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Abstract 44 

This paper investigates the production of Nannochloropsis sp. algae at five different sites located in the 45 

southwestern region of the United States. Studies of the economic viability of algae production typically 46 

calculate the Capital and Operating Expenses of stylized algal production firms with minimal understanding 47 

of the linkages between production and input variables that drive the costs being estimated. These results 48 

work towards filling this gap by estimating several production functions using real world data.  Our dataset 49 

includes 10,316 days of algae growth, from which we generate 495 growth period observations. Particularly, 50 

the study analyzes the relationship between variation in input factors over a growth period and the resulting 51 

alage production measured by ash free dry weight. We carry out several multivariate econometric regression 52 

analyses. The variables photosynthethcially active radiation (PAR), length of growth periods, and the growth 53 

of Nannochloropsis salina result in increased algae production. Algae production at the Texas AgriLife at Texas 54 

A&M University in Pecos, Texas, and Flour Bluff, Texas, resulted in higher algae production than the three 55 

sites in New Mexico. Increases in the initial algae inoculation levels and average precipitation consistently 56 

indicated a negative relationship with algae production in our model. These results should be useful for 57 

further studies aiming to connect real world algae production decisions with measures of costs and 58 

profitability. 59 

 60 
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1. Introduction 67 

1.1 Microalgae suitability for bioenergy 68 

Considerable interest has been expressed in policy circles regarding the potential of 69 

microalgae biofuels as an alternative source of clean energy [1]. Microalgae are diverse unicellular 70 

microorganisms that can convert sunlight and CO2 into carbohydrates, protein, and natural oils, 71 

using photosynthesis [2]. As much as 75% of body weight in some species is made up of natural oils 72 

[1, 3, 4]. These oils can be processed into numerous products through transesterification [5], 73 

hydrothermal liquefaction [6, 7], or gasification [8]. Microalgae lipids have been upgraded to jet fuel, 74 

diesel fuel, gasoline, green diesel, or biodiesel through many of the same processes used to convert 75 

petroleum crude into finished fuel products [9] [10]. These products have the advantage, in contrast 76 

to ethanol, of being energy dense fuels that are compatible with existing energy infrastructure [11]. 77 

Algal based biofuels have the potential to be produced with a smaller carbon footprint than 78 

traditional fuels and can be produced with water, land, and nutrient inputs that do not compete with 79 

food production, unlike other feedstocks, such as corn, sorghum, and sugarcane [12]. Algae also 80 

have a much faster rate of growth and smaller land footprint due to the increased photosynthetic 81 

efficiency relative to land crops [13].  82 

The first generation of biofuel production focused on Nannochloropsis salina, which are a 83 

coldwater marine species [14, 15] shown to be tolerant of brackish water [16] and suitable for CO2 84 

fixation [16]. Nannochloropsis are also high in triglycerides and have a relatively high growth rate. Thus, 85 

this species was thought to be a good candidate for use as a biofuel species. While continued 86 

research has found additional species that are more viable for production scale, much has been 87 

learned from the initial cultivation experience with Nannochloropsis [11]. It has been used as the base 88 

organism in many of the Life Cycle Assessments and first generation techno-economic models, and 89 

many of the growth and nutrient predictions for greenhouse gas and land use change calculations 90 
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have been done using Nannochloropsis. [2] [13] [17] [18] [19] [20] [21].  Many algae cultivation studies 91 

have used techno-economic assessment (TEA) to analyze the potential economic viability of algae 92 

production and to calculate the Capital and Operating Expenses (CAPEX and OPEX) of stylized 93 

algal production firms [11, 22, 23, 24, 25, 26, 27, 28], with minimal understanding of the linkages 94 

between production and input variables that drive the costs being estimated.  This research works 95 

towards bridging this gap with an applied algae production analysis that estimates the relationships 96 

between a selection of critical environmental and control variables and the impact on biomass 97 

production using 10,316 days of outdoor Nannochloropsis production data from five sites in the 98 

southwestern United States. Using econometric analysis, production functions are estimated, 99 

allowing for the examination of the role of various environmental and control inputs in the 100 

production of algae. Both Cobb-Douglas and translog functional forms of production are estimated. 101 

The research provides a systematic analysis of the relationship between biomass productivity and the 102 

explanatory variables of temperature, PAR, production cycle length, and initial inoculation, using 103 

real world data. The methodology can identify inputs that are over- and under-utilized. The results 104 

allow simulation of the impact from changes to the quantity of algae production input variables, and 105 

provide a comprehensive analysis of microalgae production data. The results should be useful for 106 

the development of additional models concerned with financial and environmental viability of algal 107 

fuel production.  108 

1.2 Production and economic efficiency 109 

Understanding the relationship between inputs and outputs is a critical step in accurately 110 

determining economic feasibility, and more importantly, can be used to direct research and 111 

development toward reducing costs and increasing output in order to increase economic viability of 112 
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the use of algae as a biofuel [29]. Any given production process can be represented by a production 113 

function:  114 

 � � ���� (1) 115 

Equation (1) gives the combination of inputs (X) and outputs (Y) that are technologically feasible at 116 

a specified point in time, and allows the flow of inputs and outputs for a given time period to be 117 

tracked through a production system or process (see, e.g., [30, 31, 32]). An applied production 118 

analysis focuses on defining the elements and relationships in Y = f (X) such that profit can be 119 

estimated and sensitivity analyses for the various production inputs can be investigated [33, pp. 54-120 

75].  121 

To further understand Y = f (X), it is useful to divide this input vector into three categories. 122 

First are elements of X that are under the operational control of management and can be varied in 123 

the short-run. The second category includes capital inputs that are under the control of 124 

management, but can only be varied in the long run, between growing cycles or when longer-term 125 

management strategies are being considered. Third are environmental factors that are important for 126 

the production process but are not under the direct control of management. These environmental 127 

variables are stochastic in nature. While management does not directly control these environmental 128 

variables, many of the capital and operating expenses incurred will be related to mitigating the 129 

adverse impact of these environmental stochastic variables on production. Thus, stochastic non-130 

control variables enter into the choice set of the firm through decisions regarding the use of capital 131 

and operating systems and processes. Thus, the production function can be represented as follows: 132 

 � � ���, 	, 
� (2) 133 
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where ο is a vector of inputs under operational control that can be varied in the short run, κ is a 134 

vector of capital inputs that are fixed in the short run, and 
 contains stochastic environmental 135 

variables not under the direct control of management. Equation (2) captures the basic elements of 136 

algae lipid production, which can be used to derive the revenues, costs, and profit or loss of the 137 

firm. More directly, the stylized production function captures the production based variables and 138 

their interdependencies. 139 

The conceptual framework defined by Equation (2) needs to be translated into a functional 140 

analysis. Typically TEAs do this by using mathematical equations to populate a spreadsheet with the 141 

economic and financial metrics of interest. Parameters for these equations are typically derived using 142 

lab bench experiments or other prototypes. Often, idealized operation is assumed. An alternative 143 

procedure, which is pursued in this paper, is to estimate a production function from actual data 144 

generated from experiments. In particular, a production function for Nannochloropsis sp. is estimated 145 

using a panel data set created by pooling data from five experimental production facilities [34].  146 

2. Material and Methods 147 

2.1 Description of Data 148 

The authors use 10,316 days of algae growth from five sites located in the southwestern 149 

United States collected from 2009-2012. From this sample, 495 growth period observations were 150 

generated. Data was collected from the following sites and partners: (1) Sapphire Energy in Las 151 

Cruces, NM (SAP); (2) New Mexico State University Energy Research Laboratory, in Las Cruces, 152 

NM (NMS); (3) Center for Excellence in Hazardous Materials Management in Atoka, NM (CHM); 153 

(4) Texas A&M AgriLife Extension in Pecos, Texas (PEC); and (5) Texas A&M AgriLife Extension 154 

in Flour Bluff, Texas, near Corpus Christi, Texas (COR).  The cultivation data was collected over a 155 

four year period in outdoor reactors similar to traditional Oswald raceways. Cultivation volume was 156 
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from 1,000 liters to 100,000 liters and more than 50% of the observations are drawn from 157 

cultivation volumes in excess of 25,000 liters.   158 

Table 1 provides descriptive statistics for the variables included in our study. AFDW is a 159 

uniform measure of organic content that eliminates the variability that may arise from samples with 160 

differing water content or ash content [35]. In many instances, including the measuring of initial 161 

values that were non-zero, AFDW was extrapolated from a recorded value of AFDW density (g/l). 162 

For other cases, optical density at 750 nm (OD750) was used to determine AFDW [35]. For the 163 

latter case, an observed relationship between OD750 and AFDW was determined via an ordinary 164 

least squares regression analysis for each site. From this analysis, the AFDW values are determined.  165 

The growth periods were a number of days of growth, which began with an initial 166 

measurement of AFDW, and ended with a final measurement of AFDW. The final measurement of 167 

AFDW was recorded from a measurement of harvested biomass, a final reading of AFDW density 168 

in the pond, or from a combination of the two. In some growth periods, for example with the PEC 169 

site, biomass was not harvested, yet the batch was moved to a different pond, diluted, and a new 170 

growth period began. In the case of CHM, and in some of the SAP growth periods, biomass was 171 

partially harvested, then growth was allowed to continue. The day of harvesting, or the last day of 172 

consecutive days of harvesting if harvest occurs over multiple days, is considered the final day of a 173 

growth period. For each growth period in which biomass was harvested throughout the growth 174 

period, the harvested quantity was added to the final growth quantity. The following equation 175 

summarizes the AFDW calculation:  176 

 AFDW = Ending biomass - Initial biomass + Harvested biomass   (3) 177 

The average daily-integrated photosynthethcially active radiation (PAR) over the growth 178 

period is taken from data collected in three-minute intervals by Colorado State University (CSU) 179 

[36]. Several sites did collect PAR onsite, but the CSU data set provides a uniform methodology to 180 
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collect PAR. The CSU PAR sensors closest to the production site were used [27, 37, 38].1 The use of 181 

CSU PAR sites introduces measurement error, but researchers felt that PAR is a critical variable and 182 

that this proxy measure was preferable to excluding PAR as a production variable. At the beginning 183 

of each growth period, the initial density of algae (INI) is measured as AFDW (g/l).  A nonlinear 184 

relationship between INI and AFDW was hypothesized. A zero value of INI would result in no 185 

growth, as there would be no parent algae. On the other hand, a high value of INI would result in 186 

excessive competition for nutrients as well as self-shading. Growth periods varied in length over 187 

time at individual sites, and also across different sites. The number of days in each growth period 188 

(DAY) was included to control for growth period variation. It was expected that very short growth 189 

periods, and very long growth periods, would result in lower overall per day productivity, providing 190 

a non-linear relationship between productivity and DAY.2  The average range in daily ambient air 191 

temperature over the growth period by site (TEM) is a proxy for water temperature fluctuation. 192 

Ideally, direct measures of water temperature would be used [38], but this data was not measured 193 

consistently at each of the sites. Air temperature is an acceptable proxy, as no site in the study 194 

mechanically controlled water temperature. Average participation per day during the growth period 195 

(PRE) is included to account for storm events, which are associated with the invasive species events. 196 

A number of dummy variables are included in the analysis. First among these is NAN, which 197 

is a dummy variable indicating that the species is Nannochloropsis salina. All of the observations that 198 

were not Nannochloropsis salina were from the genus Nannochloropsis, but included various strains other 199 

than N. salina such as Nannochloropsis occulata. In some instances, the strain was not identified. 200 

                                                           
1
 The NMS site was 38 km from the PAR sensor, located at the Jornada long-term agricultural research site near Las 
Cruces, New Mexico. This sensor also provided data for SAP (43 km distance) and CHM (221 km distance). The PAR 
sensor in Seguin, Texas, provided the COR PAR data (227 km distance). The PEC PAR observations were taken from 
the PAR sensor in Big Bend, Texas (253 km distance). 
2 Seven observations with  fewer than two days in the growth period were eliminated as being two short a time period to 
be considered full growth cycles.  Two additional observations of 595 and 600 days were eliminated because they were 
considered unrealistic growth scenarios.     
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Dummy variables for location were also included in the analysis.3  Location dummies are expected to 201 

have a significant effect on production stemming from geographical location, from physical design 202 

of ponds and raceways [39], and from systematic differences in production techniques across sites.  203 

 204 

Table 1. Descriptive statistics. 

Variable Units Description Obs Mean SD Min Max CV 

AFDW 
g/m2 Ash free dry weight 

generated over growth 
period per area 

495 77.6 67.2 -61.0a 353.6 0.866 

PAR 
µmol/ 
(m2 
sec) 

Average daily integrated 
PAR over the growth period 
(in thousands) 

495 36277.1 12033.1 14919.9 60129.6 0.332 

 INI g/l Initial ash free dry weight 
density for growth period 

495 0.31 0.24 0.02 1.00 0.778 

DAY 
# Number of days in the 

growth period 
495 20.8 20.4 3.0 146.0 0.980 

TEM F Average range of daily 
ambient air temperature 
fluctuation over the growth 
period 

495 21.7 8.7 7.3 41.0 0.400 

PRE in/d Average precipitation per 
day over the growth period 

495 0.02 0.04 0.00 0.56 2.618 

NAN dummy Dummy variable indicating 
algae species as 
Nannochloropsis salina 

495 0.72 0.45 0 1 0.622 

SAP dummy Dummy variable indicating 
growth at Sapphire Energy 
in Las Cruces, New Mexico 

495 0.09 0.28 0 1 3.245 

PEC dummy Dummy variable indicating 
growth at Texas AgriLife at 
Texas A&M University in 
Pecos, Texas. 

495 0.17 0.37 0 1 2.230 

COR dummy Dummy variable indicating 
growth at Texas AgriLife at 
Texas A&M University in 
Flour Bluff, Texas, near 
Corpus Christi, Texas. 

495 0.48 0.50 0 1 1.040 

CHM dummy Dummy variable indicating 
growth at the Center for 
Excellence in Hazardous 

495 0.12 0.33 0 1 2.670 

                                                           
3
The dummy variable takes on the value 1 when the data is from the indicated location, and is zero otherwise.  
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Materials Management in 
Atoka, NM. 

NMS dummy Dummy variable indicating 
growth at New Mexico State 
University Energy Research 
Laboratory, in Las Cruces, 
NM. 

495 0.14 0.35 0 1 2.467 

aGrowth was negative for some observations, arising from pond crashes in which a significant 205 

portion of the algae died prior to harvest. 206 

Daily productivity at each site is provided in Figure 1, measured as ash free dry weight 207 

(AFDW) per day (g/m2/d), by site and overall. The PEC site had the highest average productivity, 208 

but also the most variation. CHM was least productive while NMS had the least variation in output. 209 

Daily AFDW varies from an average of 0.803 g/m2/d in CHM to an average of 8.513 g/m2/d in 210 

relatively nearby PEC.4  211 

 Figure 1 Box plot of daily algae production by site, and overall production for all sites. 212 

2.2 Data relationships 213 

Figure 2 displays scatter diagrams plotting the natural log of algae production as measured by 214 

average ash free dry weight generated over the growth period (ln AFDW) to the natural log of the 215 

various potential determinates, with different determinants displayed in each of the panels. Also 216 

included in each panel is a fitted value determined using ordinary least squares. Logarithms were 217 

used to account for potential nonlinearity in the data. One difficulty with this approach is that some 218 

observations for growth were negative, arising from pond crashes in which a significant portion of 219 

the algae died prior to harvest. Values less than or equal to zero cannot be transformed into natural 220 

log form. A common solution is to add a factor to all observations of a variable that sufficiently 221 

brings all values above zero. Doing so does not change the relationship between the dependent and 222 

independent variables. [40]. Following this approach, 61 was added to each AFDW observation. 223 

                                                           

4 The growth period data at the CHM site was not clearly delineated, as the growth was carried out in ongoing pond 
growth periods spanning multiple years. See discussion below.   
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Similarly a one was added to the independent variables INI and PRE, to eliminate values less than 224 

zero, and negative log values. Panel A in Figure 2 relates ln AFDW to the natural log of average 225 

PAR over the growth period (ln PAR). A positive relationship is expected [41]. In fact, a weak 226 

negative relationship is observed. Panel B shows algae production increases with days over which 227 

growth occurs (ln DAY). It is expected that over longer grow periods, production will remain 228 

positive, but the growth rate will begin to decline due to self-shading [42]. Panel C shows the 229 

relationship between ln AFDW and the natural log of initial density (ln INI). A negative relationship 230 

is observed indicating over inoculation may be occurring [42]. Panel D shows the relationship of the 231 

natural log of the mean daily range in ambient air temperature (ln TEM) to be negatively related to 232 

algae production [41, 42]. A constant, controlled temperature appears to promote growth. In Panel 233 

E, it is apparent that the natural log rainfall during the growth period (ln PRE) is associated with 234 

declining algae production. This is likely due to storms causing pond crashes as wind and rain can 235 

contaminate open ponds.  236 

Figure 2 Log-log relationship between algae production and the determinants of algae 237 

production. Panel A illustrates a positive relationship between ln AFDW and ln PAR. Panel 238 

B illustrates a positive relationship between ln AFDW and ln DAY. Panel C illustrates a 239 

negative relationship between ln AFDW and ln INI. Panel D illustrates a negative 240 

relationship between ln TEM and ln AFDW. Panel E illustrates a negative relationship 241 

between ln PRE and ln AFDW. 242 

 243 

3. Econometric Modeling 244 

The two-way correlation in Figure 2 provides an indication of the relationship between algae 245 

growth and production factors. However, multivariable regression analysis permits examining the 246 

role of the various factors simultaneously in influencing production. In this section, econometric 247 

methodology is laid out in full.  248 
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  The production function for Nannochloropsis sp. can be represented by 249 

��� � �����, ����, …����; �� , ����, where i = 1,2,..,5 is an index of locations, t is a time index, ��� is 250 

output at time t for location i, Xitm  are factors that affect the algae production also indexed for time 251 

and location, η� is an unobservable site-specific effect, and v it is a random component. In what 252 

follows, F(·) is assumed to be approximated as log-linear. The natural logarithm of ��� , and ���� are 253 

denoted by ���	and ����, respectively. The specific form of the production equation can be 254 

approximated as a log-linear function defined as follows.  255 

iti

M

m itmmit xy υηαα +++= ∑ =10     (4) 256 

This is the Cobb-Douglas production function, which is frequently used in economics, as it 257 

illustrates with ease the trade-off between input variables in order to achieve production output. It 258 

has been shown to appropriately estimate a wide variety of production relationships [30] [33] [34]. 259 

The term �� is the production elasticity for the input ���� and M is the number of inputs. Thus, 260 

given our specification, a 1 percent increase in ����causes an ��percent increase in ity . Equation 261 

(4) is estimated using an unbalanced pooled data5 with three different techniques—ordinary least 262 

squares (OLS), ordinary least squares with fixed effects (OLS-FE), and instrumental variables (IV) 263 

[34]. 264 

 265 

                                                           

5 The data is pooled in the sense that data from all five sites are used to estimate the regressions. The data is unbalanced 
in the sense that there are a different number of observations for different sites and the observations may not 
correspond to each other in time. 
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Table 2. Cobb-Douglas Production Function.  

Dep. Variable: 
ln AFDW 

Model 1 
OLS 

Model 2 
FE-OLS 

Model 3 
IV 

Dependent 
Variablesa 

Coefficient 
Robust 
S.E. 

Coefficient 
Robust 
S.E. 

Coefficient 
Robust 
S.E. 

CON 3.841*** (0.927) 1.964 (1.458) 1.078 (1.440) 
ln PAR 0.157** (0.074) 0.277*** (0.092) 0.343*** (0.094) 
ln INI -1.057*** (0.331) -0.163 (0.231) 0.090 (0.306) 
ln DAY 0.056 (0.069) 0.159*** (0.053) 0.361** (0.144) 
ln TEM -0.242*** (0.062) 0.090 (0.099) 0.051 (0.100) 
ln PRE -0.660* (0.370) -1.004*** (0.380) -1.362** (0.555) 
NANO 0.029 (0.041) 0.105*** (0.037) 0.106*** (0.040) 
SAP   -0.293*** (0.094) -0.502* (0.217) 
COR   0.326** (0.137) 0.154 (0.191) 
CHM   -1.295*** (0.261) -1.521*** (0.409) 
NMS   -0.248*** (0.064) -0.441*** (0.152) 
N 495  495  495  

Std. Dev. of the 
Residuals 0.41  0.36  0.38 

 

R2 0.35  0.51  0.47  
Adj R2 0.34  0.50  0.45  
AICb 538.9  406.2  449.3  
Fc 54.3***  60.3***  45.6***  

Kleib-Paap LMd     19.86***  
Kleib-Paap Fbe     16.14i  
Hansen J (Χ2)f     3.41  

Endog (Χ2)g     0.400  
a PAR is daily-integrated photosynthethcially active radiation, INI is the initial concentration of algae at 
the time production is commenced, DAY is the number of days over which production occurred, TEM 
is the average daily variation in temperature, PRE is average daily precipitation, and NANO indicates 
that the species cultivated is Nannochloropsis salina. and zero otherwise. 

bAIC: Goodness-of-fit measure considering the trade-offs between accuracy and complexity. A lower 
value indicates a preferred model. 

cF-test:  Statistic examining the significance of the explanatory variables, as a group, in the model. The 
null hypothesis is that the variable groups are not significant. The results reject the null at the 1% level in 
each model. 

dKleib-Paap LM test: Under identification (test t, with the null hypothesis that instruments are not 
independent, therefore, invalid. This indicated that the instruments used are appropriate. 

eKleib-Paap F: Weak identification test of instruments. i indicates test stat exceeds the critical value of 5% 
relative bias and 15% maximal IV size distortion [43]. 

fHansen J: Over identification test, with the null that instruments are over identified and valid. 

gEndog (chi-sq): Tests exogeneity of the questioned explanatory variable, with the null hypothesis that 
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      266 

Table 2 presents results using the Cobb-Douglas specification given in equation (4). For each 267 

model, the natural log of AFDW is the dependent variable and included are six explanatory 268 

variables—the natural log of PAR, INI, DAY, TEM, and PRE, and the dummy variable NANO. 269 

Time effects are controlled for using dummy variables for each year.  The Cobb-Douglas model 270 

relates the inputs to the output in such a way that the coefficients can interpreted as elasticities. For 271 

example, a one-percent increase in TEM will cause a -0.242% change in production. Model 2 differs 272 

from Model 1 by adding location dummies. Comparing the two models, the inclusion of location 273 

dummy variables improves measures of goodness of fit, indicating that Model 2 is preferred. The 274 

significance of ln INI and ln TEM drops out in the FE model, but NANO gains significance. The 275 

coefficient of ln TEM, a measure of temperature flux may be anticipated to have a negative sign, as 276 

it does in Model 1, but is not significant in Model 2. The adjusted R2 indicates that Model 2(OLS-277 

FE), which includes location fixed effects, performs better than Model 1. The OLS-FE model 278 

captures the systematic differences between sites including weather, managerial skill, and physical 279 

facilities.   280 

Model 3 is the same as model Model 2 accept in using the estimation technique of 281 

instrumental variables to account for potential endogeneity of DAY. In particular, managers may 282 

change inputs under their control so as to mitigate random fluctuations in production, thus, 283 

potentially creating a feedback loop between the regressors and the error term. In the context of the 284 

current setting, ln DAY, which is under the control of management, could be endogeneous as 285 

managers could vary the length of the production cycle to offset other factors. To test for 286 

endogeneity, Model 3 is estimated using instrumental variable (IV) for ln DAY. This requires 287 

the variable is exogenous. The null is not rejected. 



 15

choosing instrument variables that are correlated with the potential endogenous variable, ln DAY, 288 

but not correlated with the error term of the model [44]. The dataset contained additional variables 289 

that were able to be used for the IV model test.  The natural log of the number of days taken to 290 

harvest (ln HARV), the natural log of the surface area of the tanks used in production (ln ARE), and 291 

a dummy indicating a winter month (WIN), were selected as instruments. It is expected that the 292 

values of these variables may influence the number of days of a growth period. The instruments 293 

were checked for appropriateness using the Hansen J over identification test, Kleibergen-Paap under 294 

identification test, and the Kleibergen-Paap weak identification tests (which are reported in Table 2) 295 

[38]. All three of these instrument tests indicate the chosen instruments are appropriate. The key test 296 

statistic for the appropriateness of IV, Endog, does not reject OLS, indicating that IV is not 297 

necessary. The IV model (Model 3) is not necessary, as the test statistic (Endog) listed in Table 2, 298 

fails to reject OLS. This indicates that an instrumental variables technique is not necessary. Thus, for 299 

the Cobb-Douglas specification, the OLS model with Fixed Effects is the preferred estimator.  300 

Table 3 reports estimations of Equation (4) using a translog specification. The translog is of 301 

the form: 302 

iti

M

l

M

m itlitmml

M

m itmmit xxxq υηααα ++++= ∑ ∑∑ = == 1 110  (5) 303 

The translog is a more flexible form than the Cobb-Douglas, and allows flexibility in the 304 

relationships between the variables. Indeed, the Cobb-Douglas is a special case of the translog, 305 

where the coefficients of the double summation in Equation (5) are zero. More generally, the 306 

translog can be considered to be a second order approximation of an arbitrary production function 307 

[45]. Again, models are analyzed with and without the location dummy variables. Table 3 gives F-308 

tests for the joint significance of the coefficients on the PAR, INI, DAY, TEM, and PRE, and 309 

associated interactive terms. All variable groups were found to be jointly significant. The NANO 310 
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term was insignificant in the translog specifications. The goodness-of-fit measures suggest the model 311 

including location dummies (i.e., Model 5 (OLS-FE)) is the preferred model. 312 

Table 3. Translog Production Function. 

Dep. Variable: ln AFDW Model 4: 
Coefficient 

Robust 
S.E.  

Model 5: 
Coefficient 

Robust 
S.E. 

CON 62.32** (24.119) 63.83*** (21.685) 
ln PAR -11.56** (5.078) -11.95*** (4.540) 
ln INI 11.49** (5.035) 21.24*** (4.730) 
ln DAY 2.798** (1.221) 1.863 (1.131) 
ln TEM -2.539 (2.871) -2.547 (2.546) 
ln PRE 65.85* (36.603) -1.401 (34.161) 

½ (ln PAR)2 1.175** (0.550) 1.261** (0.491) 
½ (ln INI) 2 -12.91*** (2.333) -8.863*** (2.150) 
½ (ln DAY) 2 -0.143** (0.056) -0.150*** (0.053) 
½ (ln TEM) 2 -0.679 (0.418) -0.0268 (0.377) 
½ (ln PRE) 2 8.255 (11.141) -8.697 (10.143) 

ln PAR x ln INI -1.048** (0.512) -1.692*** (0.461) 
ln PAR x ln DAY -0.305** (0.123) -0.247** (0.112) 
ln PAR x ln TEM 0.233 (0.279) 0.0951 (0.248) 
ln PAR x ln PRE -2.439 (3.125) 1.627 (2.939) 
ln INI x ln DAY -1.882*** (0.237) -1.474*** (0.217) 
ln INI x ln TEM 2.361*** (0.764) 0.998 (0.718) 
ln INI x ln PRE -6.224 (7.550) -20.30*** (6.889) 

ln DAY x ln TEMP 0.462*** (0.124) 0.563*** (0.115) 
ln DAY x ln PRE -5.821*** (1.716) -4.187*** (1.542) 
ln TEM x ln PRE -8.981*** (3.151) -0.257 (2.892) 

NANO 0.0576 (0.051) 0.0532 (0.046) 
SAP   -0.463*** (0.107) 
COR   0.468*** (0.149) 
CHM   -1.190*** (0.122) 
NMS   -0.343*** (0.080) 
N 495  495  

Std. Dev. of the Residuals 0.368  0.320  
R2 0.49  0.61  

Adj R2 0.47  0.58  
AICb 448.5  330.8  
F-Testc     
F-Joint 18.9***  25.5***  
F-PAR 4.4***  5.8***  
F-INI 24.1***  15.1***  
F-DAY 16.4***  16.9***  
F-TEM 10.5***  4.3**  
F-PRE 3.8***  3.2***  
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a PAR is daily-integrated photosynthethcially active radiation, INI is the initial 
concentration of algae at the time production is commenced, DAY is the number of 
days over which production occurred, TEM is the average daily variation in 
temperature, PRE is average daily precipitation, and NANO indicates that the species 
cultivated is Nannochloropsis salana. and zero otherwise. 

bAIC:  Goodness-of-fit measure considering the trade-offs between accuracy and 
complexity. A lower value indicates a preferred model. 

cF-Test: Statistic examining the significance of the explanatory variables, as a group, in 
the model. The null hypothesis is that the variable groups are not significant. The 
results strongly reject the null in each model. 

 313 

4. Discussion 314 

4.1 Estimation of Elasticities 315 

As previously stated elasticities measure the percentage change in one variable that is 316 

attributable to a 1% in another variable. Elasticities are useful measures of how a variable of interest, 317 

in this case biomass productivity, is related to input variables such as sunlight and temperature or 318 

initial concentration. Input elasticities measure the sensitivity of output to an increase in inputs. 319 

Table 4 shows input elasticities of production (calculated using the Cobb-Douglas and translog 320 

specifications) reported in Table 3 and Table 4. The elasticities are evaluated at the mean value of 321 

the inputs and are reported with 95% confidence intervals calculated using bootstrapping 322 

techniques.6 For the Cobb-Douglas equation, the coefficient of the input is the elasticity, which can 323 

be taken directly from Table 2. Calculating the elasticity for the translog specification is more 324 

complicated as it requires giving values to the other inputs as these terms influence the value of the 325 

                                                           
6
 The bootstrapping of Regression Coefficient method was used [46]. The residuals from the original 
regression are randomly added back to the estimated values of the dependent variable, thereby, creating a 
pseudo dependent variable. The pseudo dependent variable is then used to estimate the regression. This was 
repeated 1,000 times. The results of the regression were then used to calculate 1,000 elasticity measures, 
which were then used to calculate the upper and lower limits of the 95% confidence interval.  
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translog elasticity via the interaction terms. It was decided to use the mean values in doing 326 

calculations of the elasticities.  327 

Table 4 tells a fairly consistent story with the exception of INI. INI has a negative and 328 

significant elasticity both overall and individually for four out of five sites. The exception is COR, 329 

which had a positive elasticity. This indicates that INI is systematically too high for optimal 330 

production. One particular explanation for high overall INI is likely an incentive to avoid pests that 331 

may compromise algae growth.  332 

 333 

Table 4. Input elasticities of production for the Cobb-Douglas and Translog fixed effects model with 

confidence intervals calculated using bootstrapping.a 

Variable Measure 

Cobb-Douglasb 

(Model 2 OLS-

FE) 

Translogc,d 

(Model 5 OLS-FE) 

All Data All Data CHM COR SAP NMS PEC 

ln PAR 

Elasticity 0.404 0.404 0.187 0.228 0.476 0.669 0.815 

 95% L.L.e  0.402 0.402 0.178 0.230 0.468 0.661 0.799 

 95% U.L.f 0.409 0.409 0.187 0.230 0.481 0.680 0.845 

 S.E. of CIg 0.096 0.096 0.134 0.108 0.135 0.143 0.180 

         

ln INI 

Elasticity -0.629 -0.629 -2.319 0.234 -0.892 -0.790 -0.157 

 95% L.L.  -0.654 -0.654 -2.911 0.160 -0.923 -0.874 -0.449 

 95% U.L. -0.594 -0.594 -1.675 0.320 -0.870 -0.710 0.145 

  S.E. of C.I . 0.208 0.208 0.433 0.408 0.303 0.225 0.262 

         

ln DAY 

Elasticity 0.090 0.090 -0.065 0.038 0.226 0.186 0.194 

 95% L.L.  0.089 0.089 -0.064 0.038 0.225 0.184 0.193 

 95% U.L. 0.090 0.090 -0.064 0.040 0.226 0.185 0.193 

  S.E. of C.I. 0.032 0.032 0.050 0.051 0.050 0.038 0.046 

         

ln TEM 

Elasticity 0.340 0.340 0.508 0.261 0.646 0.365 -0.177 

 95% L.L.  0.324 0.324 0.429 0.261 0.623 0.337 -0.200 

 95% U.L. 0.351 0.351 0.572 0.263 0.667 0.388 -0.165 

  S.E. of C.I. 0.129 0.129 0.210 0.141 0.209 0.188 0.196 
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4.3 Simulation 334 

The estimated elasticities presented in Table 4 are used to simulate the effect of a one 335 

standard deviation change from the mean values for PAR, INI, DAY, and TEM input variables on 336 

the output variable (AFDW). These are presented in Table 5. The simulation occurs while holding 337 

all other inputs constant.  The standard deviation changes were given a positive or negative sign 338 

depending on the sign of the elasticity measure. The aim was to demonstrate the impact of input 339 

changes that would lead to positive output changes. One of the strongest simulated changes comes 340 

from the adjustment of starting density levels—a decrease in output of approximately 49% for the 341 

overall sample for a one standard deviation increase in INI. Higher net output with lower initial 342 

stocking densities could be an important economic result.  It should be noted that the COR 343 

simulation suggests starting density should go up to improve production—an increase in output of 344 

         

ln PRE 

Elasticity -3.399 -3.399 -7.725 -1.488 -4.994 -3.497 -0.859 

 95% L.L.  -4.339 -4.339 -7.790 -2.810 -7.157 -5.321 -2.659 

 95% U.L. -2.545 -2.545 -7.783 -0.216 -2.960 -1.769 0.889 

  S.E. of C.I. 1.444 1.444 2.307 0.710 2.677 2.268 1.746 
aThe Bootstrapping on Regression Coefficient method was used [46, p. 17], p. 17. 

bThe formula for the input elasticity of production for the Cobb-Douglas is given by 	

�� �
� ���

� �� !
�

�	"

�	#$
� �� where ��	is the coefficient on input m from the Cobb-Douglas specification in 

Equation (4) [44]. 

cThe formula for the input elasticity of production for the translog is given by �� �
� ���

� �� !
�

�	"

�	#$
� �� %

∑ ��'�'
�
'(  where ��	is the coefficient on input m and ��' 	is the coefficient on the cross interactive terms of 

input m form the translog specification in Equation (5) [44]. 

dElasticities are calculated at the mean value of the regressors. 

eL.L.: Lower limit of the confidence interval. 

fU.L.: Upper limit of the confidence interval. 

gS.E. of C.I.: Standard error of the confidence interval. 
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approximately 17% for each standard deviation increase in INI. All sites, except CHM, simulate 345 

higher production levels with longer growing periods. The PAR simulation provides the expected 346 

result that increases in PAR will produce more algae. This is likely indicating that times of year with 347 

longer days are more conducive to production. The simulation regarding TEM indicates increases in 348 

TEM will lead to increased production. While these are important findings from a technological 349 

perspective, without reliable cost data it is unclear if such changes would be economically 350 

reasonable. 351 

 352 

Table 5. Simulating input adjustments: Percent increases in production given changes of one 

standard deviation in the value of explanatory variables from mean values.a  

Variable 
Change (+ 
or -) 

  
 

Change 
(+ or -) 

 
Change 
(+ or -) 

  
 
 

 Total Data CHM COR 
PAR + 13.4% + 4.7% + 6.6% 
INI - 48.9% - 35.9% + 16.9% 

DAY + 8.8% - 9.6% + 2.9% 

TEM + 13.6% + 8.8% + 5.0% 

 SAP NMS PEC 

PAR + 11.3% + 14.2% + 6.4% 

INI - 36.4% - 44.9% - 4.2% 

DAY + 21.3% + 7.5% + 7.9% 

TEM + 8.9% 
+ 

5.3% 
- 

1.6% 

aThe formula for the simulation is given by  . 

 353 

5. Conclusions 354 
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There is considerable interest in determining the feasibility of production of biofuels from 355 

microalgae, but such evaluations require assessment of productivity. To address this issue, a pooled 356 

time series, cross sectional data set is created using observations from five different production 357 

locations. This data set is believed by the authors to be the most extensive collected to date on algae 358 

production. The data are used to estimate a production function for outdoor cultivation of 359 

Nannochloropsis sp. Input elasticities of production are estimated that allow the evaluation of 360 

production efficiency. The results indicate that for the sample of production analyzed, the initial 361 

concentration of algae is too high and should be adjusted downward.  This analysis, when combined 362 

with economic cost data, will provide more accurate insight into the economic feasibility of algae 363 

production.  364 

The methodology used in this study is the first step towards developing more realistic 365 

economic models and assessments of the environmental impacts of algae production. It is clear 366 

from the work completed on this unique dataset that much remains to be done in terms of collecting 367 

reliable data on productivity and pond cultivation conditions. Differences in data collection on the 368 

key variables of biomass productivity and basic site conditions resulted in the use of proxy variables 369 

that introduce significant measurement error. As the elasticity measures show, it is possible to 370 

construct direct measures of the impact of changing input conditions on productivity. If 371 

improvements are made in the measurement of productivity and in the evaluation of which control 372 

parameters impact productivity, more accurate measures of profitability and environmental impact 373 

will be possible. 374 

This study illustrates how applied production analysis techniques can provide vital 375 

information to those seeking to cultivate algae for commercial purposes. The production function 376 

approach allows for the measurement on productivity (and profitability) of changes in operating 377 

conditions. Better predictions of the impact of weather, water depth, temperature management 378 
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strategies, predator and weed control strategies and the like can be rigorously analyzed using 379 

production analysis methods. The resulting elasticities provide specific control metrics for 380 

optimizing production and can provide a powerful toolset for reducing costs and environmental 381 

impact from large scale algae cultivation.  382 
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