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Abstract— We present an in-depth discussion on the
subband Boltzmann transport (SBTE) methodology, its evo-
lution, and its application to the simulation of nanoscale
MOSFETs. The evolution of the method is presented from
the point of view of developing a commercial general-
purpose SBTE solver, the GTS nano device simulator (NDS).
We show a wide range of applications SBTE is suited for,
including state-of-the-art nonplanar and well-established
planar technologies. It is demonstrated how SBTE can be
employed both as a path-finding tool and a fundamental
component in a DTCO-flow.
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I. INTRODUCTION

G
TS NANO device simulator (NDS) [1] is a device sim-

ulator centered around the deterministic solution of the

coupled multisubband Boltzmann transport equation (SBTE).

The NDS methodology was first presented in 2015 [2] as

a versatile and effective SBTE-based framework that could

be applied in almost the same way as a conventional drift-

diffusion (DD)-based device simulator when high physical

fidelity of transport modeling was required. Since then the

methodology has evolved under that premise and has found

application in academia and industry for CMOS-single-device

path-finding [3]–[5], compact-model extraction from physics-

based TCAD and DTCO [6], [7], and reliability modeling with

an emphasis on hot-carrier degradation [8].

As an SBTE solver, NDS accurately models the effects

of quantum confinement, crystal orientation, high values of

mechanical stress, carrier scattering, and short-channel effects,

such as velocity-overshoot [see Fig. 5 (right)], on device

performance. It does that based on physics rather than fitted

empirical models. Furthermore, NDS provides a platform for
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TCAD model building and a reference for the calibration of

empirical and compact models.

NDS has been applied across multiple technologies includ-

ing FinFET, stacked horizontal nanosheets and nanowires [3],

vertical nanosheets and nanowires [7], as well as planar

technologies, such as FDSOI [9] and bulk MOSFETs. In this

article, we will give an overview of the model details of the

NDS methodology and its extended use cases that go beyond

the scope of previous publications.

We present several key developments that extend the state

of the art in SBTE simulation: 1) the use of a trajectory-

based formulation of the SBTE/Liouville equation that allows

discretization on arbitrary numerical subband structures; 2) the

incorporation of tunneling transport into the SBTE framework

using WKB; 3) a Poisson-DD-SBTE iteration scheme that

provides stable convergence and allows us to embed SBTE

domains within Poisson-DD simulations; 4) a procedure for

making process-simulated/emulated device topographies avail-

able for SBTE device simulation; and 5) a procedure for

calibrating SBTE to hardware data.

II. METHODS

In this section, we discuss the models and methods used

in NDS. First, the SBTE-based transport core of NDS is pre-

sented, followed by our approach of self-consistently coupling

the SBTE to electrostatics. Finally, procedures are shown that

allow us to use topography process-simulated device structures

including imported devices from third-party tools.

A. Transport Core

NDS solves the SBTE either in 2-D or 3-D phase-

space. Phase-space is the tensor product of the real-space

and k-space coordinates. For 3-D devices, such as FinFET

or NWFET/NSFET, with 2-D confinement, both r and k-space

are 1-D, hence phase-space is 2-D. For 2-D (planar) devices,

k-space is 2-D (longitudinal and lateral), while r-space

remains 1-D, thus phase-space becomes 3-D. The SBTE reads
[

vν(x, kx)
∂

∂x
+

Fν(x, kx)

h̄

∂

∂kx

]

fν(x, kx) = S f (1)

with x being the direction of carrier transport, i.e., the channel

direction, where vν and Fν are velocity and force, respectively,
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fν(x, kx) is the subband distribution function (DF), and S is

the scattering operator

S f =
∑

ν0 ,k0
x

{

Sν0,ν(k
0
x, kx)[1 − fν(kx)] fν0(k 0

x)

− Sν,ν0 (kx, k 0
x)[1 − fν0 (k 0

x)] fν(kx)
}

(2)

where the index ν denotes the subband index n in 2-D

phase-space (3-D device) and the combined subband and

lateral k-vector ν = (n, k⊥) in 3-D phase-space (2-D device).

The SBTE can be directly discretized on a phase-space-grid,

i.e., a tensor-product of the r-space and k-space grids. This

approach is comparably straightforward in its implementation

and enables the use of perturbative methods, such as small-

signal ac-analysis, on the SBTE. However, its major drawback

is the artificial carrier heating (ACH) phenomenon, arising

due to numerical diffusion in phase-space [10], which broad-

ens the distribution function on the source side causing an

increase in subthreshold-slope as if the device was heated.

Highly scaled FinFETs and GAA-devices have a near-ideal

subthreshold-slope, thus ACH prohibits the use of phase-space

discretization in determining their OFF-currents.

Alternatively, (1) can be transformed into a trajectory-based

picture [11]–[13]. Setting S = 0, one obtains the (subband)

Liouville equation
[

∂ Hν(x, kx)

∂kx

∂

∂x
−

∂ Hν(x, kx)

∂x

∂

∂kx

]

fν(x, kx) = 0 (3)

which was rewritten using the Hamiltonian Hν = Ekin
ν + Vν ,

with vν = ∂ Hν/∂kx and Fν = −∂ Hν/∂x . An example of a

Hamiltonian in a transistor is shown in Fig. 1. Equation (3)

can be solved through the method of characteristics using

dx

dt
=

∂ Hν(x, kx)

∂kx

,
dkx

dt
= −

∂ Hν(x, kx)

∂x
(4)

d fν

dt
= 0. (5)

The variable t is the particle flight-time along each char-

acteristic which can be viewed as a particle’s (ballistic) tra-

jectory through the device. The equations in (4) need not

be solved numerically, as it follows from (3) and (4) that

dHν(x, kx)/dt = 0, which means that a trajectory at energy

E0 can be conveniently extracted from the contours of the

Hamiltonian at E0 as shown in Fig. 1 (purple lines).

The Hamiltonian Hν(x, kx) is generated by solving the

Schrödinger equation
[

Hkin + V
]

ψ = Eψ (6)

where Hkin can be an effective-mass, k · p, or other Hamil-

tonian. The Hamiltonian is decoupled along the transport

direction x , assuming the wave function to be confined per-

pendicularly to x and a plane wave along x , resulting in a

set of decoupled Schödinger equations at different positions

x along the channel
[

Hkin(kx) + V (x, y, z)
]

ψ(x, kx) = E(x, kx)ψ(x, kx). (7)

By solving the eigenproblem in (7) for each (x, kx),

we obtain the phase-space Hamiltonian Hν(x, kx) =

Eν(x, kx); such a function is plotted for the first subband in

Fig. 1. Phase-space plot of the Hamiltonian of the lowest subband
in a NWFET; the vertical grid lines correspond to the k-grid, while the
horizontal grid lines correspond to cuts (and their refinements); colors
indicate the total particle energy (potential + kinetic) of each state, which
is obtained by the numerical solution of the k · p Schrödinger equation
for each cut position x and wavevector kx; the purple lines highlight two
possible ballistic trajectories at a given energy E0.

Fig. 2. Set of trajectories extracted at different energies from the
energy-scape in Fig. 1; the subband edge is added in orange; trajectories
below the top-of-the-barrier (ToB) are reflected off the subband edge,
while the trajectories above the ToB allow unrestricted transmission
between the left and right contacts; closed-loop trajectories correspond
to carriers trapped in local potential wells and can only be accessed
through inelastic scattering (and tunneling).

Fig. 1. The subband index ν is consistent with the ordering of

the eigenstates by the numerical eigensolver. In simulation, an

(x, kx) grid is used in the phase space, where the grid points

along the x direction coincide with cuts of the SBTE domain

(see Section II-C); on each cut, (7) is solved numerically.

The contour-method extracts trajectories from the Hamiltonian

for each point of an energy-grid (Fig. 2) and works with any

numerical representation of Hν(x, kx), regardless of whether

the subbands are parabolic or based on a higher order model

(k · p, TB, DFT) and regardless of whether En(k) is monoto-

nous with respect to kkk.

The trajectories are 1-D curves in the phase-space. For each

energy E and subband ν, we can have one or more trajectories:

the trajectories highlighted in Fig. 1 are transmitting trajecto-

ries that follow carriers entering the device through the source

and exiting at the drain, and vice-versa; other trajectories are

reflecting and circular ones as shown in Fig. 2. We can denote

each trajectory at E in subband ν using a trajectory index η.

The coordinate along each trajectory is the time-of-flight t ,
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which by convention we define as 0 at the starting point

of each trajectory. For every Hamiltonian Hν , we can now

map every point (x, kx) in phase space to a point (E, η, t) in

trajectory-space and vice-versa.

Equation (5) is the transformed Liouville equation in

trajectory-space and from it follows that the DF is constant

along a ballistic trajectory. Thus, ACH is eliminated from

the left-hand side of the SBTE, i.e., the free-streaming opera-

tor, because the trajectories are inherently energy-conserving.

In trajectory-space, the transformed SBTE from (1) takes the

form of

d fν,η(E, t)

dt
= −0ν,η(E, t) fν,η(E, t) + gν,η(E, t) (8)

where 0ν,η(E, t) is the out-scattering rate and gν,η(E, t) is

the particle influx along the trajectory. NDS provides three

methods to calculate 0 and g.

1) DF is interpolated from trajectory-space to phase-space,

fν,η(E, t) 7→ fν(x, kx), (2) is evaluated in (ν, kx)-space

for each cut x to obtain 0ν(x, kx), gν(x, kx), which are

then interpolated back to trajectory-space, 0ν(x, kx) 7→

0ν,η(E, t), gν(x, kx) 7→ gν,η(E, t). Evaluation of the

scattering operator in phase-space is generally faster than

in trajectory-space and this approach results in faster

simulation times. However, the interpolations between

the energy-grid and phase-space-grid are not per-

fectly energy-conserving and thus a residual ACH-effect

persists.

2) The elements of (2) are transformed into trajectory-

space, Sν,ν0 (kx, k 0
x ; x) 7→ Sν,ν0 (E, E 0; η, η0; t, t 0), and

evaluated by summation/integration over (E 0, η0, t 0) to

obtain 0ν,η(E, t) and gν,η(E, t) directly; for elastic

scattering, E 0 = E . This method completely eliminates

ACH, but at an increased computational cost.

3) A hybrid method, where all elastic scattering (ac

phonons, Coulomb, and roughness) is evaluated in

trajectory-space while inelastic processes are evaluated

by interpolating back and forth between the two spaces.

This method eliminates almost all ACH with minimal

impact on simulation time.

While all three methods are implemented in NDS, method 3

is applied most often as it provides the best compromise in

terms of runtime cost and ACH suppression.

Tunneling along the transport directions (S/D-tunneling,

Schottky-barrier-tunneling, and band-to-band-tunneling) can

be directly included in the SBTE as shown in Fig. 3. For intra-

band tunneling, the transmission coefficients are calculated

from the complex subband structure using the WKB-formula

T (E0) = exp

[

−2

∫ x2

x1

κx(E0, x)dx

]

. (9)

The transmission coefficients are integrated into (8) as

effective rates 0tunn and influxes into gtunn [14].

Finally, the assembled system of equations is solved numer-

ically. For Fermi–Dirac statistics, the scattering operator (2) is

nonlinear and the SBTE is solved using the Newton method,

with the linearized SBTE being solved in every iteration.

Damping is applied to ensure the values of the DF are confined

Fig. 3. Typical n-MOSFET potential in off-state along with the local
real E(x, kx) and complex dispersion relation E(x, iκx); a cut through
the E(x, kx) landscape at energy E0 reveals the classical and tunneling
trajectories an electron can take; the classical turning points are marked
as x1 and x2.

to the range [0,1], which also ensures the positive-definiteness

of the linearized SBTE, which is important since the linearized

SBTE itself is being solved iteratively.

After the SBTE is solved numerically, the DF is interpolated

one more time to phase-space and macroscopic quantities are

extracted from it, most notably the carrier concentration and

current density

n(r) =
∑

ν

∫

ρν,k(x, r⊥) fν(x, kx)Nkdkx, (10)

J (r) = ±q0

∑

ν

∫

ρν,k(x, r⊥)vν(x, kx) fν(x, kx)Nkdkx (11)

where ρν,k(x, r⊥) = kψν,k(x, r⊥)k2 is the probability density

of state ν, k in the cut cross section at position x and Nk is

the k-space density of states.

B. Scattering Models

The scattering processes modeled in this work include:

1) acoustic phonon scattering; 2) optical and inter-valley

scattering; 3) local and remote Coulomb scattering caused

by dopants, interface traps, and oxide charges; 4) Si/

SiO2-interface-roughness scattering; and 5) polar-optical scat-

tering caused by remote optical phonons in high-k materials.

The details of the scattering rate evaluation are discussed

in [15], [16]. The parameters for optical and inter-valley scat-

tering are taken from literature, see [17], while the parameters

for acoustic phonons and roughness are calibrated to the

universal low-field mobility data from Takagi et al. [18], [19].

C. Self-Consistency

To obtain the electrical characteristics of a semiconduc-

tor device at varying voltage biases, the SBTE has to

be coupled with electrostatics and solved self-consistently.

NDS provides two approaches to achieve self-consistency:

1) using a Poisson-DD-SBTE-loop and 2) through a direct

Poisson-SBTE-loop.
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Fig. 4. Principle of operation of the Poisson-DD-SBTE loop.

1) Poisson-DD-SBTE-Loop: This approach jumps back and

forth between solving the SBTE and a coupled set of

Poisson-DD equations, where the DD equations use a cor-

rection potential and an effective mobility extracted from the

SBTE solution. The correction potential is computed using

Vqc = ±
kBT

q0

ln

(

nSBTE

nDD

)

(12)

where nSBTE and nDD represent the electron/hole concentra-

tions from the SBTE solution (10) and the guess from DD. The

effective mobility is obtained from the carrier concentration

and current density (10) and (11) by applying an inverted

Scharfetter–Gummel DD-discretization formula

µ = ±J [i → j ]
δedge

kBT

/

{n[ j ]B(±1) − n[i ]B(∓1)}, (13)

1 =
1

kBT

{

Ecv[i ] − Ecv[ j ] − q0
(

Vqc[i ] − Vqc[ j ]
)}

(14)

for each edge (i, j) of the mesh; here, J [i → j ] represents

the edge current density, δedge the edge length, and B the

Bernoulli-function B(x) = x/(ex − 1). Through this effective

mobility, the DD equation is “forced” to reproduce the average

carrier drift velocity and concentration resulting from the

SBTE solution.

Fig. 4 illustrates the self-consistency loop: 1) an initial

Poisson/DD/density gradient (DG) solution is used as an initial

guess; 2) the electrostatic potential and contact Fermi energies

are passed to the SBTE solver; 3) the SBTE is solved to obtain

the DF and the macroscopic carrier concentrations and current

densities; 4) correction potentials and effective mobilities are

computed using (12)–(14) that account for the short-channel

behavior of the simulated device; 5) the effective mobility and

correction potentials are plugged into the DD equations and the

resulting Poisson-DD system is solved to refine the potential

guess. Upon convergence, the carrier concentrations, currents,

and drift velocities produced by the Poisson-DD-system and

the SBTE coincide.

This approach has two major benefits: 1) it provides a

good initial guess for the Poisson-SBTE problem and ensures

stable convergence due to the quality of solution guesses

given by the Poisson-DD-system, so only a few solutions

of the computationally expensive SBTE-solution are required;

2) it allows one to embed the SBTE domain into a larger

device, where semiconductor segments outside the SBTE

domain are simulated using Poisson-DD; these might be a

bulk semiconductor substrate, a poly-gate, or parts of the

contact or interconnect structure.

2) Poisson-SBTE-Loop: This approach allows one to

directly iterate the solution of the Poisson and SBTE equa-

tions. The linearized Poisson equation

∇ · ε∇ϕ + % +
d%

dϕ
= 0 (15)

which is solved in every iteration, contains an additional term

d%/dϕ for the (approximate) derivative of the charge density

with respect to the potential, which stabilizes convergence.

Since the Poisson-DD-SBTE approach is faster and more

stable, the direct Poisson-SBTE approach is only used in cases

where coupling between SBTE and Poisson-DD is not feasible.

Two such cases are: 1) Schottky-FETs, where Schottky-barrier

tunneling in the S/D-contacts must be included but cannot

be coupled to the Poisson-DD system through correction

potentials and effective mobilities alone; and 2) MOSFETs

with semi-infinite leads for S/D contacts, a type of boundary

condition not supported by the DD simulator. Neither of these

two applications is the focus of this work and we simulated

all applications in Section III using the Poisson-DD-SBTE

approach.

D. Device Preparation

In a TCAD environment, device simulators must be capable

of handling fairly complex device geometries based either

on construction or topography simulation. This requirement

applies to SBTE-based simulators as well. Fig. 5 shows an

example FinFET device that was generated through the level-

set method using a simple process flow. The shapes in the

device’s geometry (left) are clearly nonideal, posing a general

challenge to meshing and device simulation.

For SBTE simulation, the device must be preprocessed.

A portion of the semiconductor in the device, i.e., the channel,

is designated as the SBTE domain and cut out to become its

own segment. The SBTE domain needs to be a straight portion

of the device’s fin, wire, or sheet, although the orientation is

arbitrary and need not be aligned with any coordinate axis. The

SBTE domain’s cross section perpendicular to the transport

direction is meshed in 2-D, and then the 2-D grid is replicated

at every cut position and extruded to fill the whole SBTE

domain. The extruded grid is then passed on to a tetrahedral

mesher [20] along with the rest of the device, to generate

the complete device mesh. Finally, 2-D cuts are extracted at

each plane of the extruded grid. In each 2-D cut, the parts not

intersecting with the SBTE domain are remeshed since the 3-D

mesh in these regions is not aligned with the cut position and

thus would otherwise result in non-Delaunay 2-D cut meshes

(Fig. 5, middle).

The tetrahedral mesher may add points between the cuts

of the SBTE domain, especially at its surface. Quanti-

ties in these points cannot be extracted from the SBTE

solution but are instead interpolated between the nearest

two cuts. This interpolation mainly concerns the quantities

needed for the self-consistent Poisson-DD-SBTE (12)–(14)

and Poisson-SBTE loops (15), i.e., current densities, car-

rier concentrations, and their derivatives with respect to the

potential. Despite the nonidealities and interpolations, a self-

consistent Poisson-DD-SBTE simulation with robust conver-

gence is achieved.
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Fig. 5. NDS simulation of a device generated using level-set topography simulation; left: level-set generated FinFET with complex warped surfaces,
typical of topography simulation; the analytical doping is shown; middle: the SBTE domain is cut out of the device and meshed using an extruded
grid, and mixed with the mesh of the rest of the device; cuts are then extracted from the SBTE domain and remeshed; right: electron drift velocity in
the FinFET, DD versus SBTE; the SBTE result clearly shows the velocity overshoot effect not seen in the DD solution.

E. Simulator Performance

Several measures have been implemented to enhance NDS’

performance and reduce memory consumption and turn-

around-time (TAT), especially for simulations using the k · p

band structure model. Most of the simulation time is spent

in calculating the subband structure and scattering transition

rates, thus the focus lies on reducing the number of states and

transitions.

1) In k · p-based simulations, only one half of the k-space

is computed. The other half is constructed by exploiting

the k · p-Hamiltonian’s property H(−k) = H∗(k) and

converting states from k to −k through conjugation.

2) In k · p-based simulation with spin-orbit coupling, each

degenerate spin-up and down subband is joined into a

single subband, reducing the number of states by two.

The corresponding wave functions ψν,k,↑, ψν,k,↓ are

preserved as two-state blocks for scattering evaluation.

3) Due to the effective suppression of ACH, the k-grid

density can be relaxed without perceptible changes in

the results.

4) The k-dependence of the wave functions can be

neglected in scattering, so only the states in the subband

minima, ψν,k ≈ ψν,k0
are used to evaluate scattering

transitions.

Measures 1 and 2 reduce the TAT by a factor of 8 without any

loss of accuracy. Measures 3 and 4 do impact the result and can

be used to trade TAT for accuracy. Fig. 6 shows an example of

the impact of these measures on TAT and simulation results.

In total, we achieve a 30- to 40-fold TAT-reduction compared

to a naïve SBTE implementation.

III. APPLICATIONS

The NDS methodology can be applied to a wide range of

technologies and applications. In this work, we have picked

three very different use cases to demonstrate its versatility.

The first case is focused on the iN14 technology, which we

use to showcase the calibration process of physical parameters

of the SBTE. The second case uses the NDS methodology to

predict S/D-leakage in Ge-channel p-NWFETs and compares

it to their Si-based counterparts. The third case demonstrates

that the NDS methodology is also suited for the simulation of

bulk-technology, namely, a 28-nm high-k metal-gate device.

Fig. 6. Transfer characteristics from an NDS simulation of 6 nm wide
20 nm high pMOS FinFET showing the effects of performance measures
3 and 4; the device was first simulated with the default 5 × 107 m-1

k-grid to establish the baseline; the device was then simulated with a
relaxed 1.5 × 108 m−1 k-grid (measure 3) showing negligible deviation
from the baseline but halving TAT; finally, the device was simulated
with the relaxed k-grid and neglecting the k-dependence of the states
(measure 4) showing slightly more deviation but halving TAT once more;
TAT was measured for the slowest bias point (VG = −1.0 V, VDS = -0.7 V)
using ten cores on an Intel Xeon E5-2660 v2 CPU at 2.2 GHz.

A. Calibrating NDS on iN14 Hardware

In this example, we calibrated the NDS model parameters

using iN14 bulk FinFET hardware data from IMEC [22], [23].

This is done in three steps:

In the first step, the electrostatics were calibrated. While

the device geometry was recreated based on TEM-images,

the active doping distribution was unknown. Thus, analytical

doping profiles were calibrated by matching the simulated

subthreshold slope and DIBL to the measurements. This step

does not require SBTE and is done using DD as the transport

model.

In the second step, scattering parameters for surface

roughness and acoustic phonons were recalibrated by matching

low-field mobility calculations with long-channel device mea-

surements, as shown in Fig. 7 (left). Typically, only scattering

parameters dependent on the fabrication process need to be

adjusted, these being the Si/SiO2-interface’s roughness and

trap density.

In the third step, short-channel simulations are performed

with SBTE using the calibrated parameters from the first

two steps. Now, by comparing the simulated and measured
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Fig. 7. Left: calibrated low-field mobility of the N14 bulk FinFET to nMOS and pMOS hardware data. Mobility calculations are done on 2-D
cross sections using GTS VSP [21]. Middle and right: device characteristics of the IMEC N14 bulk FinFET technology for nMOS and pMOS and
the corresponding simulation results from NDS; using the input of the low-field mobility calibration (left) and matching the electrostatics, NDS
gives excellent agreement with measurements; nMOS simulations used an effective mass Hamiltonian with nonparabolicity correction and pMOS
simulations a six-band k · p Hamiltonian as electronic structure models.

Fig. 8. SS-roll-off for Si- and Ge-pMOS, where the Ge-pMOS shows
severe SS-degradation for Lgate < 20 nm.

ID/VG-curves in the linear and saturated regimes, the gate work

function is calibrated by matching the OFF-currents, and the

external resistance is calibrated using the ON-currents. The

final result in Fig. 7 (middle and right) shows excellent agree-

ment between the experimental data and the model. The fitted

simulation setups are transferable to other, more advanced,

nodes assuming that similar process conditions apply.

B. Leakage in Ge-Channel p-NWFETs

With this example, we demonstrate the adequacy of

the NDS methodology for predicting critical device perfor-

mance. Ge-channel p-type NWFETs have been demonstrated

recently [24], with gate lengths as low as 30 nm. The lower

hole effective mass in Ge increases the hole velocity and

thus the on-current. However, it also increases intra-band

S/D-tunneling. In our study [14], we investigated the sub-

threshold roll-off of 6-nm-diameter Si- and Ge-channel p-type

NWFETs down to a gate length of 5 nm.

The accuracy of the intraband tunneling current prediction

in both the Si- and Ge p-type NWFETs strongly depends on

the valence band structure model used. Here, we used a six-

band k ·p model, which includes spin-orbit coupling, for both

Si- and Ge-channel devices.

The results in Fig. 8 show that tunneling leakage becomes

the dominant source of subthreshold slope degradation in

the Ge-channel devices as early as a 20 nm gate length,

Fig. 9. NDS simulation of a 28-nm high-k metal-gate planar MOSFET
in the saturated on-state; the electron concentration is shown; the pink
box indicates the SBTE domain and the green lines show the placement
of the cuts; the hybrid-extruded/unstructured mesh is clearly visible.

a value that is well within reach of fabrication technology.

To rule out electrostatic effects, the same simulations were

run with thermionic injection only, i.e., with the tunneling

model disabled and those showed only moderate degradation.

In Si-channel devices, this effect only becomes significant

below 15 nm gate length.

C. Planar 28-nm HKMG Simulation

In our last example, we take a look at planar devices. While

those are not found at the forefront of technology development,

they are found in a wide range of applications, be it due to

cost and volume reasons, or a better analog performance than

their FinFET counterparts. Contemporary planar devices are

usually made highly optimized for their specific application.

The relaxed design rules for these technologies allow designers

to co-optimize their devices and circuits on an application-to-

application basis. In this context, NDS becomes an optimiza-

tion rather than a path-finding tool. Hardware data on planar

technology is readily available making NDS a very accurate

device simulation tool that can enhance or replace DD-based

device simulation flows.

We demonstrate this on a 28-nm high-k metal-gate n-type

MOSFET shown in Fig. 9. The SBTE-domain consists of a

box below the gate. The box needs to be deep enough to

capture all of the channel electrons and the required box depth

is dependent on the device’s doping and operating voltage

range. As discussed in Section II-C1, the Poisson-DD-solver

sees the embedded SBTE domain as a region with a predefined

mobility and correction potential while the remaining silicon
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Fig. 10. Simulated transfer characteristics for the 28-nm high-k
metal-gate planar MOSFET in Fig. 9, SBTE versus DD; while the
low-VDS-curve from DD can be fitted to SBTE, DD underestimates drain
current at high VDS by a factor of two, since it does not reproduce the
velocity-overshoot-effect.

uses the built-in models for mobility and correction potential.

Thus, no interface conditions for fluxes/currents need to be

applied at the SBTE domain boundary. The SBTE correction

potential is continuously extended outside the SBTE domain

using an exp(−d/λ)-law, where d is the distance from the

SBTE boundary and λ is the characteristic length of the DG

equation. This ensures a continuous carrier concentration and

current density across the device.

In Fig. 10, we show transfer characteristics for the device

based on SBTE and DD/DG for comparison. It should be noted

that VG should not approach flat-band voltage, at which point

confinement is lost and the OFF-current starts flowing deep in

the bulk and thus outside of the SBTE domain.

IV. CONCLUSION

In this work, we have presented a major update on the

methodology behind the NDS. We have provided detailed

explanations of the key models and computational methods

that are part of the methodology and discussed the practical

aspects of device simulation with SBTE. We have demon-

strated the breadth of technologies and applications that it

can handle ranging from path finding in advanced nodes to

device optimization in established nodes. Its versatility allows

the NDS methodology to easily fit into TCAD work-flows

where it can enhance or replace DD-based simulators and

serve as a basis for TCAD and compact model building: The

solution of the SBTE provides data such as ballistic ratios

and velocity profiles critical for the calibration of advanced

DD-based models such as the ballistic mobility and kinetic

velocity models [25].
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