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Abstract: Breast cancer (BC) is a highly metastatic multifactorial disease with various histological
and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved
over the past five decades. Detection and treatment of many cancers are now possible due to
the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and
Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical
outcomes. However, these products were designed initially for generic anticancer purposes and not
specifically for BC treatment. With a better understanding of the molecular biology of BC, several
novel and promising nanotherapeutic strategies and devices have been developed in recent years.
In this context, multi-functionalized nanostructures are becoming potential carriers for enhanced
chemotherapy in BC patients. To design these nanostructures, a wide range of materials, such as
proteins, lipids, polymers, and hybrid materials, can be used and tailored for specific purposes
against BC. Selective targeting of BC cells results in the activation of programmed cell death in
BC cells and can be considered a promising strategy for managing triple-negative BC. Currently,
conventional BC screening methods such as mammography, digital breast tomosynthesis (DBT),
ultrasonography, and magnetic resonance imaging (MRI) are either costly or expose the user to
hazardous radiation that could harm them. Therefore, there is a need for such analytical techniques
for detecting BC that are highly selective and sensitive, have a very low detection limit, are durable,
biocompatible, and reproducible. In detecting BC biomarkers, nanostructures are used alone or
in conjunction with numerous molecules. This review intends to highlight the recent advances in
nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress
receptors of epidermal growth factors. Researchers may gain insight from these strategies to design
and develop more tailored nanomedicine for BC to achieve further improvements in cancer specificity,
antitumorigenic effects, anti-metastasis effects, and drug resistance reversal effects.
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1. Introduction

Breast cancer (BC) is one of the most prevalent cancers in women [1]. This type of
malignancy often starts from ductal hyper-proliferation with its expansion into benign
tumors or metastatic carcinomas resulting from exposure to carcinogenic agents [2]. This
disease exhibits not only a great deal of heterogeneity but also a great deal of variation
in its occurrence, treatment response, progression, and even location of metastasis. It is
common for metastatic BC to impact several organs, including the brain, lung, and possibly
bones [3,4]. BC is the second leading cause of death among women worldwide according
to the World Health Organization (WHO) [2,5–7]. As indicated by the WHO, in 2020,
2.3 million women were diagnosed with BC, and 685,000 women died from the disease
worldwide [8,9].

BC is classified into three main tumor subtypes rooted in enhancement in expression
of either progesterone receptor (PR) or estrogen receptor (ER), and/or epidermal growth
factor receptor 2 (ERBB2) gene mutation [10–14]. Each type of cancer has a unique risk
factor and treatment available [15,16]. For optimal therapy, determining the tumor subtype,
cancer stage, and patient-favored treatment is a necessary step that must be taken [10].
Applying systemic treatment for nonmetastatic BC patients depends on the results of the
hormone receptor and ERBB2 examinations. According to the available evidence, hormone
receptor-positive endocrine therapy and chemotherapy are standard BC treatments [17,18].

The prognosis for women who have developed metastatic triple-negative BC is poor.
The use of antibody–drug conjugates (ADCs) has been examined as a viable therapy option,
especially in extensively pretreated illnesses. In metastatic triple-negative BC, sacituzumab
govitecan is a new antibody–drug conjugate (ADC) that has demonstrated promising
results. The FDA has designated it as a breakthrough therapy for treating individuals with
previously treated metastatic triple-negative BC. For sacituzumab govitecan to operate, an
antibody targeting the most common kind of BC-specific antigen, a human trophoblast cell
surface antigen 2 (Trop-2), must be combined with the enzyme inhibitor SN-38 (topoiso-
merase I inhibitor) through a unique hydrolyzable linker [19–21]. Sacituzumab govitecan
has a well-defined and manageable toxicity profile, and rapid recognition and appropriate
early and proactive management will allow clinicians to optimize sacituzumab govitecan
treatment for patients [22]. According to the bystander effect for cancer therapy, the high
antibody-to-payload ratio of sacituzumab govitecan, and the very toxic characteristics of
the drug’s active ingredient, SN38, make it a desirable candidate [23].

One of the most important advances in treating metastatic BC has been the introduction
of anti-HER2 drugs, which have considerably improved survival results. Notwithstanding
their effectiveness, it is still necessary to use chemotherapy in conjunction with anti-HER2
monoclonal antibodies. When an antigen-specific antibody is coupled with a robust,
cytotoxic payload, the outcome is an increased therapeutic index known as antibody–drug
conjugates (ADCs). Creating antibody–drug conjugates, which consist of a cytotoxic agent
and a monoclonal antibody carrier, provides a significant alternative to the traditional
approaches used in chemotherapy. An anti-human epidermal growth factor receptor
2 (HER-2) antibody, a cleavable tetrapeptide-based linker, and a cytotoxic topoisomerase
I inhibitor are the three components that make up the antibody–drug combination known
as trastuzumab deruxtecan. Trastuzumab deruxtecan was found to have a promising
efficacy in patients with HER2-negative or low-expressing disease, who have few treatment
options due to the absence of the HER2 gene. This finding led to favorable outcomes in
patients with HER2-positive BC who had undergone extensive prior treatment. The US
Food and Drug Administration has awarded trastuzumab deruxtecan rapid approval in
advanced or unresectable HER2-positive BC that has been treated with at least two HER2-
targeting therapy lines, based on results from recent clinical studies. It is feasible that newer
HER2-targeted ADCs might offer a wide range of novel therapeutic uses outside typical
HER2-positive BC because of their enhanced pharmacological features, such as the ability
to target cells with low expression of the HER2/ERBB2 mutation [24,25]. Furthermore,
as a preventive measure, small molecules or antibodies that target the human epidermal
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growth factor receptor-2 (HER2) along with chemotherapy are effective for patients with
ERBB2-positive tumors and, consequently, patients with triple-negative BC (TNBC) require
only chemotherapy [10].

There are two options for the surgical phase with similar survival rates: a lumpectomy
with radiation if the tumor can be excised completely with good cosmetic results, or a
mastectomy [6,10]. There are several challenges and decisions that BC patients face due
to treatment-related side effects [26–28]. Currently, no concrete evidence shows whether
breast-conserving therapy or mastectomy leads to better outcomes [29]. An estimated
one-third of patients avoid undergoing formal treatment after primary phases according to
multiple observational reports [28,30]. It is crucial to consider the issue of chemotherapy-
induced undesired effects on other normal organs, ranging from cardiotoxicity caused by
doxorubicin (DOX) administration to peripheral neuropathy and even neurotoxicity, which
are the most debilitating long-term side effects in BC survivors [31–33]. A major side effect
of chemotherapy treatment is neurotoxicity and its associated cognitive manifestations.
Clinical studies have focused most extensively on the effect of chemotherapy on cognition
in BC patients [34,35]. Radiation therapy has a significant impact on the treatment of BC.
Research suggests more than 80% of patients with BC receive it alone or in combination with
chemotherapy [36]. Most patients tolerate radiotherapy, but some suffer from radiation-
related complications, such as late pulmonary and cardiac side effects [37–39].

For health care professionals, screening and diagnosis methods are crucial to supply
individualized therapies that will improve outcomes and survival [40–42]. Conventional
tools for cancer diagnosis, including tissue sampling, mammography, contrast-enhanced
mammography, ultrasound, MRI, positron emission tomography, and computerized to-
mographic examination, are still the most employed methods. However, these expensive
techniques involve high radiation exposure [43]. Tissue sampling or breast biopsy is com-
monly performed to discriminate between benign and tumorous tissues. The method is,
however, expensive and calls for the expertise of medical professionals [44]. Mammography
and ultrasound are also frequently adopted procedures for BC diagnosis; however, at the ex-
pense of high radiation exposure, lesions less than 5 mm stay undetected in mammograms.
Unfortunately, the shortcoming associated with mammography is related to false-negative
diagnoses and inordinate additional checkups. False-positive diagnosis leads to an un-
necessary biopsy, emotional burden, and radiation exposure. Low sensitivity for dense
breasts is another negative aspect of mammography [45,46]. Magnetic resonance imaging
(MRI) can also be used to detect small lesions if the scan is carried out with sufficient
contrast; however, it is expensive and less precise [47]. Positron emission tomography is
considered a handy tool for monitoring tumor response to therapy [48]. Another technique,
known as microwave imaging, has also been investigated to be helpful in the diagnosis of
cancer in experimental settings. In addition, the ablation of benign or malignant BC using
image-guided focused ultrasound (FUS) is a non-invasive technique that has been used
against BC. Image guidance can be accomplished during the ablation process using real-
time ultrasound (US) [49]. Although breast ultrasonography is an auxiliary examination,
it has numerous problems such as high dependence on test equipment and testers, false
positives leading to extra examinations and biopsy, and clarified lesions impeding early BC
diagnosis [50,51]. A generous amount of ongoing research in the field of cancer has offered
numerous alternatives for cancer diagnosis [48].

As conventional cancer diagnostics and therapeutic tools become less effective due
to increased systemic toxicity, nanotechnology is currently utilized to improve diagnosis
and mitigate disease severity [52–54]. Acquiring chemotherapeutic resistance in BC has
also been one of the most significant challenges researchers face when developing effective
chemotherapy [55]. Nanomedicine has offered a groundbreaking and potentially beneficial
alternative technology that demonstrates numerous advantages over conventional cancer
therapies and paves the way for new opportunities for early detection and improved ther-
apy of BC [56]. Over the past several years, research in the field of cancer nanotechnology
has brought about a paradigm shift as a result of fabricating novel lipid nanoparticles
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(LNPs), smart polymers, lipids, inorganic materials, liposomes, nanotubes, polymer lipid
hybrid systems, and subsequent engineering of their surface with targeting ligands [55,57].
In addition, nanotechnology has further advanced and brought to light new theranostic
strategies, which simultaneously combine imaging and treatment. BC nanomedicines
can deliver chemotherapy drugs while also providing lower systemic toxicity. Still, it is
necessary to consider the complexity and dynamics of cancer to bridge the translational
bench-to-bedside gap [58]. Although there are different approaches for sensing inside
living cells, obtaining robust and accurate results is not a trivial matter, and currently,
most intracellular sensing approaches are based on the use of fluorescence microscopy [59].
Nanosensors will permit the early diagnosis of predictive biomarkers of BC and enhance
the development of accurate and individualized treatments for BC patients [60]. For exam-
ple, in creating and manufacturing biosensors and sensors for cancer diagnosis, magnetic
nanoparticles (MNPs) have garnered a lot of attention as they can be incorporated into
the transducers and/or dispersed throughout the specimen. These MNPs could then be
captivated by the active detection surface of the nanosensor by magnetic fields that are
external to the device [61,62].

Nanotechnology-based immunotherapy agents have been employed for multiple
cancer types to shrink the malignant cancerous cells and preserve the benign cells at the
target spot [63–67]. To overcome the insufficient specificity of conventional BC treatments,
passive targeting and active targeting using nanomaterials to boost tumor drug levels and
reduce noncancer drug levels are being explored as potential alternatives. It has been
established that undesirable pharmacokinetics, including quick clearance from the body
and short half-life, can be overcome via functionalizing (i.e., PEGylation) of NPs. Dose-
limiting toxicity of the chemotherapeutic drugs can be resolved via developing nanocarriers
with controlled drug release at tumor sites. While increased drug efflux via cell membrane
transports transport can cause drug resistance, some NPs acting as passive/active targeting
therapeutic agents can inhibit drug efflux mechanisms, and, therefore, enhance endocytosis
of the cargo. More importantly, drug resistance in the tumor microenvironment (TME)
due to lower pH or hypoxia can be addressed via the development of stimulus-responsive
nanoformulations (i.e., pH-responsive nanosystems) [68].

Multipurpose nanotechnology-based plans with diagnostic imaging and targeted
treatment roles have been among the most debated topics in the nanomedical research
field [69–73]. Lately, much effort has been put into developing novel nano-based systems
for theranostic purposes against BC. To this end, Yubei and coworkers focused on find-
ing a nano-compound with high biocompatibility and improved remedial outcomes for
coalescent diagnosis, therapy, and clinical modification. The developed NPs were loaded
with Iron (Π) phthalocyanine and the aptamer AS1411 as a molecular probe, and the assays
demonstrated outstanding potential for BC inhibition [74]. In another experiment, Cabral
and coworkers investigated the in vivo impacts of photodynamic treatment of BC using
nanoemulsions loaded with both a photosensitizer and a chemotherapeutic agent (DOX).
They observed that the combined regimen in the presence of laser radiation markedly
inhibited the growth of 4T1-stimulated BC in mice. These findings demonstrate the effec-
tiveness of this therapy, which could potentially replace the presently used anti-cancer
techniques [75]. In another experiment, Kim and coworkers proposed aptamer-conjugated
lipid nanovehicles entrapping quantum dots (QDs) and siRNA for TNBC management.
Their findings revealed that anti-EGFR aptamer-conducted lipid transporters could be a
promising nanocarrier device for RNA intervention and fluorescence imaging of these
highly invasive BC cells [46,76]. In 2021, Taherian and coworkers characterized chitosan-
coated magentic NPs and examined their efficiency as black pomegranate peel extract
(PPE) transporters [77]. Their results indicated that the drug-loaded NPs can eradicated
cancerous cells significantly compared to that of free drug alone. According to the findings
by Khodashenas and coworkers in 2021, the entrapping efficiency of gold nanoparticles
(AuNPs) in the corresponding biopolymeric system was improved compared to that of
AuNPs alone, and a maximum controlled release of MTX was obtained. Moreover, the
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prepared formulation exerted significant cytotoxic activity in MCF-7 BC cells, while free
MTX exhibited much lower cytotoxicity [78]. More recently, Lentiza and collaborators
studied the features of silver telluride Ag2Te NPs and their utilization in the biomedical
situation demanding the maximum NP dosage (i.e., X-ray imaging). This study’s evidence
highlighted the impending utilization of Ag2Te NPs in the biomedical arena and as X-ray
contrast agents for BC detection [79].

Limitations in conventional diagnostic approaches have resulted in the emergence of
novel means, such as nanotechnology, which is expected to positively impact BC patients’
survival and quality of life. There is a level of dependency on estrogen for growth in around
70–75% of BCs, which is shown by the expression of the estrogen receptor (ER) [80]. In fact,
BCs overexpressing HER2-receptors (HER2+) account for around 15% of all BC cases [81].
The second most common subtype (approximately 12%) is aggressive triple-negative breast
cancer (TNBC) [82]. Interestingly, it has been reported that anabolic and androgenic
endocrine treatments (e.g., tamoxifen or aromatine inhibitors) and bilateral oophorectomy
may be used to limit estrogen synthesis or impede the activation of estrogen receptors
in BC cells that are positive for estrogen receptors (the ER+ subtype) [82]. We believe
nanotechnology will provide a novel promising avenue for improving BC detection and
treatment by utilizing targeted functional nanostructure and nanosensors. In this review,
we hope to shed light on the recent advancements in nanomedicine in BC theranostic
emphasizing on targeting BC cells that overxpress receptors of epidermal growth factors.

2. Nanostructures for BC Diagnosis

As discussed earlier, BC is the most widely encountered malignancy with a high mor-
tality rate [83]. The usual 5-year endurance of women with BC is closely correlated with the
tumor phase (98% of 5-year survival at stages 0–1 compared to 85%, 60%, and 20% for stages
2,3, and 4, respectively) [43]. Early detection of BC can significantly reduce the mortality rate
associated with the disease, thus improving management and treatment [83]. Conventional
tools for cancer diagnosis, including tissue sampling, mammography, contrast-enhanced
mammography, ultrasound, MRI, positron emission tomography, and computerized to-
mographic examination, are still the most employed methods. However, these expensive
techniques involve high radiation exposure [43]. Tissue sampling or breast biopsy is com-
monly performed to discriminate between benign and tumorous tissues. The method is,
however, expensive and calls for the expertise of medical professionals [44]. Mammography
and ultrasound are also frequently adopted procedures for BC diagnosis; however, at the
expense of high radiation exposure, lesions of less than 5 mm stay undetected in mammo-
grams. An MRI can be used to detect small lesions if the scan is carried out with sufficient
contrast; however, it is expensive and less precise [47]. Positron emission tomography is
considered a handy tool for monitoring tumor response to therapy [48]. Another technique,
known as microwave imaging, has also been demonstrated to be helpful in the diagnosis
of cancer in experimental settings. A generous amount of ongoing research in the field of
cancer has offered numerous alternatives for cancer diagnosis [48].

Recently, biosensors have been widely explored in the recent era for diagnosing
malignancies [84]. Biosensors involving the detection of various biomarkers have been
regarded as a sensitive and selective tool for the diagnosis of cancer; nevertheless, the
technique has been regarded as unsuitable for early diagnosis because of the decreased
level of biomarkers in blood or tissue at the very initial stages of the disease [84,85]. The
work of Zhang and co-workers presented several methods that have directly been used in
BC diagnosis (Figure 1) [86].
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2.1. Biomarkers for BC Detection

Various biomarkers have been exploited during the initial diagnosis of BC [87]. The
method of diagnosis becomes much more valuable depending on how earlier and accurately
the biomarker can be detected. Various tumor antigens have been investigated that may
elicit a response specific to that tumor and, therefore, can be employed in the initial
recognition of cancer. Different approaches were studied to identify tumor antigens [88].
Scientists have suggested a proteomics-based approach for detecting autoantibodies to
proteins isolated from tumor lysate that may help identify antigenicity related to post-
translational modification of tumor cell proteins. Several autoantibodies have been reported
to be biomarkers for BC. RS/DJ-1 has been identified in 13.3% of newly recognized BC
patients [89]. In addition, 15% of patients with a poor prognosis for BC had elevated levels
of p53 autoantibodies; however, the biomarker was seen in malignancies other than BC [90].
Thus, p53 does not offer BC-specific autoimmunity [91]. Specific heat shock proteins (HSP)
such as HSP 60 and HSP90 have also been recognized to elicit the BC-specific immune
response [92]. Another serum protein, CA 15-3, was identified to be a circulating biomarker
for BC [93]. Researchers have used this protein to detect BC recurrences and monitor
treatment for metastatic cancer. The CA 15-3 concentration also had a prognostic impact at
the initial stage [94].

HER/neu, a human epidermal growth factor receptor 2, has been recognized as a
critical determinant in malignant alterations in BC that can indicate its destitute progno-
sis [95]. Specific ductal proteins have been isolated from nipple exudate and were identified

https://creativecommons.org/licences/by/4.0
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as important BC biomarkers. Among various ductal proteins, lipophilin-B, beta-globin,
hemopexin, and vitamin-D-binding protein have been found overexpressed in nipple exu-
date from samples of tumor-bearing breasts [96]. Several studies have also described the
use of abnormally expressed miRNA-21 for early recognition of BC. NP or enzyme-labeled
miRNAs have been found to have high sensitivity via miRNA hybridization [87,97].

2.2. Nanotechnology for Early Detection of BC

There has been extensive research on using nanotechnology for early cancer detec-
tion [98,99].

2.2.1. Graphene NPs

Due to its unique surface characteristics and simple surface functionalization, many
applications of graphene and its derivatives have been introduced into the biomedical
field [100]. Graphene-based nanomaterials possess inherent anticancer properties and
can enhance cell adhesion and capture BC cells. Graphene may form toxic byproducts
in tumor cells through oxidative stress and autophagy. Graphene nanomaterials have
been shown to inhibit macrophage activity, causing oxidative damage [101]. Rostamabadi
and coworkers have demonstrated an electrochemical method for detecting BC biomarker
HER-2 utilizing a transformed carbon electrode. Graphene oxide and carbon nanotubes
(single-walled) were densely packed with AuNPs and placed on the glassy carbon electrode.
The electrode was functionalized by an HER-2-specific aptamer that selectively recognizes
HER-2 at the electrode interface, leading to enhanced charge transfer resistance using ferro-
or ferri-cyanide as an electrochemical probe. This method was found to be highly specific
and reproducible in discriminating the serum of patients affected with BC from serum
samples of healthy individuals [102]. Safavipour and colleagues have proposed MUC-1
apta-sensors based on TiO nanotubes coupled with graphene oxide for the electrochemical
recognition of MFC-7 BC cells. The biosensor effectively detected MUC-1 biomarkers in
clinical samples and, thus, can help detect BC cells [103].

Xu and coworkers have investigated nano-enzyme decorated graphene quantum dots
for electrochemical recognition of H2O2 in clinical BC analysis. The nanocarrier system
exhibited high sensitivity and good biocompatibility for instantaneous tracing of H2O2
released from varying BC cells [104]. Graphene-based nanomaterials show high drug-
loading capacity, easy functionalization, high target selectivity, and chemo sensitization.
Graphene-based nanomaterials can be used in BC diagnosis and treatment due to their
distinctive structures and attractive physicochemical properties.

2.2.2. Mesoporous Silica NPs

In addition to chemotherapy, photodynamic therapy (PDT) and photothermal therapy
(PTT) can be used as a non-invasive therapeutic strategy as a complement to overcome
the deficiency of monotherapy. As a result of light exposure, photoactive therapeutics
(photosensitizers) can produce reactive oxygen species (ROS) or hyperthermia, thus killing
cancer cells. Mesoporous silica NPs are suitable for multi-drug loading since they have
a large surface area, pore size, and volume, making them a suitable target for photo-
chemotherapy. The structural merits of MSNs have generated considerable attention as
potential partners for PDT in recent years. In solid tumors, many photosensitizers aggregate
easily, reducing their efficacy, and have poor intracellular uptake, making them unsuitable
for use. The incorporation of MSNs prevents PSs from aggregating and improves their
targeting ability and biocompatibility, resulting in fewer side effects and stronger anti-
cancer effects.

Wang and coworkers have proposed mucin-1 protein (MUC-1) targeted magnetic
silica-based mesoporous NPs to capture MFC-7 cells. These silica NPs were coupled
with a folate-receptor-directed fluorescent probe by conjugating folic acid and fluorescein
isothiocyanate over the surface of bovine serum albumin for selective and specific labeling
of folate receptors in HER-2over-expressed MCF-7 cells. The quantitative assay developed
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showed superior specificity and sensitivity towards MCF-7 cells [105]. Chen and colleagues
have developed anti-HER-2 single-chain variable segment functionalized ultra-small silica
nanostructures to increase tumor-specific targeting efficiency and improve renal clearance.
This nanostructure was proposed to be highly efficient in imaging BC and an ideal candidate
for delivering therapeutic agents to the desired region [106].

Qiao and coworkers have explored pH-responsive plumbagin-loaded theranostic
NPs composed of mesoporous silica-covered gadolinium-III, conjugated with zoledronic
acid for early recognition of BC-associated bone metastasis with increased sensitivity and
selectivity [107].

2.2.3. AuNPs

Salahandish and coworkers have demonstrated gold and silver NPs grafted graphene
and nanostructured polyaniline for highly selective biosensing and a wide linear response
range. The nanostructures were found to be ultrasensitive for label-free sensing of BC cells.
These nano-biosensors had a faster response rate and a detection limit as low as 2-cells/mL
for the SKBR-3 cell line. The sensor also exhibited a high detection efficiency of 90% [108].

In another experiment by Saeed et al., developed an electrochemical DNA biosensor
based on AuNPs-modified graphene oxide for simultaneous detection detect CD24, a new
prognostic marker in BC, and a transmembrane protein tyrosine kinase (ERBB2). The
developed DNA nanosensor utilized a sandwich-type detection method, and amperometric
detection was used to assess the sensor’s response. For this purpose, the gold nanoparticles
were grafted onto the glassy carbon after being attached to graphene oxide. Surface
immobilization was used to attach thiolated nucleic acid capture probes. Because of
the amplification of the signal that was obtained, sensitive detection of both BC markers
(ERBB2c and CD24c) was possible. The detection limit was found to be 0.16 nM and 0.23 nM
for ERBB2 and CD24, respectively [109]. We believe that it would be a very encouraging
approach to detect more BC markers at the same time.

Dong and coworkers have investigated HER-2 functionalized magnetic gold-shelled
poly (lactic-co-glycolic acid) nanocarriers for ultrasound or magnetic resonance imaging
and BC photothermal therapy. The nanocarrier system exhibited a receptor-specific binding
HER-2 overexpressed in BC cells (SKBR-3) with a significantly high binding affinity. In vitro
studies revealed that NPs possessed both enhanced ultrasound and magnetic resonance
imaging properties [110]. Photothermal cytotoxicity experiments revealed multifunctional
nanocarriers to have excellent photo-absorption and thus can be beneficial in the photother-
mal therapy of BC [110]. Rao and coworkers have suggested gold nanocluster-loaded
functionalized liposomes for early recognition of HER-2 overexpressed BC cells [111]. In an-
other study, an aptamer-based bipolar electrode system modified by AuNPs was used to
amplify the signals, and the sensor can detect overexpressed nucleolin in BC (MFC-7) cells.
The apta-sensors were found to have low cost, high sensitivity, and selectivity towards BC
cells [112]. AuNPs functionalized with copper frameworks were also investigated for BC
sensing with quaternary chalcogenide-platinum-doped graphitic carbon nitride (g-C3N4).
Cu2ZnSnS4 NPs can be used for the detection of HER-2 in BC [113].

Tian and associates have investigated AuNPs for electrochemical sensing (label-free)
of microRNA-21 (miRNA-21) via a redox indicator. These sensors exhibited high sensitivity,
selectivity, and reproducibility in blood serum samples [114]. Feng and coworkers have
developed an electrochemical AuNP-based biosensor for sensitive and selective detection
of BARC-1 to form a sandwich-type assembly (Figure 2) [115].
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from [115].

2.2.4. Silver NPs

Arteaga and coworkers have utilized silver NPs (citrate reduced) as a substrate for
surface-enhanced Raman spectroscopy to quantify BC-associated elevation in sialic acid in
saliva. This simplified test exhibited a 94% sensitivity and 98% specificity for the diagnosis
of the BC patient, with a cut-off concentration of sialic acid assumed to be >7 mg/dL [116].

In another study, label-free geno-sensors were developed for the detection of BC-
specific biomarker miRNA-21. The sensor was based on graphene functionalized silver
NPs, resulting in significant electrochemical signal amplification. This biosensor was found
to be very reproducible in assessing blood samples and can be used for direct recognition
of miRNA-21 during the early stages of BC without the need for any sample preparation or
RNA extraction [117].

2.2.5. Iron-Oxide NPs

Albernaz and coworkers have investigated nano-radio-labeled superparamagnetic
iron oxide NPs. These NPs were further conjugated with diethylene triamine penta-
acetic acid labeled with technetium 99 and gallium 68 for SPECT and PET. The results
demonstrated a high accumulation of nanocarrier systems in tumorous cells compared to
normal cells, giving a clear contrast image by both techniques (SPECT and PET) [118].

Hsu and coworkers have proposed a multimodal imaging probe, called “all in one
NP (AION)”, which is developed by combining near-infra-red fluorophore, silver sulfide
NPs, and iron oxide NPs into PEGylated micelles. The AION exhibited a minimal release
of silver ions leading to a significant decrease in associate cytotoxicity. A strong contrast
was generated compared to all imaging modalities and exhibited a strong contrast when
injected intravenously for in vivo tumor imaging. Thus, AION was suggested as an
excellent candidate for BC detection with various imaging opportunities [119].

In 2021, Li and colleagues developed a motif (RXDLXXL)-linked arginine-glycine-
aspartate nano-peptide and conjugated it with superparamagnetic iron oxide NPs (cFK-
9-USPIO) for molecular imaging of integrin protein (αvβ6), overexpressed in BC. In com-
parison to the controls, the in vivo MRI of four nude mice carrying T1 xenograft tumors
revealed a significant decline in T2 signal intensity in the BC tissue. Prussian blue staining
provided additional confirmation that v6 integrin-targeted NPs had specifically accumu-
lated in 4T1 BC cells. Comparatively, significantly fewer particles were seen in the 4 T1
tumors of mice that had been injected with control USPIO [120]. We believe that these
findings provided solid evidence for the usage of integrin v6-targeted NPs to be applied in
magnetic resonance molecular imaging and help target v6-overexpressed BC cells.
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In another study, ultra-small iron-oxide NPs coupled with BRBP-1 were investigated
for NIRF and MRI of BC-associated brain metastasis. The peptide-modified nanocarrier
system was found to enhance the imaging signal induced by targeting the ability of BRBP-
1, thereby increasing the potential of nanocarriers for the diagnosis of brain metastasis
associated with BC [121].

Semkina and coworkers have studied anti-vascular endothelial growth factor coupled
iron-oxide NPs intended for targeted transport of DOX in the murine breast adenocarci-
noma 4T1 cell line. After 24 h, MRI was used to study how NPs accumulated in cancer
cells, demonstrating that the carrier system can simultaneously deliver drugs and diagnose
cancer [122]. We believe DOX is easily delivered to tumor cells due to the conjugation of
anti-vascular endothelial growth factor (VEGF) antibodies with bovine serum albumin-
coated PEGylated magnetic NPs. This excellent strategy can be pursued in future BC
detection approaches.

Pacheco and coworkers have proposed molecularly imprinted polymeric sensors to
sense and quantify HER-ECD. The quantification and detection limits were 1.6 ng/L and
5.2 ng/mL, respectively. The biomarker was found to be more selective in comparison
to other protein biomarkers [123]. Zhang and coworkers have improved the F19 MRI
sensitivity by developing peptide aptamer conjugated hyper-branched perfluoropolyether
NPs for BC-specific detection. The NPs enhanced the mobility of fluorinated segments, thus
increasing the sensitivity of MRI imaging. The conjugation of protein aptamer exhibited
improved tumor targeting efficiency of NPs along with improved tumor penetration [124].
Wojtynek and coworkers have demonstrated self-assembled hyaluronic acid (HA) NPs
encapsulating indocyanine green for BC imaging to enhance intraoperative contrast. The
NPs enhanced the intraoperative contrast and helped identify small and occult lesions and,
hence, can significantly improve surgical outcomes relevant to BC [125].

Jin and coworkers have developed a peptide (cyclic arginine-glycine-aspartic acid)
conjugated polymeric NPs using poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene viny-
lene) as a photosensitizer targeting TNBCs. The polymeric nanoconjugates exhibited bright
flourescence, increased stability, and could generate reactive oxygen species on light irradi-
ation. It was demonstrated that such nanoparticulate systems are useful as diagnostic tools
for clinical use [126].

2.2.6. Miscellaneous Nanocarriers

Zhang and coworkers have explored tumor-derived exosomes as biomarkers for de-
tecting MCF-7 cells by targeting overexpressed mucin-1. The proposed on–off apta-sensors
were turned on in the presence of mucin-1 on tumor-derived, resulting in fluorescence
signal emission. The exosome-based biosensor successfully quantified a small number
of samples, making them highly sensitive sensors [127]. Xu and associates developed
allochroic acid NPs to detect overexpressed ERs, progesterone receptors, and HER-2 in BC
using pH indicators. Further functionalization with bovine serum albumin and antibody
was carried out to increase the dispersity of NPs. Moreover, the assay was coupled with a
smartphone to ensure point-of-care analysis [128].

Mohammadniaei and colleagues have developed a new electrochemical biosensor
using a topological illustrator and metallic DNA. Bismuth selenide NPs were prepared
and sandwiched between an Au electrode, and Au deposited a thin layer of bismuth
selenide. This was followed by immobilizing eight silver ion-mediated dsDNA onto the
substrate to detect H2O2 liberated from BC cells. The bismuth selenide NPs were regarded
as electrochemical signal boosters, while the Au coating added to the stability of these
signals. The proposed biosensors offered a low detection limit (10 × 10−9 M) along with
the excellent capacity to distinguish two variations of BC cells (MFC-7 and MDA-MB-231)
contingent on the variation in H2O2 generation [129].
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3. Multi-Functionalized Nanocarriers for BC Therapy

Multifunctional nanocarriers include polymeric NPs, self-nanoemulsifying drug deliv-
ery systems (SNEDDS), liposomes, and mesoporous inorganic NPs. The nanocarriers are
supposed to permeate through the intestinal mucosa [130–136]. These systems improve oral
drug absorption via paracellular transport, P-glycoprotein efflux inhibition, mucoadhesion,
receptor-mediated endocytosis, and pinocytosis. In addition, the targeting approach based
on lymphatic uptake is also interesting, as shown in Figure 3. A ligand-modified surface on
nanocarriers contributes significantly to their stability and their ability to deliver targeted
drugs [137,138].
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Figure 3. The proficiency of multifunctional nanocargoes for their versatility and expected clinical
impact in BC management.

The multi-functional nanocarriers can release the drug in a specific redox-triggered envi-
ronment for intra-tumoral drug release, as shown in Figure 4, to maintain the target plasma
concentration [139]. A targeted role for nanocarriers in BCs is provided in Table 1, and recent
methods for nanostructures with specific relevance to BC are summarized in Table 2.

Table 1. Summary of multi-functionalized nanocarriers in treatment of BC.

Nanocarrier Key Feature Ref

Zein/HA core–shell NPs HA-Zein NPs can serve as a promising approach in honokiol delivery for
metastatic BC therapy [140]

Dual pH-responsive multifunctional NPs Dual pH-responsive multifunctional NPs for synergistic therapy against BC. [141]

Resveratrol-loaded oxidized mesoporous carbon NPs Resveratrol (RES) loaded MCNs can be an encouraging approach against
metastatic TNBC. [142]

HA-based SNEDDS SNEDDS formulation was muco-penetrative as well as anti-proliferative
towards BC cell lines. [143]

Biodegradable Boron Nitride NPs On-demand technique for NPs can be specified for targeting TNBCs through
neutron capture therapy of boron [144]

Chitosan nanogels Chitosan nanogels were carriers for the polyoxometalates against metastatic BC [145]

Ultrasound-triggered Herceptin liposomes Favorable for targeted drug delivery in reducing the cytotoxicity of
antineoplastic drugs. [146]
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Table 2. Methods for nanostructures in the form of a detailed table with specific interest to BC.

Nanoformulation Methodology References

Ligand-based
core–shell NPs

Chemical reduction, amination, thiol functionalization,
electrostatic deposition, and anti-solvent precipitation. [147]

Dual pH-responsive
polymeric NPs Carbodiimide reactions [148]

Mesoporous carbon
NPs Photothermal activity and mild oxidation [142]

HA based SNEDDS Chemical Reduction, Carbodiimide chemistry [143]

Biodegradable Boron
Nitride NPs Neutron capture therapy of boron [144]

Polymeric Nanogels inverse phase microemulsion medium, redox-reaction [149]

Liposomes Thin film hydration [150]
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3.1. Ligand-Based Core–Shell NPs

Cancers of the breast are the world’s deadliest diseases, with a higher death rate
among women. BC treatment is often associated with using oral chemotherapeutics in
terms of radiation therapy, chemotherapy, hormonal therapy, and multi-functionalized
ligand-mediated therapy [151]. Additionally, physical barriers to drug diffusion and
insufficient delivery of drug concentration to the tumor are also major challenges [152].
The heterogeneity of tumor mass allows these approaches to transform, and it is necessary
to target tumors more selectively [153]. In this connection, Dávid Kovács and co-workers
also described the fact in detail that metallic-based core–shell NPs endorsed the efficacy in
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treatment against breast tumor metastasis. Therefore, they developed hybrid metallic NPs
by adjunction of gold and silver NPs in the form of core–shell nanostructures. Hybrid NPs
were synthesized by chemical reduction via using sodium borohydride. The results showed
that targeted delivery of hybrid metallic core–shell NPs in the TME leads to the weakening
of progressive tumor behavior of cancer-associated fibroblasts (CAFs) [147]. Darfarin and
co-workers developed gold-silicon oxide shell-core NPs by conjugating gold NPs with
silica NPs via amination and thiol-functionalization. The study concluded that gold-silicon
core–shell NPs impart great efficacy towards MCF-7 BC cells via mega-voltage irradiation.

For the development of NPs, Zhang and associates [140] used electrostatic deposition
and antisolvent precipitation. For the purification of Honokiol-free samples, centrifugation
was performed. The synthesized nanostructures were analyzed via TEM, particle size
determination, PDI and encapsulation efficiency, dissolution assay, as well as advanced
cellular studies, in vitro Western blotting analysis, inhibitory effect, in vivo tissue distribu-
tion of NPs by living to image, in vivo therapeutic efficacy and toxicity studies. The results
concluded that manufactured NPs resulted in 210 nm size, having a negative charge with
improved anti-proliferative and pro-apoptotic changes against 4T1 cells. The mechanistic
approach of HA-Zein-HNK was downregulation of the Vimentin expressions and upregu-
lation of the E-cadherin expressions. In conclusion, it can be believed that HA-Zein NPs
can serve as a promising approach in HNK delivery for metastatic BC therapy [140].

3.2. Dual pH-Responsive Polymeric NPs

L. Palanikumar and the research group developed biodegradable pH-responsive NPs
conjugated with a polymeric system comprising poly(lactic-co-glycolic acid (PLGA). This
polymeric system was then coated with bovine serum albumin (BSA). The important feature
of this formulation was the inhibition of the macrophages, which causes the inhibition of
recognition targets. Moreover, after the uptake of NPs, intracellular microenvironment
conditions lead to degradation of NPs and proficient anti-cancer activity against BC cell
lines [148].

Similarly, Zhihao Guo and co-workers developed a tailor-made 2,3-dimethyl maleic-
anhydride-poly(ethylene glycol)-ε-poly-l-lysine-DOX/lapatinib polymeric nanoplatform
for encapsulation of anti-cancer drug lapatinib for its conversion into switchable charge
based dual pH-responsive NPs. Advanced physicochemical properties of novel NP con-
jugates lead to stability in the circulation of physiological conditions. However, charge
switching capability from negative to positive charge leads to high-level sensitivity in the
slightly acidic TME, facilitating strong muco-penetration [149].

Liu and coworkers [141] developed dual pH-responsive multi-functionalized nanocar-
riers via combining immunotherapy and chemotherapy based on poly(L-histidine) and
HA for co-loading R848 (immune-regulator) and DOX via different encapsulation modes.
Therefore, HA was initially reacted with succinic dihydrazide (SDH) by adding EDC and
NHS as reaction activators to synthesize HA-SDH conjugate. The conjugate mixture was
then dialyzed against deionized water, followed by lyophilization. To obtain a red cot-
ton wool-like product, DOX was further conjugated with HA-SDH via an acid-cleavable
hydrazine bond. Furthermore, PHIS and R848 nano-cores were formed by the nanoprecipi-
tation method to obtain a slightly milky solution. The unloaded R848 was removed via
ultrafiltration. The synthesized nano-cores were analyzed and characterized via infrared
(IR) spectroscopy, proton nuclear magnetic resonance (1H NMR), drug loading, dissolution
mechanistic, evaluation of maturation of DC2.4 cells, assessment of activation of advanced
BC cell lines by flow cytometry, cellular uptakes, and intracellular locations, cell viability
assay, in vivo pharmacokinetics, as well as biodistribution studies. Results concluded that
the above-discussed combination is a promising novel therapy for cancer.
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Moreover, the ionization of PHIS in the TME converts its hydrophobicity into hy-
drophilicity, which is very helpful in exerting immune regulation. Hydrazone bond break-
age at endosomal pH accelerated the release of DOX, exerting cytotoxic effects. HA-DOX
was overexpressed in BC cells and resulted in the internalization and inhibition of cell
growth. In summary, this multi-functionalized nano-core system could deliver precisely
in the TME and BC cells to achieve synergistic effects for excellent tumor-targeting ability
against BC [141].

3.3. Mesoporous Carbon NPs

Carbon-based NPs can be synthesized via different approaches based on their ap-
plication [154]. Therefore, Fan and coworkers [142] developed Resveratrol (RES)-loaded
mesoporous carbon NPs as a promising approach against metastatic BC. However, suc-
cessfully synthesized mesoporous oxidized carbon NPs (oMCNs) using mild oxidation
techniques enabled the RES to be loaded with high efficiency. Synthesized RES-oMCNs
polymer composites were characterized based on particle size determination, poly dis-
persity index, zeta potential, FTIR, XRD, SEM, and TEM. Then, the formulation was
characterized in terms of some parameters, including dissolution, solubility studies, cell
culture, cellular uptake, in vitro cytotoxicity assay, as well as cell apoptosis studies, includ-
ing flow cytometry analysis and Western blot assay. This study found that oMCNs had a
size below 200 nm, excellent water dispersion, and good encapsulation. OMCNs exhibited
biocompatibility and excellent cellular uptake because of the preferential uptake of NPs
owing to increased solubility of oMCNs-RES compared to the pure RES. Sustained drug
release referred to the drug release only at lysosomal pH to improve the targeting capability
of the therapeutic moiety. Moreover, in vitro cytotoxicity and apoptosis analysis showed
caspase-3 protein cleavage in TNBC cell lines, respectively, thus showing greater interest in
inducing anti-cancer activity against various metastatic cancer cell lines [142].

Additionally, Abid Hussain and Shengrong Guo investigated a new controlled system
to release drugs from mesoporous carbon NPs (MCNs). The surface of the NPs was
decorated with natural sophorolipids (SLPD). The pores were developed on the MSNs for
inducing photothermal activity and encapsulating a chemotherapeutic drug (DOX). This
advanced nanoparticulate system acts as a checkpoint for trapping DOX inside the pores of
mesoporous carbon NPs and triggering its release in the TME via NIR irradiation. As a
result, they demonstrated that this system is highly effective against BC cell lines [155].

3.4. Self-Nano Emulsifying Drug Delivery System (SNEDDS)

In 2019, Batool and collaborators synthesized SNEDDS of tamoxifen (Tmx) for tar-
geting BC [143]. Following the previous method, thiolated hyaluronic acid (THA) was
prepared with a few modifications [156]. Furthermore, papain (Pap), HA, and lithocholic
acid (LCA) conjugate was prepared via chemically grafting lithocholic acid on papain-
modified THA via the amide bond formation [157]. However, the novel polymer was
initially characterized based on swelling, disulfide bond formation, and conjugation. How-
ever, this polymer conjugate was further linked with Tmxto form Tmx-PAP-HA-ss-LCA
SNEDDS. Other characterization techniques included FTIR, XRD, DSC, TGA, solubility
studies, preliminary screening of surfactants, preliminary screening of co-surfactants, con-
struction of pseudo ternary phase diagram, percentage transmittance, dispersibility test,
saturation solubility, robustness to dilution, cloud point measurement, physicochemical
tests, and drug content determination. However, ex vivo characterization includes mucoad-
hesion, permeation study and P-gp efflux pump analysis, biocompatibility studies, and
histological analysis. In addition, stability was measured over a six-month period in order
to evaluate any discrepancies. Furthermore, SNEDDS showed stabilized encapsulation
of the polymer. In vitro dissolution directed around 85% drug release within 48 h. The
permeation study showed enhanced permeation of SNEDDS compared to standard drugs.
Therefore, SNEDDS was muco-penetrating and showed anti-proliferative activity against
BC cell lines [143].
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Moreover, we believe that solid SNEDDS can improve patient compliance and tackle
the limitations associated with liquid SNEDDS capsules. However, the selection of SNEDDS
components is heavily influenced by their physicochemical features, drug solubility, and
physiological fate.

3.5. Biodegradable Boron Nitride NPs

In 2019, Le and coworkers developed the advanced and on-demand technique of
biodegradable boron nitride NPs (BNNPs) for specified targeting against negative BC cells
via neutron capture therapy of boron [144]. For the NPs synthesis, researchers grounded
melamine and boric acid (H3BO3) at a molar ratio of 1:6 to convert them into a powdered
form. These precursors were then heated under airflow in the horizontal furnace. The
resulting crude samples were then centrifuged to remove impurities, followed by scattering
in the presence of 25 mL of H2O2 and then transferred to a Teflon-lined autoclave for
thermal treatment at 120 ◦C for 24 h. Furthermore, the dispersions were cooled at room
temperature and subsequently centrifuged at 4000 rpm for 10 min, followed by vacuum
drying overnight, resulting in the synthesis of BNNPs. These NPs have been characterized
via vitamin C triggered degradation, cellular uptake, PET imaging, biodistribution in
tumor-bearing mice, degradation behavior in vitro, degradation behavior in vivo, tumor-
bearing animal models, radiolabeling, in vivo Boron Neutron Capture Therapy (BNCT), and
histological studies. Results concluded that in PET imaging, the coated BNNPs exhibited
high tumor boron accumulation while maintaining an excellent tumor to non-tumor ratio,
and BNNPs were found to be rapidly cleared from major organs according to ex vivo ICP-
OES analysis. Furthermore, when compared with the control group, animals treated with
BNNPs showed tumor growth suppression with negligible side effects. This novel strategy
not only employed the high boron content of BNNPs but also efficaciously completed an
on-demand degradation of BNNPs to avoid the potential toxicity caused by the long-term
accumulation of NPs [144].

3.6. Polymeric Nanogels

Overexpression of estrogen hormone is linked to BC, and anti-estrogen therapies in-
volving tamoxifen are the most commonly prescribed methods of treatment for it [158–160].
Nevertheless, breast tumors have been associated with resistance and non-targeted ther-
apies, resulting in metastasis. However, using polyoxometalates (POMs) can provide
a very effective treatment method for this condition [161]. POMs are discrete anionic
metal-oxo clusters formed with early transition metals in the highest oxidation states, and
over the past decades, POMs can be recognized for treating different types of cancers and
infectious diseases [162]. In this regard, Pérez-Álvarez and coworkers [145] documented
that low molecular weight chitosan was cross-linked in the inverse phase microemulsion
medium forming nanogels. Characterization was performed via 1H-NMR and 31P-NMR
spectroscopy, DLS, zeta potential, TEM, and atomic emission spectroscopy. Based on
the findings of this research, synthesized nanocarriers are potentially useful in future
treatments for BC [145]. Yi Zhang and co-workers developed dual-sensitive nanogels by
inducing redox reactions. Dual sensitive nanogels were manufactured with the capability
of rapidly dislodging the anti-cancer drug (DOX) for dual sensitization. These studies led
to the development of drugs with extended-release times and rapid onset of action [163].

3.7. Ultrasound-Triggered Liposomes

The functionalization of liposomes with monoclonal antibodies is a potential strategy
for increasing the targeting capability of the HER2, overexpressed in HER2-positive BC
cells [164–166]. Therefore, calcein and DOX-loaded immuno-liposomes were functional-
ized by Elamir and co-workers with the monoclonal antibody trastuzumab (TRA) [146].
Liposomes were characterized for their size, phospholipid content and antibody conju-
gation, estimation of phospholipid content, and other advanced imaging techniques. It
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was concluded that combining immuno-liposomes and LFUS is a hopeful technique for
targeted drug delivery in reducing the cytotoxicity of antineoplastic drugs [146].

We already know that anticancer medications can be delivered to the body via lipo-
somes to either lessen the harmful effects of the drugs when administered on their own
or lengthen the circulation time and effectiveness of the treatments [167]. According to
the evidence given below, we think it is possible to direct aqueous contrast-enhancing
chemicals that are loaded in liposomal carriers to the breast tissue and then use computed
tomography to differentiate between normal and tumorous breast tissue. In this regard,
Yonghong Song and co-workers developed emodin-based liposomal NPs. As it is reported
in the literature that emodin possesses strong anti-cancer activity, but its efficacy is some-
how compromised owing to the poor solubility and non-targeted delivery. Therefore, the
specificity of the emodin was improved by incorporating it into the liposome’s lipid bilayer.
Furthermore, the hydrophobic layer of the liposomes was concurrently loaded with high-
performance ferromagnetic iron oxide nanocubes. Results concluded that magnetic field
targeting leads to the efficacious and sensitive targeted killing of BC cell lines [150]. Yuko
Okamoto et al. developed paclitaxel-based liposomes for the reason that paclitaxel is an
insoluble anti-cancer drug and has issues of low solubilization and poor pharmacokinetics.
Therefore, a liposomal formulation of paclitaxel within its aqueous core without adding
organic solvents finally showed potent activity against BC cell lines [168]. Similarly, Snehal
K. Shukla and her research team developed metformin hydrochloride (Met) encapsulated
within liposomal vesicles via thin-film hydration technique by active and passive load-
ing of drug-loaded lipid film. The metformin liposomal formulation leads to advanced
therapeutic efficacy, i.e., an increased therapeutic outcome at the minimized dosage and
profound apoptosis-induced activity in BC cells [169].

Various preclinical studies regarding NPs against BC involve methotrexate and beta
carotene conjugated lipid polymer hybrid NPs for inducing BC by A Jain and co-workers [170].
Moreover, zein NPs coated with beta carotene can improve the anti-cancer activity and
abolish the toxicity of methotrexate by the same group [171]. M. Khoobchandani’s research
group utilized a new approach for targeting BC via green nanotechnology by conjugating
NPs with the ayurvedic system for pilot human clinical investigations [172]. The advantages
and disadvantages of different strategies against BC are shown in Table 3.

Table 3. Advantages and disadvantages of different strategies against BC.

Nanocarrier Advantages Disadvantages

Ligand-based core–shell NPs A promising approach in honokiol delivery for
metastatic BC therapy Low mechanical resistance

Dual pH-responsive multifunctional NPs Dual pH-responsive multifunctional NPs for
synergistic therapy against BC. Economical burden

Mesoporous carbon NPs MCNs can be an encouraging approach against
metastatic TNBC. Anaphylactic reactions

HA-based SNEDDS SNEDDS formulation was muco-penetrative as
well as anti-proliferative towards BC cell lines. Stability issues

Biodegradable Boron Nitride NPs
On-demand technique for NPs can be specified
for targeting TNBCs through neutron capture
therapy of boron

Non-broad-spectrum activity

Nanogels Nanogels were carriers for the polyoxometalates
against metastatic BC Less encapsulation

Liposomes Favorable for targeted drug delivery in reducing
the cytotoxicity of antineoplastic drugs. Costly, Difficult industrial scaling



Bioengineering 2022, 9, 320 17 of 28

4. Theranostic Application of Nanocarriers in Management of BC

More accurate and targeted co-delivery of both therapeutic and diagnostic compounds
is being pursued due to the last two decades’ worth of nanotechnological breakthroughs
in biomedical research for cancer treatment using drug delivery carriers and contrast
agents [173]. Nano-carriers are the key to achieving increased availability, tailored cellular
absorption, and low toxicity. These unique nanocarriers are constructed to target the
local BC cells while carrying all the required weapons (tracking probe, drugs, and ligand).
A theranostic strategy that articulates the multifunctional molecules with a targeted delivery
system for higher sensitivity, tracking, diagnostics, and therapy [174]. It is believed that
tailoring nanostructures in a beneficial manner would tremendously help to simultaneously
treat and diagnose BC in affected patients.

4.1. Inorganic NPs

A class of nanomaterials that are inert (resistant to corrosion/oxidation) and have
distinct physical and sensing characteristics are inorganic NPs. For the identification of a
variety of biomarkers, inorganic NPs, in particular silver and gold nanoparticles (AuNPs
and AgNPs), are very precise and sensitive biosensors [175]. For example, an electrochemi-
cal nanosensor based on a three-screen-printed carbon electrode (3SPCE) array modified
with graphene oxide, graphene quantum dots and gold nanoparticles (AuNPs/GQDs/GO)
was successfully built to identify the breast cancer biomarkers miRNA-21, miRNA-155,
and miRNA-210. Great performance for multiplexed miRNA sensing was disclosed by the
developed AuNPs/GQDs/GO-based biosensor. With supersensitive low LODs of 0.04,
0.33, and 0.28 fM for the detection of miRNA-21, miRNA-155, and miRNA-210, respectively,
it provided a broad linear dynamic range from 0.001 to 1000 pM. High applicability and se-
lectivity were also shown for the identification of miRNAs in human serum samples. [176].

Proteins, nucleic acids, and other macromolecules are dephosphorylated by the en-
zyme alkaline phosphatase (ALP). It has the potential to be a biomarker for many different
illnesses, including hepatobiliary, osteopenia, and breast cancer. In light of this, a colori-
metric sensor for the ALP test was developed. This sensor is based on the enzyme’s ability
to dephosphorylate the compound p-aminophenol phosphate (pAPP) into pAP. Silver
nanoparticles (AgNPs) and Ag+ ions are present in a solution that has been made using
a low concentration of NaBH4, and pAP mediates the growth of AgNPs by lowering the
concentration of Ag+ ions to increase the intensity of localized surface plasmon resonance
because pAPP is unable to cause a reduction of the remaining Ag+ because the hydroxyl is
being covered by phosphate. The colorimetric detection of the pAP-mediated development
of AgNPs in the presence of an ALP served as a proof of concept for the quantitative
analysis of the ALP. AgNPs’ extremely sensitive enzymatic growth offered a lower limit of
detection of 0.24 U/L and a larger dynamic linear range of 0.5–225 U/L than had previously
been reported. For the ALP test in human blood, the application of pAP improved the
sensor’s selectivity, resulting in a high recovery rate and high accuracy of 99.2 1.5 percent
for the traditional addition technique [175].

4.2. Liposomes

For instance, a liposomal layer was recently added to AL (LAL), followed by radiola-
beling and the addition of polyethylene glycol (PEG), to create a theranostic dual-layered
nanocomposite [177]. LAL’s in vivo stability is increased by functionalization with PEG,
and in vivo imaging of LAL is made possible by radioisotope labeling. Functionalized LAL
was stable under physiological circumstances, and in vivo positron emission tomography
(PET) imaging of 64Cu-labeled LAL (64Cu-LAL) demonstrates an adequate blood circu-
lation capacity and an efficient tumor-targeting potential of 16.4% ID g-1. Additionally,
compared to intravenously injected AL, intravenously injected LAL demonstrated greater
tumor targeting, in vivo temperature rise, and superior PTT action. LAL had a 3.9-fold
better rate of tumor inhibition than AL [177]. Figure 5 shows a schematic of a theranostic
dual-layered Au-liposome for photothermal treatment and efficient BC targeting.
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In a related investigation, the effectiveness of hybrid liposomes (HL) as therapeutic
agents and the capability of Indocyanine Green (ICG), a fluorescent probe containing HL,
to identify malignancy in orthotopic graft model mice of BC (MDA-MB-453) were assessed.
As a result of their therapeutic benefits and their capacity to identify (diagnose) cancer in
an orthotopic graft model mice of BC, the results suggested that HL and HL/ICG might be
theranostic targets [178].
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4.3. Polymer NPs

Due to their excellent characteristics, conjugated polymer NPs (CPNs) have become
a novel and promising group of BC theranostic weapons [179]. In this light, thio-phene-
quinoxaline type conjugated polymers with three-four fluorine atoms on the repeat unit
were used to manufacture nanoprecipitated and encapsulated aqueous CPNs. The findings
demonstrated that, in addition to the visible fluorescence on the triple-negative BC cells,
only the nanoprecipitated CPNs with the three fluorine atoms displayed excellent intracel-
lular uptake to all of the epithelial cell types evaluated. Additionally, an examination of the
CPNs’ effects on cell proliferation and death of all cell lines with the matching antibiotic
staurosporine was conducted, suggesting a possible therapeutic effect of the NPs under
investigation [179].

A multimodal polymeric contrast agent and imaging techniques have the potential
to make important advances in the area of biomedicine [180]. To address this, in order to
produce a theragnostic agent for dual-modal imaging using both fluorescence (FL) and
photoacoustic (PA) imaging, IR783 attached chitosan-polypyrrole nanocomposites (IR-CS-
PPy NCs) were created. The in vitro photothermal findings show that IR-CS-PPy NCs may
effectively destroy MDA-MB-231 BC cells when exposed to an 808 nm NIR laser. The in vivo
PTT investigation showed that IR-CS-PPy NCs completely destroyed the tumor tissues,
preventing any further regrowth [180]. Figure 6 shows a schematic of IR-CS-PPy NCs used
in dual-channel photoacoustic/fluorescence imaging-guided photothermal treatment.

We believe that patients diagnosed with BC benefit from an improved prognostic
evaluation when multimodal imaging and therapy features are combined. The above dual
systems worked fine and can be applied for BC imaging and treatment.
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5. Conclusions and Future Perspectives

Advancements in nanomedicine have brought nanotechnology-based methods to the
forefront of cancer research. Multi-functionalized nanostructures with intelligent design
and unique physicochemical properties have revolutionized targeted drug delivery and
shown great potential in BC theranostics. An overview of BC nanomedicine’s experimental
and clinical accomplishments using active targeting and flexible biomedical nanostructures
is presented in the paper. To give an example (graphene, silver, gold, silica, and oxide
NPs) and their potential applications in BC imaging, drug delivery, combination therapy,
and theranostics. Furthermore, it can be concluded that nanovesicles such as liposomes,
nanogels, polymeric nanocarriers, mesoporous inorganics, biodegradable boron nitride,
self-nanoemulsions, core–shell NPs, etc. have set a benchmark in the prevention of multiple
BC subtypes by targeting drug delivery. Even though preclinical results indicate that these
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nanostructures are clinically relevant, several problems still exist and need to be tackled
before their clinical application can be sought.

Moreover, the surface properties of a nanosystem determine its behavior and inter-
action with proteins and cells [181]. Several surface properties (a charge, hydrophobicity,
functional groups, etc.) contribute greatly to NP’s stability and opsonization. It has been
demonstrated that poly(ethylene glycol) (PEG) and other polymers can serve as hydrophilic
surfaces and protect NPs from opsonization and immune recognition [182]. The PEGylated
Liposomal DOX (Doxil®) exhibits a prolonged half-life, increased tumor drug concentra-
tion, and superior antitumor efficacy compared to conventional DOX [183]. Targeting
BC-associated fibroblasts which control the surrounding TME, the use of nanocages com-
prised of different compounds (sulfur or nitrogen-doped carbon, silicon, ferritin, gold,
zinc, copper, metal–organic frameworks, PtCu3, etc.) is also a promising nanotherapeutic
strategy for the combined chemotherapy and photodynamic therapy of BC. Furthermore, to
fully characterize nanosystems, higher-level tests should be required compared to standard
pharmaceuticals due to their complex nature. Another strategy can be taking advantage
of biomimetic NPs to fight BC. The intracellular distribution of a variety of agents, includ-
ing proteins and nucleic acid, can be facilitated by biomimetic NPs that feature diverse
characteristics that are derived from the parent cell. As a result, biomimetic NPs have a
significant potential to increase the therapeutic efficacy of the current nanodelivery systems,
particularly concerning the development of individualized treatments for BC. Interestingly,
the field of TME-related nano-delivery systems is rapidly evolving to overcome technical
challenges and cost-ineffectiveness of using conventional BC therapies; hence, more efforts
should be put into developing novel TME-targeted NPs in the feisty fight against this type
of malignancy.

BC mortality rates can be significantly reduced by early detection of the disease with
nanotechnology and therapeutics that are more effective. Nanomedicine promises several
opportunities for both specific and multi-acting cancer treatments; nonetheless, the most
important question is whether or not nanomedicine will be clinically transferrable in the
near future. Clinical practice for BC has not been enhanced by nanostructures as expected.
The main reason may be the absence of adequate preclinical models that effectively mimic,
both spatially and physiologically, actual BC and its intricate interactions with the sur-
rounding microenvironment. Because the vast majority of potentially effective drugs and
therapeutic approaches developed in preclinical studies do not reach clinical trials, clinical
translation cannot be carried out separately from this point. For clinical approval to happen
more rapidly, a collaboration between academia and pharmaceutical companies will be
beneficial to developing the field and improving clinical trials. Examining questions of
long-term toxicity, biocompatibility, and atomic-level organization of these nanostructures
is equally crucial before entering the market. Hopefully, cancer nanomedicine will enter
its next phase of advancement by incorporating nanostructures into rationally designed
therapies. As a result, new opportunities in BC nanomedicine may arise by developing
innovative, high-level strategies and systems based on active targeting using a variety
of nanostructures.

In our opinion, BC is mostly hormone-sensitive, employing both estrogen and pro-
gesterone sensitivity. Therefore, targeting the receptors of specific hormones through the
coating of targeted ligands is the most effective method of halting BC tumor growth as an
inducer for binding specifically to the receptor site. Additionally, shifting from traditional
chemotherapy to a more effective targeted endocrine therapy can have a substantial impact.
In this regard, we can safely assume that synergistic conjugation of chemotherapy and en-
docrine treatment will impart a significant effect and prove BC treatment as a breakthrough.
Using nanoscale compositions of materials that have already been approved for use in
humans is expected to be the first step in developing potential future nanomaterials in BC
treatment. Before the significant potential of nanomedicine can be realized for the benefit
of the affected patients, ongoing interdisciplinary collaborations between cancer biologists,
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toxicologists, bioengineers, material scientists, medical oncologists, and pharmacologists
will be required.
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