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Abstract: Nano-additives have attracted lots of attentions in recent years due to their 

special performances. A traditional lubricating additive MoS2 with nano-scale and a 

novel additive graphene were reviewed in this chapter. The synthesis methods, prop-

erties and tribological applications of these two kinds of nano-additives dispersed in 

media have been reported. Nano-MoS2 has three main nanostructures including nano-

ball particles, nano-sheets and nano-tubes. The wide accepted lubricating mechanisms 

for the MoS2 nano-balls, nano-sheets and nano-tubes are nano-bearing effects, slip-

pery roles and combined actions of rolling and sliding, respectively. Exfoliation and 

transfer seems to be the main pattern for MoS2 nano-balls. For graphene, the adsorp-

tion and tribo-reaction account for its lubricating properties. A synergistic lubricating 
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effect for using graphene and MoS2 together dispersed in oil was found. Graphene 

was proved to extend the retention of MoS2 on the surfaces and prevent the oxidation 

of MoS2. Simultaneously, MoS2 prevented the graphene from being ground into small 

and defective platelets. Both of them help to form a thicker adsorbed and tribo- film 

which result in a lower friction and wear. Other properties and applications of nano-

MoS2 and graphene are also reviewed. It shows that these two nano-additives have di-

verse functions and great potential for industrial applications. 

 

Keywords: Nano-MoS2; Graphene; Nano-additives; Tribological application  

 

1. Introduction 

A general demand from Society for a more sustainable and environmentally 

friendly development has led to an increasing interest and a growing corpus of work 

on energy-saving and emission reduction technologies [1]. The internal combustion 

engine is one such technology that has seen huge improvements in fuel efficiency, re-

duced overall energy consumption and emissions, and a key aspect of this has been 

improvements to the lubrication system [2].  

With the development of the nanotechnologies, the use of nano additives added 

to base oils have been shown to reduce friction and wear due to their excellent lubri-

cating effects. Some common solid particle lubricants such as nano-MoS2 and gra-

phene have made the transition from concept to application and are showing great po-

tential in industry. However, there still exists a gap between the scientists and 



3 

industrial engineers, relating to a general willingness to use the new formulated addi-

tives [3]. However, if emissions and fuel consumption targets are to be met, then nano 

additives, added to lubricant formulations will be a vital component for industry to 

deploy to meet these objectives.  

In this chapter, the progress and particularly the tribological behaviors of some 

key nano additives dispersed in base oil are reviewed, and the trends in future devel-

opments of nano additives is discussed in order to accelerate their application.  

 

2. An introduction to and the tribological behaviour of Nano-MoS2 

Molybdenum disulfide (MoS2) has a layered two-dimensional structure. Its crys-

tal structure contains 1T-MoS2, 2H-MoS2 and 3R-MoS2. 1T-MoS2, per unit cell, has 

an octahedral structure with S atoms and one Mo atom; 2H-MoS2 has a Mo atom with 

hexagonal structure and two S-Mo-S covalent bonds; and 3R-MoS2 has a Mo atom 

with hexagonal structure and three S-Mo-S covalent bonds. Their respective struc-

tures are shown in Fig. 1. Among these MoS2 crystals, 1T and 3R-MoS2 are metasta-

ble and 2H-MoS2 is stable under normal conditions. But no matter which crystal, each 

S atom is surrounded by 3 Mo atoms, and each Mo atom is surrounded with six S at-

oms consisting of S-Mo-S covalent bonds [4], such that the atom ratio of Mo and S is 

1:2.  

The layered structure of MoS2 has excellent tribological properties which are at-

tributed to a combination of its low Van der Waals force between the molecule layers 

and strong covalent bond in molecule. When MoS2 bears a shear stress, molecular 
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layers slide easily over one another. Th is is the reason that MoS2 has been widely 

used as a solid lubricant and used as an additive of lubricating oils. It has been proved 

that the size of MoS2 particles has a significant affect their performances and so in the 

following section, some typical nano structures of MoS2 are reviewed. 

 

Figure 1. Hexagonal structure of MoS2 (a), schematic illustration of the 1T- MoS2 (b), 2H-MoS2, 

and 3R-MoS2, and the repeat unit of the MoS2 layers (c) [5]. 

 

2.1 MoS2 particles – nano-balls 

Compared with MoS2 sheets, MoS2 nano-ball particles have some particular 

characteristics, including no dangling bonds that make them more stable. Additionally, 

the small size of the MoS2 nano-particles may result in some other enhanced physical 

properties. 

 

2.1.1 Preparation of MoS2 nano-balls 

Rosentsveig et al [6] used a four-step method to produce an inorganic fullerene-

like (IF) MoS2, which constitutes a typical nano-ball particle. The process includes 

four consecutive steps: (1) Evaporation of the molybdenum oxide (MoO3) powder at a 

temperature of between 700–750 °C; (2) the reduction and condensation of the vapor 

(a

) 

(b

) 

( ) 
( ) 

( ) 
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into MoO3-x nanoparticles at 780 °C; (3) the sulfurization of the first few layers of the 

oxide nanoparticles; (4) The complete sulfurization of the nanoparticles with a slow 

diffusion-controlled reaction at a temperature above 840 °C. This method allows the  

sulfurized degree to be controlled (Fig. 2), it is however a complex procedure that 

consumes a large amount of energy.  

 

Figure 2. TEM images of IF-MoS2 nanoparticles with no oxide (a), and remaining oxide (MoO2) 

in the core (b) [6]. 

 

Precipitation is another popular approach used for producing MoS2 nano-balls 

due to the relatively gentle synthesis conditions. As an example, Huang et al [7] added 

28 g Na2S and 5 g (NH4)2MoO4 into 250 mL distilled water, allowing the reaction to 

occur  over an hour. During the reaction, hydrochloric acid was added into the solu-

tion in order to control the acidic pH. After this, the as-prepared MoS3 precursor was 

despulphurized in a gas mixture of hydrogen-argon at 1173 K for 8 h. The final nano-

balls had diameters varying from 70 to 120 nm (Seen from Fig. 3).  
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Figure 3. TEM images of the IF–MoS2 nanoparticles from produced using precipitation methods 

[7]. 

Hu et al [8] prepared molybdenum sulphide particles with Na2MoO4 and 

CH3CSNH2 by a quick (c. 5 mins) homogenous precipitation technique in an alcohol–

water solution at 82 °C. The resultant amorphous MoSx nano-ball particles were then 

despulphurized under H2 flow at an elevated temperature for 50 min. This method 

seems to be another alternative method that can be used to synthesize nano- ball MoS2.  

 

2.1.2 Characterization of MoS2 nanoballs 

Transmission electron microscopy (TEM) can be used to observe MoS2 nano-

particles, operating a levels of resolution that are much higher than light microscopes, 

due in part to the small de Broglie wavelength of electrons. It can also be used to 

show structure, morphology and to check the aggregation of nano-particles. 

Scanning electron microscopy (SEM) is another effective tool to observe the 

form of nano-particles. As an example, Fig. 4 [7], shows a MoS3 precursor produced 

by Huang, with a clear spherical shape, with a diameter of  ~150 nm. However, the 

aggregation of the nano-particles is severe as no dispersing media can be used with 

this method.  
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Figure 4. SEM image of MoS3 precursor [7]. 

 

X-ray powder diffraction (XRD) can be used to assess the crystal structure of 

MoS2 nano-particles. The work of the Institute of Tribology at Hefei University of 

Technology has proved that the MoS2 nano particles have the similar XRD spectra in 

Fig. 5 with the standard curve of MoS2 in PDF number 37-1492. Its holly structures 

are also shown in TEM in Fig. 5.  

 

 

Figure 5. XRD (a), TEM (b) and HRTEM (c) of the MoS2 nano-ball particles [9]. 

 

The crystallinity and shape of MoS2 nano-balls are the main characteristics that 

affect frictional properties. These two properties are governed by the parameers and 

conditions slected during synthesis. Crystallinity governs the order degree of an MoS2 

layer which is composed of closed shells nano-balls. Perfectly crystalline MoS2 nano-

balls have a well crystalline order with few defects present in closed shells, whereas 
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poor crystallinity shows some extent of disorder with many point defects (Fig. 6). 

Moreover, perfectly crystalline MoS2 nano-balls will have good physical properties. 

The shape of an MoS2 nano-ball is not a perfect sphere most of the time. There are 

corners in the structure which are likely to induce stress concentrations. With this in 

mind, therefore the more perfectly crystalline and spherically shaped that the MoS2 

nano-ball is, the higher the ability resisting deformation [10].  

 

Figure 6. HRTEM images of perfect (a, a1) and incomplete crystalline MoS2 nano-balls (b, b1) 

[10]. 

 

2.1.3 Dispersion of MoS2 nano-balls in base oil 

MoS2 nano particles have lots of functions including lubrication, catalysis [11], 

functional materials and so on [12]. Among them, one of the most important function 

for MoS2 seems to be lubrication. Usually, it is used as an additive in base oil or 

grease. Thus, the choice of the base oil is very important for improving the lubricating 

properties of MoS2 nano-particles. For example, an industrial oil composed of many 



9 

fractions of hydrocarbons has been used for dispersing MoS2 nanoparticles [13]. The 

industrial oil will have contained has many other additives with a variety of roles. To 

reduce the effects of the other additives, paraffin oil is often chosen as a base oil for 

use with MoS2 nano-particles [7] because of the similar components with traditional 

mechanical oils. Poly alpha olefin (PAO) has attracted lots of attention, with excellent 

thermal stability and anti-oxidation properties, as base oil with MoS2 nanoparticles in 

recent years [6]. Moreover, Xu et al. have tried some renewable bio-energies, such as 

bio-oil, as the base oil for MoS2 micro-sheets, which have also shown good lubricat-

ing effects.  

It has been reported that the addition of the nano-particles on their own in base 

oil has little effect on the tribological properties of a tribo-systems. But takes effects 

after using a dispersing agent [13-15]. This suggests that the selection of the disper-

sive agent and method of mixing are very important. Zhou et al [16] used an extract-

ant Cyanex 301 (di-(2,4,4-trimethylpentyl) dithiophosphinic acid) to modify the sur-

face of MoS2 nano-hollow spheres in liquid paraffin. Results showed that the 

modified MoS2 had better extreme pressure, antiwear and antifriction properties than 

commercial MoS2. Sorbitol monooleate was selected by Huang et al. [7] as the dis-

persing agent for IF–MoS2 in paraffin oil. The mixture was stirred with a high speed 

dispersion machine before ultrasonic treatment.  

Dispersant agents can be grafted or adsorbed on nanoparticles with ultrasoni-

cation or stirring. The chemical affinity between dispersants and nanoparticles is main 

factor affect the dispersion. When chemical affinity is low, the particles can be easily 
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separated from the base oil and the nanoparticles will agglomerate again under the ef-

fect of friction [13].  

It is important not to increase the concentration of dispersants to levels that are 

too high in the lubricant. Under such conditions, though the nanoparticles will be well 

dispersed, a large amount of dispersant agent, will reduce the life of the lubricant and 

increase friction. As shown in Fig. 7, the tribological benefits of MoS2 were eliminat-

ed when 5% dispersant was used. However, when the dispersant concentration was 

adjusted to 0.05%, the friction coefficient decreased. The reason for this is that with 

high concentraions of dispersants, MoS2 nanoparticles, MoS2 cannot be adsorbed on 

the rubbing surface and reduced the friction coefficient [17]. 

 

  

Figure 7. Friction coefficient of PAO +1% IF-MoS2+5% dispersant (left),and PAO +1% IF-

MoS2+0.05%  dispersant (right) [17]. 

 

2.1.4 Comparison with micro-MoS2 

MoS2 nano particles have better lubricating properties than MoS2 micro particles 

[18]. According to the Risdon’s investigation [19], the energy consumed on transpor-

tation in the US during the period 1963-1974 can be reduced by 4.4% with proper 

dispersion of 1% weight commercial molybdenum disulfide in the engine oil. Thus, it 
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can be inferred that more fuel can be saved by the introduction of nano-MoS2. Hu’s 

results [18] showed that the addition of MoS2 nano-balls in liquid paraffin at a con-

centration of 1.5 wt% resulted in a better antifriction and antiwear properties than mi-

cro-MoS2. Fig. 8 shows a friction coefficient reducedion of 21% and 10% respective-

ly, when compared to those of 1.5% micro-MoS2 and 1.0% nano-slices.  

 

Figure 8. Effects of the concentration of MoS2 on the average wear scar [18]. 

 

2.1.5 Effect of ZDDP on tribological properties 

ZDDP (Zinc Dialkyl Dithiophosphates) is an important oxidation and corrosion 

inhibitor often found in full formulated lubricating oil which extends the oxidation re-

sistance of lubricating oil. It also has excellent anti-wear properties but has no effect 

on friction. Lamellar MoS2 nanoparticles derived from nano-sheets or the exfoliation 

of nanoballs are easily oxidized to MoO3 which degrade the friction-reducing proper-

ties of MoS2. When ZDDP and MoS2 nanoparticles exist together, both friction coef-

ficient and wear are reduced significantly. It is believed that there is a synergistic ef-

fect between ZDDP and MoS2: the MoS2 is believed to be embedded into ZDDP 

chemical reaction film and therefore reinforces its anti-wear effect, at the same time, 



12  

the ZDDP film provides protection for the MoS2 from being oxidized resulting in the 

improvement of the antifriction behaviors [20, 21]. 

 

2.1.6 Effect of crystallinity on tribological properties 

The tribological properties of MoS2 nanoballs to some extent are dependant on 

its structural characteristics and particularly its crystallinity. MoS2 nanoballs that are 

perfectly crystalline have a better ability to resist deformation, whereas MoS2 with in-

complete crystallinity are easily deformed and exfoliated under the similar sliding 

conditions [10]. Rabaso et al. [22] compared the frictional properties of MoS2 with 

prefect and poorly crystalline structures with similar average diameters (150nm). 

They found that perfect MoS2 nano-balls played a significant role in friction-reduction 

during running in, however, the friction coefficient increased after this due to the lack 

of perfect MoS2 nano-balls. On the contrary, poorly crystalline MoS2 maintained a 

stable low friction coefficient as shown in Fig. 9. The difference is because poorly 

crystalline can be easily exfoliated and transferred onto the rubbing surfaces forming 

an adsorbed layer. Perfect crystalline nano-particles were much harder to exfoliate be-

fore being squeezed out from the rubbing interfaces thanks to the better physical 

properties. In addition to the frictional process, the MoS2 adsorbed film formed during 

the early stages of rubbing was gradually worn off. Due to the two reasons above, 

there were few MoS2 particles remaining between the frictional interfaces resulting in 

the increase of the friction coefficient.  
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Figure 9. Friction coefficient of perfect (SC) and poorly crystalline (SpC) on HFRR [22]. 

 

2.1.7 Effect of different of pressure on exfoliation behavior 

MoS2 nano-balls can be ruptured under a high normal stress on the frictional in-

terfaces. However, this will not happen in oil though oil pressure might be much 

higher than critical ruptured normal stress. That is because oil pressure is isotropic 

and the shape of the nano-ball is quasi-spherical which makes bearing force of MoS2 

uniform (Fig. 10) [23].  

 

Figure 10. An  MoS2 nano-ball bearing two different forms of pressure: isotropic (a), normal 

stress (b) [23]. 

 

2.1.8 Tribological mechanisms 
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MoS2 nanoballs have excellent lubricating properties as lubricating oil additives. 

There are three main frictional mechanisms that can explain this property: rolling, 

sliding, and exfoliation- transfer (third body) as shown in Fig. 11 [24]. 

(1) Rolling: MoS2 nano-balls roll as a ball bearing across frictional interfaces un-

der relatively low normal stress. Roller is dependent on the shape of nano-balls which 

should be quasi-spherical structures.  

(2) Sliding: Similar to nano-sheets, friction happens between external surfaces of 

the nano-balls under higher normal stress. The behavior of sliding is due to the shape 

of nano-MoS2 particles, which is not perfectly spherical but of a faceted polyhedron 

structure. The corner of the faceted polyhedron structure can be easily distorted by  

asperities on the rough mating surfaces.  

(3) Exfoliation and transfer (third body): Exfoliation is the main action of behav-

ior under high normal stress resulting in deformation and even rupture of the nano-

balls. Under the combined effects of the normal stress and shear stress, the external 

surface of the nano-ball particles can be exfoliated producing MoS2 nano-sheets 

which can be adsorbed on the rubbing surfaces providing a protective layer and re-

duced the friction coefficient. 

Among these three behaviors, rolling is generally accepted as the most prevailent 

mechanisms of friction reduction, motion because they cannot be detected directly on-

ly by micro frictional tests on the single MoS2 nano-balls. 
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Figure 11. Schematic of the three main tribological mechanisms of MoS2 nano-balls: rolling (A), 

sliding (B), and exfoliation and transfer (third body) (C) [24]. 

 

Particle size and crystalline perfection of the MoS2 nano-balls are the most im-

portant factors that affect tribological behavior [6]. Generally, due to a nano bearing 

effect, the small MoS2 nanoparticles have better antiwear and friction reducing prop-

erties than larger nanoparticles. However, with the decrease of particle size, the ag-

gregation effects of the MoS2 can increase and chemical stability reduces, which 

might result in reduced lubricity. Hence, particle size is very important in the efficacy 

of the additives. It is believed that exfoliation, rolling friction and third body transfer 

of MoS2 sheets into surface asperities are the prevalent mechanisms that can explain 

the excellent tribological properties of MoS2 nanoparticles [6].  

There are no active dangling bonds in the closed-structure MoS2 consequently, 

the oxidation temperature of MoS2 nano-ball particles is ~100 
o
C higher than that of 

2H-MoS2. Moreover, under some testing conditions, the MoS2 nano-ball particles had 

better lubricating properties than MoS2 nano-sheets. This was ascribed to the chemical 
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stability of the layer-closed spherical structure of nano-balls. The detailed mecha-

nisms for this are shown in Fig. 12. In air or when used in liquid paraffin nano-sheets, 

, due to the rim-edge site of the nano-sheets, they are easier to oxidized into MoO3, 

there was a poor lubrication. MoS2 nano-ball particles are relatively stable and can 

bear the shearing via rolling and elastic deformation. 

 

Figure 12. TEM images and schematics of the lubrication mechanisms of MoS2 nano-slices (a) 

and MoS2 nano-balls (b) [18]. 

 

2.2 MoS2 nano-sheets 

In recent years, the study of graphene-like two-dimensional layered materials has 

attracted great interest due to the successful exploration of graphene [25-27]. Among 

them, MoS2 nano-sheets are the popular research molecular as a result of their distinct 

structure and superior properties. Functionalization, hybridization and modification of 

MoS2-based nano-sheets has seen them used widely in various applications. Here, the 

preparation, characterization and properties of nano-sheets are reviewed. 
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2.2.1 Preparation of MoS2 nano-sheets 

It has been demonstrated that most of the methods for preparing 2-D nano-

material such as graphene are effective for MoS2 nano-sheets. The classic and 

straightforward way to prepare the nano-sheets is micro-mechanical cleavage [12]. 

Using this Top-down approach, a high-quality 2-D nano-material can be obtained [28]. 

However, the shortcomings of this method is also obvious. The productive efficiency 

is low and it is difficult hard to synthesize the 2D nano-sheets in large quantities. 

Moreover, the geometry can be very difficult to control precisely.  

Ion-intercalation exfoliation is another popular method that can be used for prep-

aration of MoS2 nano-sheets. As shown in Fig. 13, there are three steps in this method 

: 1) introduction of Li
+
 ions into the interlayer of bulk MoS2; 2) immersion of Lix-

MoS2 nano-sheets into water; and 3) ultrasonic processing of the solution.  

 

 

Figure 13. Schematic illustration of electrochemical lithiation and exfoliation process for the fab-

rication of 2D nano-sheets from layered bulk crystals [29] . 
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Bottom-up methods have been used to fabricate MoS2 nano-sheets with desired 

size and thickness. Choudhary et al [30] adopted a sputter–chemical vapor deposition 

(CVD) technology to synthesize large-area, high-quality, and layer-controlled MoS2 

nano-sheets on a Si-based substrates. They also demonstrated that the single-layer 

MoS2 over an area of 2 inch. with the domain size of 10–15 μm2
, showing good po-

tential in future flexible, high-temperature, and radiation hard electron-

ics/optoelectronics. Although CVD is an effective method for producing high-quality 

MoS2 nano-sheets, there are some obvious disadvantages with the synthesis condi-

tions, such as high temperatures, the requirement for a vacuum, and specific sub-

strates, which restrict the practical applications of MoS2 nano-sheets [31]. 

Owing to specific merits such as cheap raw materials, size and thickness control-

lable, high productive efficiency and no requirements on the substrates, solution-

based methods have become prevalent in recent years. Smith et al [32] prepared MoS2 

nano-sheets through 1.5 mg mL−1
 sodium cholate as a surfactant to exfoliate bulk 

MoS2 in aqueous solutions. In a typical run, ultrasonic treatment can be used for the 

solution lasting 30 min, followed by centrifugation at 1500 rpm for 90 min.  

 

2.2.2 Application of MoS2 nano-sheets 

One of the most important applications for MoS2 nano-sheets is a substitute of 

noble metal catalysts such as Pt/C. It has been proved that the active edges of MoS2 

can be used as the active center for electro-catalysis [33]. Electro-catalytic perfor-
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mance can be improved by reducing the dimension and by exposing the edges of the 

2-D MoS2.  

Efficient energy storage is an important challenge for sustainable development. 

MoS2 nano-sheets can be used in energy storage devices. One such application is in  

Li-ion batteries, which have been shown to be a highly efficient energy storage sys-

tem. Although the charge capacity of the bulk MoS2 is easy to reduce after use, after 

intercalating Li-ion into the interlayer of MoS2, fewer layers of nano-sheets, the com-

posites exhibited a high energy density capacity of 750 mA h g
−1

 even after 50 cycles 

[34]. Na ion intercalation in MoS2 sheets has also shown promising results. Bang and 

his co-workers [35] reported a simplist method for enhancing the productive efficien-

cy of MoS2 nano-sheets in 1-methyl-2-pyrrolidinone with the assistant of sodium hy-

droxide. They also proved that at the high current densities, the exfoliated MoS2 elec-

trode exhibited better capacities than the pristine particle electrode (Fig. 14), 

indicating improved properties of the exfoliated MoS2 nano-sheets with the reduced 

diffusion lengths of Na ions. 
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Figure 14. Charge–discharge curves (a) and the cycling properties and their coulombic efficiencies 

of the MoS2 nano-sheets(b); the rate capability of pristine MoS2 powder and the prepared MoS2 

nano-sheets at various current densities(c) [35]. 

 

Wu et al. [36] used electrochemically reduced single-layer MoS2 nano-sheets for 

sensor applications. It was found that the prepared MoS2 nano-sheets had good con-

ductivity and high electrochemical sensitivity to detect glucose and biomolecules. 

Thus, reduced MoS2 nano-sheets can be used in the development of novel electrode 

materials and can supply a novel platform for the sensing applications. Li et al. [37] 

used MoS2 film-based field-effect transistors to detect NO at room temperature. The 

results showed that a single-layer MoS2 nano-sheet had a rapid response to NO, but 

the current was unstable. A few-layer (less than 5) MoS2 nano-sheet assembly pre-

sented both stable and sensitive responses to NO up to 0.8 ppm. 

Another important application for MoS2 nano-sheets is as lubricating additives. 

According to Wu et al. [38], with the addition of MoS2 nano-sheets in liquid particles 

with concentration of 1.5 wt.%, the friction coefficients decreased significantly and 

are shown in Fig. 15. In addition, MoS2 nano-sheets have a lower and more stable 

friction coefficient than commercial MoS2 micro-particles with the size of 3–5 mm, 

owing to the surface effect just as can be seen graphene [39]. This can be explained 
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by the fact that MoS2 nano-sheets have a larger surface area and higher chemical ac-

tivity, which makes them easier to adsorb on to rubbing surfaces in the form  of a sta-

ble tribo-film, reducing the friction and wear. 

 

Figure 15. Friction coefficient of the base oil with different additives: Without additives (a), MoS2 

micro-particles (b) and MoS2 nano-sheets (c) [38]. 

 

Hu et al. [40] prepared MoS2 nano-sheets with thickness of 30-70 nm via a mon-

olayer restacking process and studied tribological behaviors on a four-ball tribometer. 

Experimental results indicated that MoS2 nano-sheets had better anti-friction, anti-

wear and extreme pressure properties than micro-MoS2 (Fig. 16). The excellent tribo-

logical properties of MoS2 nano-sheets were attributed to a surface effect, dimension 

effect of the nanoparticles and a complex tribo-film composed of MoO3 and FeSO4 on 

the worn surfaces. 
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Figure 16. PB values (a), average friction coefficient (b) and wear scar diameter (c) of liquid paraf-

fin (a) with MoS2 nano-sheets (b) and MoS2 micro-sheets [40]. 

 

2.2.3 Tribological mechanisms of MoS2 nano-sheets 

As shown in Fig. 17, there are some S dangling bonds on the rim of MoS2 nano-

sheets. When they enter into frictional interfaces, MoS2 nano-sheets could be ad-

sorbed onto the frictional interfaces forming an adsorbed film depending on the for-

mation of S-O or S-Fe bonds. The O and Fe came from the oxide layer on the surfaces 

of the substrate. The adsorbed film prevented frictional interfaces from direct contact 

and improved the tribological properties.  

 

Figure 17. Schematic illustration of possible formation mechanisms of MoS2 adsorbed film on 

iron oxide layer (a) and metal atom (b) [41]. 
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Due to the chemical activity of dangling bonds, MoS2 nano-sheets could be oxi-

dized to MoO3 and progressively sulfated, where oxygen might come from air or wa-

ter during the sliding process. Fleischauer et al. [42] compared tribological properties 

of a typical MoS2 film in which the sulfur was substituted for different contents of 

oxygen. They found that friction coefficient increased with increases in oxygen con-

tent at first, up a saturation point of 3% followed by a decrease.   It is still higher than 

pure MoS2 when oxygen content exceeded the critical value (Fig. 18).  

 

Figure 18. Variation of friction coefficient with the oxygen concentration in the film [42]. 

 

Onodera et al. [43] drew similar conclusions by simulating single sheet MoS2 lu-

brication with computational chemistry methods. They proposed that the excellent 

tribological properties of MoS2 sheets was attributed to the increase of coulombic re-

pulsion energies between the two sulphur layers reacting with the iron surfaces as 

shown in the Fig. 19. With oxygen introduced into MoS2, coulombic interaction ener-

gy reduced and roughness of MoS2 layer increased. These resulted in the rising of the 
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friction coefficient. MoS2 layers became flat again and decreased the friction coeffi-

cient with further increases in oxygen contents. 

 

 

 

Figure 19. Average frictional force (a), Ra of top MoS2 layer on sliding surface (b); total interlayer 

coulombic interaction energy (c); coulombic attractive and repulsive energies (d) along with oxy-

gen concentration in MoS2 structures; schematic illustration (e) for lubricating properties of MoS2 

single sheet [43]. 

 

2.3 MoS2 nano-tubes 

The MoS2 nano-tubes, an analog of carbon nano-tubes, are considered to derive 

from lamellar compounds [44, 45]. The discovery of the carbon nano-tube has 

aroused great interest for the one-dimensional nano-tubes such as MoS2 due to their 

 

(a) 

(b) 

 
(c) 

(d) 

(e) 
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small dimensions, high anisotropy, and special tube-like structures [46]. In this sec-

tion, the preparation, characterization and application of MoS2 nano-tube will be de-

scribed and discussed.  

 

2.3.1 Preparation, Characterization of MoS2 nano-tube 

Remskar et al. [46] used 5 wt % C60 as a catalyst during the production process. 

In a typical run, the reaction conditions were controlled as follows: reaction time: 22 

days; temperature: 1010 K; reactor: silica ampoule; pressure: 10
−3

 Pa. The SEM and 

TEM images of the nano-tubes are shown in Fig. 20. The conversation rate was about 

15% for MoS2 nano-tubes.  

 

Figure 20. SEM and TEM images on different length scales. (A) Bundles appear to self-assemble 

into various different microscopic structures. (B) The bundles end in sharp points. (C) A split tip 

of a bundle terminating in strands ∼4 nm wide. (D) Expanded electron transmission view of a 

strand composed of an only few individual nano-tubes [46].  

 

Template synthesis is another path to obtain MoS2 nanotubles. Zelenski et al. [47] 

used aluminum oxide templates to prepare near-mono dispersed MoS2 nano-tubules. 
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As shown in Fig. 21, the fibers in the picture were synthesized in 0.1 M (NH4)2MoS4 

DMF solutions. They were separated from the template by the dissolution of the tem-

plate using 1.0 M NaOH solutions. Fig. 21b presents an end-on view of the nano-

tubes and confirms their hollow nature. 

 

Figure 21. A TEM image of the MoS2 tubes after dissolution of the aluminum oxide template (A). 

A TEM image of a bend in a tubule of MoS2 emphasizing the hollow nature of the tubules (B) 

[47]. 

 

Nath et al. [48] developed a simple synthesis method of MoS2 and WS2 nano 

tube. The first step was to prepare MoS3 precursors via decomposition of (NH4)2 

MoS4 at 400 
o
C in an argon atmosphere. Then, the precursors were heated at 1200-

1300 
o
C under H2 atmosphere. MoS2 nano-tubes were formed, and the TEM images 

are shown in Fig. 22. It can be seen that the external diameter of the nano-tube is 

about 20-30 nm, and the wall thickness is about 10-15nm. There are also some onion-

like clusters in the Figure, suggesting the existence of an intermediate stage between 

MoS3 precursors and MoS2 nano-tubes [49]. Feldman et al. [50] used the gas-phase 

reaction between MoO3 and H2S in a reducing atmosphere at high temperature and al-

so got high-rate growth of MoS2 nano-tubes.  
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Figure 22. TEM images of MoS2 nano-tubes: (a) Images of several nano-tubes; (b) and (c) high 

resolution images of the nano-tubes; and (d) nested-shell and onion-like clusters with hollow core 

[48]. 

 

2.3.2 Applications of MoS2 nano-tubes 

Besides the synthesis and characterization of MoS2 nano-tubes, studies have 

been focused on a great number of particular properties and applications [51], for in-

stance, mechanical properties [52], field emission properties [53], in hydrogen storage 

applications [54] and as catalysts [55].  

Chen et al. [55] synthesized an open-ended MoS2 nano-tube and used it as the 

catalyst of methanation of CO and H2 at relatively low temperatures (Fig. 23)).  Tech-

niques such as this contributes to new ways of  reducing the environmental load re-

sulting from CO emissions. By analyzing the shear and Young’s moduli of the MoS2 

nano-tubes, Kis et al. [56] used an atomic force microscope to study the interaction 

between the MoS2 nano-tubes, finding the MoS2 nano-tube ropes were highly aniso-

tropic and very weak.  
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Figure 23. Catalytic abilities of MoS2 nano-tubes [55]. 

 

Chen et al. [44] prepared MoS2 nano-tubes by heating (NH4)2MoS4 in hydro-

gen/thiophene. They studied the electrochemical properties. It was found that the 

highest capacity was 260 mAh g
-1

 because of a highly nano-porous structure, suggest-

ing a potential application in electrochemical catalysis and high-energy batteries.  

Analogouslyto MoS2 nano-tube, WS2 nano-tubes, can be used for tips in scan-

ning-probe microscopy [57]. They have been successfully applied in the inspection of 

microelectronics circuitry. With improvements in productity for producing these, the 

application of MoS2 nano-tubes will widen to include nanolithography, photocatalysis, 

sensors and others [58].  

MoS2 nano-tubes also have excellent lubricating properties whether as lubricat-

ing oil additives or prepared as self-lubricating composite materials [59, 60]. However, 

due to their thin and long structure and chemical inertness, MoS2 nano-tubes are hard 

to disperse in lubricating oil which limit their tribological application. Modification,  

treatment or the addition of a dispersion agent is an effective method to improve dis-

persion in oil of nano-tube[61, 62]. Kalin et al. [63] investigated the frictional proper-

ties of MoS2 nano-tubes as oil additives. They found that the lubrication mechanism 
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was mainly exfoliation and deformation which was similar to that of MoS2 nanoballs. 

Exfoliated nano-sheets were adsorbed on to the rubbing surfaces, and compacted and 

deformed to form a boundary film. With these two combined effects, MoS2 nano-

tubes reduce friction and wear significantly. 

 

3. Graphene and its tribological applications 

Graphene, just like the structured MoS2, is a 2-D layered material with sp
2
-

bonded carbon, that has received substantial attention [64-66] due to its good conduc-

tivity, excellent mechanical properties, potential applications in electrochemical ener-

gy storage [67], microelectronics and lubricating additives [68, 69]. In this section, the 

preparation, characterization and applications of graphene is reviewed to give a view 

on the increasingly wide scope of applications. 

 

3.1 Preparation and characterization of Graphene 

Graphene was firstly prepared by Geim et al. at the University of Manchester in 

2004 by using tape [70]. This was work for which they were awarded the Nobel Prize 

in Physics in 2010. From this point, graphene has attracted substantial research atten-

tion such that it’s synthesis, characterization,  its unique structures and superior prop-

erties are well studied  

 

3.1.1 Exfoliation in liquid or gas 



30  

Exfoliation of graphite in liquid or gas is physical method to obtain graphene. 

Hernandez et al. [71] demonstrated that dispersion and exfoliation of graphite in N-

methyl-pyrrolidone to obtain graphene blended solutions with a concentration of 0.01 

mg ml
-1

. However, the yield of single-layer graphene was low at about 1%.  

 

3.1.2 Modified mechanical exfoliation 

Recently, in order to improve the yield of production of single layer graphene, 

Xu et al. [72] used a friction-induced exfoliation from graphite to graphene in esteri-

fied bio-oil. They dispersed flake graphite into the esterified bio-oil and then meas-

ured the tribological response of the dispersed graphene after ultrasonication for 20 

min. Testing was performed on a ring-on-plate tribometer. It was found that both load 

and sliding speed had an important effect on the quality of the graphene. Higher loads 

and lower sliding speed were helpful to form the single-layer graphene. In addition, 

higher loads also contributed to friction and wear reduction in the tribosystem due to 

the formation of a thicker tribofilm.  

 

3.1.3 Epitaxial growth 

Due to the low efficiency of the mechanical exfoliation method, epitaxial growth 

has become one of the most important methods to produce the graphene film on cer-

tain substrates such as SiC and transition metals [73]. Yang et al. [74] used a plasma-

assisted deposition epitaxial growth method to obtain the single-domain graphene on 

hexagonal boron nitride. The graphene was produced at ~500 °C. A schematic illus-
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tration of this process is shown in Fig. 24, suggesting a typical edge growth of carbon 

atoms. The sp
2
 carbon structure of the graphene were confirmed by Raman spectra in 

Fig. 24b. The AFM images also showed the existence of single layer graphene.  

 

 

Figure 24. Schematic illustration of the growth mechanism (a); Raman spectra for hexagonal 

MLG (h-MLG) grains (red), BLG film (blue) and bare h-BN surface (black) (b). c–e, AFM images 

of as-grown graphene on h-BN at different stages including small grains nucleation (c), coales-

cence of grains (d), and continuous monolayer graphene with some second-layer nuclei on top. A 

height profile was extracted along the dashed white line cut in d, with white and cyan arrows indi-

cating the first and second layer, respectively. The scale bars in c–e are 500 nm. f, g, Zoom-in 

AFM image of as-grown graphene showing aligned hexagonal grains (f) or pits after plasma etch-

ing (g). The scale bars in f, g are 200 nm [74].  

 

Fumihiko et al. [75] grew graphene on a SiC (0001) substrate under the tempera-

tures varying from 600 to 915 °C by thermal decomposition of a cracked-ethanol 

source. This is an example of one kind of gas-source molecular beam epitaxy (MBE) 
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methods. The experimental results showed that higher temperatures were helpful to 

prepare high quality single-layer graphene. Unfortunately, the growth rate decreased 

with the increase in temperatures. Moreover, there was a network of fin-like ridge 

shapes of graphene (Fig. 25). 

 

Figure 25. Topographic AFM image of graphene (a), and the height of the line in the AFM image 

(b) [75]. 

 

However, the epitaxial growth method for producing graphene has some disad-

vantages. For instance, it requires some harsh conditions, including high temperature, 

high vacuum, special atmosphere and substrates. The synthesized graphene is also 

hard to separate from the substrate. It is also hard to produce graphene on a large scale 

in industry. 

 

3.1.4 Chemical vapor deposition 

Chemical vapor deposition (CVD) has been used to produce high-quality thin 

films on substrates in the semiconductor industry. In recent years, this technique has 
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also been applied to synthesis graphene. The principle is to deposit volatile precursors 

onto the substrate.  

A single- and few-layer (less than 10) graphene film with large area (~ cm
2
) was 

prepared by Reina et al. over an Ni surface using CVD technology [76]. But the lat-

eral size was limited to 20 µm. The domain boundaries have proved adverse to the 

transport properties. Thus, graphene with a larger area is still the pursuit of the scien-

tists. Li et al. [77] prepared single crystal graphene with domain size of up to 0.5 mm 

(Fig. 26), which were grown at low-pressure and high-temperature chemical vapor 

deposition (8 mTorr at 1035 °C) on copper-foil enclosures using methane as a precur-

sor. The flow rates and partial pressures of the methane were less than 1 sccm and 50 

mTorr, respectively. The transport properties of the graphene film were measured, and 

the mobility of the films was found to be a little bit higher than 4000 cm
2
 V

−1
 s

−1
, in-

dicating further improvements for this graphene film should be possible. 

 

Figure 26. SEM images of graphene on copper grown by CVD: Graphene domain grown at 1035 

°C on Cu at an average growth rate of ∼6 μm/min (a). Graphene nuclei formed during the initial 

stage of growth (b). High-surface-energy graphene growth front (c) [77].  
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CVD methods can produce high-quality graphene with large area, with the prod-

ucts easily separated or transferred from substrates. In addition, CVD derived gra-

phene can be processed at relatively low temperatures and ambient pressure. However, 

the thickness of the graphene is hard to control and the yield remains low.  

 

3.1.5 Reduced graphene oxide 

A reduced graphene oxide method for the production of graphene in aqueous so-

lution has attracted great interests due to its low cost, easy processability and high ef-

ficiency. The process includes three steps: 1) preparation of oxide graphite from 

graphite using strong oxidants such as concentrated sulfuric acid, concentrated nitric 

acid and potassium permanganate; 2) ultrasonic process for separating the lattices of 

oxide graphite; 3) reduction of the graphene oxide with reducer such as hydrazine hy-

drate and sodium borohydride.  

Tkachev et al. [78] used a modified Hummers method to prepare graphite oxide, 

and then synthesized the graphene oxide by ultrasonic processing. The final reduced 

graphene oxide was obtained after the appropriate amount of graphene oxide and eth-

anol were mixed and reacted at 200–380 °С for 10–90 h. A typical detailed process 

for preparing reduced graphite oxide is shown in Fig. 27.  

 

Figure 27. The preparation process of reduced graphene oxide [78] 
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3.2 Properties and applications of graphene 

Graphene has become a star molecule over the last c.10 years because of the 

ability to its particular structure and properties such as electrochemical, mechanical 

and other properties. The progress of the main properties of graphene is reviewed in 

this section.  

 

3.2.1 Electrochemical properties 

Electrons in graphene have a character that can be described by a linear disper-

sion relationship. It has been confirmed that at room temperature the electron mobility 

of single-layer graphene amounts to 15, 000 m2
 V

−1
 s

−1
. Therefore, graphene has 

many potential applications in microelectronic devices [79]. Geim et al. [79] noted 

that the conductivity of graphene was much higher than that of single-walled carbon 

nano-tubes by about 60 times. In addition, they found that graphene had higher sur-

face negative charge, better stability and signal-to-noise ratio than single-walled car-

bon nano-tubes, indicating the potential of graphene in the detection of some small 

molecules such as dopamine and serotonin by graphene electrodes.  

Shan et al. [80] used graphene to increase the conductivity and electrochemical 

stability of MoS2 since MoS2 has a high theoretical specific capacity (about 670 

mA h g−1
) but low cycle charging performance. A unique film–foam–film structure 

was designed to solve this problem. The experimental results showed that the appro-

priate structures resulted in a high, reversible Li storage capacity of 1200 mA h g−1
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and a longer lifetime, suggesting its potential application in high-energy-density bat-

teries. 

 

3.2.2 Mechanical properties 

With the potential application of graphene in nanoelectromechanical systems, the 

mechanical properties of mono-layer or few-layer graphene (less than 5) have aroused 

great interest. Frank et al. [81] used an atomic force microscope to measure the effec-

tive spring constants of the graphene sheets with thickness between 2 to 8 nm ranging 

from 1 to 5 N m
-1

 and the Young’s modulus of graphene sheets is 0.5 TPa, which is a 

half of bulk graphite.  

Young's modulus was studied by molecular dynamics and was predicted higher 

than 1 TPa [82]. According to Lee et al. [83, 84], the Young's modulus and fracture 

strength of a defect-free graphene were 1.0 TPa and 130 GPa, respectively, being 

measured by an AFM indentation approach (Fig. 28). 

 



37 

Figure 28. Images of graphene membranes: SEM images of a large graphene flake spanning an ar-

ray of circular holes 1 μm and 1.5 μm in diameter. Scale bar, 3 μm (A). Noncontact mode AFM 

image of one membrane (B). Schematic of nanoindentation on suspended graphene membrane (C). 

AFM image of a fractured membrane (D) [84]. 

 

3.2.3 Optical properties 

Of main interest for graphene is the comparison of the permittivity features. 

Falkovsky [85] investigated the transmittance of graphene in the optical region and 

found that optical properties were affected by the interband electron transitions. 

Moreover, the transmittance of graphene in the visible spectrum range was not affect-

ed by frequency and had a constant value depending on its fine structure.  

 

3.2.4 Extreme pressure properties 

The extreme pressure value (PB) of oil is an important parameter when evaluat-

ing the load carrying capacity of lubricating oil. Nano scale lubricating particles being 

mixed with oil can penetrate into rubbing surface during sliding and protect rubbing 

surfaces from contacting directly and can form an adsorbed layer. Because of the ex-

cellent anti-wear properties, nanoparticles with a low concentration can improve PB 

values significantly. As shown in Fig. 29, comparing with the base oil or base oil with 

flake grphite, MoS2 nano-sheets and graphene can increase PB value to approximately 

2 and 1.6 times, respectively at optimum concentrations [40, 86]. 
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Figure 29. Effect of concentration of MoS2 nano-sheets (left) [40] and graphene (right) on 

the PB value [86]. 

 

3.2.5 Dispersion properties 

The advantage of nanoparticles is that they can penetrate into mating surfaces 

during frictional process even in severe boundary lubrication. However, nanoparticles 

tend to agglomerate due to nanometric  size effects. The size of the agglomeration 

might amount to a few microns which make the particles much less likely to penetrate 

into frictional interfaces, and so the cannot reduce the friction and wear of the tri-

bosystem. Therefore, the dispersive properties of the nano-lubricating additives are 

very important. Modification treatments are a chemical reaction method to graft a 

modifier on the nanoparticles to improve the dispersive properties. The modifiers 

commonly have an oleophylic functional group of long chain alkane. Although gra-

phene has excellent tribological properties, the dispersion of graphene in oil is poor 

which leads to coagulation and precipitation of graphene quickly because of chemical 

inertness.  
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Modifying graphene with an appropriate modifier is an effective approach to 

forming stable dispersions and preventing aggregation. Lin et al. [86] modified gra-

phene by using stearic and oleic acids. The modifiers, cyclohexane and dried gra-

phene were heated and stirred at 80 °С for 5 h. There was some residual oxygen-

containing functional groups, as a result of the incomplete diminution of reduced gra-

phene oxide, that could react with carboxyl groups of stearic and oleic acids. There-

fore as a result of the long chain molecular structures of stearic and oleic acids, modi-

fied graphene has better dispersive properties than the pristine graphene as shown in 

Fig. 30. 

 

Figure 30. Dispersive stability of graphene in lubricating oil [86]. 

 

3.2.6 Tribological properties and applications of graphene 

Graphene has excellent tribological properties as lubricating oil additive in part 

due to its layered structure similar in many respects to MoS2,. Eswaraiah et al. [87] 

synthesized ultrathin graphene with thickness of ~2 nm via reducing graphene oxide 

with focused solar radiation. The tribological properties were investigated by using a 

four-ball tribometer. They found that the ultrathin graphene dramatically reduced av-
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erage coefficient friction and wear loss at relative low concentration in a formulated 

engine oil as shown in Fig. 31. Also graphene can significantly improve the load ca-

pacity of a lubricant owing to its excellent anti-wear performances especially at con-

centration of 0.025 mg mL
-1

. In addition, graphene in the base oil could be adsorbed 

on the frictional interfaces and by forming a physically adsorbed film. The adsorbed 

film protected the rubbing surfaces and reduced wear and the coefficient of friction. 

 

Figure 31. Tribological properties of graphene dispersed in engine oil: Coefficient of friction (a), 

wear scar diameter (b), and load capacity (c) [87].  

 

According to the results in Fig. 31, graphene has an optimal concentration. The 

antifriction and antiwear behaviors deteriorated when the concentration of graphene 

exceeded the optimal concentration. This can be explained by the fact that graphene 

can form an adsorbed film protecting frictional interfaces at an optimal concentration. 
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However, when the concentration exceeded the critical value, the lubricating oil in the 

friction region is reduced by the aggregation of graphene, which makes the oil film 

discontinuous and reduces the lubricating effects. The corresponding lubrication 

mechanisms of graphene as an oil additive in different lubricating state are shown in 

Fig. 32 [88]. 

 

Figure 32. Schematic of the lubrication mechanisms of graphene as oil additives at different lubri-

cating states [88]. 

 

4. Synergistic lubricating behaviors of graphene and MoS2  

Previous studies [89-95] have shown that the tribological mechanisms of MoS2 

are interlayer slippage, rolling deformation, and a slippery exfoliation. But the MoS2 

particles are easily removed during frictional process, which affects their long-term 

effects. Considering good adhesive and lubricating properties of graphene [96-100], 

the joint use of graphene and MoS2 seems to be a good choice. Currently, gra-

phene/MoS2 composites have been selected as a photoresponsive coating [101], elec-

trochemical sensors [102], catalyst supports [103] and for lithium storage [104]. Xu et 
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al. [105] have systematically studied the lubricating properties of graphene/MoS2 

composites, the results and tribological mechanisms are reviewed in detail in the fol-

lowing sections.  

 

4.1 Tribological behaviors 

Tribological tests were performed on a four-ball tribometer. The dispersive me-

dia was bio-oil and detailed frictional conditions were as follows: concentration of the 

additives: 0.5 wt.%; Load:300 N; Rotating speed: 1000rpm; Sliding time: 30min. As 

shown in Fig. 33, the MoS2/graphene composite had a lower friction coefficient and 

wear loss including wear scar diameter (WSD) and wear scar width (WSW) than 

MoS2 or graphene. This suggested a clear synergistic lubricating role of gra-

phene/MoS2 composites.  

   

Figure 33. Average friction coefficient (a) and WSD and WSW (b) of graphene and MoS2 dis-

persed in base oil with different mass ratio [105] 

 

The effect of the loads on the tribological behavior of the graphene/MoS2 com-

posite is shown in Fig. 34. The friction coefficient, WSD and WSW of pure base oil 
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and esterified bio-oil (EBO), increased with load, due to the smaller micro-intervals 

between the friction pairs under higher loads [106]. There was a great decrease in the 

friction coefficient and wear loss of the EBO with graphene/MoS2 composite addi-

tives, up to 300N. Exceeding this load, the friction coefficient and wear loss remained 

stable or increasing. At the same time, for the same load, the EBO with gra-

phene/MoS2 composite additives showed the best lubricity in all the four lubricants. 

This confirms the synergistic lubricating effects between graphene and MoS2. 

   

 

notes: ★ EBO;  ● EBO+0.5 wt.% graphene;  ■ EBO+0.5 wt.% MoS2;  ▲ EBO+0.3 wt.% graphene+0.2 wt.% MoS2 

Figure 34. Average friction coefficient (a), WSD (b) and WSW (c) of steel specimens under dif-

ferent loads [105]. 

 

4.2 Friction and wear mechanisms 
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In order to explore the friction and wear mechanisms of the graphene/MoS2 

composites, XPS spectra of the typical elements on the rubbed surfaces are shown in 

Fig. 35. The position of the two C1s peaks suggested the existance of carbon or sp
3
 C 

(C–C/C–H) and sp
2
 C (C=C/C=O) [107], respectively. This indicated that the ad-

sorbed film was made from carbon or organics, coming from the graphene or base oil. 

The largest areas of C1s peaks of graphene/MoS2 blends suggested the formation of 

the thickest adsorbed film containing graphene and organics. The O1s peak can be as-

cribed to hydroxides or sulfates, confirming the existence of an adsorbed film with 

organics or a tribo-film with sulfates. The O1s peak at 530.3 eV was attributed to 

Fe2O3, suggesting the tribo-oxidation of the substrate during sliding. The Fe2p peaks 

belonged to Fe2O3, and no simple Fe
0
 peak was found, confirming the existence of a 

complete tribo-oxide film on the rubbing surfaces. The Cr2p peaks belonged to Cr2O3 

and CrN, respectively. This confirmed a tribo-oxidation and tribo-reaction during the 

sliding process.  

For graphene/MoS2 lubrication, the two main Mo3d peaks at 232.6 and 235.8 eV 

were ascribed to MoO3 [9]. Another peak at 229.7 eV was ascribed to Mo3d of MoS2, 

but this peak was not detected for MoS2 lubrication. Moreover, the two S2p peaks at 

169 eV and 161.6 eV were indexed to SO4
2-

 and MoS2, respectively [108]. When 

MoS2 was used independently (c), the peak at 161.6 eV in the curve was very weak, 

suggesting that MoS2 was easily oxidized during sliding. That is, the introduction of 

graphene was helpful to the adhesion of the MoS2 on the frictional surface and further 

prevents the oxidation of MoS2.  
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The friction and wear mechanisms were summarized as follows. For graphene, 

the main antifriction and antiwear components were the small graphene particles, and 

ploughing was the dominant form of wear. For MoS2, the MoS2 with smaller surface 

area was the main lubricant but it is easily to be removed from the frictional surface or 

oxidized. For graphene/MoS2 composites, a thicker tribo- film was formed to play an 

antifriction and antiwear role. The synergistic lubricating effect of graphene and MoS2 

allows complete graphene and unoxidized MoS2 to remain on the sliding surfaces.  
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Figure 35. XPS spectra of the worn surfaces on the rotating specimen lubricated by base oil (a), 

base oil with graphene additives (b), base oil with MoS2 additives (c), base oil with graphene/ 

MoS2 composite additives (d) [105]. 

 

5. Conclusions 

In summary, in this chapter, two kinds of nano additives MoS2 and graphene 

have been reviewed. The preparation methods, properties and applications have also 

been discussed. Both MoS2 and graphene have various functions and applications and 

their tribological properties have been explored this chapter. For MoS2, different 

structures have different physical properties. Nano-MoS2 showed obvious advantages 

over the more conventional micro-MoS2. In a widely accepted opinion, rolling is the 

main antifriction and antiwear mechanism for nano-MoS2 particles. The slippery role 

is the friction-reducing mechanism of MoS2 nano-sheets and the combined actions of 

rolling and sliding account for the excellent lubricating effect of MoS2 nano-tubes. 

However, exfoliation and transfer cannot be ignored when explaining the tribological 

behaviors of nano-MoS2. More combined applications of nano-MoS2 with different 

structures requires further study.  

As for graphene, good adsorption onto the frictional surfaces is helpful to the lu-

bricating behaviors of graphene. However, the effects of the layer, area and defects 

inthe graphene on the tribological behaviors still remain unknown and need further 

clarification in the future. The graphene/MoS2 composites showed excellent synergis-
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tic lubricating effect. The mechanisms were attributed to the protective roles of the 

graphene preventing the oxidation of MoS2 and also MoS2 preventing graphene being 

destroyed and reduced into small, defective additives. The MoS2 used in the compo-

sites was micro-MoS2, nano-MoS2 composites needed to be studied further. To con-

clude, both graphene and MoS2 as lubricating additives have a bright future and more 

specialized applications will be researched and found.  
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