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Abstract: 

Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and 

then maintaining the desired drug concentration for a sufficient time interval to be clinically 

effective for treatment. The blood brain barrier (BBB) hinders most drugs from entering the 

central nervous system (CNS) from the blood stream, leading to the difficulty of delivering 

drugsto the brain via the circulatory system for the treatment, diagnosis and prevention of brain 

diseases. Several brain drug delivery approaches have been developed such as intracerebral and 

intracerebroventricular administration, intranasal delivery, and blood-to-brain delivery as a result 

of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula 

occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed 

disadvantages of being dangerous, high cost as well as unsuitability for most brain diseases and 

drugs. The strategy of vector-mediated blood-to-brain delivery which involves improving BBB 

permeability of the drug-carrier conjugate can minimize such side effects; being submicrometre 

objects that behave as a whole unit in terms of their transport and properties, nanomaterials are 

promising carrier vehicles for direct drug transport across the intact BBB as a result of their 

potential to enter the brain capillary endothelial cells by means of normal endocytosis and 

transcytosis due to their small size, as well as their possibility of being functionalized with 

multiple copies of the drug molecule of interest. This review provids a concise discussion of nano 

carriers for drug transport across the intact BBB, various forms of nanomaterials including 

inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, 

micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for 

drug transport across the BBB are reviewed, and the future directions of this area are fully 

discussed. 
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1. Introduction 

The increasing incidence of cerebral diseases as a result of the worldwide aging population  



demands the urgent development of therapeutic, diagnostic, and preventive agents. Whilst brain 

drug development has been limited, owing to the restrictive transport properties of the blood brain 

barrier (BBB), which is a unique regulatory system of brain capillaries that protects the brain 

environment by preventing most molecules in the blood stream from entering the central nervous 

system [1-6].  Thus, unlike other organs in the human body, more than 98% of small molecules 

and nearly 100% of large therapeutic molecules cannot reach brain via the circulatory system [7]. 

One strategy for brain drug delivery is bypassing the BBB using highly invasive methods such as 

intracerebral and intracerebroventricular administration [8-9], or non-invasive methods such as 

intranasal delivery. Another strategy is blood-to-brain delivery via circulatory system as a result of 

transient BBB disruption induced by biological, chemical or physical stimuli such as zonula 

occludens toxin, mannitol, magnetic heating and ultrasound [10-13]. These brain drug delivery 

strategies have not been widely used because they are risky, costly, or unsuitable for less localized 

brain diseases [14]. 

The strategy of blood-to-brain delivery which involves improving BBB permeability of drugs or 

drug-carrier conjugates under normal conditions can minimize the above mentioned side effects. 

One approach is to modify the chemical structure of drugs;  so far only one drug  has been 

successful: the conversion of morphine to heroin [15-16]. By coupling drugs with various brain 

nutrients or growth factors, such nutrients/growth factors-mediated delivery showed another 

promising approach to improve BBB permeability of brain drugs, as specific transporter proteins 

for brain nutrients/growth factors on the membrane of brain capillary endothelial cells can also 

facilitate the transfer of some nutrient/growth factor-drug conjugates by means of transcytosis 

[17-18]. Unfortunately, this approach is also of little value because only a small number of drugs 

can be converted to nutrient/growth factor-drug conjugates. 

Nanomaterials are submicrometre objects that behave as a whole unit in terms of their transport 

and properties; it has been found that nanomaterials can internalize into most cells (including brain 

capillary endothelial cells) by means of normal endocytosis and transcytosis due to “nano effects” 

as a result of their small size [19]. Consider their possibility of being functionalized with multiple 

copies of the drug molecule of interest, widespread drug delivery to the brain via the transvascular 

route through the intact BBB by using nanomaterials as a carrier vehicle which can be dubbed 

‘Molecular Trojan Horse’ is possible [20-23]. Nanomaterials have been widely investigated for 



brain drug delivery; in this review paper we  discuss: various forms of nanomaterials for 

blood-to-brain drug delivery through the intact BBB; the mechanisms of nanomaterials-mediated 

drug transport across the BBB; and the future directions  of this innovative area of research. 

2. Nano carriers for drug transport across BBB 

Depending on the method of uploading, therapeutic, diagnostic or preventive molecules can be 

dissolved, entrapped, adsorbed, encapsulated or covalently attached to nanomaterials, to give nano 

sized drug-carrier conjugates in the forms of nanoparticles, liposomes, micelles, nanogels, 

nanoemulsions, quantum dots, dendrimers, exosomes, and polymersomes. These objects are in the 

nanometer (1-1000nm) size range differing markedly from items made of identical materials in the 

terms of properties and functions. With the minimal diameter of blood capillaries being 6-9 

micrometers, nano sized drug-carrier conjugates hold the capability to reach organs via 

bloodstream. The average size of cells in the human body is 10-20 micrometers; thus, adsorption 

or uptake of the nano sized drug-carrier conjugates by cells is possible, providing an opportunity 

to deliver drugs into cells. With the possibility of being surfacely functionalized with targeting 

ligands, nano carriers  offer the capability of transporting drugs across the BBB. 

2.1 Inorganic nanoparticles 

Nanoparticles from inorganic materials such as silica, carbon, metal or metal oxide are solid nano 

sized particulate objects which have been widely used in imaging techniques [24]. Inorganic 

nanoparticles are of stable size and form mono-disperse suspensions in body fluids; their surfaces 

can be functionalized to facilitate BBB penetration. With high surface area, large pore volume, 

good biocompatibility and ease of functionalization, mesoporous silica nanoparticles have been 

conjugated with poly(ethylene glycol) (PEG) for BBB penetration as a result of their improved 

hydrophilicity, the eliminated aggregation in the blood stream, as well as the minimized clearance 

by the reticuloendothelial system (RES) [25]. The fluorescein-doped magnetic silica nanoparticles 

(FMSNs) incorporating therapeutic molecules have been covalently conjugated with the second 

generation (G2) PAMAM (polyamidoamine) dendrimers through 3-(triethoxysilyl) propyl 

isocyanate (ICP) to yield PFMSNs, followed by the reaction with tresylated MPEG 

(Methoxypolyethylene glycol)-5000 to yield PEGylated PFMSNs. It has been found that 

PEGylated PFMSNs could penetrate the intact BBB through transcytosis of vascular endothelial 



cells, with subsequent diffusion into the cerebral parenchyma and  distribution in the neurons. In 

contrast, non-PEGylated FMSNs were not found to cross the BBB, which showed PEG 

modification on the surface of the silica nanoparticles may offer  an opportunity to cross the 

BBB. 

Just like PEG-modified silica nanoparticles, PEG-modified carbon nanotubes (CNTs) also 

exhibited the capability of crossing the BBB. CNTs have ultrahigh surface area that permits 

efficient loading of multiple molecules alongside the nanotube wall, and the supramolecular 

binding of aromatic molecules such as doxorubicin (DOX) can be easily achieved by p-p stacking 

of those molecules onto the polyaromatic surface of nanotubes. Oxidized multi-walled carbon 

nanotubes (O-MWNTs) uploaded with DOX have been conjugated with PEG and angiopep-2; the 

results of intracellular tracking in vitro and fluorescence imaging in vivo demonstrated that the 

combination of O-MWNTs-PEG and angiopep-2 constituted an ideal dual targeting drug delivery 

system for both BBB and glioma cells [26]. 

For some inorganic nanoparticles, lactoferrin (Lf) conjugation showed better efficiency in BBB 

penetration than PEG modification as a result of Lf-receptor-mediated transcytosis of cerebral 

endothelial cells. It has been found that the PEG coating favors the transfer of the underlying 

Fe3O4 nanoparticles across the intact BBB model, while Lf-conjugated Fe3O4 nanoparticles 

exhibited an enhanced ability to cross the BBB in comparison to the PEG-coated Fe3O4 

nanoparticles [27]. Free cationic serum albumin can enter the brain via an adsorptive-transcytosis 

mechanism; and likewise it has shown that magnetic nanoparticles of MnFe2O4 surfacely coated 

with crosslinked serum albumin demonstrated the capability of BBB permeability without any 

breakdown [28]. Other surface coatings, such as poly(isobutylene-alt-1-tetradecene-maleic 

anhydride) (PMA), also facilitate BBB penetration of iron oxide nanoparticles uploaded with 

therapeutic molecules [29]. 

In addition to chemical modification, physical approaches such as magnetism can also be used for 

the enhancement of BBB penetration of Fe3O4 nanoparticles because of their capacity to be 

magnetized in the presence of a magnetic field. It has been found that superparamagnetic iron 

oxide nanoparticles (SPIONs) composed of magnetite (Fe3O4) and maghemite (γ-Fe2O3) can pass 

through human brain microvascular endothelial cells facilitated by an external magnet, which 

showed the magnetic force-mediated dragging of SPIONs through the BBB may denote a novel 



mechanism for the delivery of drugs to the brain [30]. 

Other inorganic nanoparticles, such as gold nanoparticles (GNPs), have also been investigated for 

drug transport across the intact BBB [31]. Although all research results showed inorganic 

nanoparticles are promising carrier vehicles to deliver drugs into brain, the issues of potential 

toxicity as a result of non-degradability and drug delivery efficiency still need to be addressed 

[32]. 

2.2 Solid lipid nanoparticles 

Solid lipid nanoparticles (SLNs) are nano sized dispersions of biocompatible lipids such as 

triglycerides, fatty acids, or waxes, stabilized by surfactants possessing HLB 

(Hydrophile-Lipophile Balance) values lower than 12 [33-34]. With drugs that can be dissolved or 

dispersed in the hydrophobic core, such nano carriers possess the capability to deliver drugs into 

cells. A drug-loaded SLNs suspension consisted of 0.1% (w/w) camptothecin (the model drug), 

2.0% (w/w) stearic acid, 1.5% (w/w) soybean lecithin and 0.5% (w/w) 

polyoxyethylene-polyoxypropylene copolymer (Poloxamer 188) with the average diameter of 

196.8 nm and the Zeta potential of 269.3 mV exhibited higher drug concentration in the brain, 

heart and reticuloendothelial cells-containing organs after intravenous injection in comparison to 

free camptothecin, which indicated that it was possible for the SLNs to cross the BBB [35]. SLNs 

made from stearic acid stabilized with pluronic®F68 showed the possibility to effectively deliver 

atazanavir to human brain endothelial cells in vitro [36]; In vivo test in rats also showed that 

riluzole-uploaded SLNs exhibited a higher capability to carry the drug into the brain [37]. 

Surface modification of SLNs with targeting ligands could be an effective strategy for BBB 

delivery.  Docetaxel-loaded SLNs have been prepared from monostearin, vitamin E and soya 

lecithin,  followed by surface modification with stearylamine-betreliesoxybutyric acid (HBA, a 

ketone body and substrate for monocarboxylic acid transporter which is expressed on BBB) 

conjugate, for drug transport across the intact BBB [38]. The surface modification of docetaxel 

loaded SLNs with HBA resulted in enhanced brain uptake of docetaxel compared with 

un-modified docetaxel loaded SLNs and Taxotere®, which showed HBA present on the surface of 

SLNs caused the nanoparticles to be taken up by the monocarboxylic acid transporter as normal 

HBA and improved the brain uptake of docetaxel compared with un-modified SLNs. Similarly, 

Transferrin (Tf)-conjugated, quinine dihydrochloride-uploaded SLNs made from hydrogenated 



soya phosphatidyl choline (HSPC), triolein, distearylphosphatidylethanolamine (DSPE) and 

cholesterol revealed enhanced uptake in brain tissue compared with un-conjugated SLNs [39]; it 

has also been demonstrated that poly(ethylene glycol)-grafted SLNs made from stearate using egg 

phosphatidyl choline and sodium glycocholate as surfactants uploaded with noscapine can 

improve drug accumulation in mice brain tissue [40]. 

Acting as a carrier vehicle for drug delivery, SLNs have shown the advantages of good 

biocompatibility, degradability as well as the  capacity to be surfacely functionalized for brain 

targeting, while the issue of easy clearance by the RES as a result of their hydrophobicity needs to 

be addressed. 

2.3 Polymeric nanoparticles 

Polymeric nanoparticles are solid carrier vehicles ranging from 1 to 1,000 nm in diameter made 

from natural or synthetic polymers. According to the drug loading methods, therapeutic 

molecules-uploaded polymeric nanoparticles can form nanospheres (drugs are uploaded 

throughout or just onto the surface of the polymeric matrix) or nanocapsules (drugs are surrounded 

by a polymeric shell) which are thermodynamically stable [41]. As a result of the diversity of 

polymers, polymeric nanoparticles can be designed to achieve desired properties such as 

controlled and/or sustained drug release profile, as well as allowing drug release at the targeted 

site over a period of time [42]. For this reason, a variety of polymers have been investigated to 

form nanoparticles for brain drug delivery. β-cyclodextrin, which is composed of cyclic 

oligosaccharides with seven glucose unites that form a hydrophobic central cavity with the 

capacity to host therapeutic molecules, has been quarternized for the preparation of a series of 

quaternary ammonium β-cyclodextrin (QA-CD) nanoparticles. Uploaded with doxorubicin (DOX), 

QA-CD nanoparticles showed permeability across the in vitro BBB by means of endocytosis [43]. 

DOX-uploaded nanoparticles of β-cyclodextrin crosslinked with β-amino ester also showed 

biocompatibility and permeability in an in vitro BBB model without impairing the integrity of the 

barrier [44]. Another synthetic polymer, namely 

poly(MePEG2000cyanoacrylate-co-hexadecylcyanoacrylate) (PEG-PHDCA), demonstrated the 

capacity of their nanoparticles to reach the rat central nervous system after intravenous injection 

[45]. In contrast, polyhexadecylcyanoacrylate (PHDCA) nanoparticles did not penetrate across the 

BBB as a result of less adsorbed apolipoprotein E (ApoE) as well as apolipoprotein B-100 



(ApoB-100) than PEG-PHDCA nanoparticles, which demonstrated that the involvement of 

apolipoproteins played an important role in the brain transport of PEG-PHDCA nanoparticles 

[46]. 

It has been found that some surfactants can enhance the permeability of polymeric nanoparticles 

across the BBB; poly(butylcyanoacrylate) (PBCA) nanoparticles coated with polysorbate 80 have 

been successfully used to transport drugs such as leu-enkephalin dalargin, met-enkephalin 

kyotorphin, rivastigmine and tacrine through the BBB after intravenous injection [47-51]. PBCA 

is a biodegradable and biocompatible polymer; PBCA nanoparticles showed hardly any cytotoxic 

or inflammatory effect at therapeutic concentrations and incubation times, and they did not induce 

nonspecific BBB disruption, but collaborate with plasma apolipoprotein E to facilitate BBB 

crossing [52-53]. 

Poly(lactic-co-glycolic acid) (PLGA) is a polymer with biodegradable and biocompatible nature 

which has been approved by the US FDA for human use. Research has shown that PLGA 

nanoparticle-delivered dopamine reduced  its autoxidation-mediated toxicity in the brain, and 

reversed neurochemical and neurobehavioral deficits in parkinsonian rats [54]. When uploaded 

with a protein drug (tissue inhibitor of matrix metalloproteinases 1, TIMP-1), PLGA nanoparticles 

coated with polysorbate 80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and PLGA 

nanoparticles without polysorbate 80 coating did not cross the endothelial monolayer. Due to no 

significant opening of the BBB caused by un-coated as well as polysorbate 80 coated PLGA 

nanoparticles, polysorbate 80 coating can be used to enhance protein delivery of PLGA 

nanoparticles across the BBB [55]. 

In addition to coating with surfactants, surface functionalization with certain peptides can also 

facilitate BBB penetration of polymeric nanoparticles. Surface-modified PLGA nanoparticles with 

octa-arginine (R8) showed a faster cell uptake compared with the control [56], while the 

fluorescent aminated polystyrene (PS) nanoparticles surfacely functionalized with gH625 (a viral 

fusion peptide derived from the glycoprotein gH of Herpes simplex virus type I) via a covalent 

binding procedure showed a greater uptake by brain endothelial cells than that of the PS 

nanoparticles without the peptide [57]. Modification with a motif of TGNYKALHPHNG (TGN) 

could facilitate BBB penetration of poly(ethylene glycol)-poly(DL-lactide-co-glycolide) 

(PEG-PLGA) nanoparticles, leading to significant higher cellular uptake and in vivo brain 



accumulation [58]. 

As a result of receptor-mediated endocytosis being one of the mechanisms through which nano 

carriers cross the BBB, surface functionalization with targeting ligands represents another 

approach to facilitate BBB penetration of polymeric nanoparticles. Angiopep, a ligand targeting 

the low-density lipoprotein receptor-related protein (LRP) which is over-expressed on the BBB 

and glioma cells, has been conjugated with poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) 

nanoparticles [59]. Compared with non-targeting nanoparticles, a significantly higher amount of 

rhodamine isothiocyanate-labeled targeting nanoparticles were endocytosed by U87 MG cells. Tf 

conjugated nanoparticles of Poly(lactide)-D-α-Tocopheryl polyethylene glycol succinate 

(PLA-TPGS) diblock copolymer showed more efficiency than the bare PLA-TPGS nanoparticles 

in brain delivery [60], while human serum albumin (HSA) nanoparticles covalently coupled with 

Tf or transferrin receptor monoclonal antibodies (OX26 or R17217) also demonstrated the 

capacity to transport drugs across the intact BBB [61]. Lf, a mammalian cationic iron-binding 

glycoprotein belonging to the transferring family, consists of a polypeptide chain of about 690 

amino acids folded into two globular lobes, when conjugated with poly(ethylene 

glycol)-poly(lactide) nanoparticles, significantly facilitates cell uptake of the nanoparticles [62]. 

After intravenous administration, near 3 folds of coumarin-6 were found in the mice brain carried 

by Lf-conjugated nanoparticles compared to that carried by the bare nanoparticles. 

Campared with synthetic polymers, nanoparticles based on natural polymers showed advantages 

of low cost, less toxicity and biodegradability, which provide a potential candidate for brain drug 

delivery. A pluronic-based nano-carrier conjugated with both chitosan and a specific target 

peptide for brain (rabies virus glycoprotein; RVG29) was effective for brain targeting across the 

intact BBB [63]. Chitosan nanospheres conjugated with an anti-mouse transferrin receptor 

monoclonal antibody (TfRMAb) that selectively recognizes the TfR type 1 on the cerebral 

vasculature clearly demonstrated the effectiveness of bringing active peptides to the brain [64]. 

Chitosan nanospheres conjugated with poly(ethylene glycol) (PEG) bearing the OX26 monoclonal 

antibody whose affinity for the transferrin receptor (TfR) may trigger receptor-mediated transport 

across the BBB successfully translocated into the brain tissue after intravenous administration 

[65]. 

Due to hydrophobic molecules exhibiting better permeability in BBB penetration than hydrophilic 



ones, chitosan has been chemically modified to improve hydrophobicity for permeability 

improvement of the nanoparticles in BBB penetration. Trimethylated chitosan (TMC) has been 

synthesized and covalently coupled to the surface of PLGA nanoparticles (PLGA-NP) via a 

carbodiimide-mediated link, the resulted nanoparticles exhibited negligible cytotoxicity and 

enhanced brain uptake following intravenous administration compared with PLGA nanoparticles 

without TMC conjugation [66]. A series of O-substituted alkylglyceryl chitosans with 

systematically varied alkyl chain length and degree of grafting has been prepared through 

synthetic steps that involved the protection of amino moieties via phthaloylation and employed for 

the formulation of aqueous nanoparticulate systems. During in vitro tests using a mouse-brain 

endothelial cell model, the efficient cellular uptake of these nanoparticles has demonstrated and 

identified butylglyceryl chitosan and butylglyceryl N,N,N-trimethyl chitosan as promising 

materials for the formulation of nanoparticles that could act as drug carriers into the brain [67]. 

With the possibility of achieving designed and tailored properties, polymeric nanoparticles have 

significant potential for brain drug delivery across the BBB. Biodegradable polymers exhibit the 

advantage of less accumulation in the body; however, before translation into clinical use, a good 

knowledge of degradation rates as well as catabolites, toxicity, and the possibility of causing 

adverse immunological responses is necessary. 

2.4 Nanogels 

Gels are physically or chemically crosslinked 3-dimensional polymeric networks that swell in 

certain liquids with compatible interfacial energies, and the swollen networks can retain a large 

amount of absorbed liquids [68]. Both aqueous and organic liquids can be supporting media of 

polymeric gels, leading to the formation of hydrogels and organic gels, respectively [69]. With 

good biocompatibility as a result of their relatively high water content, as well as the possibility of 

pharmaceutical molecules to diffuse into (drug loading) and out of (drug release) the swollen 

polymeric networks, hydrogels have been widely investigated for drug delivery [70-71]. 

Nanogels are nanoparticles of hydrogels and offer the prospect of drug transport across the intact 

BBB. It has been reported that nanogels with surface charge exhibited better internalization 

property on cell membrane than neutral ones; Gil and Lowe synthesized polysaccharide-based 

nanogels containing poly(β-amino ester) and β-cyclodextrin for transporting doxorubicin and 

insulin across the BBB, such cationic nanogels enhanced the permeability of insulin across the in 



vitro BBB model by 20% [72].  

It is known that lipophilic molecules are easier to penetrate the BBB than hydrophilic ones; so 

surface functionalization of nanogels has been introduced to accelerate encapsulated drug 

transport across the BBB. Azadia and co-workers prepared nanogels loaded with methotrexate 

(MTX) via an ionic gelation process using chitosan and sodium tripolyphosphate (TPP) as raw 

materials, the surfaces of the MTX-loaded nanogels were modified with polysorbate 80 to 

improve brain drug delivery [73]. The cumulative in vitro release profiles indicated non-Fickian 

diffusion kinetic, apparently governed by both diffusion of the drug out of the nanogels and 

swelling/disintegration of the polymeric networks for both surfactant coated and uncoated 

nanogels. After intravenous administration, remarkably higher brain concentrations of 

methotrexate were achieved with the nanogel formulations in comparison to the free drug, but 

there were no significant differences between the surface-coated and uncoated nanogels [74]. 

Two proteins, connexin 43 (Cx43) and brain-specific anion transporter 1 (BSAT1), which are 

promising targeted antigens for drug delivery to gliomas, have been respectively conjugated with 

the cisplatin-loaded nanogels prepared from aqueous solutions of poly(ethylene glycol) 

(PEG)-block-poly(methyl methylacrylate) (PMAA) and CaCl2 using 1,2-ethylenediamine and 

1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) as crosslinkers, for the 

treatment of intracranial gliomas [75]. The median survival of rats treated with targeted nanogels 

conjugated with specific mAbs against extracellular loops of Cx43 and BSAT1 were 27 and 26.6 

days longer than that in control group, respectively, which suggested the effectiveness of the 

ligands in promoting BBB-penetrating efficiency of the nanogels. Conjugation of insulin and Tf 

with the nanogels of crosslinked poly(ethylene glycol) and poly(ethylenimine) for the delivery of 

oligonucleotide in brain also showed similar results [76]. Being hydrophilic carriers, nanogels are 

favorable in uploading aqueously soluble drugs as well as proteins and nuclear acids, while it is 

unsuitable for hydrophobic drugs. 

2.5 Micelles 

Micelles are made from amphiphilic block copolymers which aggregate in aqueous solutions to 

form stable spheroidal nano structures with a hydrophobic core and hydrophilic surface [77]. As a 

result of the possibility of solubilizing poorly water-soluble, lipophilic compounds in the 

hydrophobic core region through hydrophobic interaction and/or hydrogen bonding for easy 



administration, as well as the capacity to conjugate with certain targeting ligands, micelles are 

promising delivery vehicles for brain drugs. 

A polymeric surfactant, poly(oxyethylene)-poly(oxypropylene) block copolymer (pluronic), has 

been used for the preparation of micelles [78]. Fluorescein isotbiocyanate (FITC) was solubilized 

in the micelles; it has been found that conjugation of FITC-containing micelles with insulin vector 

resulted in increase of FITC penetration in all tissues including the brain. By conjugating the 

micelles with antibodies to the antigen of brain glial cells (α2-glycoprotein), the specific targeting 

of the solubilized FITC was observed in the brain, which showed that vector-containing pluronic 

micelles provide an effective transport of solubilized neuroleptics across the  BBB. 

TAT (49-57, YGRKKRRQRRR) peptide, the protein transduction domain from the transcriptional 

activator TAT protein of the human immunodeficiency virus type-1, has been anchored with 

cholesterol-terminated poly(ethylene glycol) (PEG) with a molecular weight of about 3 kDa 

(PEG-b-Chol), to form a functionalized TAT-PEG-b-Chol amphiphilic block copolymer [79]. 

FITC-loaded polymeric micelles self-assembled from the block copolymer exhibited the 

possibility of crossing the BBB and entering the brain, which showed that the TAT-conjugated 

micelles may in the future be used to deliver antibiotics across the BBB for the treatment of brain 

infections. 

Several amphiphilic block copolymers have been synthesized and used for preparation of micelles; 

and several targeting ligands have been conjugated for the improved crossing of the intact BBB, 

such as poly(ethylene glycol)-block-poly-(L-glutamic acid),  poly(ethylene 

glycol)-block-poly(D,L-lactide acid), cholesterol conjugated polyoxyethylene sorbitol oleate 

(CPSO), cyclic Arg-Gly-Asp (cRGD) ligand, and angiopep (a family of 19 amino acid peptides 

derived from the Kunitz domain) [80-82]. However, the efficiency of micelles delivering drugs 

across the intact BBB still needs further investigation. 

2.6 Liposomes 

Liposomes are nano sized vesicles with an aqueous inner core enclosed by unilamellar or 

multilamellar phospholipid bilayers. The common constituents that form part of phospholipid 

bilayer are naturally produced sphingomyelin, phosphatidylcholine, or glycerophospholipids [84]. 

With good biocompatibility, as well as the possibility of uploading drugs in the aqueous core, 

liposomes have been widely investigated for systemic delivery of therapeutics [85]. 



Several issues have impeded the drug delivery application of conventional liposomes; one is 

opsonization and rapid clearance by macrophages of the mononuclear phagocytic system (MPS) 

organs. By using surface coatings such as poly(ethylene glycol) (PEGylated liposomes), the 

circulation time of liposomes in the body can be prolonged [86]. Another is their low drug 

transport rate. By conjugating with targeting ligands, liposomes showed the possibility to transport 

drugs to certain organs including the brain. For example, the lipid bilayer of a 3/7 

cholesterol/dipalmitoylphosphatidylcholine mixture was coated with 

n-alkyldimethylammoniumcyclodextrins which host adamantoylglucose molecules as a result of 

the adamantoyl moieties being included in the cyclodextrin cavities; such liposomes showed a 

5-fold improved ability to enter the BBB endothelial cells compared with the non-coated samples 

[87]. The glucose moiety of the ligand provided special affinity of the liposome with BBB 

endothelial cells, leading to  an improvement of the transport rate. Doxorubincin liposomes 

conjugated with both folate and transferrin (Tf) also showed effectiveness in penetrating the BBB 

and targeting brain tumors [88]. 

Cationization of the conjugated ligands is another method to improve BBB transport rate of 

liposomes. Liposomes made from cholest-5-en-3-ol-(3β)-[2-[[4-[(carboxymethyl) 

dithio]-1-iminobutyl]amino]ethyl] carbamate (CHETA5), a cholesterol derivative with a disulfide 

bond inside, were neutral or negatively charged at physiological pH. When they touched brain 

capillary endothelial cells with the help of a brain-targeting ligand, Lf, they were changed into 

cationic liposomes [89]. Such liposomes showed an improved performance in the uptake 

efficiency and cytotoxicity of the primary brain capillary endothelial cells. Liposomes conjugated 

with cationized bovine serum albumin showed similar results compared with sterically stabilized 

(PEGylated) liposomes without protein as well as liposomes conjugated with native bovine serum 

albumin [90]. 

Other issues limiting the brain delivery of liposomes are the poor stability, as well as the difficulty 

of binding ligands to the surface as a result of the small number of available surface groups and 

steric hindrance. 

2.7 Dendrimers 

Dendrimers are monodisperse symmetric macromolecules that comprise a series of branching 

units around an inner core [91]. With many reactive groups on the surface, the number of arms 



and surface groups exponentially increase with each generation [92].  

Being composed of repetitive units of branched molecules, dendrimers form a 3-dimensional 

spheroidal shape and radially crowded layers. As a result, the core is loosely packed in 

comparison to the periphery and is suitable for the entrapment of drugs. In addition, the presence 

of numerous surface groups allows for high drug payload and/or multifunctionality. Combined 

with their nanometer size range, dendrimers are attractive carrier vehicles for drug delivery [93]. 

The surface groups of dendrimers can be conjugated with ligands for transport across the BBB, as 

well as for targeting specific cells such as tumor cells. Thus, dendrimers are promising tailorable 

delivery systems for improved delivery of drugs to the brain. Li and co-workers have synthesized 

the fourth generation poly(amidoamine) (PAMAM) dendrimers with transferrin (Tf) conjugated 

on the exterior and tamoxifen (TAM) encapsulated in the interior [94]. It has been found that each 

dendrimer is a pH-sensitive drug carrier that can encapsulate 29 TAM molecules in the interior, 

and bond 7 doxorubicine (DOX) molecules, over 30 PEG1000 and PEG2000 chains and one Tf 

group on the periphery. The drug-dendrimer conjugate showed a fast drug release profile at weak 

acidic condition and a stable state at physiological environment, as well as a good BBB 

transportation ability with the transporting ratio of 6.06% in 3h. Angiopep, a ligand targeting to 

the low-density lipoprotein receptor-related protein-1 (LRP1), has been conjugated with PAMAM 

dendrimers for effective brain-targeting gene delivery [95]. Such a nano carrier was observed to 

be internalized by brain capillary endothelial cells (BCECs) through a clathrin- and 

caveolae-mediated energy-depending endocytosis, also partly through marcopinocytosis. 

Compared with the dendrimers without modification, angiopep-modified dendrimers showed 

higher efficiency in crossing the intact BBB, and more in vivo accumulation in the brain. Other 

research results also showed the capacity of targeting ligand conjugated dendrimers to cross the 

intact BBB [96-97]. 

Before translation of dendrimers into brain drug delivery use, it is necessary to address their 

biocompatibility issue. For example, PAMAM dendrimers have been shown to be haemolytic and 

cytotoxic [98]. Some research results also showed that biotinylated PAMAM dendrimers may 

prove to be more toxic compared to PAMAM dendrimers alone [99]. 

2.8 Nanoemulsions 

Nanoemulsions are heterogenous dispersions of oil-in-water (O/W) or water-in-oil (W/O) 



formulations stabilized with surface-active agents, where diameter of the inner phase is reduced to 

nanometer length scale [100]. The possibility of surface  functionalization for targeting, as well 

as the ability to solubilize hydrophobic (O/W nanoemulsions) or hydrophilic (W/O nanoemulsions) 

drugs, could facilitate the uptake of nanoemulsions along with its encapsulated drugs through 

receptor-mediated endocytosis of cells, which makes nanoemulsions are promising carrier 

vehicles for drug transport across the BBB. 

For biocompatibility purpose, nanoemulsions are usually made from edible oils such as flaxseed 

oil, pine-nut oil, hemp oil, fish oil as well as safflower oil and wheat-germ oil, biocompatible 

surfactants such as egg phosphatidylcholine which is one of the components of cell membrane 

lipids, deoxycholic acid, stearylamine, dioleoyltrimethylammoniumpropane (DOTAP), and water. 

The versatility of nanoemulsions is based on the different types of oils and surface modifiers that 

can be used [101]. The nanoemulsions of pine-nut oil with the oil droplet size of approximately 

200 nm in diameter have been formulated for the delivery of paclitaxel (PTX) and C6-ceramide 

(CER) to the brain [102]; it has been found that the O/W nanoemulsions can improve the cytotoxic 

effect in brain tumor cells. As a result, pine-nut oil with high gamma linolenic acid content was 

expected to rapidly penetrate across the BBB and thus, incorporating paclitaxel in pine-nut 

oil-containing nanoemulsions was hypothesized to increase the drug availability in the brain. 

In another study, O/W nanoemulsions containing saquinavir (SQV), an anti-HIV protease inhibitor, 

have been developed by dissolving SQV in different types of edible oils rich in essential 

polyunsaturated fatty acids (PUFA), followed by emulsifying in water containing surfactants 

Lipoid®-80 and deoxycholic acid [103]. When administered orally and intravenously to male 

Balb/c mice, the resultant flax-seed oil nanoemulsions with an average oil droplet size of 100-200 

nm showed enhanced rate and extent of SQV absorption in the brain in contrast to aqueous 

suspension formulation. 

Compared with other nano carriers, the advantages of nanoemulsions for overcoming the BBB are  

the ability to utilize safe oils, as well as possessing several beneficial biological properties as a 

result of essential omega-3 and omega-6 fatty acid in the oils. However, the thermodynamic 

instability is a shortcoming of nanoemulsions and requires further considersation. 

2.9 Exosomes 

Exosomes  are a kind of nano sized membranous vesicle secreted by a number of cell types and 



can be isolated from conditioned cell media or bodily fluids such as urine and plasma [104]. Once 

released from a cell, exosomes can fuse with membrane of another cell, transferring exosomal 

molecules from one cell to another [105]. This property provides exosomes with the chance to 

transport drugs into cells. The uptake mechanism of exosomes is clathrin mediated endocytosis 

followed by back fusion with the limiting membrane of the endosomes, allowing for the  

possibility of exosomes to cross the intact BBB [106]. 

Being secreted by living cells in the body, exosomes are natural delivery vehicles with advantages 

of non-toxicity, minimal immune responses, and better stability in the circulatory system in 

contrast to established formulations [107]. Alvarez-Erviti and co-workers used self-derived 

dendritic cells for exosome production; targeting peptides for muscle and brain were used to 

functionalize the exosomes [108]. Uploading exogenous siRNA onto the exosomes by 

electroporation, it has been found that the exosomes delivered siRNA specifically to neurons, 

microglia, and oligodendrocytes in the brain, resulting in a specific gene knockdown after 

intravenous injection. Yang and co-workers isolated four types of exosomes from brain cell 

culture media for drug delivery, and found that exosome-delivered anticancer drugs crossed the 

intact BBB and entered into the brain [109]. 

Proof of concept has been  gained for exosome-based brain drug delivery systems; several issues 

should be addressed before clinical evaluation such as the choice of exosome donor cells, drug 

loading procedures, as well as the targeting peptides. 

2.10 Quantum dots 

Quantum dots are a class of colloidal semi-conductor nano crystals composed of a metalloid 

crystalline core (such as cadmium selenium) and an intermediate unreactive metallic shell (such as 

zinc sulfide) that shields the core [110]. Such an inorganic nano material has high brightness, 

long-term photo-stability, and size-tunable narrow emission spectra, which makes it a 

revolutionary imaging technology for diagnostic purposes (fluorescent probes) [111]. With the 

possibility of being co-incorporated with a variety of diagnostic and therapeutic molecules for 

targeted therapy of CNS disorders as a result of their high surface area, quantum dots also showed 

the potential as a carrier vehicle for blood-to-brain drug delivery. 

The outer coating of quantum dots can be chemically functionalized with bioactive molecules that 

promote aqueous solubility and desired bioactivity, enable targeting of specific molecules, as well 



as carrying therapeutic molecules [112]. Captopril-conjugated CdSe/ZnS-core/shell-typed 

quantum dots (QDs-cap) have been synthesized by the hot soap method with tri-n-octyl phosphine 

oxide (TOPO) followed by the replacement of TOPO with captopril by a thiolexchange reaction. 

It has been found that intraperitoneally administered QDs-cap in mice were delivered through 

systemic blood circulation into the brain as well as into the liver, spleen and kidney, which 

showed the possibility of such quantum dots to penetrate the BBB [113]. 

It is widely known that the Tf receptor is a kind of specific BBB transporter that allows selected 

biomolecules to move across the BBB; lysine-coated CdSe/CdS/ZnS quantum dots have been 

synthesized followed by conjugation with Tf. It has been found that the migration rate of such 

Tf-conjugated QDs crossing the in vitro BBB model was concentration- and time-dependent after 

a systemic administration, which demonstrated a receptor-mediated transport mechanism [114]. 

TAT, a cell membrane translocation peptide, has been successfully used to internalize 

nanoparticles [115]. Research has shown that TAT-conjugated CdS:Mn/ZnS quantum dots can 

label the brain tissue within a few minutes after being intra-arterially delivered to a rat brain 

without manipulating the BBB; such TAT-conjugated quantum dots migrated beyond the 

endothelial cell line and reached the brain parenchyma [116-117]. Because the same quantum dots 

without TAT did not label the brain tissue, TAT peptide was necessary for the quantum dots to 

overcome the BBB. 

2.11 Polymersomes 

Polymersomes are a nanometer-sized vesicular system with a bi-layered membrane which is 

composed of amphiphilic block copolymers [118]. Such tiny hollow spheres can be formed from 

synthetic amphiphilic block copolymers using organic solvent, organic solvent/water systems, or 

aqueous media. Usually, amphiphilic block copolymers with a hydrophilic fraction of 35±10% 

will aggregate to form polymersomes [119-120]. 

Polymersomes enclose an aqueous solution in the core, which is useful for encapsulation and 

delivery of hydrophilic drugs, while the membrane of copolymer aggregates bi-layer can be 

loaded with small hydrophobic drugs [121-122]. Polymersomes are similar to liposome in 

structure; the main difference is that the external bi-layer is composed of amphiphilic copolymers 

with a molecular weight of up to 100 kDa, while the building block of liposome is in most cases 

naturally occurring phospholipid with a molecular weight below 1 kDa [123-124]. With regard to 



the use of building blocks with high molecular weight, the membrane of polymersomes is thicker 

than that of liposome, providing a higher durable physical barrier that protects the enclosed drugs 

[125]. When used for drug delivery, the more robust and therefore less leaky membrane of 

polymersome can improve circulation time and prevent uncontrolled release of drugs [126-127]. 

Being a nano carrier vehicle, polymersomes have been functionalized with certain receptors for 

brain drug delivery across the BBB. Pang and co-workers synthesized biodegradable 

poly(ethyleneglycol)-poly(ε-caprolactone) (PEG-PCL) and used the block copolymer to prepare 

polymersomes (PO) by a nano precipitation method [128]. To facilitate brain targeting, the 

polymersomes were functionalized with Tf to form a conjugate Tf-PO. Using coumarin-6 as a 

model drug, fluorescent microscopy of brain coronal sections revealed more Tf-PO than PO 

accumulated in the brain after injection, and it has been evidenced that Tf-PO uptake by 

beta-End.3 cells occurred mainly through a clathrin-mediated, energy-dependent endocytosis and 

that both the Golgi apparatus and lysosomes were involved in intracellular transport of Tf-PO. 

Lf also belongs to the transferring family and exists on the BBB involved in Lf transport across 

the BBB, which provides another chance for brain targeting of polymersomes. Gao and 

co-workers prepared polymersomes of poly(butadiene-b-ethylene oxide) (PBD-PEO), 

poly(ethylene glycol-b-lactic acid) (PEG-PLA) and maleimide-PEG-PLA (Mal-PEG-PLA) (the 

weight ratio of PBD-PEO:PEG-PLA:MAL-PEG-PLA was 7:2:1) using the film rehydration 

method [129], both Lf and Tf were used to functionalized the polymersomes (Lf-PO and Tf-PO) 

for brain targeting. It was found that cell uptake of both Lf-PO and Tf-PO were time-, 

temperature-, and concentration-dependent, which suggested a process of active endocytosis. Tf 

was more effective than Lf in facilitating cell uptake of the nano carriers, and Lf-PO was more 

easily identified and eliminated by cells of the mononuclear phagocytic system (MPS). 

Polymersomes prepared by self-assembly of methoxy-PEG-PLGA and maleimide-PEG-PLGA 

which were synthesized by the ring opening polymerization of D,L-lactide and glycolide showed 

similar results when conjugated with Tf [130]. 

Several polymersomes have been investigated for brain drug delivery; various receptors expressed 

on the BBB such as low-density lipoprotein receptor, insulin receptor, insulin-like growth factor 

receptor, diphtheria toxin receptor and nicotinic acetylcholine receptor provided many chances for 

the functionalization of polymersomes to mediate their penetration of the BBB. Poly(carboxyl 



ethylene glycol-g-glutamate)-co-poly(distearin-g-glutamate) (CPEGGM-PDSGM) copolymer, 

poly(methyl ethylene glycol-g-glutamate)-copoly(distearin-g-glutamate) (mPEGGM-PDSGM) 

copolymer, des-octanoyl ghrelin-poly(ethylene glycol-gglutamate)-co-poly(distearin-g-glutamate) 

(des-octanoyl ghrelin-PEGGM-PDSGM) copolymer, poly(tert-butyl hydrazinecarboxylate 

ethylene glycol-g-glutamate)-co-poly(distearin-g-glutamate) (BPEGGM-PDSGM) copolymer, as 

well as folate-poly(ethylene glycol-g-glutamate)-co-poly(distearin-g-glutamate) 

(folate-PEGGM-PDSGM) copolymer have been prepared, different types of polymersomes based 

on such copolymers have been developed and conjugated with both des-octanoyl ghrelin and 

folate as a penetrating-targeting carrier for an enhanced drug transport through the BBB and 

glioma cells targeting [131]. It has been found that with bi-functional ligands on the surface of 

polymersomes, the BBB transport was greatly enhanced and the inhibition of glioma growth was 

significantly improved via a synergistic effect of two different endocytosis mechanisms by 

des-octanoyl ghrelin and folate. 

Although several research results showed the possibility of receptor functionalization-mediated 

BBB penetration of polymersomes, the efficiency of drug transport was not ideal. In addition, the 

application of protein and antibody receptors is restricted by their instability and immunogenicity. 

3. Mechanisms of nanomaterials transporting drugs across the BBB 

Based on the biological characteristics of the BBB, the mechanisms of nano carriers transporting 

drugs across the BBB can be classified as follows: (1) transient BBB opening induced by the 

stimulus derived from “nano effects” or “nano toxicity” of the nano carriers, or the stimulus of 

surfactants coated on the surface of nano carriers, which results in diffusion of the drugs or 

drug-carrier conjugates into the brain parenchyma; (2) adsorption of the drug-carrier conjugates 

onto the surface of brain capillary endothelial cells, followed by drug release from the carrier 

vehicles on the surface, which increases drug concentration gradient facilitating diffusion of the 

drugs into the brain parenchyma; (3) transcytosis, endocytosis, and exocytosis of the drug-carrier 

conjugates by brain capillary endothelial cells, which results in direct penetration into the brain 

parenchyma or the cells [132-134]. 

It has been found that some chitosan-derived nanoparticles were capable of opening the tight 

junctions of the BBB [135-136], while high concentrations of some anionic nanoparticles and 



cationic nanoparticles disrupted the BBB even though neutral nanoparticles and low 

concentrations of anionic nanoparticles have no effect on BBB integrity [137]. Sodium 

dodecylsulphate, a surfactant which is regarded as biocompatible, has also been found the 

capability to induce a breach in the blood brain barrier [138]. Transient BBB opening as a result of 

the stimulus derived from nano carriers or surfactants is dangerous as a result of the nano carrier’s 

toxicity, as well as the possibility of other molecules in blood stream diffusing into the brain 

parenchyma at the same time. 

Adsorption of the drug-carrier conjugates onto the surface of brain capillary endothelial cells 

depends on hydrophilicity, surface charge, and targeting ligands of the nano carrier. A lipophilic 

surface of the nano carrier facilitates the adsorption; and a positive surface charge of the nano 

carrier promotes electrostatic interactions with the negative charges of endothelial surfaces which 

also facilitate the adsorption [139-140]. Targeting ligands such as the apolipoproteins in plasma 

adsorbed on the surface of the nano carrier can target low density lipoprotein receptors on the 

microvessel endothelial cells, which facilitates the adsorption [141]. 

For the fate of drug-carrier conjugates adsorbed on the surface of brain capillary endothelial cells, 

one is desorption followed by re-entering the blood stream. In this case, the uploaded drug can 

release from the carrier vehicle on the surface of BBB during adsorption and then diffuse into the 

brain parenchyma through the BBB. Therefore, the possibility of drug penetrating into the brain 

parenchyma will be determined by characteristics of the drug. To promote drug transport across 

the BBB, it is necessary to modify the surface of the nano carriers for the minimization of 

clearance by the fixed macrophages of the mononuclear phagocytic system (MPS) and prolonged 

blood circulation enhancing exposure of the BBB. Improving hydrophilicity and increasing 

surface charge are good methods for nano carriers to mask themselves from the MPS. Another fate 

of the adsorbed drug-carrier conjugates is endocytosis by the cells, sometimes followed by 

exocytosis, leading to penetration of the nano carrier into the cells or brain parenchyma. 

Endocytosis may occur by means of random uptake of soluble plasma molecules together with a 

bulk of plasma by caveolaes on the cells; such a process is independent of any interaction between 

the transported molecules and the caveolar vesicle membrane [142]. Because the brain capillary 

endothelial cells are characterized by few caveolaes while a high density of negatively charged 

and clathrin-coated pits through which drug-carrier conjugates can be be endocytosed, endocytosis 



of drug-carrier conjugates is mainly based on the adsorption of drug-carrier conjugates to the 

clathrin-coated pit membrane [143]. 

Although it is a normal biological function of cells, endocytosis is energy-dependant which does 

not exhibit any preference for nano carriers conjugated with drugs, leading to a low efficiency of 

drug transport across the BBB. Several approaches have been proposed to promote endocytosis of 

nano carriers by brain capillary endothelial cells; one is coating the nano carriers with surfactants 

whose effectiveness has been testified. Three mechanisms have been proposed to explain 

surfactant-coating promoted endocytosis, namely [144-148]: (1) polysorbate 80 or poloxamers 

188-induced adsorption of apolipoproteins A-I and/or E in plasma onto the surface of the nano 

carrier facilitating targeting low density lipoprotein receptors on the cell membrane; (2) 

surfactant-induced fluidity of the cell membrane contacted with the adsorbed drug-carrier 

conjugates facilitating deformation of the cell membrane and promoting endocytosis; and (3) 

surfactant-induced BBB opening. 

Promoting adsorption of drug-carrier conjugates to the brain capillary endothelial cells is another 

approach to prompt endocytosis; seeking help from specific carriers, transport proteins, or 

receptors on the membrane of cells has been employed. The relative high BBB permeability of 

acrylic nanoparticles has been attributed to the apolipoproteins in plasma adsorbed on the surface 

of the nano carrier targeting low density lipoprotein receptors on the microvessel endothelial cells 

by some researchers [149]. Many nano carriers have been surfacely functionalized with a series of 

functional peptides such as Tf and Lf, and both in vitro and in vivo tests have shown their 

effectiveness in promoting BBB penetration of the nano carriers. Because such specific carriers, 

transport proteins, or receptors expressed on the membrane of brain capillary endothelial cells are 

limited, the possibility of achieving a minimal effective drug concentration in the brain 

parenchyma by carrier-, transporter-, as well as receptor-mediated endocytosis of nano carriers is 

worthy of suspicion. For example, from the data available, the percentages of injected drug dose 

found in the brain after targeting with nano carriers was less than 1% [150]. 

4. Perspective 

Brain drug delivery via the circulatory system is limited by the BBB, which hinders therapy, 

diagnosis and prevention of cerebral diseases. Being a non-invasive approach, 



nanomaterials-mediated delivery transporting drugs across the intact BBB has shown the 

advantages of safety, low cost, as well as suitability for almost all drugs in contrast to other 

approaches of brain drug delivery. A variety of nanomaterials have been investigated for drug 

transport across the BBB; both in vitro and in vivo tests have testified the effectiveness of 

nanomaterials-mediated brain drug delivery. However, despite considerable advances that have 

resulted in improved brain drug delivery profiles over other brain delivery approaches, several 

issues have impeded the therapeutic application of nano carriers in brain drug delivery, namely: 

rapid opsonization, the fast and non-specifc clearance from the circulatory system by 

reticulo-endothelial system (RES) cells of nano carriers with hydrophobic/neutral surfaces; the 

metastable nature of some nano carriers; limited drug loading capacity; need to co-formulate with 

surfactants and co-solvents; aggregation or cluster formation in blood flow of neutral or 

hydrophobic nano carriers; and the most importantly, the low efficiency of crossing the intact BBB, 

leading to the difficulty of achieving effective local drug concentration in the brain parenchyma. 

According to the various mechanisms of drug transport across BBB by nano carriers, only 

penetration of drug-carrier conjugates into the brain parenchyma via transcytosis or endocytosis 

exhibit suitability for all types of brain drugs. Therefore, to obtain a pratical delivery platform for 

brain drugs, it is suggested here that the development of a versatile delivery platform should focus 

on their capability as well as efficiency to be transcytosed or endocytosed. 

In addition, the fate of drug carrier vehicles in the brain is a primary consideration. The first 

requirement for drug carrier vehicles is biocompatibility; compared with drug carrier vehicles 

targeting other organs, the accumulation of nano carriers in the brain parenchyma is a particular 

issue to be addressed in addition to toxicity and immunological response. Biodegradable nano 

carriers or nano carriers with the capability to penetrate out of the brain parenchyma across the 

intact BBB after drug release which can be removed by MPS are preferable. Unfourtunately, at 

present it is still unclear what effects of nano carrier’s accumulation in the brain parenchyma will 

be. 

Lastly, to achieve the minimal effective drug concentration in brain parenchyma while the 

maximal safety drug concentration is not exceeded in other organs, the drug transport efficiency 

across the BBB by nano carriers should be elevated. From this viewpoint, it is necessary to 

explore new approaches facilitating endocytosis of nano carriers by the brain capillary endothelial 



cells, although the efficiency of drug accumulation in the brain parenchyma is not only determined 

by crossing BBB, but also by drug uploading and release profile which are relatively easy to be 

engineered. 
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