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Abstract: Both electrical and thermal efficiencies combine in determining and evaluating the perfor-
mance of a PV/T collector. In this study, two PV/T systems consisting of poly and monocrystalline
PV panels were used, which are connected from the bottom by a heat exchanger consisting of a spiral
tube through which a nanofluid circulates. In this study, a base fluid, water, and ethylene glycol
were used, and iron oxide nanoparticles (nano-Fe2O3) were used as an additive. The mixing was
carried out according to the highest specifications adopted by the researchers, and the thermophysical
properties of the fluid were carefully examined. The prepared nanofluid properties showed a limited
effect of the nanoparticles on the density and viscosity of the resulting fluid. As for the thermal
conductivity, it increased by increasing the mass fraction added to reach 140% for the case of adding
2% of nano-Fe2O3. The results of the zeta voltage test showed that the supplied suspensions had
high stability. When a mass fraction of 0.5% nano-Fe2O3 was added the zeta potential was 68 mV,
while for the case of 2%, it reached 49 mV. Performance tests showed a significant increase in the
efficiencies with increased mass flow rate. It was found when analyzing the performance of the
two systems for nanofluid flow rates from 0.08 to 0.17 kg/s that there are slight differences between
the monocrystalline, and polycrystalline systems operating in the spiral type of exchanger. As for
the case of using monocrystalline PV the electrical, thermal, and total PV/T efficiencies with 2%
added Fe2O3 ranged between 10% to 13.3%, 43–59%, and 59 to 72%, respectively, compared to a
standalone PV system. In the case of using polycrystalline PV, the electrical, thermal, and total PV/T
efficiencies ranged from 11% to 13.75%, 40.3% to 63%, and 55.5% to 77.65%, respectively, compared to
the standalone PV system. It was found that the PV/T electrical exergy was between 45, and 64 W
with thermal exergy ranged from 40 to 166 W, and total exergy from 85 to 280 W, in the case of using
a monocrystalline panel. In the case of using polycrystalline, the PV/T electrical, thermal, and total
exergy were between 45 and 66 W, 42–172 W, and 85–238 W, respectively. The results showed that
both types of PV panels can be used in the harsh weather conditions of the city of Baghdad with
acceptable, and efficient productivity.
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1. Introduction

In the period from 2008 till now, the price of oil fluctuated significantly due to the
turmoil in the oil-producing regions [1]. Furthermore, pollution rates in all countries of
the world, including Iraq, have increased significantly due to the total reliance on personal
transportation and private electricity generators [2,3]. This persistent concern that the
world’s number one energy resource (oil) is depleting has diverted attention towards the
use of solar energy worldwide [4]. The trend towards sustainable energies as an alternative
to fossil fuels has caused an increase in its share of the energy produced in some countries
of the world. Solar energy is an endless source of sustainable energy and can replace fossil
fuels. It is renewable, clean energy, and has huge potential in most regions of the globe,
making it able to meet a large part of global energy needs [5,6].

Photovoltaic cells are considered one of the most important types of solar energy
applications, in which solar energy can be converted into electrical energy [7]. Furthermore,
solar tanks can store thermal energy from the sun by converting solar energy into thermal
energy [8]. The trend toward making use of photovoltaic cells to generate electricity in hot
and sunny areas faced two main dilemmas: These areas are mostly desert areas (such as
North Africa and the Middle East) with dust storms abound [9,10]. The second thing is
that the high irradiance causes the photovoltaic modules to heat up and thus reduce their
performance [11,12]. The researchers studied both very carefully and found the appropriate
solutions. Concerning dust, its components, types, and causes were studied, and the
appropriate treatment was developed for it by defining the cleaning periods and the type
of cleaning required [13,14]. As for the low performance of the PV modules, it is treated as
suggested by many researchers using photovoltaic thermal systems (PV/T) [15,16]. These
systems cool the PV module by air [17], water [18], nanofluids [19], and using phase-
changing materials (PCM) or by cooling PCM and nanofluids [20,21]. The use of PV/T
systems in regions with high solar radiation is gaining increasing interest. These systems
are useful in converting high solar radiation into electrical and thermal energy together,
with greater productivity by PV modules.

There have been many developments in PV/T systems, whether in terms of efficiency
or cost, and studies in this regard are still being conducted in full swing. Cooling using a
nanofluid can be considered more attractive than using water because of the high thermal
conductivity of the first, which increases the cooling efficiency and enhances the system
performance [22]. The process of mixing nanomaterials with the base fluid has become an
easy and simple process, and some researchers have even set standard conditions for it.
Ref. [23] studied the effect of several surfactant types on the thermophysical properties
of nanofluids. Ref. [24] studied the effect of variable base fluids on the thermophysical
properties of nanofluids. As for the nanoparticles used in nanofluids, they differed from
metallic and non-metallic nanoparticles, as Ref. [25] investigated the effect of adding Cuo,
Al2O3, and MWCNT to water without surfactant on the resulting thermophysical proper-
ties. This addition caused a tiny increase in the prepared fluid density and viscosity with a
significant increase in thermal conductivity. MWCNT causes the best improvement in elec-
trical efficiency due to its superior thermal conductivity over the other two fluids. Ref. [26]
studied the use of a nanofluid formed from adding copper oxide (CuO) nanoparticles to
water in the cooling of the PV/T system in the laboratory. The study also dealt with the
thermophysical properties of the prepared nanofluid. The results showed a limited effect
of adding nanoparticles on the density and viscosity of the resulting fluid due to the small
amount added. As for the thermal conductivity of the produced nanofluids, it increased
significantly, reaching 100.3% (when adding 2% nano-CuO).

Ref. [27] used single-walled carbon nanoparticles (SWCNTs) to form a nanofluid with
water (75.0% volume ratio) and ethylene glycol (25% volume ratio). The researchers chose
to add 0.5% by volume of SWCNT after studying the thermophysical characteristics of
a number of fluids that were prepared in different proportions. The use of the proposed
nanofluid resulted in an increase in the thermal and electrical efficiencies of 25.2% and
11.7%, respectively, compared to a stand-alone PV panel.
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One of the major influences on the efficiency of a PV/T system is the heat exchange
between the PV panel and the heat exchanger attached to it. This topic was studied by
a group of researchers [28–30], where Ref. [31] found after studying three types of heat
exchangers (web type, direct type, and spiral type) connected to PV modules that the spiral
flow exchanger produced the best efficiency compared to the other exchangers (direct and
web). Practical tests have shown that the temperature of the photovoltaic panel decreases in
varying proportions according to the heat exchanger type used. The spiral heat exchanger
PV/T system produced an output of 17.7 V, 2.89 A, and 51.3 W, with an overall efficiency
of 35.0%. While the web and direct heat exchangers PV/T systems produced about 18.5%
and 28.0% total generating efficiency, respectively.

In this study, all previous studies will be taken advantage of to reach the best PV/T
system that can be assembled and used at the lowest possible costs and from materials
available in the local Iraqi markets. Therefore, iron oxide nanoparticles were selected as
nanoparticles added to a water-ethylene glycol blend to form a nanofluid with the greatest
thermal conductivity. A spiral heat exchanger was also manufactured and glued to the
back of the photovoltaic cell. For this purpose, two cells of the type of monocrystalline and
polycrystalline were used to find the possible differences and which one is better to be used
in the harsh conditions of Iraq’s weather. Furthermore, an exergy and energy analysis will
be held for the two systems and compared with stand-alone PV module results.

2. Materials and Methods
2.1. System Description

In this study, the researchers intended to benefit from the results of several published
studies, so the spiral flow absorber was chosen for the nanofluid circulation of the PV/T
collector (shown in Figure 1) based on the results of Ref. [31]. Figure 1 shows a schematic
drawing of the PV/T systems used in the experiments, which consist of two nanofluid-
cooled PV/T systems and a standalone PV module. The spiral flow absorber consists of a
unilateral channel for nanofluid flow down two PV modules, one of which is polycrystalline,
and the other is monocrystalline. Table 1 shows the specifications of both modules used in
the experiments. The modules used have the following measurements: 0.65 m wide and
1 m long.
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Table 1. The poly and monocrystalline modules specifications.

Module Type Polycrystalline Monocrystalline

Company name A star Nuru Tech Fzco
Peak power (Pmax) 100 W 100 W

Open circuit voltage (Voc) 22.5 V 22.6 V
Short circuit current (Isc) 5.81 A 5.76 A

Maximum power voltage (Vmp) 18.0 V 17.96 V
Maximum power current (Imp) 5.56 A 5.57 A

Power tolerance ±3% ±3%
Dimension (mm) 1012 × 660 × 30 1010 × 660 × 34

The tested systems were installed at an angle of 33◦ to the south to suit the conditions
of the city of Baghdad [32]. The city of Baghdad, the capital of Iraq, suffers from a very
hot continental climate in summer with low to no rain during the past two decades and
frequent dust storms, so it can be considered one of the harsh weather. Table 2 lists some
average weather conditions per month for the study area. When the systems were loaded,
variations in voltage and current were recorded. During these tests, the mass flow rate
ranged from 0.08 to 0.017 kg/s according to Ref. [31] results. Data is collected and stored in
the ADAM data acquisition system at intervals of one minute. This data will be used later
in the electrical and thermal efficiency calculations of the tested systems. The nanofluid
cooling system is a closed system. The entry and exit of nanofluids are controlled by valves
prepared for this purpose, and within this cycle, there is a tank for storing the nanofluid.

Table 2. Average weather conditions per month for Baghdad city [33].

January February March April May June July August September October November December

Max. Temp (◦C) 15.5 17 21 30 37 41 45 43 40 33 25 17

Min. Temp. (◦C) 5 6 8 14 20 22 25 24 22.5 16 10 5

Shinning hours (H) 196 200 248 256 300 355 350 360 310 285 212 200

Precipitation (mm) 23 19 22 10 3 0 0 0 0 3 13 23

Rainy days 6 6 7 5 3 1 0 0 3 4 7 8

Humidity (%) 70 60 54 49 32 21 20 22 27 38 56 68

Wind speed (m/s) 1 1 1 1 1 2 2 2 1 1 1 1

2.2. Materials

Non-ionized distilled water was prepared in the laboratory while the ethylene glycol
(C2H6O2) was supplied from local markets with a purity of more than 99.5%. It has a
density of 1114 kg/m3, a melting point of −14 ◦C, and a boiling point of 197 ◦C.

Nano-iron oxide (Fe2O3) produced by (Sky Spring Nanomaterials, Inc., Houston, TX,
USA) purchased from the local market was used in this study. The used nano-Fe2O3 has
a purity of over 99% and its outer diameters range from 20–40 nm. These nanoparticle’s
density is about 5240 kg/m3 and has high thermal conductivity (TC) of (32.9 W/mK). It was
selected because they have sizes suitable for suspended in the emulsions for appropriate
periods (high stability period) when good mixing is achieved. Furthermore, it was sold at a
very reasonable price (1 US$/g), and this price is considered one of the cheapest in the local
markets. Nano-iron oxide has been used by many researchers in the production of magnetic
or magnetically active nanofluids in many applications. Among these applications are:
(1) Magnetic coatings and coatings designed to absorb electromagnetic waves. (2) Data
storage, and high-intensity magnetic recording. (3) In magnetic detectors. (4) Many high-
tech microwaves. (6) In medical applications such as magnetically controlled drug delivery,
medical imaging, cell separation, and refrigeration. (7) In the purification of biological
contexts and wastewater [34–39]. Table 3 lists the studied materials properties.

In this study, the base fluid was prepared by mixing 75% volume of non-ionic distilled
water with 25% volume of ethylene glycol (EG). These percentages were based on the
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results of the study [24]. This mixture was used as a base fluid for the nanofluid, as it acts
as a lubricant that prevents the adhesion of nanoparticles and then their accumulation as
long as the nanofluid circulates [24].

Table 3. Used material specifications.

Particle ρp
(kg/m3)

kp
(W/m·◦C) Purity dp (nm) Color Source

Fe2O3 5240 30 99.0% 20–40 Red
nanopowder

Sky Spring
Nanomaterials Inc.

(Houston, TX, USA)

Base fluid ρf (kg/m3) kf (W/m·◦C) cpf (J/kg·◦C) µf (nm)

De-ionized water
(DIW) (75%)

+
Ethaline glycol (25%)

1007.1 0.6117 4773 0.00997

Steam Lap.
+

Merck KGaA,
Darmstadt, Germany

2.3. Mixing Procedure

The components of the nanofluid were mixed using the method followed by the
Ref. [40] in preparing the nanofluids. After mixing EG with water and ensuring the
homogeneity of the mixture, nano-Fe2O3 was added to them, and the components were
mixed using an ultrasonic shaker. Ultrasonic vibration causes the particles to separate and
diverge from each other and then spread throughout the base fluid. This method delays
the agglomeration of nanoparticles and then their deposition for an appropriate period.
The researchers differed in determining this appropriate period (or the nanofluids’ stability
period). Ref. [41] considered the fluid to be stable if no deposition of nanoparticles occurred
for a period of ten days, while Ref. [40] considered the fluid to be stable if no sedimentation
occurred for more than six months. A recent study [42] considered the fluid stability of
sixty days a sufficient period. The sonication time used to mix the components was three
and a quarter-hour depending on the results of Ref. [43]. Furthermore, 0.1 mL of surfactant
(Cetyl Trichromyl Ammonium Bromide (CTAB)) was added to the mixture to ensure longer
stability of the suspension. The results of Ref. [23] were adopted in choosing the type of
surfactant and its amount added.

2.4. Measurements

Heat transfer using nanofluids is affected by their thermophysical properties. There-
fore, it is very important to measure and verify these properties before using any nanofluid
in PV/T systems. The thermophysical properties of the prepared fluids were measured
using several devices in the current study, which are:

1. HOT DESK Tps 500 (KIJTALEY, Sweden) for measuring the thermal conductivity
of emulsions.

2. Density tester meter for prepared emulsions density.
3. Brookfield Programmer Viscometer (Model: LVDV-III Ultra-programmable) is used to

measure the viscosity of emulsions. This instrument is connected to a laptop to collect
and store the measured data.

4. Nano Zeta-Sizer (ZSN) was used to measure the stability of the prepared emulsions.

It was also adopted to re-measure the samples three times to ensure repeatability and
reduce uncertainty in the measurements. After calibrating each device before using it,
the uncertainty values described in Table 4 were used to find the total uncertainty using
equation [44]:

eR =

√(
∂R
∂V1

e1

)2
+

(
∂R
∂V2

e2

)2
+ . . . +

(
∂R
∂Vn

en

)2

where
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eR: Measurements uncertainty.
R: An independent variable function V1, V2, . . . , Vn or
R = R (V1, V2, . . . , Vn).
ei: nth variable uncertainty interval.
∂R
∂Vi

: A single variable measured result sensitivity.

The total uncertainty resulted was 1.89% revealing high accuracy of the measuring
procedure. Table 4 lists the instrumentations used and its uncertainty.

Table 4. The measuring devices used and its uncertainty.

No. Measured Parameter Measuring Devise Uncertainty (%)

1 Voltage and current Multi-meter 0.9
2 Coolants flow rate Flowmeter 0.34
3 Thermocouples Temperature 0.27
4 Irradiance Solar radiation intensity meter 0.98
5 Nanoparticle mass fraction weight Sensitive weight 0.001
6 Nanofluids density Density tester 0.28

7 Viscosity
Brookfield Programmer

Viscometer (Model: LVDV-III
Ultra-programmable)

0.3

8 Thermal conductivity and capacity Hot desk Tps 500 1.2

2.5. Energy Analysis

The PV/T system consists of a photovoltaic module that produces electricity and a
heat-storage collector that transfers thermal energy. Therefore, the performance of this
system depends on the electrical power produced by the PV module (Equation (3) in
Table 5) and the useful thermal energy produced by the collector (Equation (2) in Table 5).
The performance of the system combines two expressions: thermal efficiency (ηth) and
electrical efficiency (ηPV) (Equations (1) and (4), respectively, in Table 5).

The electrical efficiency expresses the ratio of the electrical energy produced by the PV
module to the falling solar radiation intensity on it. Whereas thermal efficiency expresses
the ratio of the useful heat gain produced by the system to the intensity of the incident
solar radiation during a specified period. The overall system efficiency is defined as the
total sum of thermal and electrical efficiencies (Equation (5)), and it is an important factor
in the overall evaluation of such systems.

Table 5. Energy analysis equations.

No. Parameter Equation Parameters Ref.

(1) Thermal efficiency ηth = Qu
Is×Ac

ηth: thermal efficiency (%), Qu : heat gain (W),

Is : solar irradiance
(

W
m2

)
, Ac : collector area

(
m2) [45]

(2) Useful gained heat Qu =
.

m Cp(To − Ti)
Qu : heat gain (W),

.
m : mass flow rate (kg/s),

To : outlet fluid (°C), Ti : inlet fluid (°C)
[45]

(3) Electrical power Pmp = Imp × Vmp

Pmp : maximum power output (W),
Imp : maximum power current (A),
Vmp : maximum power voltage (V)

[46]

(4) Electrical efficiency ηe =
Pmp

Is×Apanel

ηe : Electrical efficiency of the PV (%),
Pmp : maximum power output (W),

Is : Solar irradiance
(

W
m2

)
,

Apanel : PV area
(
m2)

[47]

(5) Total PV/T system efficiency ηPVT = ηth + ηPV

ηPVT : Photovoltaic thermal efficiency (%),
ηth : Thermal efficiency (%),
ηPV : Photovoltaic efficiency (%)

[47]
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Table 5. Cont.

No. Parameter Equation Parameters Ref.

(6) Primary energy saving
efficiency E f =

ηPVT
ηP

+ ηth

E f : Primary energy − saving efficiency (%),
ηth : Thermal efficiency (%),
ηPVT : Photovoltaic thermal efficiency (%),
ηP : electric power generation efficiency (%)

[46]

2.6. Exergy Analysis

In recent years, many researchers have relied extensively on exergy analysis when
evaluating the performance of thermal systems. In the case of neglecting the effect of
kinetic changes on the potential energy, the exergy balance can be expressed as listed in
Table 6. Exergy analysis is an excellent way to determine the optimal design or operation
strategy for a large number of industrial processes that use thermal systems [45]. This form
of analysis aids in acquiring an understanding of the useful heat produced as mechanical
work at the temperature of which heat is available and considers the grade of the energy
produced (i.e., high- or low-grade energy). It can determine plant size, energy conservation,
operating cost, fuel use, and pollutants [46,47].

Table 6. Exergy analysis equations.

No. Parameter Equation Parameter Ref.

1 The general exergy
balance ∑ Exin − ∑ Exo = ∑ Exd

Exin : Exergy input (W),
Exo : Exergy output (W),
Exd : Exergy destruction (W)

[48–50]

2 The general exergy
balance ∑ Exin − ∑

(
Exth + Expv

)
= ∑ Exd

Exin : Exergy input (W),
Exo : Exergy output (W),
Exd : Exergy destruction (W),
Exth : Thermal exergy (W),
Expv : PV exergy (W)

[48–50]

3 The input exergy Exin = Ac Nc I
[

1 − 4
3

(
Ta
Ts

+ 1
3

(
Ta
Ts

)4
)]

Exin : Exergy input (W),
Ac : Cell area

(
m2),

Nc : number of cells,
I : solar irradiance

(
W/m2),

Ta : Ambient temperature (K),
Ts : Sun temperature (K)

[48–50]

4 The thermal exergy Exth = Qu

(
1 − Ta+273

To+273

) Exth : Thermal exergy (W),
Qu : heat gain (W),
Ta : Ambient temperature (K),
To : Outlet temperature (K)

[48–50]

5 The PV exergy ExPV = ηc Ac Nc I

Expv : PV exergy (W),
ηc : Cell efficiency (%),
Ac : Cell area

(
m2),

Nc : number of cells,
I : solar irradiance

(
W/m2)

[48–50]

6 The photovoltaic
thermal exergy ExPVT = ExTh + ExPV

ExPVT : PVT exergy (W),
Exth : Thermal exergy (W),
Expv : PV exergy (W)

[48–50]

7 The exergy destruction
or irreversibility Exd = TaSgen

Exd : PVT exergy (W),
Ta : Ambient temperature (K),
Sgen : Rate of Entropy generation

[48–50]

8 The exergy efficiency ηex = 1 − Exd
Exin

Exd : Exergy destruction (W),
Exd : PVT exergy (W),
Exin : Exergy input (W)

[48–50]
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3. Results and Discussion

The first measurement adopted by the study is to verify the thermophysical properties
of the prepared nanofluids. Then, tested the effect of the nanofluids flow on the energy and
exergy of the prepared PV/T with a spiral flow in Baghdad city weather conditions.

3.1. Climate Conditions

The climate of the study area (Baghdad) is characterized by being a desert climate
with mild winters (from mid-December to mid-February) and very hot summers (from
May to October). Figure 2 shows the relation between average solar radiation intensity, and
average ambient temperature for the testing days (11, 12, and 14 May). May is considered
the beginning of the summer season in Baghdad. The ambient temperature is relatively
high. The maximum temperature recorded was 38.82 ◦C at peak time. The solar radiation
intensity enlarged from the first morning hours to reach its maximum value (720 W/m2)
at peak hours. This value is moderate compared to measured values in July and August
(more than 1000 W/m2) at the peak period [32].

The figure also shows the effect of the solar radiation intensity on the studied systems.
The temperature of the standalone PV module started to rise since sunrise and reached
a level higher than the ambient temperature. The PV module is cooled by ambient air
through convection streams. Due to the low convective heat transfer coefficient of air, the
cooling process is slow compared to the speed of the module’s gain of heat. The EG-water
cooled PV/T system has a lower temperature than the PV system because this mixture
has higher specific heat than air, but its thermal conductivity is low. While for the case of
cooling the system with a nanofluid, the PV module temperatures were less than in the
previous two cases, and the reason for this refers to the high thermal conductivity of the
nanofluid. The results in the figure prove that the nanofluid-cooled PV/T system is more
effective in cooling the PV module and increasing its electrical and thermal productivity.
The PV panels’ temperatures were reduced by 18.85%, and 27.57% when it was cooled by
EG-water blend and Iron oxide nanofluid, respectively.
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3.2. Thermophysical Properties

The properties of the laboratory-measured thermophysical prepared nanofluids were
measured and analyzed. These features were examined in detail due to their importance
and impact on the energy and exergy of the studied PV/T systems.

3.2.1. Viscosity

The viscosity of the nanofluid increased with the increase in the mass of the nanoparti-
cles added as Figure 3A declares. The results indicate that the increments in the prepared
nanofluids viscosity were 1.67%, 1.97%, 2.47%, and 2.86% for added mass fraction by 0.5%,
1.0%, 1.5%, and 2%. These increments are relatively fair, and the authors did not see any
effect on system performance during the experiments. Figure 3B shows a comparison
between the recent study viscosity and some other works in literature [25,41,51–56]. The
results indicate a clear convergence due to the small amount of nanoparticles added, except
for Ref. [54] results for adding TiO2 powder to water, which resulted in high viscosity.
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Figure 3. The effect of mass fraction added on resulted nanofluid viscosity (A), and a comparison
between recent study viscosity and others from literature (B).

3.2.2. Density

The nanofluid density increased by the nanoparticle’s addition. However, as the
added nanoparticles mass fractions are little, the resulted densities variations were also
small. The EG has a higher density than water (1.11 g/cm3), for this reason, the water-EG
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blend has a higher density than water. For the nanofluids the increments in the densities
as Figure 4A declares were 0.22%, 0.30%, 0.42%, and 0.53% for 0.5%, 1.0%, 1.5%, and 2%
nano-Fe2O3 mass fractions add to water, respectively, compared to water-EG density. These
increments have a neglected impact on the system performance because of their small
values. Figure 4B represents a comparison between the achieved maximum density in this
study with others from the literature [25,41,51,57–60]. The result of the current study is
consistent with many studies in the literature as the figure shows. As for the high-density
nanofluids, the reason is due to the type of the base fluid (pure EG as in the case of the
Ref. [60]) or the type of nanoparticles added, as in the case of Ref. [57].
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Figure 4. The effect of mass fraction added on resulted nanofluid density (A), and a comparison
between recent study density and others from literature (B).

3.2.3. Thermal Conductivity

TC increased when the nano-Fe2O3 added mass fraction was increased in the water EG
mixture. Iron oxide is one of the highly conductive metal oxides, so adding its nanoparticles
to water caused a clear enhancement in the nanofluid TC amounting to 33.6%, 81.3%,
105.3%, and 123.6% for 0.5%, 1.0%, 1.5%, and 2% nano-Fe2O3 mass fractions add to water-
EG blend, respectively, as Figure 5A reveals. Figure 5B compares the TC enhancement
rate in the recent study with others from the literature [51,61–65]. It is clear that the recent
study’s TC is higher than the others due to the high TC of the nanoparticles used as well as
for the careful mixing procedure used.
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Figure 5. The effect of mass fraction added on resulted nanofluid TC (A), and a comparison between
recent study TC and others from literature (B).

3.2.4. Stability

One of the most important thermophysical properties that must be checked before
using any nanofluid is the stability of this fluid. This stability plays a vital role in the
behavior of the nanofluid and in enhancing its function as a heat carrier. Methods of mixing
nanofluids with the base liquid have been developed using sonication, which resulted in the
production of many nanofluids with high stability. The researchers used several methods
to analyze the stability of nanofluids, such as the sedimentation method [66,67], zeta poten-
tial analysis [68–71], absorption spectroscopy [72], and pH measurement method [73,74].
The zeta potential was used to measure the stability of nanofluids in this study. In this
method (zeta potential) the electric charge between the nanoparticles is measured. The
nanofluids are considered completely stable when their zeta voltage is between 40 and
60 mV, while the nanofluids are considered to be exceptionally stable if their zeta voltage is
more than 60 mV. As for nanofluids with a zeta potential of less than 25 mV, the possibility
of nanoparticles agglomeration and sedimentation in the fluid is high, which makes these
fluids unstable [66–88]. Figure 6A shows the zeta potential of the nanofluids prepared in
this study. The results show that all tested suspensions samples have high stability. The
most stable prepared suspension was the one to which Fe2O3 was added at a mass fraction
rate of 0.5%, as its zeta potential reached 64 mV, and the least stable was the suspension
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with a mass fraction ratio of 2% (zeta potential of 49 mV). The rate of deterioration of
the zeta potential of the nanofluid was increased by increasing the nanoparticles mass
fraction [14]. Good mixing using ultrasound for an appropriate period of time resulted in
high stability of the prepared suspensions.

Figure 6B shows a comparison between the measured stability in a recent study with
others from the literature [75–82]. The figure curves show that the prepared nanofluid in
this study has high and suitable stability compared to the included studies, which confirms
the validity of the work steps and the accuracy of the measurements. The results showed
that nano-Fe2O3 is suitable as a coolant for PV/T systems, as it has high stability and
good thermal conductivity, in addition to the fact that the change in density and viscosity
is limited.
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Figure 6. The effect of mass fraction added on resulted nanofluid stability (A), and a comparison
between recent study stability and others from literature (B).

Figure 7 shows an analysis of the energy (energy-saving efficiencies electrical, thermal,
and total) of the two PV/T systems when circulating a nanofluid with the highest thermal
conductivity (2% nano-Fe2O3 with EG-water blend). The nanofluid is circulated in a
spiral flow heat exchanger. The figure studies the effect of mass flow rate which ranges
from 0.08 kg/s to 0.017 kg/s. Figure 7A shows the maximum electrical, thermal and total
efficiencies for a system using monocrystalline PV and Figure 7B shows the same efficiencies
for the working case of a polycrystalline PV system. For both cases, increasing the mass
flow rate produced higher efficiencies. The monocrystalline PV/T system produced a total
efficiency ranging from 59% to 72.3%, where the electrical efficiency was between 10%
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to 13.3% and the thermal efficiency was from 43% to 59%. When using a polycrystalline
photovoltaic panel, the PV/T system produced a total efficiency ranging from 55.5% to
76.75%, where the electrical efficiency was between 11% to 13.75% and the thermal efficiency
from 44.3% to 63%. These results show a partial superiority of the polycrystalline PV/T
system over the monocrystalline system.

Figure 8 shows the exergies variation of the two PV/T systems (monocrystalline and
polycrystalline). Like the previous figure, the thermal, electrical, and total exergies increase
with the increase in the mass flow rate from 0.08 kg/s to 0.17 kg/s. The photovoltaic
power increases very slowly. The electrical exergy of the monocrystalline system ranged
between 45 W and 64 W while the thermal exergy was from 40 W to 166 W, and the total
exergy ranged from 85 W to 280 W. As for the case of the polycrystalline PV/T system, the
electrical exergy ranged from 45 W to 66 W, the thermal exergy ranged from 42 W to 172 W,
and the total exergy ranged from 85 W to 238 W. The results show a slight superiority in the
exergy of the PV/T system powered by polycrystalline PV compared to the other system.
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Figure 8. Exergy analysis for both monocrystalline (A) and polycrystalline (B) PV/T systems.

At high mass flowrates, the PV/T thermal exergy remains high, and it is observed to
continue to rise up to a certain point, which is consistent with the mathematical models
and other studies published on this topic. Increasing the mass flowrate from 0.08 kg/s to
0.175 kg/s led to an increase in the thermal exergy of around 300% (from 42 to 172 W) and
315% (from 40 to 166 W) for the poly- and mono-crystalline PV/T collectors—considering
an average exergy input of around 328.65 W/m2. Meanwhile, minimal variations were
observed for the electrical exergy produced by the PV model, which means this type of
system can be considered to be thermally biased. It is noteworthy to mention that the
electrical yield of the system is a high-grade form of energy, while the thermal yield is
considered to be low-grade. Table 7 lists the results of some valuable studies in the literature
and the current study efficiencies results. The table included the type of heat collector
and the cooling fluid used for comparison. Comparison of these results may not be fair
due to differences in flow type, the material of the heat exchanger, flow rate, coolant type,
etc. However, such tables remain useful, as they give an indication of whether the results
are acceptable or not. When comparing the results of the current study with the studies
listed in Table 7, it is noted that the two systems used gave excellent results compared to
the rest of the studies, except for the Ref. [89], which can be superior to using nano-PCM
and nanofluid together. Such collectors are considered to be very expensive compared to
cooling only with nanofluid. The issue here remains the balance between the cost and the
financial return from the system.
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Table 7. A comparison of energy analysis of recent study and others from literature.

Ref. No. Electrical
Efficiency

Thermal
Efficiency

Total
Efficiency Cooling Fluid Collector Design

[83] 9.5 50 59.5 Water Flat plate

[84] 9 38 47 Water Corrugated polycarbonate
panel

[85] 11 51 62 Water Aluminum-alloy flat-box

[86] - - 64.9 Water Flat-box absorber

[87] 9.87 40 49.87 Water Flat-box Al-alloy absorber
plate

[88] 13 45 58 Nano-Al2O3-Water Spiral flow absorber

[25] 17.2 54.8 72 MWCNT-water Copper sheet and tube

[63] 9.9 54.28 64.18 Nano-SiC—water Direct-flow configuration

[89] 16 70 86 Nano-SiC—water
+Nano-paraffin

Copper tubes in heat storage
tank

Current study
(Monocrystalline) 13.3 59 72.3 Nano-Fe2O3-water-EG Spiral flow absorber

Current study
(Polycrystalline) 13.75 63 76.75 Nano-Fe2O3-water-EG Spiral flow absorber

4. Conclusions

This study presented an empirical analysis of the energy and exergy for two nanofluid
cooling systems consisting of an EG-water mixture (75% to 25%, respectively) and iron
oxide nanoparticles. A spiral heat exchanger attached to the back of the photovoltaic panel
was used. Two types of PV technologies, which are monocrystalline and polycrystalline,
were examined in the harsh weather conditions of Baghdad city. The efficiency of three
cooling methods (conventional PV, EG-water-cooled PV/T, and nano-fluid-cooled PV/T)
was compared. The results show that cooling with the EG-water mixture alone reduced the
temperature of the PV panel to 18.85%, while when using the nanofluid, the percentage
of reduction was about 27.57%. Important properties of the nanofluid such as viscosity,
density, thermal conductivity, and stability of the fluid were evaluated. The results showed
that the addition of nano-Fe2O3 by weight of 2% caused a limited increase in the density
and viscosity of the nanofluid, but it caused a clear increase in its thermal conductivity
up to 140%. The prepared nanofluids proved to be of high stability as a result of good
mixing and use of sonication for a sufficient period of time. Finally, by comparing exergy
and energy between the two PV/T systems working with mono and polycrystalline, it
was found that the polycrystalline system produced higher energy and exergy than the
monocrystalline case. The total electrical, thermal, and total efficiencies obtained were
13.75%, 63%, and 77.65% for a PV/T system with a polycrystalline PV panel. As for the
highest total exergy that was reached, it was 238 W for the same system, compared to
172 W for the case of monocrystalline.

The study results clarify the need for several future studies to reach the most suitable
nanofluid for PV/T systems. It is also very appropriate to study the effect of magnetic field
on nanofluids containing nano-ferrous oxide and the effect of this method on the efficiency
of PV/T systems.
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