principals

other than public keys. Channels protected by secret keys or a trusted computing base, for
example, are easily modeled as principals in the logic. In the examples in this dissertation,

I represent principals with symbolic names. Real principals, however, are represented by
some mechanism that can verify that a given request comes from a particular principal.

Examples of mechanisms for authenticating users include the UID mechanism in Unix, the
Kerberos authentication server, and public key cryptography. Lampson et al. show that

many common system components can be modeled as principals [LABW92].
Compound principals let us represent useful trust relationships other than delegation.

A conjunct principal (A∧B), for example, represents a principal that only believes σ when
both A and B believe σ. Hence a delegation to a conjunct principal is analogous to a check

7.9. DANGEROUS EXTENSIONS 71

that requires two signatures to cash. Conjunct principals are not first-class entities in SPKI,
although they can appear as threshold subjects; an extended SPKI might exploit Theorem

E20. Quoting principals are also missing from SPKI; Lampson et al. give nice examples
showing how quoting can help a multiplexed server or communications channel differentiate

when it is working on behalf of one client versus another [LABW92, Sections 4.3, 6.1, 6.2,
and 7.1]. Without quoting, such a server has permission to make statements for either

client, so it must perform an access-control check in advance of relaying a client’s state-
ment. Quoting lets the multiplexed server defer the complete access-control decision to the

final resource server that verifies the proof. The result is improved auditability, since the
gateway’s role in the transaction is recorded at the server, and a smaller trusted computing

base, since only a tiny part of the gateway code must be correct to pass on the authorization
decision to the server.

7.9 Dangerous extensions

In this section, I argue that SPKI auth tags should not be extended to represent logical
negations. If B speaks for A regarding multiple restriction sets, the semantics suggest that
B actually has some authority not explicitly mentioned in either set. For example,

(B
{σ,τ}
→ A) ��(B

{σ∧τ}
→ A) (Axiom E23)

means that a principal believed on a set of statements is also believed on their conjuncts.
This conclusion seems fairly natural, but it is interesting to note that a restriction set

actually permits more statements than it represents explicitly.

With the semantics for restricted delegation I define in Chapter 4, not only does

(B
{σ,τ}
⇒ A) �

�(B
{σ∧τ}
⇒ A) (Axiom E24)

hold, but also:

(B
{σ}
⇒ A) ��(B

{¬σ}
⇒ A) (Axiom E25)

This result implies that given authority on a set of primitive statements, a principal also has
authority on any propositional formula constructed from those statements. It is surprising,

for even if only B
{s}
⇒ A is explicitly granted, B can also cause A to say the negation of s.

Perhaps scarier still is that

B
{σ}
⇒ A �

�B
{σ,¬σ}
⇒ A

��(B says false) ��(A says false)

The conclusion is the definition of Abadi’s #→ relation:

“Intuitively, A #→ B means that there is something that A can do (say false)

that yields an arbitrarily strong statement by B (in fact, false). Thus, A #→ B
means that A is at least as powerful as B in practice.” [ABLP93, p. 713]

72 CHAPTER 7. MODELING SPKI

With these semantics, one might fear that no restriction is actually meaningful.
How might we escape it? One option is to abandon the K axiom (A believes s ∧
A believes (s �

�t) �
�A believes t), so that principals no longer believe every conse-

quence of their beliefs. This option is undesirable because it cripples the logic to only

operate outside the scope of belief operators.
A second option is to both disallow negative statements in restriction sets and to use

the weaker B
T
→ A relation instead of B

T
⇒ A to model delegation.

A third option is to prevent principals from making contradictory statements. This is
difficult in general in a distributed system. One approach is to prevent principals from

making negative statements at all. SPKI takes this approach. Its tags, which represent
both restriction sets and individual statements, cannot represent both a statement and its

logical negation. I provide a formal treatment of tags in Chapter 6.
Another extension might be to allow SPKI name bindings (4-tuples) to include au-

thorization restrictions. As mentioned in Section 5.3, my semantics suggests that this

seemingly-natural extension has undesirable consequences.
I conclude that in certain dimensions, SPKI is as strong as it can be. Changing SPKI

by allowing principals to make negative statements or by allowing negative statements in
restriction sets would push SPKI “over the edge,” making its restrictions meaningless. Those

proposing to augment SPKI, or other systems based on a logic of restricted delegation such
as that of Chapter 4, must be wary of this hazard.

7.10 Related work

Abadi provides a semantics for SPKI names in [Aba98], but its definition shares a flaw with
that used for roles in [ABLP93]. I discuss Abadi’s name semantics in Section 5.4.

Halpern and van der Meyden supply an alternate semantics for SPKI names [HvdM99],
but it only encompasses the containment relation among names, and does not treat names

as principals. As a result, it cannot relate names to compound principals nor relate names
to other principals that are only connected by a restricted delegation.

Aura supplies a semantics for SPKI restricted delegation [Aur98], but it is unsatisfying
in that it essentially says what the reduction procedure says: a delegation is in place if there
is a chain of delegation certificates and principals. It does not lend intuition about what the

delegations mean. In contrast, my semantics connects restricted delegation to the logic of
belief, a formal model that describes what a principal means when it delegates authority.

Part V

Sharing Implementation

73

Chapter 8

End-to-end authorization

Part V is concerned with my implementation of sharing across administrative domains.

In this chapter, I describe how the theory in Part IV can be applied not only to span
administrative boundaries, but to span other boundaries that appear in complex systems.

The resulting implementation allows one to reason about sharing and protection end-to-end,
from the provider of a resource to its consumer.

Saltzer et al. describe a general principle for computer engineering: implement end-to-

end semantics to achieve correctness, and only implement hop-by-hop semantics to boost
the performance of the end-to-end implementation [SRC84]. Voydock and Kent argue for

end-to-end security measures when the hops are between network routers [VK83]. The same
principle holds for authorization semantics when the hops are between gateways and other

high-level boundaries. End-to-end authorization makes systems more secure by reducing
the number of programs that make access-control decisions, by giving those programs that

do control access more thorough information, and by providing more useful audit trails.

In this chapter, I illustrate four kinds of boundaries in distributed systems that can
impede the flow of authorization information from one end of a system to another. I discuss

how my unified system can support end-to-end authorization across these boundaries.

In Chapter 9, I discuss my implementation of an infrastructure to support end-to-end
sharing based on the semantics introduced in Part IV. Applications using that infrastructure

require communications channels; Chapter 10 describes several channels that I implemented
that plug into the infrastructure. In Chapter 11 I describe three applications built using the

pieces from the preceding chapters. My measurements in Chapter 12 quantify the potential
performance impact of my architecture.

8.1 Spanning administrative domains

Administrative boundaries frequently interfere with end-to-end authorization. The
conventional approach to authorization involves authenticating the client to a local,

administratively-defined user identity, then authorizing that user according to an access-
control list (ACL) for the resource. When resources are to be shared across administrative

boundaries, this scheme fails because the server has no local knowledge of the recipient’s
identity. Figure 8.1 illustrates this problem.

75

76 CHAPTER 8. END-TO-END AUTHORIZATION

Alice

BobResource
Server

OK

Who is Bob?

ACL:
Alice

Figure 8.1: A resource server contains an ACL that refers directly to Alice, a user in the
same administrative domain. Alice cannot add Bob to the ACL, however, since he is in

another administrative domain, and unknown to the resource server.

Typical solutions to this problem involve authenticating the remote user in the local

domain, either by having the local administrator create a new account, or by the resource
owner sharing her password. Another approach is to install a gateway that accesses the
resource with the local user’s privilege but on behalf of the remote user. With the gateway

the owner achieves her goal of sharing, but obscures the identity and authority of the actual
client from the service that supplies the underlying resource.

Another way a user might share resources across administrative boundaries is by dele-

gating her authority with restriction. In the example, Alice may authorize Bob to perform
some restricted set of actions on certain resources (see Figure 8.2). Authority information

flows across the administrative boundary: the delegation provides the resource server with
sufficient information to reason about the client regardless of his membership in the local

administrative domain. Indeed, the authorization mechanism has no inherent notion of
administrative domain.

Bob

Alice

Resource
Server OK

ACL:
Alice

Bob says read file X

Alice says Bob speaks for
Alice regarding {X,Y}

Figure 8.2: With restricted delegation, Alice can introduce the remote principal Bob, and

describe what authority he has over her resources. The resource server can reason about
Bob’s authority in terms of Alice’s wishes, even though Bob is not a member of the local

administrative domain.

What happens when Alice makes careless sharing decisions? Can the principal upstream
from Alice, such as her system administrator, exercise some control over how she delegates

8.2. SPANNING NETWORK SCALES 77

authority? My logic gives system administrators or other interested parties two tools to
monitor downstream sharing. First, conjunction principals let the system administrator

(or his agent) remain involved in any transactions Alice performs using the resources she
receives from the administrator. Second, since access-control decisions based on my logic

involve a proof of authority, the administrator has the ability to comprehensively audit how
the resources under his care have been delegated.

8.2 Spanning network scales

A second boundary that interferes with end-to-end authorization is network scale. Network

scale affects an application’s choice of hop-by-hop authorization protocol. For example,
a strong encryption protocol is appropriate when crossing a wide-area network. Inside
a firewall where routers are locally administered, some installations may base authority

decisions on IP source addresses. On a local machine, we can often trust the OS kernel to
correctly identify the participants in an interprocess communication.

If a service exploits my unified authorizationmodel, the server uses a single API to reason

about authority. One can plug in protocols (hop-by-hop authorizationmechanisms), and the
server can reason about the authorizations supported by each protocol. If the server does not
support a given mechanism natively, it can still reason about authorization information from

a protocol-translating gateway that passes through end-to-end authorization information
using my system.

Figure 8.3 illustrates how we reason about authorization at different network scales.

When Alice is at the same machine as the resource server (a), the server trusts the kernel to
reliably report her identity, from which it derives her authority. Objects in the logic encode

the statements “the kernel says this interprocess communication (IPC) channel speaks for
Alice” and “the server says the kernel speaks the truth.” The server uses the authorization
library to conclude that requests arriving on the IPC channel represent Alice’s wishes.

Resource
Server

a b

c

Figure 8.3: When Alice connects to a resource server from the same machine, the server

may trust the kernel to correctly identify her (a). When Alice connects from elsewhere on
the Internet, the server may require strong encryption to verify her authority (b). When

Alice connects from inside a department firewall, the server may accept IP source addresses
as sufficient proof of her authority (c).

78 CHAPTER 8. END-TO-END AUTHORIZATION

In the wide-area network case (b), a standard encryption-based authentication protocol
is used to bind an integral channel to a public key. The protocol is taken to ensure that “this

channel speaks for Alice’s public key,” and if the server is convinced that “Alice’s public key
speaks for Alice,” then it arrives at a conclusion like that in case (a): the requests arriving

on the authenticated channel represent Alice’s wishes.

Finally, perhaps a site wishes to use IP source addresses inside its firewall for a quick

and dirty form of authentication (c). The logic encodes this trust in statements like “the
sysadmin says the router speaks for Alice’s workstation” and “Alice’s workstation quoting
Alice speaks for Alice.” The resource server concludes that the requests arriving on a TCP

stream from a given source address represent Alice’s wishes. Although some may consider
this misplaced trust, the point is that my unified authorization system not only supports this

trust model, but ensures that each final authorization decision represents the assumptions
of trust that went into that decision.

My unified approach separates policy from mechanism, creating two benefits. First,
applications reason about policy using a toolkit with a narrow interface. The toolkit can

transparently support multiple access mechanisms, and simply enable those that policy al-
lows. Second, when an application does not support a desired mechanism, we can build
a gateway that forwards requests from another mechanism while still passing end-to-end

authorization information in a form the server can audit. Ultimately, the high-level se-
curity analysis of a program is independent of mechanism, and reflects end-to-end trust

relationships.

8.3 Spanning levels of abstraction

Another use for gateway programs is to introduce another level of abstraction over that

provided by a lower-level resource server. A file system takes disk blocks and makes files; a
calendar takes relational database records and makes events; a source-code repository takes

files and makes configuration branches. Figure 8.4 gives another illustration. Typically,
an abstracting gateway controls the lower-level resource completely and exclusively, so that

the gateway makes all access-control decisions. With end-to-end authorization, one can
instead allow multiple mutually untrusting gateways to share a single lower-level resource.

For example, a system administrator might speak for the disk-block allocator. To grant

Figure 8.4: Alice’s request for a high-level resource involves not only her authority over the
final low-level resource, but some interaction with the service providing a level of abstraction.

For example, Alice’s authority may be expressed in terms of sandwiches, not cattle.

8.4. SPANNING PROTOCOLS 79

Alice access to a specific file X , the sysadmin may allow Alice to speak for the file system
regarding X , and allow the conjunction of Alice and the file system quoting Alice to speak

for the disk blocks. In this configuration, the file system cannot access the lower-level
disk block resource without Alice’s agreement (due to the conjunction), and Alice cannot

meddle with arbitrary disk blocks without the file system agreeing that the requests are
appropriate. The system helps us adhere to the principal of least privilege by encoding

partial trust in the user and in the file system program. Furthermore, auditing any request
for disk blocks provides end-to-end information indicating the involvement of both Alice

and the file system program.

8.4 Spanning protocols

Commonly a gateway is installed between two systems simply to translate requests from

one wire protocol to another, as illustrated in Figure 8.5. Like any gateway, these gateways
often impede the flow of authorization information from client to server.

protocol
gateway RMI express

S.S. HTTP

Figure 8.5: Gateways are necessary to translate between protocols, but they frequently impede

the flow of authorization information.

In Snowflake, authorization information is encoded in a data structure that has both
robust and efficient wire transfer encodings [Riv97]. Thus the unified system is easily

adapted for transfer over a variety of existing protocols. In this dissertation, I describe its
implementation over HTTP and over Java Remote Method Invocation (RMI). Adapting

more protocols, such as NFS and SMTP, to support unified authorization will result in
wider applicability of end-to-end authorization.

The four boundaries described above turn up in real systems that accrete from smaller
subsystems. Gateway software installed at each boundary maps requests from clients on one

side of the boundary to requests for services on the other side. The system described herein
allows us, at each boundary, to preserve the flow of authorization information alongside

the flow of requests. By allowing gateways to defer authorization decisions to the final
resource server when appropriate, and ensuring that resource servers have a full explanation

for the authority of the requests they service, we provide applications with end-to-end
authorization.

80 CHAPTER 8. END-TO-END AUTHORIZATION

Chapter 9

Infrastructure

In this chapter, I describe the basic infrastructure that implements the formalism of Part IV.

The basic elements of the system are statements and principals. A statement is any
assertion, such as “it would be good to read file X ,” or “Bob speaks for Alice,” or “Charlie

says Alice speaks for Charlie.” A principal is any entity that can make a statement. Ex-
amples include the binary representation of a statement itself (that says only what it says),

a cryptographic key (that says any message signed by the key), a secure channel (that says
any message emanating from the channel), a program (that says its output), and a terminal
(that says whatever the user types on it).

A proof of authority, like a proof of a mathematical theorem, is simply a series of state-

ments that incrementally convince the reader of the veracity of the conclusion statement. Of
course, in an authorization system, a proof is read by a program, not by a mathematician.

9.1 Statements

Snowflake’s implementation of sharing begins with the Java implementation of SPKI by

Morcos [Mor98]. It is a useful starting point because not only do I wish to preserve features
of SPKI, but SPKI includes a precise and easily extensible specification of the representation

of various abstractions. Furthermore, starting with a SPKI implementation offers an easier
path to SPKI interoperability.

The restriction imposed on a delegation is specified using authorization tags from SPKI.

Authorization tags concisely represent infinitely refinable sets, which makes them an at-
tractive format for user-definable restrictions. I replaced Morcos’ minimal implementation
of authorization tags with a complete one that performs arbitrary intersection operations

as described in Chapter 6.

9.2 Principals

SPKI makes a distinction between principals and “subjects,” entities that can speak for
others but can utter no statements directly, such as threshold (conjunct) principals. My

formalism does not make that distinction. It also supports new compound principals, such
as the quoting principal of Lampson et al. Therefore, I extended Morcos’ Principal class to

81

82 CHAPTER 9. INFRASTRUCTURE

support SPKI threshold (conjunction) principals and Lampson’s quoting principals. When
a service reads a request from a communications channel, it associates the request with

an appropriate principal object that represents the channel; this principal is the one that
“says” the request. The channel may claim to quote some other principal; that assertion is

noted by associating the channel with a Quoting principal object. The object’s quoter field
is the channel itself, and its quotee field is the (possibly compound) principal the channel

claims to quote.

9.3 Proofs

I implemented a Proof class that represents a structured proof consisting of axioms and

theorems of the logic and basic facts (delegations by principals). An instance of Proof
describes the statement that it proves and can verify itself upon request. While Proof

objects may be received from untrusted parties, their methods are loaded from a local code
base, so that the results of verification are trustworthy. Servers receive from clients instances

of the Proof class that show the client’s authority to request service. Conversely, a server
may send a Proof to a client to establish its authenticity, that is, to prove its authority to

identify itself by some name or to provide some service the client expects.
Proofs can be transmitted as SPKI-style S-expressions or directly transferred between

JVMs using Java serialization. No precision is lost in the latter case, since the basic internal
structure of every proof component is a Java object corresponding to an S-expression.

SPKI’s sequence objects also represent a proof of authority. SPKI sequences are poorly
defined, but they are linear programs apparently intended to run on a simple verifier im-

plemented as a stack machine. When certificates and opcodes are presented to the machine
in the correct order, the machine arrives at the desired conclusion [EFL+98]. Figure 9.1
shows a hypothetical sequence that proves the hash of a document HD represents (speaks

for) the name N defined by the client; the client principal here is a public key KC . In the
example, opcodes and operands appearing in the sequence on the left mutate the operand

stack on the right. I invented three opcodes for this example. The pop opcode discards an
unused conclusion from the stack, and the name-monotonicity and transitive opcodes

apply theorems of the formal logic to produce new conclusions.
Transmitting proofs rather than SPKI sequences is attractive for three reasons. First,

the proofs clearly exhibit their own meaning; to quote Abadi and Needham, “every message
should say what it means” [AN96]. Second, the structured proof components map one-to-

one to implementation objects that verify each component. The SPKI sequence verifier, in
contrast, requires an external mapping to show that the state machine corresponds to cor-

rect application of the logic of Chapter 4. Third, it is simple to extract lemmas (subproofs)
from structured proofs, allowing the prover to digest proofs into reusable components (Sec-
tion 9.4).

Figure 9.2 shows the schematic of a structured proof that turns up in my implementation.
Compare this example proof with the linear sequence in Figure 9.1. The graph retains the

structure of the proof: each statement is directly connected to the statements that support
it. Hence, subproofs can be easily extracted from the graph. For example, while the top

statement about HD only applies to a single document, the subproof that KS ⇒ KC ·N is
reusable and easily extracted from the proof.

9.4. THE PROVER 83

opcodes operand stack

(sequence

(public-key KC) KC
(do hash sha1) KC ⇒ HKC

, HKC
⇒ KC

(do pop) HKC
⇒ KC

(do name-monotonicity N) HKC
·N ⇒ KC ·N

(cert

(issuer HKC
·N)

(subject KS))

KS ⇒ HKC
·N , HKC

·N ⇒ KC ·N

(do transitive 0 1) KS ⇒ KC ·N
(cert

(issuer KS)

(subject HD))

HD ⇒ KS, KS ⇒ KC ·N

(do transitive 0 1) HD ⇒ KC ·N

)

Figure 9.1: A hypothetical SPKI sequence. A linear sequence of instructions (left) advances
a stack machine (right) to arrive at an intended conclusion (HD ⇒ KC · N). Since SPKI
does not define the sequence operations, I have created imaginary stack-manipulation oper-
ations that introduce statements and apply theorems of the logic.

9.4 The prover

A Prover object helps Snowflake applications collect and create proofs. It has three tasks:

it collects delegations, caches proofs, and constructs new delegations.

A user’s application collects delegations from other users. Gateways collect delegations
directly from client applications. Both sorts of applications use a Prover to maintain their

collected delegations in a graph where nodes represent principals and edges represent a
proof of authority from one principal to the next (see Figure 9.3). The Prover traverses the

graph breadth first to find proofs of delegation required by the application. For example, if
the Prover must prove that a channel KCH speaks for a server S, it works backwards from

the node S to find the proof that A
V ∩X
⇒ S. A is final, meaning that the Prover can make

statements as A; therefore, Prover simply issues a delegation KCH ⇒ A to complete the
proof.

When the Prover receives a delegation that is actually a proof involving several steps,

the Prover “digests” the proof into its component parts for storage in the graph. Whenever
it receives or computes a derived proof composed of smaller components, the Prover adds
a shortcut edge to the graph to represent the proof. These shortcuts form a cache that

eliminates most deep traversals of the graph.

When an application controls one or more principals (e.g., by holding the corresponding
private key or capability), its Prover can store a closure in its graph for the controlled

principal. When desired, the Prover can not only find existing proofs, but complete new
proofs by finding an existing chain of delegations from the controlled principal to the re-

84 CHAPTER 9. INFRASTRUCTURE

transitivity

HD ⇒ KC ·N

transitivity
KS ⇒ KC ·N

signed-certificate
HD ⇒ KS

name-monotonicity

HKC
·N ⇒ KC ·N

signed-certificate

KS ⇒ HKC
·N

hash identity
HKC

⇒ KC

Figure 9.2: A structured proof that shows that a name defined by a client (KC ·N) is bound
to a particular document (HD).

quired issuer, then using the closure to delegate to the required subject restricted authority

over the controlled principal.
My simple Prover is incomplete, but it is suitable for most authorization tasks appli-

cations face. Abadi et al. note that the general access-control problem in the presence of
both conjunction and quoting requires exponential time [ABLP93, p.726]. Elien gives a

polynomial-time algorithm for discovering proofs in a graph with only SPKI certificates (no
quoting principals) [Eli98]. In the common case, I expect applications to collect authoriza-
tion information in the course of resolving names, so that proofs are built incrementally

with graph traversals of constant depth.

9.4. THE PROVER 85

A

CB

S

V ∩X

X

VT

Figure 9.3: A look inside Alice’s Prover. Each node represents a principal, and each edge
a proof. For example, the edge from A to B represents the proof consisting of the single

delegation A
T
⇒ B. The node A is distinguished because it is final: it represents a principal

that the Prover can cause to say things.

86 CHAPTER 9. INFRASTRUCTURE

Chapter 10

Channels

With the infrastructure above in place, applications and services have the tools they need to
generate, propagate, and analyze authority from the source of a request to its final resource

server. The authorization information must be propagated from one program to the next
through channels.

When a client makes a request of a server, the server needs some mechanism to ensure

that the client really uttered the request. I implemented three such mechanisms: a secure
network channel, a local channel vouched for by a trusted authority in the same (virtual)
machine, and a signed request. I describe each and discuss how they are represented as

principals in my unified system.

10.1 Secure channels

To implement a secure channel, I built a Java implementation of the ssh protocol that

can interoperate with the Unix sshd service [Ylo96]. Then I built Java ServerSocket and
Socket classes based on ssh that provide a secure connection. Either end of the connection

can query its socket to discover the public key associated with the opposite end.1

I plugged my ssh sockets into RMI using socket factories. Ssh ensures that the channel

is secure between some pair of public keys. To make that guarantee useful, I embody the
channel as a principal. Consider the channel in Figure 10.1. To establish the channel, the

server (principal PS) uses public key K1 and the client (PC) key K2 in the key exchange,
and together they establish secret key KCH as the symmetric session key.

Suppose a message M emerges from the channel at the server. In the language of
the formalism, the ssh implementation promises that M ⇒ KCH . The initial key exchange

convinced the server thatKCH ⇒ K2, and the client may explicitly establish thatK2 ⇒ PC .
Because M ⇒ KCH ⇒ K2 ⇒ PC , the server concludes that M ⇒ PC , that is, the message

says what the client is thinking. My implementation never actually represents the channel
key KCH explicitly, since a channel key can only be spoken for by a message emerging

1Why did I build an ssh implementation? Some have suggested that I use SSL over RMI, which is
apparently now fairly practical. When I began this work, however, RMI did not have easily pluggable socket
factories, and even once it did, the only open-source SSL implementation I could find did not operate well
under RMI.

87

88 CHAPTER 10. CHANNELS

channel with secret key KCH

client (PC)

M

server (PS)

K2 K1

Figure 10.1: Treating a channel as a principal

from the channel. Because the same code that establishes M ⇒ KCH also establishes

KCH ⇒ K2, it simply emits the conclusion M ⇒ K2.

10.1.1 How channels work

Figure 10.2 illustrates my RMI/ssh channel in action. Initially, the server creates an in-

stance of an RMI remote object ya , defines the key KS that controls it, and binds it to an
SSHContext yb . The SSHContext is associated with the RMI listener socket yc that will re-

ceive incoming requests for the object, and defines the public key (K1) that will participate
in ssh session establishment.

~n

~a

~b

~m

~g

~f

~h

~e

~i

~c

~j

~k ~l

m

invoker

~d
stub

impl.

reference

cache
proof

Recipient
proof

method
implementation

...
checkAuth();

SSHContext

K1

skeleton

client code

} finally {

}

remote

try {
pushIdentity();

popIdentity();

ServerClient

KS

...
object.m()
...

KC

Prover

K2

SSHContext

thread
current

Figure 10.2: How my ssh RMI channel is integrated with Snowflake’s authentication service.

Dashed arrows represent object references. Solid arrows - represent the critical
remote call path, and dotted arrows represent the longer path taken when the server

requires fresh proof of the client’s authority.

The client retrieves a stub yd for the remote object from a name service. To exercise

its authority on the object, the client first establishes its identity in thread scope. In a try
... finally block, it establishes its own SSHContext ye and a Prover yf that holds its

private key KC . Any method called in the run-time scope of the try block will inherit the
established authority.

10.1. SECURE CHANNELS 89

Then the client invokes a method m on the remote stub. The remote stub has been
mechanically rewritten to wrap its remote invocations with calls to the invoker helper

method yg . The invoker method makes the usual RMI remote call through the remote ref-
erence yh , and the reference creates an ssh socket yi using the SSHSocketFactory specified

in the stub. The ssh channel is established yj , and each context learns the public key
associated with the opposite end (K1, K2). The method call passes through the channel to

the skeleton object on the server yk , which forwards the call to the implementation object.

The programmer has prepended to each remote method implementation a call to

checkAuth() yl . This routine retrieves from the local SSHContext the key K2 associ-
ated with the channel that the request arrived on. At this point, the server knows that

K2 says m. It does not, however, know who K2 speaks for, so checkAuth() throws an
SfNeedAuthorizationException.

RMI passes the exception back through the channel, where the client’s invoker method
catches it. The invoker inspects the exception to discover the issuer KS it must speak for

and the minimum restriction set T regarding which it must speak for that issuer. The
invoker queries the Prover yf for a proof of the required authority; since the prover controls

the client’s private key KC , it can construct a statement to delegate authority from KC
to K2. The exception carries a special remote proofRecipient object; the invoker calls a

method on it to pass ym the proof to the server. The proofRecipient object yn stores the
proof at the server, and returns to the client.

The invoker again sends the original invocation m through the remote reference, and
the request travels the same path to checkAuth on the server. This time, the proof that

K2
T
⇒ KS (via KC) is available, checkAuth() returns without exception, and the remote

object’s implementation method runs to completion. Future calls encounter no exception as
long as the proof at the server remains valid, and are only slowed by the layer of encryption

protecting the integrity of the ssh channel.

The client programmer need only establish the client’s authority at the top of a code
block; inside that scope, the Prover and the invoker together handle the nitty-gritty of
proof generation and authorization. The server programmer must ensure that every Re-

mote implementation method calls checkAuth() and defines an appropriate restriction tag;
I envision a mechanical tool that automatically injects checkAuth() calls and generates

reasonable default tags based on the signature of the remote method.

10.1.2 A channel optimization

RMI is not as careful as it should be about reusing existing channels between endpoints. As
a result, an application that makes repeated calls to the same server may end up establishing

several redundant connections to that server. When each connection spends hundreds of
milliseconds performing encryption operations, the waste is unbearable. The preferred

solution, ensuring that RMI is optimal in its reuse of connections, requires substantial
replumbing of RMI.

Instead, I implemented a session-reuse protocol similar to session caching in SSL. I
call my solution “session key borrowing.” After each new connection’s key exchange, the

SSH socket class caches a tuple containing the session secret key and the public key of the
opposite endpoint, indexed both by the listening host’s address and port and by a secure

90 CHAPTER 10. CHANNELS

hash of the secret key itself. If the RMI subsystem on the connecting host receives a new
request to connect to the same listening host and port, instead of engaging in the usual

key exchange, the connecting host sends the secure hash of the session key to the listening
host. The listening host looks up the session key by its hash, and if it is not found, the host

replies by initiating the key exchange protocol. Otherwise, the listening host replies with
a message indicating that the borrowed key is acceptable, both ends adopt the borrowed

session key and the identity of the opposite endpoint, and the ssh protocol is resumed with
the client sending a “success” message encrypted with the session key to show that the key

works.
I recognize that introducing a new cryptographic protocol is always a risky endeavor.

I suggest that this protocol be analyzed carefully before being adopted as a standard or
in a production implementation. In any case it would be preferable to repair the higher

layer (RMI) to avoid the need for the protocol at all. I now justify my belief that this
protocol provides the same invariants as the original application of ssh, up to cryptographic
weakness.

In a single ssh channel implemented over an insecure network, the channel’s secrecy is

maintained because only the two endpoints know the secret key, and the channel’s integrity
is maintained because the message CRCs signal modifications by entities that do not know
the secret key. The key-borrowing protocol begins by having the client transmit only a secure

hash of the channel secret key from another channel. By the cryptographic properties of
secure hashes, I am confident that no attacker without knowledge of the secret key could

infer the secret key. After this simple transmission and its acknowledgement, the new
channel immediately begins operation under the cached secret key. Thus the new channel

is essentially operating identically to the previous channel; the fact that its messages are
sent over a different (insecure) TCP channel is immaterial.

My protocol is weaker than caching in SSL because I use the same session key in mul-
tiple parallel sessions, sacrificing the cryptographic advantages of block chaining or stream

ciphers. I propose three solutions to this weakness. Repairing RMI to reuse channels opti-
mally is the most desirable option. Alternatively, a fancier protocol could establish multiple

independent session keys during the initial key exchange, amortizing the cost of the public
key operation over more secret keying material.

A third alternative would be to identify the first channel established to a given end-
point, and reroute traffic destined for duplicate channels over that original channel. A
disadvantage of this approach is dealing with asynchrony in the processes sending and re-

ceiving on the original and new (virtual) channels. The ssh 2 protocol specifies a protocol
for multiplexing virtual channels over a single channel, and that protocol involves data

windows to accommodate the asynchrony of the different processes using the virtual chan-
nels [YKS+98]. The tactic treats an ssh link as a virtual private datagram network, and

reimplements TCP-style windowing inside that network.

10.2 Local channels

Setting up a secure network channel is an expensive operation because it involves public-key

operations to exchange keys. If a server trusts its host machine enough to run its software,
it may as well trust the host to identify parties connected to local IPC channels. Within

10.3. SIGNED REQUESTS 91

my Java environment, I treat the JVM and a few system classes as the trusted host, and
bypass encryption when connecting to a server in the same JVM.

In the local case, the ssh channel is replaced with a Java “IPC” pipe implemented
without any operating system IPC services, and the public keys corresponding to the channel
endpoints (K1 and K2) are swapped directly. Because it was involved in constructing the

key pairs and the keys are stored in immutable objects, the trusted system class knows
whether a client holds the private key corresponding to a given public key. Hence when a

client is colocated in the same JVM with the server, there is no encryption or system-call
overhead associated with the channel, only RMI serialization costs.

10.3 Signed requests

Not all applications can assume that my ssh-enhanced version of RMI is available as an RPC
mechanism. Indeed, the most visible RPC mechanism on the Internet is HTTP. To facilitate

applications that use HTTP, I created a Snowflake version of the HTTP authorization
protocol.

HTTP defines a simple, extensible challenge-response authorization mechanism
[FHBH+99] diagrammed in Figure 10.3.2 The client sends an HTTP request to the server.
The server replies with a “401 Unauthorized” response, including a WWW-Authenticate

header describing the method and other parameters of the required authorization. The client
resends its request, this time including an Authorization header. If the Authorization

satisfies the server’s challenge, the server honors the request and replies with the return value
of the operation. Otherwise, the server returns a “403 Forbidden” response to indicate the

authorization failure.

HTTP defines two standard authorizationmethods. In Basic Authentication, the client’s
Authorization header includes a password in cleartext. In Digest Authentication, the

server’s WWW-Authenticate challenge includes a nonce, and the client’s Authorization

header consists of a secure hash of the nonce and the user’s password. Both methods

authenticate the client as the holder of a secret password, and leave authorization to an
ACL at the server.

In my new method, called Snowflake Authorization, the parameters embedded in the

server’s WWW-Authenticate challenge are the issuer that the client needs to speak for and
the minimum restriction set that the delegation must allow. The Authorization header in

the client’s second request simply includes a Snowflake proof that the request speaks for the
required issuer regarding the specified restriction set. The subject of the proof is a hash of
the request, less the Authorization header. Figures 10.4 and 10.5 show examples of these

messages.

10.3.1 Signed request optimization

As described, the signed request protocol requires an expensive public-key signature on
every request. Since it is common that a client and server interact in more than one

2The protocol specification itself uses the terms “authentication” and “authorization” interchangeably;
when not quoting the specification, I use the term authorization since it best describes my goal. I reduce
the authentication problem to authorization in Section 10.3.2.

92 CHAPTER 10. CHANNELS

200 OK

content

Authorization header:

HTTP request

C
T
⇒ S

HTTP request

401 Unauthorized

WWW-Authenticate
header:

?
T
⇒ S

HTTP server

(browser)
HTTP client

Figure 10.3: The HTTP authorization protocol.

request, I wish to amortize the signature operation over many requests. One approach is to
send multiple requests over a stream that guarantees integrity; among other things, this is
a property SSL can provide.

I chose to implement an alternative protocol with a different set of performance and

security characteristics. When sending in a signed request, a client may specify a public key
under which it wishes to receive an encrypted secret message authentication code (MAC). If

the server agrees, it generates a random authenticator, encrypts it with the specified public
key, and returns it to the client. Then the client signs a certificate HMAC ⇒ KC delegating
its authority to the secret MAC, named by its hash so that the certificate need not remain

secret. For future requests, instead of signing the specific request, the client need only hash
the request together with the MAC. This hash shows that the text of the request speaks

for the MAC: Hrequest ⇒ HMAC .

The Snowflake HTTP authorization protocol is fast because secure hashing has replaced
expensive public-key signatures. It requires that the client authenticate the server, or else
a man-in-the-middle can supply the client with a bogus MAC. The client will also likely

want to make the statement HMAC
V
⇒ KC with a short validity interval V to limit the

trust extended to the MAC. This protocol highlights one of the attractive properties of my
unified authorization protocol: it can make any authorization trust relationship explicit,

auditable, and visible end-to-end. The final server receiving a request can see that my
home-brew MAC protocol was involved in the transaction.

10.3. SIGNED REQUESTS 93

HTTP/1.0 401 UNAUTHORIZED

Content-Type: text/html

MIME-Version: 1.0

Server: MortBay-Jetty-2.3.3

Date: Sat, 08 Apr 2000 15:18:47 GMT

WWW-Authenticate: SnowflakeProof Authorize-Client

Sf-ServiceIssuer: (hash md5 |ehtQYd4EpQXOa/ON6Smesg==|)

Sf-MinimumTag: (tag

(web (method GET)

(service |Sm9uJ3MgUHJvdGVjdGVkIFNlcnZpY2U=|)

(resourcePath "")))

Connection: close

Figure 10.4: An HTTP authorization challenge message from a Snowflake server. It indi-

cates the method, the required resource issuer, and the minimum restriction of a delegation
that must be proven.

10.3.2 Server authorization

Often a client also wants to verify that it is communicating with the “right” server. The
notion of “right” can be as simple as the server speaking for the client’s idea of a well-known

name like www.dartmouth.edu, but in general the real question is still one of authorization:
Does this server have the right to claim authority about Dartmouth’s course list? Does that

server have authority to receive my e-mail?

I defined a simple protocol by which an HTTP server can communicate its authority to
serve a document to a client. The server PS simply constructs a proof that the document

speaks for the server’s name for the document PS ·Ndocument. The server returns the proof
in the Sf-DocSpeaksForServerName header that precedes the document. The client queries

its Prover to see who the server speaks for. Perhaps the document was returned as a result
of a user clicking a link with embedded authorization information, in which case the client

expects to find a proof that the server speaks with that authority; or perhaps the client just
wishes to find any locally-trusted name for the document to report to the user3. Notice that
although the client and server are in opposite roles in the trust relationship, the burden of

proof is still at the client: the protocol design assumes that clients have more resources,
and that the client’s history of requests may provide hints for efficient proof.

The Snowflake HTTP server authorization protocol leaves much to be desired. For
example, because it does not attest to the authority of the complete transaction including
headers, it cannot help with the man-in-the-middle attack described in Section 10.3.1. An

alternate tactic would have the server deliver the document over a stream with integrity (one
of the features of SSL), and delegate its authority to the stream. End-to-end authorization

still occurs: the client arrives at a proof showing the participation of either the document
hash (in my protocol) or the stream.

3My current implementation only supports the latter naming operation.

94 CHAPTER 10. CHANNELS

GET /files/ HTTP/1.0

User-Agent: Mozilla/4.7 [en] (X11; U; SunOS 5.7 sun4u)

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

Authorization: SnowflakeProof (proof

two-step

(proof

signed-certificate

(signed-certificate

(cert

(issuer (hash md5 |ehtQYd4EpQXOa/ON6Smesg==|))

...

ClkEKqKOL+AYBYSsz7456NkeLwyv4CdxrlnJKueASaxEmN

HJstLleUaTS80SKQ7xZ45zNF5mFDz|))))

Figure 10.5: A response message from a Snowflake proxy. It contains a proof of the required
delegation. Most of the proof has been omitted to save space.

10.3.3 Server implementation

I implement the server side of the protocol as an abstract Java Servlet ProtectedServ-
let [Mos98]. Concrete implementations extend ProtectedServlet with a method that

maps a request to an issuer and minimum restriction set, as well as the service imple-
mentation method that maps a request to a response. When each request arrives, the
ProtectedServlet ensures that appropriate authorization has been supplied, and if not,

constructs and returns the “401 Unauthorized” response to the client. I plug my servlets
into the Jetty open-source web server,4 but they should operate correctly in any web server

that supports servlets.

10.3.4 Client implementation

In as much as HTTP is a browser protocol, the client side of Snowflake Authorization

belongs inside the client’s web browser. For practical reasons, I instead implemented the
protocol in an HTTP proxy that intercepts all of the browser’s outbound requests. Using

this technique, I must take care to ensure that the proxy is accessed by only a single user.
The first step is to install the proxy on the same machine as the browser, and arrange

for it to only accept requests from the local host. The second step, that I have not yet
implemented, is to ensure that every request comes from the same user’s browser, perhaps

using identd [Joh93].

When the proxy receives a request from the browser, it forwards the request on to the
destination server. The proxy inspects the response headers before returning them to the
browser. If the response has a “401 Unauthorized” result code and demands Snowflake

authorization, the proxy uses a Prover to construct the required Proof. The proof shows a
delegation from the required issuer to the hash of the outgoing request message; it is inserted

into the outbound message in an Authorization header, and the request is resubmitted

4http://www.mortbay.com/software/Jetty.html

10.3. SIGNED REQUESTS 95

to the server. Generally, the server’s second reply is the result of the desired operation. If
the proxy cannot generate a proof to meet the server’s challenge, or if the second request

is again rejected, the proxy converts the response to a “403 Forbidden” message to prevent
broken browsers from initiating the Basic Authentication protocol.

The user needs a user interface to the proxy to manage its collection of keys and del-
egations. The proxy sees all outbound requests using the HTTP protocol, so it creates

a virtual server at the URL http://security.localhost/. Any request beginning with
that URL is mapped to a handler inside the proxy that provides an HTML interface to the

proxy’s keys and delegations. Through this interface, the user can create a new private key
pair, import principal identities and delegations, and delegate his authority to others (See

Figure 10.6).

Figure 10.6: The browser’s interface to the Snowflake HTTP user agent

The proxy keeps a history of recently visited pages, and offers the user commands to

delegate authority over any Snowflake-protected pages to other users. Hence to share a
Snowflake-protected web page, all one needs to do is visit the web page, then access the
history list at security.localhost and click “delegate authorization for this page.” The

user selects from the proxy’s list of known principals the recipient of the delegation, and
the proxy outputs a snippet of HTML that the user can deliver (for example, by email) to

the recipient. The HTML snippet is actually a single link to a special URL at the virtual
security.localhost which will be handled by the recipient’s proxy.

96 CHAPTER 10. CHANNELS

When the recipient clicks the link, his own proxy intercepts the URL embedded in the
HTML snippet, and extracts from the URL both the proof of authorization needed to access

the resource and the URL of the resource itself. The proxy digests the proof, redirects the
recipient’s browser to the resource URL, and the authentication protocol proceeds from the

recipient’s proxy just as it did for the original user. Notice that the client’s request pattern
reveals the required proof of the user’s authority just as it can reveal the required proof of

the server’s authority (see Section 10.3.2).

Chapter 11

Applications

I built three applications to demonstrate the Snowflake architecture for sharing.

11.1 Protected web server

The first application is simply a protected web file server that uses Snowflake’s sharing
architecture. One user establishes control over the file server by specifying the hash of

his public key when starting up the server; he may delegate to others permission to read
subtrees or individual files from the server using the mechanisms described in Section 10.3.

The server implementation extends the ProtectedServlet class of Section 10.3.3. This
FileServlet class overrides the getResourceTag()method of its superclass to map URLs

into Snowflake tags that describe the request. The superclass ensures that the client is
authorized to make the request, then the FileServlet’s servePage() method maps the

request URL to a file system path, reads the file, and returns its contents.

11.2 Protected database

The second application attaches Snowflake security to a relational email database. The
original database server accepts insert, update, and select requests as RMI invocations on a

Remote Database object, and returns the results of the query as serialized objects from the
database. Adapting the application to Snowflake required only minimal changes. I modified

the database instance constructor to use a SshSocketFactory so that all connections to the
object use my ssh secure channels. Then, I prepended each implementation of a method in
the remote interface with a call to the checkAuth() method. The database clients required

only a modification to their initialization code to install an SSHContext and a Prover.

In my case, the database contains only mail owned by an individual. Perhaps, however,

a site-wide email database might be controlled by a database administrator. That admin-
istrator delegates to each user restricted authority to manipulate his part of the database.

The resource each user sees, his slice of the database records, is a first-class resource that
he can treat as though it was a complete database.

97

98 CHAPTER 11. APPLICATIONS

11.3 Quoting protocol gateway

The third application is a protocol gateway that provides an HTML over HTTP front-end

to the email database. I built this application to demonstrate the power of the quoting
principal. The protocol gateway has its own identity, and quotes each user accessing it to

ensure that the user only sees those parts of the database he is authorized to see. Figure 11.1
illustrates a transaction through the gateway.

G|C says r′

C says r

G|C ⇒ C ,

?
T
⇒ S

C says r

G|?
T
⇒ S

r

?
T
⇒ S

G|C · · · T⇒ S,

G|?

C T
⇒ S,

reply′

reply

G|C says r′

G|C says r′

R
M
I
e
m
a
il
d
a
ta
b
a
se

se
rv
e
r

H
T
T
P
←
→

R
M
I
R
D
B
g
a
te
w
a
y

S

H
T
T
P
c
li
e
n
t
(b
ro
w
se
r)

C G

Figure 11.1: A transaction involving a quoting gateway. For clarity, this schematic omits
the principals that represent the channels over which the client, gateway, and server com-

municate.

A transaction begins when the client (C) sends an unauthorized request to the gateway

(G). The gateway queries the client for the identity the client wishes to use, and a delegation
that the gateway speaks for the client to perform the task. The gateway attempts to

access the database server (S), but the RMI authorization fails because the gateway has
no authority. The gateway sees an exception that indicates the required issuer S and
restriction set (T). The gateway generates a “401 Unauthorized” Snowflake Authorization

HTTP response, and in that response indicates it needs a proof that G|?
T
⇒ S. By G|? the

gateway means it needs a proof of authority that the gateway quoting the client speaks for

the database. The gateway uses ? as a “pseudo-principal” to stand for the client’s identity.

The client proxy now knows it needs to delegate its authority over the server to the

principal “gateway quoting client,”G|C. The client proxy generates the proof and resubmits
its original request, along with the proof, to the gateway. The gateway digests the new

11.3. QUOTING PROTOCOL GATEWAY 99

proof and forwards the request to the database server. This time, the automatic RMI
authorization protocol of Section 10.1.1 finds the proof in the gateway’s Prover, and the

database fulfills the request. The gateway builds an HTML interface from the database
results for presentation to the user. Subsequent requests are accepted without so much

fanfare, since the database server holds the appropriate proof of delegation.
Clearly this protocol could be optimized. Perhaps the client could cleverly send proofs

in advance, or different client applications might share a proof cache. While I have not
implemented such optimizations, the logic does not preclude them. Indeed, since proofs are

merely facts, disseminating proofs optimistically does not risk a leak of authority as would
disseminating a password or bearer capability. Disseminating proofs does increase the ability

of an adversary to collect private information about the local structure of authorization, so
some care must be taken in implementing such an optimization.

The quoting gateway is a motivating application because it spans each of the four

boundaries discussed in Chapter 8. My gateway operates identically whether the client and
the server are in the same administrative domain or different ones. It can be colocated with

the server, in which case its RMI transactions automatically avoid encryption overhead
by using the local channels of Section 10.2. The gateway constructs a view of an e-mail

message from several rows and tables of a relational database, and so introduces a level of
abstraction above the server resource. Finally, the gateway spans protocols by connecting an

HTTP-speaking web browser with an RMI-speaking database server. Despite each of these
boundaries, the gateway preserves the entire chain of authority that connects the client to

the final server, enabling the server to make a fully-informed access-control decision.
The gateway services requests from multiple mutually-untrusting clients, but it makes

no access-control decisions, and hence minimizes the likelihood that one client can exploit

the gateway to use the authority of another. The gateway avoids making access-control
decisions simply by carefully quoting the appropriate client in requests forwarded to the

server. Therefore, casual inspection can convince us that uncompromised gateway code
protects the authority of each of its clients. As always, a client can restrict its delegation

to the gateway to limit its exposure in the event that the gateway’s code is compromised.

100 CHAPTER 11. APPLICATIONS

Chapter 12

Measurement

To better understand the costs of the Snowflake authorization model, and how they com-

pare to costs of related systems, I timed the performance of my Snowflake-enhanced RMI
implementation and my Snowflake-enhanced HTTP implementation. For comparison, I also

timed standard RMI and standard HTTP servers with and without SSL support.

12.1 Experimental methodology

The performance numbers presented in this chapter were acquired in the environment de-

scribed in Table 12.1. My experiments take two forms: setup and bandwidth and setup and
per-request. In the first form, I vary the length of a file transferred and extract from a linear

regression the cost of initiating the request (the y-intercept) and the cost per megabyte to
transfer the request data (the slope). In the second form, I vary the number of requests

made after establishing a single connection. From a linear regression I extract the cost
of establishing the connection (y-intercept) and the cost per request to send an individual
request over the connection (slope).

In each experiment, I measure the wall-clock time required to complete 10 to 1000

repetitions of the operation, enough to make the experiment run on the order of seconds. I
repeat each run (a fixed combination of parameters) ten times, and discarded the first time

processor Sun Ultra 5, 270 MHz, 128 MB RAM
network shared 10 Mbps Ethernet

operating system Solaris 2.7
Apache web server version 1.3.12

OpenSSL version 0.9.5
Java virtual machine JDK 1.2.2, locally compiled,

sunwjit, green threads
PureTLS 0.9b1
Cryptix 3.1.1

Table 12.1: Hardware and software configurations used in my experiments.

101

102 CHAPTER 12. MEASUREMENT

to discount startup costs such as loading class files. Where they are within three orders of
magnitude of the y-intercept quantity, I report the standard deviation of errors (σ), from

which one can infer the amount of noise over the linear process. When the quality of fit
R2 < 0.99, I report it as well; experiments with small R2 have shallow slopes, and hence the

linear model does not contribute much information beyond the constant line at the mean of
the y observations. I computed 95% confidence intervals on the linear regression parameters

and found them always to be at least three orders of magnitude smaller than the quantity
they bound. I round all values to two significant figures. I visually inspected each scatter

plot to ensure that the linear models are reasonable; the plots appear in Appendix F.
Sometimes the ten trials of an experiment with a single collection of values exhibited a

significant coefficient of variation (C.V.). I checked the C.V.s for each individual experiment,
and re-ran those with C.V.s greater than 0.1. My understanding of the system and my
inspection of the data give me confidence that by doing so, I have eliminated noise due to

asynchronous events such as cron jobs or external network traffic, rather than rubbing out
observations of rare events in my experimental system.

12.2 RMI authorization with Snowflake

In this section, I quantify my implementation of Snowflake authorization over Java remote

method invocation as described in Section 10.1. Figure 12.1 summarizes the overhead my
prototype adds to RMI.

basic RMI RMI+ssh RMI+Sf
0

5

10

15

20

4.8

13

18

m
ill

is
e
c
o
n
d
s

Figure 12.1: The cost of introducing Snowflake authorization to RMI. This graph summa-

rizes Table 12.2. A basic RMI call costs 4.8 ms. Securing the channel with ssh introduces
significant overhead. Mapping the request into Snowflake and verifying the client’s authority
adds another 5 ms.

The test operation is a Remote object that returns the contents of a file. According
to Table 12.2, the setup time for this operation in basic RMI is 4.8 ms, and the compute-

12.3. HTTP AUTHORIZATION WITH SNOWFLAKE 103

bound data-copy overhead is 990 ms/MB. Performing the same operation over an open
ssh channel increases the fixed cost to 13 ms, and the data copy cost to 6100 ms/MB.

Adding the Snowflake protocol brings the total setup time to 18 ms: the extra work is the
server’s checkAuth() call, which retrieves the caller’s public key, finds a cached proof for

that subject, and sees that the proof has already been verified.

request copy σ R2

protocol ms ms/MB ms

RMI 4.8 990 5.7 0.96

remote 6.9 1100 1.7

ssh alone 13 6100 4.4

remote 13 3900 6.6

Snowflake 18 6100 6.7

remote 16 3900 5.3

Table 12.2: A setup and bandwidth experiment for RMI. Results from experiments where
client and server are on separate hosts appear on lines marked remote.

Table 12.2 shows results from a warm connection. The gap between 4.8 ms and
13 ms reflects the extra overhead of ssh stream processing on the few packets that carry an

individual request. The next jump up to 18 ms includes the costs of looking up the client’s
identity, mapping the request into a SPKI tag, and verifying that a cached proof shows

the client’s authority for the request. The bold values measure a connection between two
processes on the same host, and the values labeled “remote” measure a connection between

two processes on hosts separated by a shared 10 Mbps Ethernet segment. For protocols
that do not encrypt the byte stream, the network bandwidth dominates the copy cost. For

protocols that do encrypt, CPU time dominates the copy cost; hence copy costs are lower
in the remote case than the local, since two CPUs are available.

Table 12.3 presents results from cold connection caches. It costs 470 ms to establish

a new connection, reflecting the public-key operation the client performs to delegate its
authority to the channel. When the client caches the delegation but I make the server forget
its copy after each use, we learn that the server spends 190 ms parsing and verifying the

proof from the client. If the server caches the proof, the connection achieves approximately
the 20 ms per request that appears in Table 12.2 (σ accounts for the variation from 18 ms).

The Snowflake overhead is higher than we might expect of an optimized implementation; I
discuss reasons for this overhead in Section 12.5.

12.3 HTTP authorization with Snowflake

In this section, I quantify my implementation of Snowflake authorization over the HTTP

protocol as described in Section 10.3. Figure 12.2 visually summarizes the overhead my
prototype adds to HTTP, and Figure 12.3 relates the performance of the prototype to SSL.

104 CHAPTER 12. MEASUREMENT

proofs request copy σ

cached ms ms/MB ms

none 470 6200 14

remote 410 3800 5.1
client 190 6400 19

remote 140 3800 5.5
server 20 6100 7.1

remote 17 3800 4.4

Table 12.3: Disabling caches reveals the cost of proof generation, transmission and verifica-
tion.

request copy σ R2

client server ms ms/MB ms

C Apache 4.6 61 0.27 0.98

remote 4.8 960 0.56
Java Apache 11 93 0.92 0.89

remote 10 950 0.51

Java 17 180 1.0 0.96

remote 17 980 0.70

Jetty 25 240 2.3 0.90

remote 24 1000 6.1 0.96

Table 12.4: Performance baselines for HTTP 1.0.

12.3.1 Client baseline

First, I measured the time it takes to access an Apache web server with a C client and with
my Java client using an HTTP stream-processing package (part of the Jetty web server).
Table 12.4 presents the results. With the C client, a connection costs about 4.6 ms, each

megabyte of data transferred locally costs about 61 ms/MB more, and as one might expect,
each megabyte transferred over a shared 10 Mbps Ethernet segment costs about 960 ms/MB.

From my Java client, the connection costs 11 ms plus 93 ms/MB locally and still around
950 ms/MB remote. This experiment establishes the baseline cost of my Java timing client

that I use in all of the further tests.

12.3.2 Server baseline

Next, as shown in the second half of Table 12.4, I compare the Apache server with both
a trivial server written in Java and the Jetty web server, a full-fledged Java web server

with rich support for the features of HTTP streams. Taking the jump to Java adds about
6 ms to the cost of a connection, and doubles the per-MB cost. These costs likely reflect

the fact that while Apache uses C system call interfaces directly, Java’s I/O interfaces are
overhead-incurring wrappers linked to the same C glue routines.

12.3. HTTP AUTHORIZATION WITH SNOWFLAKE 105

C Java Sf
0

20

40

60

80

100

4.6

25

81

slow
SPKI
parse

m
ill

is
e
c
o
n
d
s

Figure 12.2: The cost of introducing Snowflake authorization to HTTP. This graph sum-
marizes Tables 12.4 and 12.6. A trivial C client accessing an Apache server takes 4.6 ms.

Replacing the client and server with convenient but inefficient Java packages brings the
baseline for HTTP to 25 ms. Most of Snowflake’s overhead reflects the use of inefficient

SPKI libraries, shown graphically as an inset box; for details, see Section 12.5.3.

My implementation is based on the convenient services and clean factorization provided

by the Jetty web server. Using Jetty adds another 8 ms, and increases the data transfer cost
another 33%. These costs reflect Jetty’s fairly complete request parser and Jetty’s stream

filters needed to support the various HTTP models for content length and chunking. The
Jetty implementation could certainly stand some optimization, but I present the Jetty costs

as a baseline since my implementation is based on Jetty.

Table 12.5 shows the results of an experiment that factors the cost of an HTTP request
from the cost of establishing the underlying TCP connection. With HTTP/1.1, I issue

multiple requests per connection, and infer the setup and per-request cost of an HTTP
connection. The costs do not correspond exactly with those shown in Table 12.4, since

connect request σ

server ms ms/req ms

Apache 4.3 4.6 1.6

remote 3.6 4.5 0.80
Jetty 10 22 2.0

remote 16 28 9.9

Table 12.5: A setup and per-request experiment that reveals the baseline cost of a single
HTTP/1.1 request. By varying the number of requests per connection, a linear regression
provides the setup cost of a connection and the cost of each request thereafter.

106 CHAPTER 12. MEASUREMENT

ident mac sign cache sign cache sign Apache Jetty Apache Jetty Apache Jetty
0

100

200

300

400

500

81

110

380

99

430

160

490

14

47

140

290

250

420

ignore verify request session new
Snowflake client auth. Snowflake server auth. SSL authentication

m
ill

is
e
c
o
n
d
s

Figure 12.3: This graph compares Snowflake client authorization, server (document) au-
thentication, and standard SSL authentication. The left group draws from Table 12.6, the

center group draws from Table 12.7, and the right group draws from Tables 12.8 and 12.9.

client and server are executing HTTP version 1.1 rather than 1.0.

12.3.3 Network baseline

I ran the same tests on a shared segment of 10 Mbps Ethernet, with no intervening router.
Not surprisingly, the per-request costs in the remote case are very similar to those in the local

case, since a connection setup only incurs a few sub-microsecond latencies. Per-megabyte
costs snap to about one second per megabyte, reflecting the 10 Mbps bandwidth of the
cable.

12.3.4 Snowflake costs

Now that I have established a baseline, what are the costs of my implementation of Snowflake
services over HTTP? As shown in Table 12.6, a fresh connection costs around 380 ms to

establish, including making a public-key signature of the outbound request. Replaying the
same request costs only about 81 ms, since the Prover has the required proof in cache. Using

the MAC optimization from Section 10.3.1 brings the cost for authorizing a new request to
110 ms. The extra 28 ms over an identical request reflects the extra work performed by the

12.3. HTTP AUTHORIZATION WITH SNOWFLAKE 107

client to hash the request plus the extra work performed by the server to hash the request
and parse and verify the proof.

request copy σ R2

requests ms ms/MB ms

signed 380 190 10 0.21

remote 380 980 8.8 0.91
identical 81 300 1.9 0.95

remote 85 920 13 0.81
MAC opt 110 300 1.6 0.97

remote 110 990 1.7

Table 12.6: Snowflake HTTP client authorization performance. The three major cases are

new requests that require a public-key signature, a repeated request with a cached proof, and
new requests that exploit the MAC protocol.

Table 12.7 presents my measurements of the server document authentication protocol
described in Section 10.3.2. In this experiment, the client presented identical requests.
Signing a document 〈sign,ignore〉 is dominated by a public-key operation, hence the 430 ms
connection cost. It also incurs a hashing operation that applies to the entire document,
increasing the copy cost. Caching document signatures 〈cache,ignore〉 eliminates both ex-
penses; the increase from 86 ms to 99 ms is due to formatting the cached proof for inclusion
in the reply header.

The final two cases correspond to the previous two, but now the client actually parses
and verifies the signature on the document and finds a proof of the server’s authority in its

Prover. The per-document cost increases by about 60 ms for parsing the server’s proof and
querying the Prover to complete the proof and yield a name binding. The data copy cost

increases since the client must also hash the document. The differences in copy cost in the
remote cases appear because hashing operations and network delivery overlap.

12.3.5 Comparison with SSL costs

How do my channels compare in cost with alternative approaches to authorization? The
obvious alternative is the Secure Sockets Layer (SSL) or its offspring, the Transport Layer

Security (TLS) protocol. I measured the costs associated with SSL in two server configura-
tions: a C implementation, Apache plus OpenSSL; and a pure Java implementation, Jetty

plus PureTLS (SSL protocol) plus Cryptix (cryptographic primitive implementation). The
client was always my Java client with PureTLS and Cryptix. For posterity, I also measured

my simple Java web server with PureTLS and Cryptix, and found that in fact the 15 ms
connection setup difference between Jetty and my simple server was lost in the noise of the
long SSL connection establishment. I used 1024-bit RSA keys on both the server and client

in the SSL experiments so they would compare with the Snowflake measurements.

With the Apache server, an SSL connection takes 230 ms to establish a session to a

new server once the client’s local context has been initialized, and 140 ms to rebuild using
a cached session. A cached session reuses secret-key encryption parameters, saving two

108 CHAPTER 12. MEASUREMENT

server client request copy σ R2

behavior behavior ms ms/MB ms

none ignore 86 290 2.2 0.96

remote 84 960 1.9
sign ignore 430 760 7.0 0.93

remote 430 1400 9.0 0.97
cache ignore 99 300 1.9 0.97

remote 100 910 5.5 0.97
sign verify 490 1200 9.6 0.95

remote 480 1800 11 0.97
cache verify 160 560 14 0.68

remote 150 1300 5.2

Table 12.7: Snowflake HTTP server authorization performance. The experiments vary

according to whether the server signed the returned document, used a cached proof, or sent
no proof at all, and whether the client verified the document’s authenticity.

expensive public-key operations. Jetty takes more time: 390 ms to set up a fresh connection,

and 290 ms to reuse an existing session. In Section 12.5, I discuss the relationship between
SSL and Snowflake HTTP authorization that explains why these costs are different than

those in Tables 12.6 and 12.7.

Once SSL establishes a session and authenticates its endpoints, it makes no authorization
decisions per-request. The fixed cost of processing a single HTTP request on an established

connection is 14 ms/req and 47 ms/req with Apache and Jetty servers, respectively.

12.4 Gateway authorization

My informal tests of the gateway application show that it has a latency of about 770 ms.
This exorbitant cost reflects the fact that the gateway transaction always involves two

public-key signatures. I have not optimized the protocol to eliminate public-key encryptions
in the common case, for example, by implementing the MAC protocol in the gateway.

12.5 Observations

I hypothesize that the Snowflake authorization model is not prohibitively expensive. In

fact, because it can subsume many hop-by-hop authorization models, it allows applications
and users to make security-performance tradeoffs freely by selecting alternate hop-by-hop

authorization protocols and plugging them into the same authorization framework.

Do my measurements support my hypothesis? Unfortunately, since my implementation

is unoptimized and built on top of slow libraries, the numbers do not support my hypothesis
unequivocally. By comparing them with baseline experiments, however, I believe I can

make a strong case for the hypothesis. In the next two sections, I examine the two parts
of my hypothesis. In Section 12.5.3, I argue that an optimized Snowflake promises to be

12.5. OBSERVATIONS 109

request copy σ

server cache ms ms/MB ms

Apache none 250 11000 25

remote 230 11000 9.0
context 230 11000 16

remote 220 11000 21
session 140 11000 11

remote 180 11000 9.8
Jetty none 420 24000 31

remote 440 12000 23
context 390 25000 23

remote 420 12000 37

session 290 24000 45

remote 300 13000 46

Table 12.8: The SSL setup and bandwidth experiment. In the context case, I discard cached

sessions; in the session case, I allow SSL to cache and reuse sessions.

connect request σ R2

server ms ms/req ms

Apache 130 14 19 0.96

remote 170 14 26 0.93

Jetty 260 47 45 0.98

remote 240 46 8.5

Table 12.9: The cost of a single request over SSL. The first column shows cost of establish-
ing a connection with session caching, and the second column is the cost to send a 100-byte

request over the connection.

competitive with existing hop-by-hop protocols. I summarize my observations with some
lessons learned in the process of measuring my implementation.

12.5.1 Comparable operations

Snowflake-enhanced protocols are not inherently more expensive than other protocols with

similar guarantees. The measurements displayed in Figure 12.3 indicate that Snowflake
performs similar encryption steps as SSL. SSL spends about 400 ms starting up, as does

Snowflake. SSL can complete a request over an established channel in about 50 ms. Withmy
MAC optimization, a Snowflake request takes about 110 ms. As I discuss in Section 12.5.3,
I have observed that most of the difference is attributable to slow libraries.

Both SSL and Snowflake engage in similar operations. SSL verifies message authenticity
with symmetric-key decryption and a CRC; Snowflake does the same with an MD5 hash.

Regardless of protocol, the server parses and processes the request and returns the reply.
The SSL protocol checksums and encrypts the reply; Snowflake securely hashes the reply

110 CHAPTER 12. MEASUREMENT

document. In both cases, the client uses a corresponding operation to verify the reply.
Because the expensive cryptographic operations are comparable, one expects optimized

implementations to perform comparably.

The additional sources of overhead in Snowflake are time spent walking the proof graph
and memory consumed maintaining cached proofs. My experiments do not explore that

space in depth, but as I describe in Section 10.3.4, proofs are usually constructed incremen-
tally while walking the name graph, an operation driven by the client user or application.

12.5.2 The performance-security tradeoff

By comparing my authorized-request protocol to SSL I somewhat compare apples and
oranges, for the protocols make different performance-security tradeoffs. For example, SSL
authenticates the client and the server applications and provides secrecy and integrity for

the entire communications stream. The Snowflake HTTP protocol I have described, in
contrast, shows the chain of authority over requests and over document authentication, but

only provides integrity for requests, and only shows integrity of reply documents, not of
headers or other information supplied by the server.

That tradeoff, however, is part of my point. With Snowflake, one is free to choose
an established hop-by-hop protocol or to develop a new one. By stating in my logic the

authorization promises the protocol makes, one can integrate the protocol into Snowflake’s
end-to-end authorization model. Conceivably, new protocols can be dynamically integrated

into existing Snowflake-aware applications; in other cases, a protocol-translating gateway
can introduce the new protocol to the distributed system without hiding authorization

information from the underlying application.

12.5.3 Slow libraries

My formal measurements and informal tests indicate that a large fraction of Snowflake’s cost

is needless overhead. As Table 12.4 shows, my baseline HTTP measurements indicate that
using Java and the convenient Jetty web server incurs substantial overhead (250%). Fur-

thermore, Table 12.8 shows that the Java encryption library Cryptix imposes a substantial
bandwidth overhead.

What surprised me most was the overhead of the SPKI implementation on which I
built Snowflake’s objects. In informal tests, parsing a 2 KB S-expression from a string

takes around 20 ms, and converting the resulting tree into typed Java objects takes another
20 ms. Indeed, even basic operations like hashCode() took over 5 ms until I made simple

fixes that improved the performance by an order of magnitude. There is no reason a well-
implemented library should spend milliseconds parsing short strings in a simple language;
and 40+ ms delays such as these explain much of the difference between Snowflake’s warm-

connection performance and that of simple HTTP transactions. I am considering a full
reimplementation of the SPKI libraries and adopting native crypto providers to eliminate

a large fraction of the inefficiencies in my implementation and make it achieve production-
system performance.

12.5. OBSERVATIONS 111

12.5.4 Performance lessons

While developing these experiments, I learned two lessons about performance and measure-
ment. First, do not forget to close sockets when they are no longer in use, for extra file

descriptors slow things down [BM98]. Second, when latency matters, be careful to disable
Nagle’s algorithm, which delays delivery of a packet in hopes that the application will soon

send more data that can be aggregated into the same packet. Oddly, Nagle’s algorithm is
even used on connections to the local host. I am also surprised that the interface to Nagle’s

algorithm is a single bit on the file descriptor. Turning off the algorithm is analogous to
turning off buffering in the C stdio library; why not supply a flush call instead to give
the application more control?

112 CHAPTER 12. MEASUREMENT

Chapter 13

Qualities of Snowflake sharing and
security

I argue here that the architecture and implementation described in the preceding chapters

satisfy the important qualities outlined in Section 3.2.

13.1 Consistent sharing

Users share resources with one another the same way, regardless of whether the parties

involved are in the same administrative domain or different ones. In any case, the issuer
ascertains the subject’s identity as a principal, asks the sharing tool to construct a delegation

to the subject based on his authority, and communicates the name of the resource together
with the constructed delegation to the subject.

13.2 Transitive delegation

A user may share any resource he can access with another user simply by constructing a
delegation of his authority to that user. I mention how users (including administrators)

might protect against careless delegation in Section 8.1.

13.3 Restricted delegation

Users share resources the same way regardless of whether the resource is from “first prin-
ciples” or is a resource received by restricted delegation from another user. If a resource

has an abstract notion of divisibility, my architecture provides a way for the user to express
restriction of that resource when sharing it with another.

13.4 Auditable access control

Whenever a server answers a request, it does so only after verifying a proof that the request,
however indirectly, speaks for the owner of the resource with respect to some restriction.

113

114 CHAPTER 13. QUALITIES OF SNOWFLAKE SHARING AND SECURITY

Therefore, the owner always has access to the chain of principals, including channels, that
authorized the request; he may verify that those delegates are behaving responsibly.

Suppose a user downstream from a resource server wishes to audit requests made using

a delegation he has issued. With conjunction, he can express a delegation that requires the
agreement of an online “auditing oracle,” ensuring that the oracle has an opportunity to

inspect any transactions that rely on the delegation.

13.5 User cost of sharing

When a user Alice wants to share a resource, she thinks “I want to share part of resource X

with user Bob.” Unix groups make it difficult to express sharing with a simple entity such
as “user Bob.” Capabilities express the sharing, but do not encode the intended recipient
of the delegation. Access-control lists make it easy to express “user Bob,” but only if

Alice controls the ACL for X . The speaks-for relation in the Calculus for Access Control
expresses transitive sharing, but since it relies on ACLs, has the same limitation. Unlike

the alternatives, Snowflake’s restricted delegation captures the user’s concept of sharing
precisely.

13.6 User cost of administration

One attractive facet of the user learning curve in Snowflake is that mechanism is decoupled
from administrative boundaries. Hence a system administrator uses the same tools as an

ordinary user. An administrator performs the same tasks that regular users do, resource
naming and resource sharing; the only difference is where resources come from. In the

common case, an administrator is delegated resources directly by the hardware itself; users
are delegated resources by the administrator. The consequence is that a user can smoothly
graduate to the role of administrator.

13.7 Performance

Recall from Section 12.5 that one way to consider the Snowflake sharing architecture is as
a unification of several more specific mechanisms. To that extent, its performance tracks

that of particular mechanisms and depends upon the environment in which it is used. For
example, if one is using the Snowflake model on a local machine with a security kernel trusted

to provide valid authorization information, there is no need for expensive encryption, and
Snowflake exploits that scenario.

Recall Chapter 12, where I measure the impact of Snowflake in a few concrete appli-
cations, and argue that its performance indeed tracks that of more specific authorization

protocols. The advantage of the Snowflake model over a given hop-by-hop authorization
protocol is that it can be used consistently regardless of whether resources are separated

by administrative boundaries, and in every situation it provides end-to-end authorization
information.

13.8. FORMAL MODEL OF SHARING 115

13.8 Formal model of sharing

One of the greatest strengths of the Snowflake architecture is its foundation in an unam-

biguous formal model. In Sections 7.8 and 7.9 I show how my model can support or warn
against proposed extensions. An unambiguous model gives us confidence that we under-

stand the ramifications of the logic, so that the worst-case behavior of the system in the
presence of an adversary is less likely to surprise us.

116 CHAPTER 13. QUALITIES OF SNOWFLAKE SHARING AND SECURITY

Part VI

Summary

117

Chapter 14

Related work

I inspect related naming systems in Section 2.2, and related approaches to sharing in Sec-

tion 3.3. In this chapter, I discuss work related to my overall goal of helping users span
administrative boundaries, either because the work has a similar goal or because it promises

help in reaching that goal. I examine in turn microkernel-based operating systems, extensi-
ble operating systems, single-system-image clusters, middleware infrastructure, distributed

file systems, and worldwide systems.

14.1 Microkernels

Microkernels move services from an administrator-controlled kernel into user processes,
where they potentially may be provided by, not just a distinguished administrator, but

multiple users. The change in mechanism supports a more egalitarian resource distribution
model from which Snowflake derives inspiration.

The Mach project pioneered microkernel architecture. Mach services are provided by

active objects (Mach tasks) communicating via Mach’s IPC primitives. IPC is rather ex-
pensive in Mach, so Mach active objects are typically large-grained. Indeed, most Mach-

based operating system “personalities” implement most of the OS functionality in a single
server task. Even the Mach kernel itself is fairly large compared with other microker-
nels: it provides virtual memory, a rich IPC primitive, device drivers, and a file system

[BGJ+92, Loe92, BRS+85]. Tanenbaum’s survey compares Mach with the Chorus and
Amoeba microkernels [Tan95]. The GNU Hurd is based on a Mach microkernel, but does a

better job of factoring services into multiple object servers [Fou96].

The Flex project advocates a model called “Recursive Virtual Machines” [FS96,
FHL+96]. This model is facilitated by a virtual machine interface in which each resource

(memory, CPU scheduling) can be administered hierarchically. While a user may only be
given some fraction of the resources owned by an administrator, the user still retains the

same level of expressive power to redistribute those resources. Hence, Flex’ mechanisms
may support the user-centric naming and sharing I pursue.

Grasshopper is a general-purpose microkernel with a hierarchical memory-mapping

model. Because any page in a process can be both supplied by a parent process and
supplied to a child process, Grasshopper supports user-centric resource naming through its

119

120 CHAPTER 14. RELATED WORK

memory model. Its memory-mapping facility is used to provide pervasive services such as
persistence [DdBF+94, LRD95].

14.2 Retrofitting existing architectures

Microkernels rewire the system to make all resource providers user processes, and hence
take a first step toward user-centric resource naming and sharing. In contrast, other systems

hold to a conventional administrator-centric architecture, but provide users with an escape
route for providing user-specific functionality. The assumption in these approaches is that
administrator-centric behavior is appropriate most of the time, so that the hooks need be

used only occasionally. Unfortunately, that philosophy means that these systems retain the
notion of an administrative domain.

VINO and SPIN are operating systems based on a conventional monolithic kernel plus
an extension mechanism that allows user processes to install kernel extensions that modify

the system interface [SESS96, BCE+95, BSP+95]. While this approach gives user processes
the ability to reshape the system according to their own needs, it does not enable users

to share resources with the same mechanisms by which the administrator initially doles
resources out to users.

Other systems retrofit a system of conventional heritage with extensions to allow user-
specific naming. Portals in BSD 4.4 reflect some naming operations out to user processes,
but they still respect the concept of a central system administrator [SP95]. Bershad and

Pinkerton’s Watchdogs and Neuman’s Prospero insert hooks into the operating system ker-
nel to allow user-specific extensions to the system naming interface [BP88, Neu92]. Alexan-

drov’s UFO and Jones’ Interposition Agents use existing hooks to implement user-level API
extensions [AISS98, Jon93].

Although they preserve a distinguished notion of administrator, these systems do allow
users to redefine how resources are supplied to their processes, enabling users to run existing

applications under a new resource access model. Indeed, as I describe in Section 2.4.2, I use
an emulation layer based on UFO to enable existing applications to use Snowflake services.

14.3 Single-system-image clusters

Single-system-image clusters are clusters of machines running kernels that communicate to

provide users with the illusion of a single machine. Any resource anywhere in the cluster
is accessible uniformly and easily. The cluster is still an administrative unit, however;

accessing resources beyond the cluster is nonuniform and hence more difficult. I mention
single-system-image clusters because they have similar goals for users (uniform and easy

access to “all” resources), but they contrast in an important way: they define the scope
of “all” resources to be those in an administrative domain, not all resources potentially
accessible to a user.

Examples of single-system-image clusters include Spring (based on intracluster remote
method invocation), Sprite and Amoeba (based on intracluster remote procedure call),

and Plan 9 (based on intracluster file system operations) [MGH+94, OCD+88, TvRvS+90,
PPD+95]. I discuss Plan 9 in more detail in Section 2.2.2. GLUnix uses middleware to create

14.4. DISTRIBUTED FILE SYSTEMS 121

a cluster-wide global namespace on conventional Unix hosts [GPR+98]. Single-address-
space operating systems implement a single-system-image cluster by accessing services via

distributed shared memory. Examples include the Apollo DOMAIN system, Opal, Angel,
Mungi, and Hurricane [RLML86, CLFL94, MWSK94, HEV+98, UKS95]. The distributed

shared memory approach faces even greater restriction in scale and distribution than that
based on message passing.

The Grapevine system was an early example of an enterprise-wide single-system image.
It provided coherent naming and simple authentication for distributed resources such as e-

mail and printing. Grapevine’s hierarchical structure treated the entire enterprise as a single
administrative domain [BLNS82, SBN84]. Xerox’ production Clearinghouse distributed

name service inherited much of Grapevine’s structure [OD83]. Lampson’s global name
service extends these notions to deeper hierarchy and explicit nondeterministic semantics
to tolerate unreliability [Lam86].

14.4 Distributed file systems

The problem of distributing access to files is more restricted than distributing access to
arbitrary resources, and yet it is by no means a trivial problem. Distributed file systems

provide insight into the challenges of naming in a global environment and transparent
distribution across slow and unreliable networks. Several useful surveys of distributed file
system technologies introduce the topic [LS90, Wel94, DMST95, AEK96].

The Andrew File System is the first distributed file system to successfully span adminis-
trative domains. It employs aggressive caching to contend with slow networks. Andrew File

System configuration depends upon administrators with special privileges, however, and its
naming structure reflects the hierarchy of participating administrative domains [MSC+86].

14.5 Worldwide systems

Some ongoing projects aim to produce large-scale virtual computer resources by aggregat-

ing resources across a wide-area network. These projects share some of my goals in that
they must deal with crossing administrative boundaries, but they have more specific pur-

poses. For example, they are typically not concerned with sharing resources outside the
virtual computer defined by the system; in essence, the virtual system becomes its own

administrative domain.

The Legion project aims to make a worldwide virtual computer by combining unused

workstation resources and exporting them to remote users. While it aims to make a global
set of resources available uniformly to the users of the system, it retains a significant distinc-

tion between administrators and users. Furthermore, Legion aims to unify primarily generic
resources (CPU time, storage space) for distributed computations, rather than unifying all
of the specific data and other services that an interactive user would employ. [GWtL97].

The GLOBE project has similar goals; its unifying concept is a distributed shared ob-
ject, implemented as a distributed collection of heavyweight objects that support thread,

communication, and replication semantics for the object’s implementation. GLOBE’s scal-
able location service maps an object identifier to the locations where the distributed object

122 CHAPTER 14. RELATED WORK

can be found. The service supports frequent updates, but does not address the structure of
names other than to say that they are location independent [vSHT99, vSHBT98].

The grid is a metaproject with the goal of creating “a universal source of computing
power” that would enable new distributed applications with high computational require-

ments [FK98]. Participants of the project are currently defining the requirements for grids,
including requirements for naming and sharing that can span the multiple administrative

domains that the proposed grid itself must span. The applications that motivate the grid
are novel, but the grid, as do I, aims to remove administrative boundaries to the distribution

of computational tasks.

Chapter 15

Conclusion and Contributions

In this dissertation, I present an architecture for naming and sharing with the express goal

of freeing users from artificial administrative boundaries. I conclude the following.

In a world where users access resources from a variety of sources, we can make resource

access uniform and simple by organizing naming and security mechanisms around user-
to-user sharing rather than administrative domains. Although the philosophy alters the

design of the system and the mechanisms that it supports, it does not limit the policies ad-
ministrators can enforce. The architecture simply removes artificial boundaries to resource

access.

I evaluate my architecture and existing architectures with respect to these qualities, and

discover that my approach trades off performance and user cost of storage management to
enable names with high mnemonic and semantic value that users can easily share.

I contribute a naming mechanism based on user-relative paths that reflects user-to-user

relationships. To ensure that all applications exhibit the benefits of user-specific naming, I
structure the system so that naming is a separate, user-controlled layer between applications
and other system services. Name bindings should be stored on the server side of the naming

interface so that they can always be shared with other users.

I contribute an authorization mechanism that enables users to uniformly specify their
sharing requirements with other users, regardless of whether their colleagues are in the same

administrative domain. Hence sharing reflects user-to-user relationships, not administrative
hierarchy. My sharing model is founded on a formal logic and semantics, so its meaning is
unambiguous and implementations can be verified against a clear standard.

I establish that my sharing model enables an end-to-end approach to authorization

that has benefits even within administrative domains. It enables us to build gateways
that span network scales, levels of abstraction, and protocols while maintaining the flow of

authorization information from the client to the ultimate resource server.

My prototype system and applications demonstrate the naming and sharing mechanisms

at work. I compare them to conventionally-organized systems and applications, and evaluate
their characteristics qualitatively and quantitatively. The system exhibits the qualities we

desire, and its performance roughly tracks that of conventional hop-by-hop authorization
protocols with similar implementations.

The user-centered philosophy of system organization is the organizing element behind
my work. I conclude that the philosophy is compatible with the usual goals of system design,

123

124 CHAPTER 15. CONCLUSION AND CONTRIBUTIONS

and in fact simplifies the organization of systems by reducing many administrative tasks to
special applications of user tools. I hope that system architects will consider adopting my

philosophy when they develop future designs.

Chapter 16

Future work

As I have discussed, the ultimate vision of my project is to replace conventionally-structured
systems and applications with those structured in a user-centric way, enabling users to

smoothly traverse administrative boundaries. To that end, I envision extending this work
in several directions, each designed to further the practical applicability of my work. I

list these directions here in decreasing order of grandiosity. The most involved goal is to
extend the notion of end-to-end authorization to end-to-end secrecy. Within the scope of

end-to-end authorization, I envision several extensions to my protocols and applications
to make them more practical and useful. Finally, there are opportunities for performance

improvements that would improve my prototype towards production quality. I detail each
of these directions in the following sections.

16.1 End-to-end secrecy

My work on end-to-end authorization models who believes what, and through promotion
to ground truth, who can do what. I would like to cross that idea with models of secrecy

and information flow, such as that in [BAN90], to work toward an end-to-end formal model
that captures notions of who may know what. In such an architecture I imagine a gateway

that operates with only partial access to the information it translates, passing from server
to client encrypted content that it need not view to accomplish its task.

16.2 Applications

My server authentication implementation touched on authenticating documents and re-
sources relative to how the user knows them. I would like to fill out this notion to im-
plement “self-certifying” web pages or e-mail or path names. The SFS secure file system

pioneered the idea of self-certifying path names [MKKW99]. Indeed, I could integrate SFS’
path names as a hop-by-hop protocol in my end-to-end authorization model.

I might also implement other protocols to add to the suite of those supported by

Snowflake. A version of HTTP over SSL would be a natural choice. SPKI supports revo-
cation through Certificate Revocation Lists (CRLs) and one-time revalidation authorities.

125

126 CHAPTER 16. FUTURE WORK

Section 7.7 describes how my logic can model these mechanisms; I would like to implement
them using my logic to capture their participation in transactions.

To encourage Snowflake’s use in production systems, I might adapt production applica-
tions to support Snowflake authorization.

I could arrange for users to be able to delegate their authority over a resource to another
while restricting the recipient to only access the resource through some abstracting gateway.

For example, Alice might want to let Bob read only message 174 of her e-mail. To do so,
she must give him access to the database server, but ensure that he only access the resource

through the gateway, since the database server has no notion of individual messages, only
lower-level abstractions like headers. By using conjunction, I could encode Alice’s delegation

to “Bob and the gateway,” ensuring that Bob cannot exercise the delegated authority
without using the abstracting gateway.

16.3 Performance

In Section 2.5.4 I said that Snowflake has no protocol to communicate whether the results
of a name resolution may be cached. There indeed is such a protocol once we consider

Snowflake authorization. If a name binding is backed by the authority of the resource to
authenticate itself to that name, then the validity duration of that authority establishes
an upper-bound on the cachability of the name. Clever application of authorization may

not only communicate cachability information, but enable the construction of secure shared
caches.

I comment on the poor performance of the gateway in Section 12.4. Among other
optimizations, I could extend the gateway to recognize the common case of a repeated

request and immediately include the newly-supplied proof to the proofRecipient, saving
an extra round-trip in the RMI protocol.

Section 12.5.3 indicates how poorly the SPKI libraries perform. I would like to repair
those libraries to parse S-expressions efficiently. Once the libraries are efficient, proof trans-

mission could be improved by using references to remove repeated occurrences of subexpres-
sions, either within one proof or even across proofs on a long-lived communication. Proof
security would be uncompromised, since a corrupted reference could only cause the proof

recipient to receive an unverifiable proof. Passing proofs by reference would not only save
parsing time at the recipient process, but it would also allow the recipient to skip verification

of subproofs it has seen before.

Acknowledgements

I hope that this dissertation, and everything else I do in life, glorifies God. Your creations
dwarf our greatest engineering feats. Thanks for the desire to explore.

Thanks to my parents for love and direction, and for encouraging me to explore.

Thanks to Andy for spending hundreds of your Saturdays helping me explore the worlds

of computer science, math, and engineering. Your spirit taught me to see the world as my
toybox.

Thanks to my bride Christina for your faithfulness and willingness to let me explore.

Thanks to my advisor Dave for your patience and willingness to let me explore, and for

shaping me as a scientist and communicator.

Thanks to the USENIX Association for funding my research.

Thanks to John Lamping for patiently helping me understand logical proof systems

and semantic models. Thanks to Jon Bredin, Valeria de Paiva, Mark Montague and Larry
Gariepy for discussions about the formalism, which helped refine the idea.

Thanks to Hany Farid for providing statistical intuition.

127

128

Appendix A

Proofs

A.1 Construction of φT

Definition E12 presupposed the existence of a projection function φT . We construct such a

function now, and show that it satisfies the definition. Let W = 2T ; that is, worlds in M

are subsets of T . Define

φT (w) = w ∈W

where (σ ∈ w) ≡ (w ∈ E(σ)) ∀σ ∈ T (Definition E26)

Necessity. Given φT (w) = w = φT (w
′), we know ∀σ ∈ T, σ ∈ w iff w ∈ E(σ), and

likewise, ∀σ ∈ T, σ ∈ w iff w′ ∈ E(σ). Therefore ∀σ ∈ T, w ∈ E(σ) iff w′ ∈ E(σ), and we
conclude w ∼=T w′.

Sufficiency. From the definition of w ∼=T w′, we know ∀σ ∈ T, w ∈ E(σ) iff w′ ∈ E(σ).
Let w = {σ ∈ T |w ∈ E(σ)} and w′ = {σ ∈ T |w′ ∈ E(σ)}. From our hypothesis we know
that the conditions on w and w′ are the same, so φT (w) = w = w′ = φT (w

′).

In the following proofs, I generally use a bar (w) to indicate a member of an equivalence
class constructed as shown here.

A.2 Equivalence of φw
T and φ+T definitions of

T
⇒

I now justify my claim in Section 4.2 that Definition E14 and Definition E16 are equivalent.

Necessity. Assume B
T
⇒ A holds according to Definition E14:

∀w′
0

(

φwT (R(A)(w
′
0)) ⊆ φwT (R(B)(w

′
0))

)

129

130 APPENDIX A. PROOFS

For all 〈w0, w1〉,

〈w0, w1〉 ∈ R(A) �
�w1 ∈ R(A)(w0)
�
� w1 ∈ φwT (R(A)(w0)),

w1 = φT (w1)

��w1 ∈ φwT (R(B)(w0)) (using the assumption)
�� ∃w′

1
∼=T w1,

〈w0, w
′
1〉 ∈ R(B)(w0)

�
�〈w0, w1〉 ∈ φ+

T (R(B)) (by Definition E15)

Sufficiency. Assume B
T
⇒ A holds according to Definition E16:

R(A) ⊆ φ+
T (R(B))

Given w0 and w1 ∈ φwT (R(A)(w0)), we know that there is some w1 ∈ R(A)(w0), with

w1 = φT (w1). We rewrite the statement 〈w0, w1〉 ∈ R(A), and invoke the assumption to
get 〈w0, w1〉 ∈ φ+

T (R(B)). Now we know there exists 〈w0, w
′
1〉 ∈ R(B) with w′

1
∼=T w1.

Changing notation again, w′
1 ∈ R(B)(w0). Since w

′
1
∼=T w1, we know w1 = φT (w

′
1), and we

may conclude w1 ∈ φwT (R(B)(w0)).

Together, the two implications show the equivalence.

A.3 An undesirable semantics for
T
⇒

Notice that φ+
T projects only the destination world of each edge in a relation. Why do we

not project both ends of the relation? Such a definition actually does not preserve our most

basic intuition, that B
T
⇒ A �

�B
T
→ A. In the model in Figure A.1, the grey boxes depict

the equivalence classes under T ; projecting both ends of the edges in R(A) gives {〈T,∅〉},
as does R(B). From world w0, however, B sayss but not A sayss.

Given a relation 〈w0, w1〉, then, the reason we only project w1 is this: w0 is affected by
what statements are true at w1; substituting other worlds equivalent with respect to T does

no harm. Substituting other worlds for w0, on the other hand, changes what statements we
consider true at w0.

A.4 Proof of soundness

In this section, I show that my extension to Lampson’s calculus is still a sound axiom-

atization of the presented semantics. Like Lampson’s original logic, mine is based on a
conventional Kripke semantics of modal logic. The conventional proofs of soundness for

A.4. PROOF OF SOUNDNESS 131

T

t

s

t

s

t

B
A

B

s

t

s

Figure A.1: In this example, T = {s}. Notice that B �
T
→ A.

Axiom S1, Rule S2, Axiom S3, and Rule S4 apply. My extensions define E for a new for-

mula (B
T
⇒ A) and R for a new principal (A · N), but do not perturb Abadi’s original

semantics for the calculus for access control. Because those semantics do not depend on

any particular structure in E or R, the axioms of the calculus remain sound in my extended
calculus.

My present task is to show that the axioms of my extensions are sound.

Axiom E1. ⊢ (C
T
⇒ B) ∧ (B

T
⇒ A) ��(C

T
⇒ A). This axiom follows easily from Definition

E14. For all w0,

φwT (R(A)(w0)) ⊆ φwT (R(B)(w0))

⊆ φwT (R(C)(w0)) 2

The following lemma shows that φ+
T preserves the union operation. Let R1 and R2 be

relations.

〈w0, w1〉 ∈ φ+
T (R1 ∪ R2)

≡ ∃w′
1
∼=T w1, 〈w0, w

′
1〉 ∈ R1 ∪ R2

≡ ∃w′
1
∼=T w1,

〈w0, w
′
1〉 ∈ R1 ∨ 〈w0, w

′
1〉 ∈ R2

≡ ∃w′
1
∼=T w1, 〈w0, w

′
1〉 ∈ R1

∨ ∃w′
1
∼=T w1, 〈w0, w

′
1〉 ∈ R2

≡〈w0, w1〉 ∈ φ+
T (R1) ∨ 〈w0, w1〉 ∈ φ+

T (R2)

≡〈w0, w1〉 ∈ φ+
T (R1) ∪ φ+

T (R2)

From this equivalence we conclude

φ+
T (R1 ∪ R2) = φ+

T (R1) ∪ φ+
T (R2) (Lemma E27)

132 APPENDIX A. PROOFS

Axiom E2. ⊢ (B
T
⇒ A) �

�(B∧C)
T
⇒ (A∧C). We assume the premise in terms of Definition

E14:

∀w′
0 (φ

w
T (R(A)(w

′
0)) ⊆ φwT (R(B)(w

′
0)))

We can readily reason for all w0:

φwT (R(A∧ C)(w0))

= φwT ((R(A) ∪R(C))(w0))

= φwT (R(A)(w0) ∪R(C)(w0))

= φwT (R(A)(w0)) ∪ φwT (R(C)(w0)) (Lemma E27)

⊆ φwT (R(B)) ∪ φwT (R(C))

= φwT (R(B)(w0) ∪R(C)(w0))

= φwT ((R(B) ∪R(C))(w0)) (Lemma E27)

= φwT (R(B ∧ C)(w0)) 2

Axiom E3. ⊢ (C
T
⇒ A) ∧ (C

T
⇒ B) ≡ C

T
⇒ (A ∧ B). The equivalence depends on Lemma

E27:

M |= C
T
⇒ A ∧ C

T
⇒ B

iff φ+
T (R(A)) ⊆ φ+

T (R(C))
∧ φ+

T (R(B)) ⊆ φ+
T (R(C))

iff φ+
T (R(A)) ∪ φ+

T (R(B)) ⊆ φ+
T (R(C))

iff φ+
T (R(A) ∪ R(B)) ⊆ φ+

T (R(C)) (Lemma E27)

iff M |= C
T
⇒ (A∧ B) 2

To justify Axiom E4 we must first show that for any relation R,

φ+
U (R) = R (Lemma E28)

Lemma E28. The lemma holds because we may discard identical worlds from a model

without loss of generality. That is, imagine we have a model M with two worlds w1 and
w2 where w1 ∈ E(σ) iff w2 ∈ E(σ) for every formula σ ∈ Σ∗. The extra world w2 appears
in every I(s) in which w1 appears. Any edge in any relation ending in w1 has a related

edge ending in w2 (〈w, w1〉 ∈ J(A) ≡ 〈w, w2〉 ∈ J(A)); likewise edges starting at w1 have a
related edge starting at w2 in every relation. The same holds for the relations in the name

interpretation function K(A, N). It is clear that the extension function R, and hence E ,
have the same overlap with respect to w1 and w2, so that w1 ∈ E(σ) ≡ w2 ∈ E(σ).

A.4. PROOF OF SOUNDNESS 133

Given this definition, we can build a modelM′ = 〈W ′, w′
0, I

′, J ′, K ′〉 that discards w2:

W ′ =W − {w2}

w′
0 =

{

w1 if w0

w0 otherwise

I ′(s) = I(s)− {w2}

J ′(A) = J(A) − {〈w, w′〉|w = w2 ∨w′ = w2}

K ′(A, N) = K(A, N)
− {〈w, w′〉|w = w2 ∨w′ = w2}

Happily,M′ preserves every consequence ofM: (M |= σ) ≡ (M′ |= σ). Why? Whenever

w0 ∈ E(σ), we know w′
0 ∈ E

′(σ), either for exactly the same reasons (when w0 �= w2), or
because w0 = w2, so w0 = w2 ∈ E(σ) ≡ w1 ∈ E(σ), and then w′

0 ∈ E
′(s) for the same

reasons that w1 ∈ E(s).

Convinced that duplicate worlds do not alter the consequences of a model, we may now

assume that no models contain identical worlds, without damaging the semantics. If we
know w1 �= w2, we can assume the existence of a formula σ with (w1 ∈ E(σ)) �≡ (w2 ∈ E(σ)),
and conclude that w1 �∼=U w2 (by Definition E11). Therefore, φU is bijective:

w1 �= w2
��φU (w1) �= φU(w2)

By the definition of φ+
T it is obvious that any relation R ∈ φ+

T (R). But when T = U , the
converse is also true:

〈w0, w1〉 ∈ φ+
U (R)

��∃ w′
1 such that 〈w0, w

′
1〉 ∈ R,

φU (w
′
1) = φU (w1)

��w′
1 = w1

��〈w0, w1〉 ∈ R

Now we have φ+
U (R) = R. 2

Axiom E4. ⊢ (B
U
⇒ A) ≡ (B ⇒ A). Expanding the definition of B

U
⇒ A and applying the

previous result gives R(A) ⊆ φ+
U (R(B)) = R(B), which satisfies the definition of B ⇒ A.

2

Justifying Axiom E5 requires two lemmas that relate representatives of equivalence classes
under different projections.

First, a representative of a projection due to a small set has a “big brother” in any
projection due to a superset, and the structure of the brothers is closely related:

w′
1 ∈ φwT ′(Sw), T ′ ⊆ T

�
�∃ w1 ∈ φwT (Sw), w′

1 = w1 ∩ T ′ (Lemma E29)

134 APPENDIX A. PROOFS

Lemma E29. By the first premise, there is a w1 ∈ Sw where w′
1 = φT ′(w1). From

Definition E26 we know

(σ ∈ w′
1) ≡ (w1 ∈ E(σ)) ∀ σ ∈ T ′ (1)

Let w1 = φT (w1); since w1 ∈ Sw, w1 ∈ φwT (Sw). Having exhibited w1, we need only show
w1 ∩ T = w′

1.

We again invoke Definition E26 to get

(σ ∈ w1) ≡ (w1 ∈ E(σ)) ∀ σ ∈ T (2)

First, σ ∈ w1 ∩ T ′ means both σ ∈ T ′, and because T ′ ⊆ T , σ ∈ T . The latter allows us to
use (2) to write w1 ∈ E(σ), and then we invoke (1) to get σ ∈ w′

1. Conversely, σ ∈ w′
1 means

σ ∈ T ′ and hence σ ∈ T . We apply (1) to get w1 ∈ E(σ), and apply (2) to get σ ∈ w1. Now
we have shown w1 ∩ T ′ = w′

1, proving the lemma. 2

The second lemma is approximately the converse of the first:

w1 ∈ φwT (Sw), w′
1 = w1 ∩ T ′ T ′ ⊆ T

��w′
1 ∈ φwT ′(Sw) (Lemma E30)

Lemma E30. The first premise, by Definition E13, implies the existence of a w1 ∈ R, and

Definition E26 lets us write

(σ ∈ w1) ≡ (w1 ∈ E(σ)) ∀ σ ∈ T (1)

For every σ ∈ T ′, all of the following hold:

σ ∈ T (third premise)

(σ ∈ w1) ≡ (w1 ∈ E(σ)) (by 1)

(σ ∈ w1 ∪ T ′) ≡ (w1 ∈ E(σ))

(σ ∈ w′
1) ≡ (w1 ∈ E(σ)) (second premise)

This last result implies that w′
1 = φT ′(w1), which is sufficient to prove the conclusion of the

lemma. 2

Axiom E5. ⊢ (B
T
⇒ A) �

�(B
T ′

⇒ A) when T ′ ⊆ T . We take as our hypothesisM |= B
T
⇒ A,

that is:

φwT (R(A)(w0)) ⊆ φwT (R(B)(w0))

Given any world w0 and a set T
′ ⊆ T , we assume w′

1 ∈ φwT ′(R(A)(w0)) and set out to prove
w′

1 ∈ φwT ′(R(B)(w0)). By the assumption and Lemma E29, we know

∃w1 ∈ φwT (R(A)(w0)), w′
1 = w1 ∩ T ′

A.4. PROOF OF SOUNDNESS 135

The hypothesis gives w1 ∈ φwT (R(B)(w0)), which satisfies the premise for Lemma E30.
Hence we know w′

1 ∈ φwT ′(R(B)(w0)), and we have proven that

∀w0, (φ
w
T ′(R(A)(w0)) ⊆ φwT ′(R(B)(w0))) 2

Theorem E6. ⊢ (C
S
⇒ B) ∧ (B

T
⇒ A) ��(C

S∩T
⇒ A). Apply Axiom E5 twice to the premises

to get two relations restricted by S ∪ T , then apply Axiom E1 to collapse them into the
relation in the conclusion. 2

Result E7. (B
S
⇒ A) ∧ (B

T
⇒ A) � �

�B
S∪T
⇒ A. Figure A.2 gives a counterexample that

justifies the result. The diagram in the figure models B
S
⇒ A and B

T
⇒ A. The statement

B
S∪T
⇒ , however, fails. Projecting the model under S ∪ T gives the original picture, since

each world falls in a separate equivalence class. Notice that B says ¬(s∧¬t): that statement
is true in both worlds B considers possible. But A does not believe it, since A can see the

lower-left world, where the statement is false.

t

s

t

s

t

BA

A

t

A

s

s

w
0

In this model, A’s rela-
tion at w0 is not a sub-

set of B’s.

Projected under S =
{s}, however, the sub-
set relation holds . . .

. . . as it does under

T = {t}.

Figure A.2: A counterexample showing why two delegations for sets S and T do not imply
a delegation for set S ∪ T (Result E7).

Why should this result be intuitive or desirable? Recall from Section 7.9 that the

strength of
T
⇒ means that a delegation regarding T may imply a delegation regarding a

larger set T ∗ that includes formulas constructed from the members of T . In our example, B

speaks for A regarding formulas composed exclusively with the primitive s or the primitive
t, but not regarding formulas combining the two. The closure of the restriction set S ∪ T

includes formulas such as ¬(s ∧ ¬t).

Axiom E8. ⊢ (B
T
⇒ A) �

�C|B
T
⇒ C|A. Assume the premise in terms of Definition E14:

∀w′
0 (φ

w
T (R(A)(w

′
0)) ⊆ φwT (R(B)(w

′
0)))

Let w belong to φwT (R(C|A)(w0)). The semantics for quoting gives w ∈ φwT ((R(C) ◦
R(A))(w0)). An edge only exists in a composition if we have w1 and w2 such that

136 APPENDIX A. PROOFS

〈w0, w1〉 ∈ R(C) and 〈w1, w2〉 ∈ R(A); Definition E13 guarantees that we have such w1, w2

with w = φT (w2).

Since w2 ∈ R(A)(w1), we can use the assumption to show the existence of w′
2 ∈

R(B)(w1) with φT (w
′
2) = φT (w2) = w. That means that w ∈ φwT (R(B)(w1)), and hence

w ∈ φwT ((R(C)◦R(B))(w0)). By the definition of quoting, we arrive at w ∈ φwT (R(C|B)(w0)),
which proves the conclusion. 2

Result E9. (B
T
⇒ A) � �

�B|C
T
⇒ A|C. The model in Figure A.3 is a counterexample for

T = {s} that shows the result. Notice that B
T
⇒ A: R(A)’s only edge goes from w0 to the

equivalence class of worlds where s is true, and R(B) also has such an edge (the loop at
w0). When we compose the relations, however, we see that B|C says s, but not A|C sayss.
The equivalence classes of {C sayss} are different than the equivalence classes of {s}.

s

t

s

t

A
C

B

t

B

s

C

s

t

0
w

Figure A.3: A model that demonstrates Result E9.

Axiom E10. ⊢

(

B
(T ∗)C
⇒ A

)

��

(

B|C
T
⇒ A|C

)

. Inductively applying Axiom E25 and Ax-

iom E24 shows as a theorem that B
T
⇒ A implies B

T ∗

⇒ A. Therefore, we may immediately

replace the premise of this axiom with B
((T ∗)C)∗

⇒ A, which follows by the theorem from the
original premise. Herein we omit the parentheses for the postfix set operators ∗ and C, and

simply write T ∗C∗.

Hence we begin with the hypothesis that

R(A) ⊆ φ+
T ∗C∗(R(B))

We are given some w0 ∈ W and the existence of w2 ∈ φwT (R(A|C)(w0)). The set can be

rewritten φwT ((R(A) ◦ R(C))(w0)), so we know that there exist w1 and w2, where

〈w0, w1〉 ∈ R(A)

〈w1, w2〉 ∈ R(C)

w2 = φT ∗C∗(w2)

The last expression means that for all σ ∈ T , σ ∈ w2 if and only if w2 ∈ E(σ).

A.4. PROOF OF SOUNDNESS 137

Define the formula

τ2 =
∧

σ∈T

{

σ if σ ∈ w2

¬σ otherwise

Intuitively, τ2 is true at precisely those worlds that map to w2 under φT . We have con-
structed τ2 such that w2 ∈ E(τ2).

Since 〈w1, w2〉 ∈ R(C), we know R(C) �⊆ E(¬τ2), and therefore w1 �∈ E(C says¬τ2), and
finally w1 ∈ E(¬C says¬τ2). The propositional closure of T ensures that each conjunct of

τ2, and thus τ2 itself and ¬τ2, appear in T ∗. The modal closure over “C says” ensures that
(C says¬τ2) ∈ T ∗C, and therefore (¬C says¬τ2) ∈ T ∗C∗.

Now we may employ the hypothesis to show that there exists a w′
1 ∈ R(B)(w0) with

w′
1
∼=T ∗C∗ w1. It follows that:

w′
1 ∈ E(¬C says¬τ2)

=W − E(C says¬τ2)

=W − {w|R(C)(w)⊆ E(¬τ2)}

= {w|R(C)(w) �⊆ E(¬τ2)}

= {w|∃w′
2 ∈ R(C)(w), w

′
2 �∈ E(¬τ2)}

= {w|∃w′
2 ∈ R(C)(w), w

′
2 ∈ E(τ2)}

That is, we know there is a w′
2 ∈ E(τ2), with 〈w

′
1, w

′
2〉 ∈ R(C).

With both 〈w0, w
′
1〉 ∈ R(B) and 〈w

′
1, w

′
2〉 ∈ R(C), we have 〈w0, w

′
2〉 ∈ R(B) ◦ R(C) =

R(B|C). From the definition of τ2, we know that w
′
2 is in E(σ) exactly when σ ∈ w2 for all

σ ∈ T , so w2 = φT (w
′
2). We have shown that w2 ∈ φwT (R(B|C)(w0)), and therefore that

given the hypothesis, the model supports B|C
T
⇒ A|C. 2

Axiom E17. ⊢ (B ⇒ A) �
�(B · N ⇒ A · N). This axiom follows from my brute-force

semantics for names. Assume the premise:

R(A) ⊆ R(B)

We want to show that

R(A ·N) ⊆ R(B ·N),

which, of course, is trivial thanks to requirement (I) of Definition E21.

Theorem E18. ⊢ (A∧B) ·N ⇒ (A·N)∧ (B·N). Since (A∧B)⇒ A, (A∧B) ·N ⇒ A·N
(by Axiom E17, with T = U). The same is true for B, proving:

(A∧ B) ·N ⇒ (A ·N) ∧ (B ·N) 2

138 APPENDIX A. PROOFS

Axiom E19. ⊢ (A·N)∧ (B ·N)⇒ (A∧B) ·N . Requirement (III) of Definition E21 exists
to support this axiom. It says:

R(A∧ B) ·N ⊆ R(A ·N) ∪R(B ·N)

The right-hand side, by the semantics for ∧, is equal to R((A · N) ∧ (B · N)), completing
the proof.

Theorem E20. ⊢ (A∧B) ·N = (A ·N)∧ (B ·N). Theorem E18 and Axiom E19 together
show equality. 2

Axiom E23. (B
{σ,τ}
→ A) ��(B

{σ∧τ}
→ A). Assume R(B) ⊆ E(σ′) ��R(A) ⊆ E(σ′) for

σ′ ∈ {σ, τ}. Further, assume that R(B) ⊆ E(σ∧ τ). Using the semantics of ∧, we can write
R(B) ⊆ E(σ) ∩ E(τ), and hence R(B) ⊆ E(σ) and R(B) ⊆ E(τ). By the first assumption,
we can replace B in both statements with A, use the definition of ∩ and the semantics of
∧, and conclude that R(A) ⊆ E(σ ∧ τ), justifying the axiom. 2

Axiom E24. (B
{σ,τ}
⇒ A) ��(B

{σ∧τ}
⇒ A). Let T = {σ, τ} and T ′ = {σ ∧ τ}. Assume first

that:

φwT (R(A)(w
′
0)) ⊆ φwT (R(B)(w

′
0)) ∀w

′
0 ∈W

Second, assume we are given w0 and w′
1 such that w′

1 ∈ φwT ′(R(A)(w0)). We have the
existence of a w1 ∈ R(A)(w0) with w′

1 = φT ′(w1).

Let w1 = φT (w1). By our first assumption, w1 ∈ φwT (R(B)(w0)), so there is a w′
1 ∈

R(B)(w0) with w1 = φT (w
′
1). We claim that φT ′(w′

1) = w′
1, a claim supported by leaning

on the definition of φT :

σ ∧ τ ∈ φT ′(w′
1) ≡ w′

1 ∈ E(σ ∧ τ)

≡ w′
1 ∈ E(σ) ∧ w′

1 ∈ E(τ)

≡ σ ∈ w1 ∧ τ ∈ w1

≡ w1 ∈ E(σ) ∧ w1 ∈ E(τ)

≡ w1 ∈ E(σ ∧ τ)

≡ σ ∧ τ ∈ w′
1

Since w′
1 is either T = {σ ∧ τ} or ∅, we have shown the equality, and that w′

1 ∈

φwT ′(R(B)(w0)). Therefore the model supports B
{σ∧τ}
⇒ A. 2

Axiom E25. (B
{σ}
⇒ A) ��(B

{¬σ}
⇒ A). The structure of this proof parallels that of Axiom

E24. Let T = {σ} and T ′ = {¬σ}. Assume first that:

φwT (R(A)(w
′
0)) ⊆ φwT (R(B)(w

′
0)) ∀w

′
0 ∈W

A.5. RELATIONSHIPS AMONG THE RESTRICTED RELATIONS 139

Second, assume we are given w0 and w′
1 such that w′

1 ∈ φwT ′(R(A)(w0)). That implies
the existence of a w1 ∈ R(A)(w0), with w′

1 = φT ′(w1). By the definition of φT ′ we know

w1 ∈ E(¬σ) if and only if ¬σ ∈ w′
1. Using the semantics of ¬, we can rewrite that expression

as

w1 ∈ E(σ) iff ¬σ �∈ w′
1

Define

w1 =

{

T if w′
1 = ∅

∅ otherwise (w′
1 = T ′)

Clearly σ ∈ w1 if and only if ¬σ �∈ w′
1. Now we can write

w1 ∈ E(σ) iff σ ∈ w1

This expression satisfies the definition of φT , so we have φT (w1) = w1. Because w1 ∈
R(A)(w0), we know w1 ∈ φwT (R(A)(w0)).

Using the first assumption, we have w1 ∈ φwT (R(B)(w0)). Using arguments analogous
to those above, we have the existence of a w′

1 ∈ R(B)(w0), and by the definition of φT , we

can show that w′
1 is in φwT (R(B)(w0)) as well. The model supports B

¬σ
⇒ A. 2

A.5 Relationships among the restricted relations

In each of the counterexamples below, assume T = {s}.

T
⇛ is not stronger than

T
⇒. The subset relation in the projected model M of

T
⇒ holds

with the possible exception of the single world wT = T that represents the equivalence
class of worlds inM in which all statements in T hold. Clearly φT takes every member of
∩σ∈T E(σ) to that representative. The counterexample illustrated in Figure A.4 highlights
this exception.

T
⇒ is not stronger than

T
⇛. Although we just showed that

T
⇛ is not quite stronger than

T
⇒, it certainly seems almost so. Indeed, it is easy to construct an example that shows
that the mighty relation does not follow from the basic speaks-for-regarding relation. See
Figure A.5.

T
⇒ implies

T
→. Assume R(A) ⊆ φ+

T (R(B)). We prove by contradiction that B
T
→ A. To

establish a contradiction, we assume there is a statement σ ∈ T and a world w0 where

B saysσ but not A saysσ. That is, R(B)(w0) ⊆ E(σ) but R(A)(w0) �⊆ E(σ). The latter
means that there is a world w1 ∈ R(A)(w0), but w1 �∈ E(σ).

We can push 〈w0, w1〉 through our original assumption to find a w
′
1 such that 〈w0, w

′
1〉 ∈

R(B) and w′
1
∼=T w1. Definition E11 tells us that w

′
1 �∈ E(σ), which meansR(B)(w0) �⊆ E(σ),

140 APPENDIX A. PROOFS

A

s

t

s

t

s

t

s

t

Bw

The set ∩s∈T E(s) is the left pair of worlds (where
s is true); the only edge belonging to R(A) ter-
minates in one of those worlds. Therefore, in this

model, R(A)(w)−∩s∈T E(s) ⊆ R(B)(w), and we

conclude that B
T
⇛ A.

s

B
A

s

w

The mapping φT that reduces the worlds above

to equivalence classes modulo statements in T

will make this model M′. φwT (R(A)) includes
an edge to the equivalence class labeled s, but

φwT (R(B)(w)) does not. Therefore, B �
T
⇒ A.

Figure A.4: A counterexample that shows B
T
⇛ A does not imply B

T
⇒ A.

which contradicts our second assumption. We may conclude that for all w0 ∈W and σ ∈ T ,

R(B)(w0) ⊆ E(σ) implies R(A)(w0) ⊆ E(σ). 2

T
⇛ implies

T
→. We assume

R(A)(w0)−
⋂

τ∈T

E(τ) ⊆ R(B)(w0)

and that R(B)(w0) ⊆ E(σ). From the first assumption, any world w1 ∈ R(A)(w0) is either
in E(σ) (let τ = σ) or in R(B)(w0). The former case trivially guarantees w1 ∈ E(σ), and
the latter case does so by the second assumption. We conclude that R(A)(w0) ⊆ E(σ). 2

T
→ is weaker than

T
⇒ and

T
→ is weaker than

T
⇛. See Figure A.6 for counterexamples

that illustrate these relationships.

A.5. RELATIONSHIPS AMONG THE RESTRICTED RELATIONS 141

B

s

t

s

t

s

t

s

t

A

w

Here is a model in which from w, A considers pos-
sible a world neither in R(B)(w) nor ∩s∈T E(s).

So B �
T
⇛ A.

A

ss
B

w

Projecting the model onto T , however, shows
that φwT (R(A)) and φwT (R(B)) completely agree

on matters related to s; that is, B
T
⇒ A.

Figure A.5: A counterexample that shows B
T
⇒ A does not imply B

T
⇛ A.

s s

B

A

w

(a) The statement

(R(B)(w) ⊆ E(s)) ��(R(A)(w) ⊆ E(s)) has a
false premise, making it vacuously true in this

model. Hence this model satisfiesB
T
→ A. The

model is its own projection onto T , however,

and it is clear that B �
T
⇒ A.

A

s

t

s

t

s

t

s

t

B
w

(b) This model satisfies B
T
→ A for the same rea-

son as the model in part (a). The single edge
terminating atR(A)(w), however, is in neither

R(B)(w) nor ∩s∈T E(s), so B �
T
⇛ A.

Figure A.6: Examples that show why the relation
T
→ is weaker than

T
⇒ and

T
⇛.

142 APPENDIX A. PROOFS

Appendix B

Review: the logic of belief

The Sicilian smiled and stared at the wine goblets. “Now a great fool,” he began,
“would place the wine in his own goblet, because he would know that only another

great fool would reach first for what he was given. I am clearly not a great fool,
so I will clearly not reach for your wine.”

“That’s your final choice?”

“No. Because you knew I was not a great fool, so you would know that I would
never fall for such a trick. You would count on it. So I will clearly not reach
for mine either.” [Gol73, p. 157]

The Sicilian’s great effort went into reasoning about the beliefs of his opponent, including
his opponent’s beliefs about his own beliefs, and so on. His watertight reasoning is an

example of modal logic, the logic of belief. One way to reason about permissions and sharing
is to reason about who believes what. Let us call participants in a distributed system agents,

and the symbols that represent agents in logical expressions principals. Principals can also
represent sets of agents, or one agent quoting another; these are called compound principals,

and I discuss them in Section B.1. If Alice believes everything Bob believes (that is, Alice
trusts Bob in every matter), then if Bob believes it is good to read a given file, Alice must

believe the same. In this appendix, I develop a model for reasoning about logic in the
presence of belief.

We begin with propositional logic. Assume there is a set of primitive (uninterpreted,
independent) statements Σ.1 For our purposes of access control, we consider primitive

statements such as “it is good to write to file X.” This interpretation turns an imperative
command into a declarative proposition. The primitive statements may be connected with
and (∧) and not (¬) to form arbitrary formulas. The or (∨) and implies (�

�) operators

are abbreviations for longer formulas made of ∧ and ¬.

1Figure 4.1 provides a table of sets and variable notation used in this dissertation.

143

144 APPENDIX B. REVIEW: THE LOGIC OF BELIEF

Next we introduce a modal operator believes.2 If σ is a formula and principal A
represents agent Alice, A believes σ is a formula that can be read “Alice believes σ is

true.” In time, we will introduce multiple believes operators, one per principal. For now,
we build a model that helps us understand which formulas A believes; that is, for which σ

do we have A believes σ?

To model this logic, we build a Kripke structure. A Kripke structure is a tuple of sets

M = 〈W, I, J〉. The members of set W represent possible worlds. The function I maps
a primitive proposition (s) to the set of worlds where it is true, and the function J maps

a principal to a relation on worlds in W . Together, I and J determine the truth value of
every formula in every world in W ; we discuss them in more detail shortly.

First, some intuition: A principal Alice (A) living in world w0 considers some other set of
worlds possible. If a formula σ is true in each of those other worlds, then A (in w0) believes

the formula. Since each world is a parallel universe, principal A exists in every world. In
any given world, A believes different propositions depending on which worlds the principal

considers possible from the given world. An interesting fact about possible worlds is that
the set of worlds A considers possible captures what she does not know: if a statement σ

appears in one possible world and ¬σ appears in another, then A knows neither σ nor ¬σ.
As far as she is concerned, σ could go either way, because A cannot tell in which of the
possible worlds she actually is.

When we writeM, w0 |= σ (pronounced “M at w0 models σ”), we mean that in model
M at world w0, the formula σ is true.3 The mapping I tells us immediately about the

truth of primitive propositions at different worlds, but we wish to determine the truth
of arbitrary statements σ, including propositional connectives and our modal operators

(σ = A believes τ). I illustrate with an example structure, shown in Figure B.1.

The model contains three primitive statements, a, b, and p. The statement a means

that our agent Alice (A) is in the produce department of a grocery store. Its negation, ¬a,
means that Alice is in the meat department (it’s a small store). The b primitive means that

the store’s bananas are yellow, and the p primitive means that the store’s pork is fresh.

Recall the three parts of a model, 〈W, I, J〉. W is the set of possible worlds; in our case,

since there are three primitive statements, there are at most eight: W = {w0, w1, . . .w7}.
I is a relation that defines which primitive statements are true at which worlds. In our

example, I(b) = {w0, w1, w4, w5}, since the bananas are only yellow in those four worlds.
Finally, J is a function that maps principals to relations. Because we have only one principal

(Alice), J has only one mapping, written J(A). The relation J(A) is depicted with arrows
in the diagram. For example, 〈w0, w1〉 ∈ J(A); that is, when the actual world is w0, w1 is a

world Alice considers possible. In our example, it happens that Alice considers two worlds
possible from each world.

Assume for a moment that the actual world is in fact w0: Alice is in the produce

2In conventional modal logic, A believes σ is written 2Aσ.
3Abadi typically distinguishes the world w0 that defines ground truth in a model itself, so that a model

tuple becomes 〈W, w0, I, J〉. I use the same notation in Section 4.2.

145

w1

w2 w3

w6

w5w4

w0

w7

¬p¬b

¬p¬b
¬a

a

b

p

¬a

¬b

¬p

the bananas are green
the pork is fresh
the pork is spoiled

agent is in produce department
agent is in meat department
the bananas are yellow

a

¬pp
a

¬b

b

p

¬b
¬a

¬a
¬p
¬a
bb p

p

a

a
b

Figure B.1: A model of eight worlds (circles), illustrating the relationship between the ac-

cessibility relation for A (arrows) and the modal operator (A believes). At world w0,
A believes b, but ¬(A believes p), and ¬(A believes ¬p).

department, the bananas are yellow and the pork is fresh. If Alice were omniscient, she
would consider only w0 possible, for that is indeed the state of things. Alice, however, is
merely a shopper. She cannot see from the produce department what is going on in the meat

department, and thus she cannot tell if the pork is fresh. She must also consider possible
world w1, where the pork is spoiled. She knows for certain her own location, though, so

she can ignore worlds w4 · · ·w7. Because she is in the produce department and can see the
bananas, she can also ignore worlds w2 and w3 in which the bananas are green.

This explanation accounts for the two arrows emanating from worldw0. Those two, with
the other arrows in the diagram, constitute the relation J(A). The arrows leaving worlds

other than w0 provide information about what Alice would believe if things were different.
For example, if the actual world were w1 (the pork is in fact spoiled), Alice considers just

the same worlds w0 and w1 possible, and for the same reasons.

Now that we have the intuition behind the Kripke structure, we can formally define

when various statements are true. Primitive propositions are easy: the casual definition of
I above becomes:

M, w0 |= s when w0 ∈ I(s)

146 APPENDIX B. REVIEW: THE LOGIC OF BELIEF

This definition can be read “Statement s is true at world w0 in model M when w0 is in the
set I(s).”

What about formulas constructed from the propositional connectives ∧ and ¬? The
truth of some complex formula σ in a world is completely determined by the truth of its

primitive propositions, which the model defines by the mapping I . So we can formally
define an extension function E to extend the definition of I to arbitrary formulas. E is
defined recursively starting with I , and extends as you would expect for the propositional
connectives:

E(s) = I(s)

E(¬σ) =W − E(σ)

E(σ ∧ τ) = E(σ) ∩ E(τ)

Not surprisingly, ¬σ holds in exactly those worlds where σ does not, and σ ∧ τ holds in

exactly those worlds where both subformulas hold. Take a look at the example structure
and convince yourself that E(b ∧ ¬p) = {w1, w5}.

We embarked on this journey to discover when Alice believes various statements, so we
need to find out when the model supports formulas including our modal belief operator.

The natural intuition is that Alice should believe a statement whenever it is true in every
world Alice considers possible. To recall our example, b is true (the bananas are yellow)

in every world Alice considers possible from w0, soM, w0 |= A believes b. But because
Alice considers w0 and w1 possible, she considers both p and ¬p possible; and so she can
believe neither; hence we have ¬(A believes p) and ¬(A believes ¬p) at world w0. (You
can think of this situation as representing Alice’s “silence” on the matter of p. Even though

Alice asserts neither p nor ¬p, every formula is assigned a truth value. It is just that both
A believes p and A believes ¬p are false.)

With this intuition, we fill out the definition of E to mention formulas containing our
modal operator A believes:

E(A believes σ) = {w|J(A)(w) ⊆ E(σ)}

J(A)(w) denotes the set of worlds that A considers possible from w.4 So when σ is true in
every one of these worlds (i.e., J(A)(w) ⊆ E(σ)), then A believes σ.

Of course, security is not very interesting in a world with only one agent. To introduce a
second principal, we simply add a new relation J(B) to our model. Now we can reason about
what Bob believes (B believes σ), and even about what Alice believes about what Bob

believes (A believes B believes σ). (In our example, we could certainly discuss Alice’s
beliefs about her own beliefs, but for our application to access control, that is uninteresting.)

4Formally, J(A)(w) = {w′|〈w,w′〉 ∈ J(A)}.

B.1. COMPOUND PRINCIPALS 147

B.1 Compound principals

It is also possible to talk about compound principals. Lampson et al. define two operators
on principals that can be used to make new compound principals. The first is fairly easy to
describe: the principal A∧B believes only things that both A and B believe. We can define

a new possible-worlds relation for the compound principal in terms of the relations for A
and B. To do this, we extend the mapping J to a new mapping R whose domain includes

compound principals. Like the definition of E , R is defined recursively starting with J:

R(A) = J(A)

∀ primitive principals A

R(A∧ B) = R(A) ∪ R(B)

∀ arbitrary principals A,B

And R replaces J’s role in the definition of E :

E(A believes σ) = {w|R(A)(w)⊆ E(σ)}

That set union operation is surprising! What’s going on? Recall that the more worlds

an agent considers possible, the less the agent believes. In our example structure, Alice
could not believe p because she considered world w1 possible, where p was false. Likewise,
by taking the union of the relations for principals A and B to get the relation for the

compound principal A ∧ B, we ensure that the compound principal is at least as ignorant
as either of A or B. If A and B disagree on any statement σ, then A ∧ B can see both

worlds where σ is true and worlds where it is false, so A ∧ B can have neither belief.

The second operator for forming compound principals is written B|A, and pronounced
“B quoting A.” (“Quoting” may seem an odd choice of words when talking about belief;
however, when we translate our terminology into that of Lampson et al., it reads more

naturally.) This principal captures B’s beliefs about A’s beliefs: (B|A) believes σ should
be synonymous with B believes (A believes σ).

The relation for the compound principal B|A is the composition of the relations of B
and A:

R(B|A) = R(B) ◦ R(A)

What is the intuition for using composition? Suppose we haveM, w0 |= B|A believes σ:

At world w0, Bob believes Alice believes σ. That means that at every world Bob considers
possible from w0 (R(B)(w0)), Alice believes σ. But Alice only believes σ at those worlds if

σ is true at every world Alice can see from those worlds:
⋃

w′∈R(B)(w0)

R(A)(w′)

The composition R(B) ◦R(A) relates w0 to just this set. So B|A believes σ is true at w0

exactly when σ is true in every world reachable from w0 by the composited relation given
above as R(B|A).

148 APPENDIX B. REVIEW: THE LOGIC OF BELIEF

B.1.1 The nature of principal relations

Now that we have a formal structure for discussing the beliefs of principals, let us consider
what kinds of beliefs are reasonable, and how one principal’s beliefs should be related to

another’s.

Recall our example structure, where in any world, Alice was either ignorant (had no

belief) about the pork or ignorant about the bananas. The first observation is that agents
do not need to believe every true thing; statements about which they have neither a positive
nor a negative belief represent a fact about which the agent is ignorant.

Furthermore, observe that Alice never believed anything false: in every world, if

A believes σ, σ also held in that world. In the parlance of modal logic, we would say
Alice’s belief is actually knowledge: although she does not have all knowledge, everything
she believes is in fact true. Why was this the case? Notice that Alice’s possible-worlds

relation is reflexive: for every world Alice’s relation includes an edge pointing back to that
world. That is why Alice cannot believe anything false. If σ is not true in a given world,

Alice cannot believe σ there, because the definition

M, w |= A believes σ iff w ∈ E(A believes σ)

iff R(A)(w) ⊆ E(σ)

precludes it.

In modeling access control in the presence of arbitrary principals, however, we should
certainly expect that some principals will believe (or at least claim to believe) untrue things.

So we make no restriction of reflexivity on the relation that defines a principal’s beliefs.
Indeed, a principal may have an empty relation at a world: it may consider no worlds

possible! In that case, at that world, the agent considers every statement true, since every
statement is true in all of the zero worlds the agent considers possible. Indeed, the agent

believes false. The agent’s reasoning has become inconsistent; other agents would be wise
not to follow this agent’s beliefs.

B.1.2 Trust

Agents following one another’s beliefs is exactly how we model trust. If Alice establishes

that she believes everything Bob believes, then Alice does not have to be present for Bob
to read one of her files: if Bob claims that reading the file would be good, Alice must agree,

and the file server grants the request. To capture this trust, we observe that Alice is “less
ignorant” than Bob: she believes everything Bob believes, and then perhaps more (on which
Bob may remain silent). Therefore, from any actual world, Alice should consider possible

a subset of the worlds Bob considers possible. If Bob says a statement, it is because he
has ruled out the alternatives; he has no arrows to worlds where the statement is false. If

R(A) ⊆ R(B), then A has ruled out the same worlds, and must believe the same statement.
Thus Alice says everything Bob says; if she says even more, it is because she disregards some

B.2. FURTHER READING 149

possible world that leaves Bob’s belief ambiguous. You should convince yourself that if Bob
believes σ, Alice has to believe the same thing, for she considers possible only a subset of

the worlds Bob considers possible.

B.2 Further reading

Hughes and Cresswell provide the canonical, concise introduction to modal logic [HC96].
Fagin et al. provide a gentler introduction with motivating examples [FHMV95].

150 APPENDIX B. REVIEW: THE LOGIC OF BELIEF

Appendix C

Review: the original Calculus for
Access Control

This appendix contains an introduction to the Calculus for Access Control due to Abadi,

Lampson, et al. [ABLP93, LABW92]. I have preserved here the names used for formulas in
[LABW92]. I explicitly name formulas L1–L3, which are mentioned in passing in [LABW92,

p. 273], and formulas A1–A4, which are mentioned in [ABLP93, pp. 712, 714, and 718].
The typographic conventions defined in Table 4.1 are used here, as well.

In the preceding appendix, I introduce an instance of modal logic: propositional logic
plus the modal operators to capture the possibly ignorant, possibly false beliefs of fallible

principals. The semantics I present, based on Kripke structures, is exactly that used by
Abadi to justify the calculus for access control. I introduced the semantics first because

conventionally, the semantics is the “intuitive model” of the world, and the logic is a system
for discovering theorems (statements that are true in every model) and reasoning from
premises to conclusions that must appear in the model.

To apply modal logic to access control, Abadi et al. rename the operators. First,

“believes” is renamed “says.” This is meant to capture the notion that the logic is perfor-
mative: sometimes when a principal says something, that something becomes true. The act
of saying to a file server that a file should be modified, given that the file server believes you,

causes that file to indeed be modified. This renaming makes the quoting operator sound
more natural: B|A is Bob quoting Alice. B|A says s is a synonym for B says A says s.

“Belief” is still useful intuition, however. The operator is the same; Bob’s belief in σ can
be inherited by Alice without Alice actually uttering σ.

A logic is a system of axioms and proof rules that let one reason from premises to
conclusions: if the premise holds in a model, the conclusion holds as well. The logic of the

Calculus is sound in that any conclusion proven in the logic holds in the model, but it is
not complete: there are statements that are true in every model that cannot be proven in

the logic. Abadi suggests that in fact the model may be undecidable: no logic system is

151

152 APPENDIX C. REVIEW: THE ORIGINAL CALCULUS

adequate to prove every valid statement of the model.

The logic of access control is the same (up to variations in notation) as the conventional
modal logic system Kn. The subscript n indicates that there are multiple modal operators
[HC96, FHMV95, p. 51]. I present that system here.

First, we write ⊢ σ if a statement σ is valid in the logic: either taken as an axiom, or

provable as a theorem from other axioms and the proof rules. We prove theorems using the
following:

If σ is a tautology of propositional calculus,

then ⊢ σ (Axiom S1)

The axiom lets us pull in the theorems of propositional calculus without explicitly mention-
ing the axioms and proof rules that produce them.

⊢ σ ⊢ σ ��τ

⊢ τ
(Rule S2)

The proof rule (modus ponens) says that if both σ and the implication σ ��τ are valid
(provable), then τ is provable as well. It lets us prove theorems about formulas that include

the modal operators (says) by reasoning from premises to conclusions.

We also have the Distribution Axiom (known in modal logic as the axiomK, from which

the name of the system Kn derives):

⊢ A says (σ �
�τ) �

�(A saysσ �
�A says τ) (Axiom S3)

Intuitively it means that agents understand and believe all of the consequences of their
beliefs. Furthermore, they believe every theorem:

∀A,
⊢ σ

⊢ A saysσ
(Rule S4)

That is, agents know all of the theorems of the logic.

There is a subtle but important distinction between implication in the metalogic (the
proof rule above) and implication in the logic. The logical symbol ⊢means that the premises
on its left prove the conclusions on its right. The proof rule condition ⊢ σ means that no
premises are required to prove σ; that is, σ is a theorem. When that is true, we may
conclude ⊢ A saysσ: it is proven that A saysσ.

In contrast, the corresponding statement in the logic (not the metalogic) does not hold.
The statement � σ ��A saysσ is read “it is not provable that σ implies A saysσ.” The

premise of the implication is an arbitrary statement σ (unlike the theorem ⊢ σ in the proof
rule); it is not true that principals say every true statement. They say every theorem (those

statements true in every world), but not every true statement (those statements true in the
actual world from which the statement is being uttered).

C.1. THE CALCULUS OF PRINCIPALS 153

C.1 The calculus of principals

The symbol = is an equivalence relation on principals; by A = B we mean that A and B
have the same relation and therefore the same beliefs.1 (Elsewhere in the dissertation I also
use = to denote set equality; its use should be clear from context.)

We have just seen the logical tools for reasoning about formulas of statements. We can

also combine principals into principal formulas. For example, A ∧ B is the principal that
believes (says) only things that A and B agree upon. In the logic, A∧B is defined in terms
of its relationship to statements:

⊢ (A∧ B) saysσ ≡ (A sayss) ∧ (B saysσ) (Definition P1)

Principal conjunction is associative, commutative, and idempotent:

⊢ (A∧ B) ∧ C = A∧ (B ∧ C) (Axiom P4)

⊢ A ∧ B = B ∧A (Axiom P4)

⊢ A ∧ A = A (Axiom P4)

Quoting (B|A) is defined as:

⊢ (B|A) saysσ ≡ B says (A saysσ) (Definition P2)

In a sense, the quoting operator “curries” a says operation from the propositional formula
into the principal formula, so that one can talk about a principal quoting another without

yet mentioning the specific statement being quoted.

Quoting is associative and distributes over conjunction in both arguments:

⊢ (A|B)|C = A|(B|C) (Axiom P5)

⊢ A|(B ∧ C) = (A|B) ∧ (A|C)
⊢ (A∧ B)|C = (A|C) ∧ (B|C)

(Axiom P6)

C.2 The “speaks for” relation

A central concept of the calculus is the “speaks for” relation (⇒), which defines a partial
order over all principals. This relation encodes the notion of one principal trusting another

that I introduced in Section B.1.2. The statement B ⇒ A is read “B speaks for A,” and
means that whenever B says something, A certainly agrees. Formally, we define

⊢ (B ⇒ A) ≡ (B = B ∧A) (Definition P7)

1Abadi et al. “note that A and B can have the same beliefs without having the same possible worlds
relation; however, because principals are identified by their relations in the semantics, we define equality in
terms of relations.” This situation is only possible if the model has two distinct worlds in W that belong to
all the same I sets; that is, the model has two separate but indistinguishable worlds.

154 APPENDIX C. REVIEW: THE ORIGINAL CALCULUS

Why is this the case? If A trusts B, then A says everything B says. So the set of things
B∧A say must be the same as the set of things B says. It cannot be greater, by its semantic
definition in Section B.1, and it cannot be less, or else there is something B says that A
does not.

From the definition we can derive:2

⊢ (B ⇒ A) ��((B saysσ) ��(A saysσ)) (Theorem P8)

When B ⇒ A, B is a stronger principal than A in the sense that B can do everything A
can do (by making A believe the appropriate performative statement), and perhaps more.

Using the associativity of ∧ for principals, it is clear that ⇒ is a transitive relation:

⊢ (B ⇒ A) ∧ (C ⇒ B) �
�C ⇒ A (Theorem L1)

(The ∧ in the theorem is that for statements. I would like to use a different symbol for

clarity, but I stick with the notation of Abadi et al. here.) Both the ∧ and | operators on
principals are monotonic with respect to ⇒:

⊢ (A ⇒ B) ��((A∧ C)⇒ (B ∧ C)) (Axiom L2)

⊢ (A⇒ B) ��((A|C)⇒ (B|C))
⊢ (A⇒ B) �

�((C|A)⇒ (C|B))
(Axiom L3)

With the speaks-for relation, we can finally see why quoting is a useful operation.

One can let C|B ⇒ A, so that C can only speak for A when it quotes B. Without
quoting, we would need a formal accounting for universal quantification over formulas:

∀σ, C saysB saysσ ��A saysσ.

The semantics of ⇒ falls out fairly directly. Definition P7 requires that

M, w |= B ⇒ A

iff R(B) = R(B ∧A) = R(B) ∪R(A)

iff R(A) ⊆ R(B)

Notice that the condition on the R relations is independent of the world w. So the extension
function E is all-or-nothing for speaks-for formulas:

E(B ⇒ A) =

{

W if R(A) ⊆ R(B)
∅ otherwise

(Definition A1)

2Surprisingly, Abadi et al. drop Definition P7 and instead treat Theorem P8 as an axiom. Doing so
leaves the logic with no axioms with ⇒ in the conclusion, and hence precludes theorems whose conclusions
establish ⇒ relationships. In fact, Theorem P8 requires only the weaker operator → in its premise, which I
discuss in Section 4.2.1.

C.3. ACCESS CONTROL LISTS 155

C.3 Access Control Lists

The speaks-for relation, because it is transitive, lets us reason broadly about how principals’
beliefs affect one another. In the end, however, the server wants to convince itself that some
primitive proposition s, perhaps to be interpreted “it is okay to change the contents of the

file,” is true. To support this, Abadi, Lampson et al. use the construct A controls s to
indicate that principal A’s beliefs about s are taken to be truth. It is defined as:

A controls s ≡ ((A sayss) �
�s) (Definition A2)

Now suppose B wants to write to the file that s describes, and the assumptions ⊢ B ⇒ A
and ⊢ Acontrols s hold. Then the file server will be able to verify a proof of ⊢ s, convincing

itself that “it is okay to change the contents of the file.”

Lampson et al. encode access control lists (ACLs) using controls assumptions:

ACL (O1) =

⊢ A controls sread,
⊢ A controls swrite,
⊢ B controls sread

By adjusting which principals’ assertions are believed, the ACLs allow or disallow agents
to effect action.

C.4 Higher-level operators

The operating system that instantiates the calculus requires resource servers to construct

and then verify all necessary proofs [WABL94]. Wobber calls it a pull model: it is the
servers’ job to pull in necessary assumptions and proof components needed to verify an

agent’s access. Building such proofs, when assumptions include speaks-for formulas with
arbitrary combinations of ∧ and | operators, takes exponential time. To make the decision
problem tractable, Lampson et al. define two high-level operators, as and for , in terms of
the lower-level operators. Each operator is designed to reflect an idiomatic usage pattern
of the calculus. The higher-level operators can combine in fewer ways than the lower-level

operators, allowing an implementation to exploit characteristics such as associativity and
idempotence. In the abstract, the operators can be treated as abbreviations and replaced

by their definitions, and they do not affect the calculus. I cover them here to demonstrate
the idioms they represent.

C.5 Roles and the “ as ” operator

Abadi et al. define a distinguished, disjoint set of principals called roles. By quoting a

role, a principal restricts its own authority. For example, define the roles Ruser and Radmin

representing a person acting as a user and as an administrator, respectively. Suppose the

156 APPENDIX C. REVIEW: THE ORIGINAL CALCULUS

ACLs in the system include A|Radmin controls s1 and A|Ruser controls s2. In her daily
work, Alice may step into her role as user by quoting Ruser; when she needs to perform

administrative tasks, Alice can explicitly quote Radmin to gain access to objects such as s1

that mention her administrative role. More interestingly, Alice can delegate just one of her

roles to another principal by arranging that B ⇒ A|Ruser. Now Bob can do anything Alice
could do as a user, but he cannot access her administrative resources. Roles can also be

used to sandbox untrusted code. When running untrusted software, Alice might delegate
to it only authority over A|Runtrusted, preventing the code from accessing the bulk of her

resources.

The as operator stands for quoting when the quoted principal is a role (Axiom R1 in

[LABW92]). In a sense, as adds strong typing, requiring that its right-hand argument be
a role. In contrast to general principals, quoting is idempotent and commutative for roles,

and all principals automatically speak for themselves in every role:

R|R = R ∀R ∈ Roles (Axiom A3)

R′|R = R|R′ ∀R,R′ ∈ Roles (Axiom A4)

A⇒ A as R ∀R ∈ Roles (Axiom R2)

By virtue of these special features of roles and its strong typing, the as operator takes on
idempotence and commutativity. These properties help make the access control problem

tractable.

C.5.1 Semantics for Roles

The axioms above are not supported for general quoting, and yet as is simply an abbre-

viation for quoting. Therefore, the axioms must be justified by some restriction on the
possible-worlds relations of the roles themselves. First I define a special principal 1, the
identity, who believes everything that is true and nothing that is not:

R(1)(w) = w ∀w ∈W

In any given world, 1 considers only that world possible. Therefore, it only tells the
truth (the relation is reflexive), and it tells the whole truth (no world has multiple arrows,

so it is confused about nothing). The identity serves as the most trusted role a principal
can assume. Why? A as 1 is shorthand for A|1, so R(A as 1) = R(A) ◦ R(1) = R(A): the
identity role does not limit A’s authority at all.

All roles are principals whose relations are constrained as follows:

R(R1) ⊆ R(1)

This means that the role relation may contain some edges 〈w, w〉 and not others, but no
edges that take one world to another world. A role, when composed with another principal’s

relation, cannot expand the set of worlds the principal considers possible, only reduce it.
See Figure C.1 for an illustration.

C.6. DELEGATION AND THE “ FOR ” OPERATOR 157

◦ =

An arbitrary principal
relation R(A) . . .

. . . composed with a
role relation R(R) . . .

. . . gives a new rela-

tion that is always a
subset of R(A).

Figure C.1: Roles reduce relations with which they are composed.

We are now prepared to justify the axioms for roles. The first property is idempotence.

R(R1) takes each world to either itself or nowhere, so composing R(R1) with itself should
do the same. The second property is commutativity. An arrow appears in R(R1) ◦ R(R2)
exactly when it appears in R(R1)∩R(R2), and ∩ is commutative. Finally, A ⇒ A asR1 is

automatically true when R1 is a role. Why? ComposingR(R1) ontoR(A) cannot introduce
any new worlds (since the arrows ofR(R1) are all reflexive), but may eliminate worlds (when

R(R1)(w) = ∅). Hence

R(A) ◦ R(R1) ⊆ R(A)

and we conclude A ⇒ A as R1.

C.6 Delegation and the “ for ” operator

Besides encoding roles, quoting can be used to encode delegations to trusted principals in
a restricted way. Here is the problem: Imagine that both Alice and Bob log in to machine
M . Using just the speaks-for operator, Alice might establish that M ⇒ A and Bob that

M ⇒ B. But then when Bob (sitting at his terminal to machine M) tries to read a file
that only A has permission to read, M would say the request, and the server would reason

that A believed it. In this situation, the access-control system cannot help the server reason
about whether the file should be read, since M has not provided enough information.

Instead, A could require that M explicitly mention A whenever it makes requests on
A’s behalf: M |A ⇒ A. Now when M is working for B, it will be quoting B, not A, and

A’s file is safe. If M were corrupt, of course, it could still abuse the authority granted it by
A. But quoting principals helps an honest M pass the right information to resource servers

for access-control decisions.

Lampson et al. define a slightly more complicated concept of delegation from A to B,

158 APPENDIX C. REVIEW: THE ORIGINAL CALCULUS

written as the compound principal B for A. The key idea behind delegation is that both
the delegator A and the delegate B must take some explicit action for the delegation to
take effect:

A says B|A ⇒ (B forA)

B|A says B|A ⇒ (B forA)

from which, using the definition of for in [LABW92, p. 295], we conclude

(B|A)⇒ (B forA)

Then A installs B for A in ACLs for any resources it wishes to allow B to access on its
behalf.

The difference between B simply taking care to always quote A and B receiving a

delegation to B for A is subtle. In both cases, A must explicitly hand off authority to
B. And in both cases, B has to take some explicit action to accept the delegation; in the
first case, that action is to quote A, in the second, it must also make a separate statement
accepting the delegation.

Like as, for seems to be introduced for its special properties, to enable a more efficient
pull-style theorem-proving implementation.

We have completed our review of the calculus due to Abadi, Lampson et al.

Appendix D

Review: The Simple Public Key
Infrastructure

The Simple Public Key Infrastructure 2.0 (SPKI, pronounced “spooky”) is an Internet

Experimental Protocol created by Ellison, Frantz, Lampson, Rivest, Thomas, and Ylonen
[EFL+99]. As its name suggests, it is designed to be a unifying standard for supporting

public key authorization across the global Internet. I highlight here some of the features of
SPKI relevant to my work.

First, SPKI’s primary goal is to provide a server with evidence that the holder of a
given cryptographic key is ultimately authorized for a request signed by that key. This goal

contrasts with that of other public-key infrastructure efforts that attempt to bind keys to
identities, and leave authorization to be handled in the conventional fashion by ACLs that

map identity to authorization.

In this section, I review the types of certificates that SPKI supports, and outline the

procedure used to determine whether a given certificate chain supports a requested opera-
tion.

D.1 Certificate types

SPKI defines its own certificate format, as well as an internal representation of certificates
to which it can map other inputs, such as PGP certificates, X.509 certificates, or locally

maintained ACL entries. Authorization results can be constructed from inputs providing
information in one of three forms:

• 〈authorization, key〉

• 〈authorization, name〉

159

160 APPENDIX D. REVIEW: SIMPLE PUBLIC KEY INFRASTRUCTURE

• 〈name, key〉

The first form coincides with SPKI’s design philosophy of mapping keys directly to au-
thorizations. Inputs of the latter two forms must ultimately be combined to form a

〈authorization, key〉 mapping to become useful.

Inputs of the first two forms are mapped into a data structure called a 5-tuple for internal

processing; inputs of the latter form are mapped into a data structure called a 4-tuple.

D.2 The SPKI 5-tuple

A 5-tuple has the following fields:

• issuer: the public key granting the permission defined by the 5-tuple

• subject: a public key or name to which the permission is being granted

• delegation-control: a boolean value indicating whether this permission may be further
delegated

• authorization: a set of primitive permissions being granted

• validity dates: a date range limiting the validity of this delegation

The intended meaning is that the issuer grants the subject the permission described in the
authorization field for the duration of the validity dates. If the delegation-control bit is set,

the subject may further delegate any or all of the permission to another subject.

The subject in a 5-tuple (or a 4-tuple, which I present shortly) may be a k-of-n threshold

function. In this case, the permission is delegated to any principal that can prove it is
authorized to speak for any k of the n “subordinate” subjects listed in the threshold function.

The authorization fields contain primitive permissions whose interpretation is left to the
application employing the SPKI authorization engine. These permissions are represented

using tags. Tags encode infinitely large sets of primitive statements in a form that permits a
compact representation of certain subsets. Notably, a tag can represent only a set of primi-
tive symbols; never a formula made from the negation or conjunction of primitive symbols.

Tags admit a simple intersection algorithm that always yields a compact representation of
the intersected set.

SPKI certificates may also indicate an on-line mechanism for verifying that the issuer
considers a certificate still valid. Two of the checks, the certificate revocation list (CRL, a

negative list of revoked certificates) and the timed revalidation (a positive list of still-valid
certificates), are performed by consulting a list revised more frequently than the original

D.3. THE SPKI 4-TUPLE 161

certificate being checked. The one-time revalidation check, which “represents a validity
interval of zero” [EFL+99, p. 21], is performed by contacting the specified server to verify

that the server still approves the certificate.

D.3 The SPKI 4-tuple

Symbolic names are always interpreted relative to a globally unambiguous name, usually a
public key. As a consequence, the definition of a symbolic name is never ambiguous; it is

always the definition supplied by the key that grounds the name. The SPKI authors contrast
this situation with that of PGP, where symbolic names reside in a global namespace, and

their meaning depends on the beholder and the “introducers” that the beholder trusts.

A symbolic name ultimately is defined as one or more keys, although a single 4-tuple

may define a name in terms of a chain of other names grounded in a key. In that case, other
4-tuples must participate in the reduction of the name chain to a final key. A 4-tuple has

the following fields:

• issuer: the public key defining this name in its private name space.

• name: the name being defined

• subject: a public key or name to which the name is bound.

• validity dates: a date range limiting the validity of this delegation

The intended meaning of a 4-tuple is that the issuer defines the symbolic name, when

grounded by the issuer’s key, to be equal to the key identified by the subject for the duration
of the validity dates. It is easy to read this definition backwards. Note that a name definition

tuple does not give the issuer control over the subject, but the subject control over any
permission elsewhere granted to the grounded name “issuer: name.” Hence a threshold

subject is also meaningful as the subject of a 4-tuple; its use means that if a principal
speaks for k of the n subordinate subjects, that principal also speaks for “issuer: name,”
and hence garners any permission granted to that name.

D.4 Tuple reduction

The SPKI access-control decision procedure is called “tuple reduction.” Once the appro-

priate certificates for an access-control decision have been gathered, the on-line checks
performed, and the certificates converted into internal tuples, the tuples are “reduced.” If

the reduction results in a 5-tuple issued by the server that grants the requested permission
to the key that signed the request, then the request is authorized.

162 APPENDIX D. REVIEW: SIMPLE PUBLIC KEY INFRASTRUCTURE

Reduction proceeds as follows. First, 4-tuples are reduced to resolve names. 4-tuples
that define a name in terms of another grounded chain of names are reduced using 4-tuples

that define a name in terms of a key. Eventually, 4-tuples of the former form are reduced
to 4-tuples of the latter form. The validity date stored in the outcome of each reduction is

the intersection of the validity dates of the 4-tuples being reduced.

Then the 〈name, key〉 bindings formed by the reduced 4-tuples are applied to resolve
names in 5-tuples back to keys, again carrying validity dates through with intersection
operations. This operation turns 〈authorization, name〉 5-tuples into 〈authorization, key〉
tuples.

At this point, each 5-tuple represents a subject key (or threshold subject defined as a

set of keys) with authorization to perform some set of actions on behalf of the issuer key.
When two 5-tuples form a chain of delegation (the issuer of the second is the subject of the

first, and the first tuple allows further delegation), the 5-tuples are reduced to a new tuple
whose subject is the subject of the second tuple and whose issuer is the issuer of the first.

The reduced tuple carries the intersection of the authorizations of the source tuples as its
authorization, and the intersection of the validity dates of the source tuples as its validity

dates. Finally, the reduced tuple carries the same delegation control bit as the second tuple
did. Think of the delegation control bit as the coupling on the back of a boxcar; if the first
tuple lacks it, the cars cannot couple; if the second tuple lacks it, the cars may couple, but

the resulting “super-car” will also lack a rear coupling.

Bibliography

[Aba97] M. Abadi. Secrecy by typing in security protocols. In Proceedings of the
Third International Symposium on Theoretical Aspects of Computer Software

(TACS 97), pages 611–638, 1997.

[Aba98] M. Abadi. On SDSI’s linked local name spaces. Journal of Computer

Security, 6(1-2):3–21, 1998.

[ABLP93] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access
control in distributed systems. ACM Transactions on Programming

Languages and Systems, 15(4):706–734, September 1993.

[AEK96] Ahmed Amer and Amr El-Kadi. Beating bottlenecks in the design of
distributed file systems. ;login: the USENIX Association Newsletter,

21(6):14–23, December 1996.

[AG97] Ken Arnold and James Gosling. The Java Programming Language.
Addison-Wesley, second edition, 1997.

[AG99] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: the Spi

calculus. Information and Computation, 148(1):1–70, January 1999.

[AISS98] A.D. Alexandrov, M. Ibel, K.E. Schauser, and C.J. Scheiman. UFO: a
personal global file system based on user-level extensions to the operating

system. ACM Transactions on Computer Systems, 16(3):207–233, August
1998.

[AN96] M. Abadi and R. Needham. Prudent engineering practice for cryptographic

protocols. IEEE Transactions on Software Engineering, 22(1):6–15, January
1996.

[AT91] M. Abadi and M.R. Tuttle. A semantics for a logic of authentication. In

Proceedings of the Tenth Annual ACM Symposium on Principles of
Distributed Computing, pages 201–216, August 1991.

[Aur98] Tuomas Aura. On the structure of delegation networks. In Proceedings of the

Eleventh IEEE Computer Security Foundations Workshop, pages 14–26,
1998.

163

164 BIBLIOGRAPHY

[AWSBL99] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design
and implementation of an intentional naming system. ACM Operating

Systems Review, 33(5):186–201, December 1999.

[BAN90] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM

Transactions on Computer Systems, 8(1):18–36, February 1990.

[BCE+95] Brian N. Bershad, Craig Chambers, Susan Eggers, Chris Maeda, Dylan

McNamee, PrzemysZlaw Pardyak, Stefan Savage, and Emin Gün Sirer. SPIN:
An extensible microkernel for application-specific operating system services.

ACM Operating Systems Review, 29(1):74–77, January 1995.

[BFL96] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In

Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages
164–173, 1996.

[BGJ+92] D.L. Black, D.B. Golub, D.P. Julin, R.F. Rashid, R.P. Draves, R.W. Dean,
A. Forin, J. Barrera, H. Tokuda, G. Malan, and D. Bohman. Microkernel
operating system architecture and Mach. In Proceedings of the USENIX

Workshop on Micro-Kernels and Other Kernel Architectures, pages 11–31,
1992.

[BLNS82] A.D. Birrell, R. Levin, R.M. Needham, and M.D. Schroeder. Grapevine: an
exercise in distributed computing. Communications of the ACM,

25(4):260–274, 1982.

[BLNS86] A.D. Birrell, B.W. Lampson, R.M. Needham, and M.D. Schroeder. A global

authentication service without global trust. In Proceedings of the 1986 IEEE
Symposium on Security and Privacy, pages 223–230, 1986.

[BM91] David F. Belding and Kevin J. Mitchell. Foundations of Analysis.
Prentice-Hall, 1991.

[BM97] Annette Bleeker and Lambert Meertens. A semantics for BAN logic. In
Proceedings of the DIMACS Workshop on Design and Formal Verification of

Security Protocols, September 1997.

[BM98] G. Banga and J.C. Mogul. Scalable kernel performance for Internet servers

under realistic loads. In Proceedings of the USENIX 1998 Annual Technical
Conference, pages 1–12, 1998.

[BP88] B.N. Bershad and C.B. Pinkerton. Watchdogs — extending the unix file

system. Computing Systems, 1(2):169–188, Spring 1988.

[BRS+85] Robert Baron, Richard Rashid, Ellen Siegel, Avadis Tevanian, and Michael

Young. Mach-1: an operating environment for large-scale multiprocessor
applications. IEEE Software, 2(4):65–67, July 1985.

BIBLIOGRAPHY 165

[BSP+95] Brian Bershad, Stefan Savage, PrzemysZlaw Pardyak, Emin Gün Sirer,
Marc E. Fiuczynski, David Becker, Craig Chambers, and Susan Eggers.

Extensibility, safety and performance in the SPIN operating system. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems

Principles, pages 267–284, Copper Mountain, CO, December 1995. ACM
Press.

[BVAD98] Eshwar Belani, Amin Vahdat, Thomas Anderson, and Michael Dahlin. The
CRISIS wide area security architecture. In Proceedings of the Seventh

USENIX Security Symposium, pages 15–29, January 1998.

[CL98] M. Carney and B. Loe. A comparison of methods for implementing adaptive

security policies. In Proceedings of the Seventh USENIX Security
Symposium, pages 1–14, January 1998.

[CLFL94] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.
Lazowska. Sharing and protection in a single address space operating system.

ACM Transactions on Computer Systems, pages 271–307, November 1994.

[DdBF+94] Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, Anders
Lindstrom, John Rosenberg, and Francis Vaughan. Grasshopper: An
orthogonally persistent operating system. Computing Systems, 7(3):289–312,

Summer 1994.

[dLPT+99] Eyal de Lara, Karin Petersen, Douglas B. Terry, Anthony LaMarca, Jim
Thornton, Mike Salisbury, Paul Dourish, Keith Edwards, and John Lamping.

Caching documents with active properties. In Proceedings of the Seventh
Workshop on Hot Topics in Operating Systems (HotOS), March 1999.

[DMST95] Murthy Devarakonda, Ajay Mohindra, Jill Simoneaux, and William H.
Tetzlaff. Evaluation of design alternatives for a cluster file system. In

Proceedings of the 1995 USENIX Technical Conference, pages 35–46,
January 1995.

[EFL+98] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas,
and Tatu Ylonen. Simple public key certificate. Internet draft

draft-ietf-spki-cert-structure-05.txt (expired), March 1998.

[EFL+99] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas,

and Tatu Ylonen. SPKI certificate theory, October 1999. Internet RFC 2693.

[Eli98] Jean-Emile Elien. Certificate discovery using SPKI/SDSI 2.0 certificates.

Master’s thesis, Massachusetts Institute of Technology, 1998.

[FHBH+99] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,

A. Luotonen, and L. Stewart. HTTP authentication: Basic and digest access
authentication, June 1999. Internet RFC 2617.

166 BIBLIOGRAPHY

[FHL+96] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar Back, and
Stephen Clawson. Microkernels meet recursive virtual machines. In

Proceedings of the 1996 Symposium on Operating Systems Design and
Implementation, pages 137–151, October 1996.

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.

Reasoning about Knowledge. MIT Press, 1995.

[FK98] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, July 1998.

[Fou96] Free Software Foundation. Towards a new strategy of OS design, 1996.
Available at: http://www.gnu.ai.mit.edu/software/hurd/hurd.html.

[FS96] Bryan Ford and Sai Susarla. CPU inheritance scheduling. In Proceedings of

the 1996 Symposium on Operating Systems Design and Implementation,
pages 91–105, October 1996.

[GJSJ91] D.K. Gifford, P. Jouvelot, M.A. Sheldon, and J.W. O’Toole Jr. Semantic file

systems. ACM Operating Systems Review, 25(5):16–25, October 1991.

[GM98] B. Gopal and U. Manber. Integrating content-based access mechanisms with
hierarchical file systems. ACM Operating Systems Review, pages 265–278,

February 1998.

[Gol73] William Goldman. The Princess Bride. Ballantine, 1973.

[GPR+98] Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, Amin M. Vahdat,
and Thomas E. Anderson. GLUnix: A global layer Unix for a network of

workstations. Software—Practice and Experience, 28(9):929–961, July 1998.

[GS98] J. W. Gray III and P. F. Syverson. A logical approach to multilevel security
of probabilistic systems. Distributed Computing, 11(2):73–90, 1998.

[GWtL97] Andrew S. Grimshaw, Wm. A. Wulf, and the Legion Team. The Legion

vision of a worldwide virtual computer. Communications of the ACM,
40(1):39–45, January 1997.

[HC96] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic.

Routledge, 1996.

[HEV+98] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke. The
Mungi single-address-space operating system. Software—Practice and

Experience, 28(9):901–928, July 1998.

[HKM+88] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale and

performance in a distributed file system. ACM Transactions on Computer
Systems, 6(1):51–81, February 1988.

BIBLIOGRAPHY 167

[How99] Jon Howell. Straightforward Java persistence through checkpointing. In Ron
Morrison, Mick Jordan, and Malcolm Atkinson, editors, Advances in

Persistent Object Systems, pages 322–334. Morgan Kaufmann, 1999.

[HT96] N. Heintze and J.D. Tygar. A model for secure protocols and their

compositions. IEEE Transactions on Software Engineering, 22(1):16–30,
January 1996.

[HvdM99] Joseph Y. Halpern and Ronald van der Meyden. A logic for SDSI’s linked
local name spaces. In Proceedings of the 12th IEEE Computer Security

Foundations Workshop, pages 111–122, 1999.

[Joh93] M. St. Johns. Identification protocol, February 1993. Internet RFC 1413.

[Jon93] Michael B. Jones. Interposition agents: Transparently interposing user code

at the system interface. Proceedings of the Fourteenth ACM Symposium on
Operating Systems Principles, pages 80–93, December 1993.

[LABW92] Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: theory and practice. ACM

Transactions on Computer Systems, 10(4):265–310, November 1992.

[Lam86] Butler W. Lampson. Designing a global name service. In Proceedings of the
Fourth ACM Symposium on Principles of Distributed Computing, pages

1–10, Minaki, Ontario, August 1986. ACM Press.

[Lan81] C.E. Landwehr. Formal models for computer security. Computing Surveys,

13(3):247–278, September 1981.

[LN98] I. Lehti and P. Nikander. Certifying trust. In Proceedings of the First

International Workshop on Practice and Theory in Public Key Cryptography,
pages 83–98, February 1998.

[Loe92] K. Loepere. Mach 3 kernel principles. Technical Report MK67, Open
Software Foundation and Carnegie Mellon University, 1992.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol

using FDR. Software—Concepts and Tools, 17(3):93–102, 1996.

[LRD95] Anders Lindström, John Rosenberg, and Alan Dearle. The grand unified

theory of address spaces. In Proceedings of the Fifth Workshop on Hot
Topics in Operating Systems (HotOS), pages 66–71, May 1995.

[LS90] Eliezer Levy and Abraham Silberschatz. Distributed file systems: Concepts
and examples. ACM Computing Surveys, 22(4):321–374, December 1990.

[LSM+98] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C.

Taylor, S. Jeff Turner, and John F. Farrell. The inevitability of failure: The
flawed assumption of security in modern computing environments. In

Proceedings of the Twenty-First National Information Systems Security
Conference, Arlington, Virginia, October 1998.

168 BIBLIOGRAPHY

[Mas97] F. Massacci. Reasoning about security: a logic and a decision method for
role-based access control. In Proceedings of the First International Joint

Conference on Qualitative and Quantitative Practical Reasoning, pages
421–435, 1997.

[MGH+94] J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B. Kessler, Y. A. Khalidi,

P. Kougiouris, P. W. Madany, M. N. Nelson, M. L. Powell, and S. R. Radia.
An overview of the Spring system. In Proceedings of COMPCON ’94, pages

122–131, 1994.

[Mio98a] A. Mione. A look at PKI design efforts. Digital Systems Report, 20(3):1–6,
1998.

[Mio98b] A. Mione. A look at some more PKI design efforts. Digital Systems Report,

20(4):15–21, 1998.

[MKD+00] Jeffrey Mogul, Balachander Krishnamurthy, Fred Douglis, Anja Feldmann,
Yaron Goland, and Arthur van Hoff. Delta encoding in HTTP. Internet

draft draft-mogul-http-delta-03.txt (work in progress), March 2000.

[MKKW99] D. Mazières, M. Kaminsky, M.F. Kaashoek, and E. Witchel. Separating key
management from file system security. ACM Operating Systems Review,

33(5):124–139, December 1999.

[Mor98] Alexander Morcos. A Java implementation of Simple Distributed Security
Infrastructure. Master’s thesis, Massachusetts Institute of Technology, May

1998.

[Mos98] Karl Moss. Java Servlets. Computing McGraw-Hill, July 1998.

[MSC+86] James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H.
Howard, David S. H. Rosenthal, and F. Donelson Smith. Andrew: A

distributed personal computing environment. Communications of the ACM,
29(3):184–201, March 1986.

[MWSK94] K. Murray, T. Wilkinson, T. Stiemerling, and P. Kelly. Angel: resource

unification in a 64-bit microkernel. In Proceedings of the Twenty-Seventh
Annual Hawaii International Conference on System Sciences, pages 106–115,

January 1994.

[Neu92] B. Clifford Neuman. The Prospero file system: A global file system based on
the virtual system model. Computing Systems, 5(4):407–432, Fall 1992.

[Neu93] B. Clifford Neuman. Proxy-based authorization and accounting for

distributed systems. In Proceedings of the Thirteenth International
Conference on Distributed Computing Systems, pages 283–291, May 1993.

[NT94] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentication service

for computer networks. IEEE Communications, 32(9):33–38, September
1994.

BIBLIOGRAPHY 169

[OCD+88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B.
Welch. The Sprite network operating system. IEEE Computer, 21(2):23–36,

February 1988.

[OD83] D.C. Oppen and Y.K. Dalal. The clearinghouse: a decentralized agent for

locating named objects in a distributed environment. ACM Transactions on
Office Information Systems, 1(3):230–253, 1983.

[Pik00] Rob Pike. Personal communication, March 2000. Bell Laboratories.

[PPD+95] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,
Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing

Systems, 8(3):221–254, Summer 1995.

[Riv97] R. Rivest. S-Expressions. Internet draft draft-rivest-sexp-00.txt

(expired), May 1997.

[RLML86] J. Rees, P.H. Levine, N. Mishkin, and P.J. Leach. An extensible I/O system.

In USENIX Association Summer Conference Proceedings, Atlanta 1986,
pages 114–125, 1986.

[Sal78] J.H. Saltzer. Naming and binding of objects. In R. Bayer, R. M. Graham,
and G. Seegmuller, editors, Operating Systems: An Advanced Course, pages
99–208. Springer-Verlag, 1978.

[SBN84] M.D. Schroeder, A.D. Birrell, and R.M. Needham. Experience with
Grapevine: the growth of a distributed system. ACM Transactions on

Computer Systems, 2(1):3–23, February 1984.

[SESS96] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A. Smith.

Dealing with disaster: Surviving misbehaved kernel extensions. In
Proceedings of the 1996 Symposium on Operating Systems Design and

Implementation, pages 213–227. USENIX Association, October 1996.

[SGK+85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and
implementation of the Sun Network Filesystem. In Proceedings of the 1985

Summer USENIX Conference, pages 119–130, 1985.

[Sol85] Karen Rosin Sollins. Distributed name management. PhD thesis,

Massachusetts Institute of Technology, February 1985.

[Sol88] Karen R. Sollins. Cascaded authentication. In Proceedings of the 1988 IEEE

Symposium on Security and Privacy, pages 156–163, 1988.

[SP95] W. Richard Stevens and Jan-Simon Pendry. Portals in 4.4BSD. In

Proceedings of the 1995 USENIX Technical Conference, pages 1–10, January
1995.

[SRC84] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2(4):277–288, November
1984.

170 BIBLIOGRAPHY

[SSL+99] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David
Andersen, and Jay Lepreau. The Flask security architecture: System support

for diverse security policies. In Proceedings of the Eighth USENIX Security
Symposium, pages 123–139, August 1999.

[Syv93] Paul F. Syverson. Adding time to a logic of authentication. In Proceedings of
the First ACM Conference on Computer and Communications Security,

pages 164–173, November 1993.

[Tan95] Andrew S. Tanenbaum. A comparison of three microkernels. Journal of

Supercomputing, 9(1):7–22, March 1995.

[TvRvS+90] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J.

Sharp, Sape J. Mullender, Jack Jansen, and Guido van Rossum. Experiences
with the Amoeba distributed operating system. Communications of the

ACM, 33(12):46–63, December 1990.

[UKS95] Ronald C. Unrau, Orran Krieger, and Michael Stumm. Hierarchical
clustering: A structure for scalable multiprocessor operating system design.

Journal of Supercomputing, pages 105–134, March 1995.

[VAB91] V. Varadharajan, P. Allen, and S. Black. An analysis of the proxy problem

in distributed systems. In Proceedings of the 1991 IEEE Symposium on
Security and Privacy, pages 255–275, 1991.

[VDAA99] Amin Vahdat, Michael Dahlin, Thomas Anderson, and Amit Aggarwal.
Active names: Flexible location and transport of wide-area resources. In

Proceedings of the USENIX Symposium on Internet Technologies and
Systems, October 1999.

[VK83] V.L. Voydock and S.T. Kent. Security mechanisms in high-level network
protocols. Computing Surveys, 15(2):135–171, 1983.

[vSHBT98] Maarten van Steen, Franz J. Hauck, Gerco Ballintijn, and Andrew S.
Tanenbaum. Algorithmic design of the Globe wide-area location service. The

Computer Journal, 41(5):297–310, 1998.

[vSHT99] M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: a wide area

distributed system. IEEE Concurrency, 7(1):70–78, January 1999.

[WABL94] Edward Wobber, Mart́ın Abadi, Michael Burrows, and Butler Lampson.
Authentication in the Taos operating system. ACM Transactions on

Computer Systems, 12(1):3–32, February 1994.

[Wal98] Jim Waldo. Jini architecture overview. Sun Microsystems white paper, 1998.

Available at: http://www.java.sun.com/products/jini/whitepapers/
architectureoverview.pdf.

BIBLIOGRAPHY 171

[Wat81] R. W. Watson. Identifiers (naming) in distributed systems. In B. W.
Lampson, M. Paul, and H. J. Siegert, editors, Distributed systems—

architecture and implementation: an advanced course, chapter 9, pages
191–210. Springer-Verlag, 1981.

[Wel94] Brent Welch. A comparison of three distributed file system architectures:

Vnode, Sprite, and Plan 9. Computing Systems, 7(2):175–199, Spring 1994.

[WF98] D.S. Wallach and E.W. Felten. Understanding Java stack inspection. In

Proceedings of the 1998 IEEE Symposium on Security and Privacy, pages
52–63, 1998.

[WO86] Brent Welch and John Ousterhout. Prefix tables: A simple mechanism for

locating files in a distributed system. In Proceedings of the Sixth
International Conference on Distributed Computer Systems, pages 184–189,

1986.

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for

the Java system. Computing Systems, 9(4):265–290, Fall 1996.

[YKS+98] Tatu Ylonen, Tero Kivinen, Markku-Juhani O. Saarinen, Timo J. Rinne, and
Sami Lehtinen. Ssh protocol architecture. Protocol specification, August

1998. Available at: http://www.ssh.fi/drafts/.

[Ylo96] Tatu Ylonen. The SSH (secure shell) remote login protocol. Internet draft

draft-ylonen-ssh-protocol-00.txt (expired), May 1996.

	Naming and sharing resources across administrative boundaries
	Recommended Citation

	thesis.dvi

