
Nano-RK: an Energy-aware Resource-centric RTOS
for Sensor Networks

Anand Eswaran1, Anthony Rowe1 and Raj Rajkumar1,2

Real-Time and Multimedia Systems Lab
1Electrical and Computer Engineering Department, {aeswaran,agr,raj}@ece.cmu.edu

2School of Computer Science
Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Many sensor networking applications such as surveillance and
environmental monitoring are time-sensitive in nature. To sup-
port such applications, we design and implement Nano-RK,
a reservation-based real-time operating system (RTOS) with
multi-hop networking support for use in wireless sensor net-
works. We support fixed-priority preemptive multitasking for
guaranteeing that task deadlines are met, along with support
for CPU and network bandwidth reservations. Tasks can spec-
ify their resource demands and the operating system provides
timely, guaranteed and controlled access to CPU cycles and
network packets in resource-constrained embedded sensor envi-
ronments. We also introduce the concept of virtual energy reser-
vations that allows the OS to enforce energy budgets associated
with a sensing task by controlling resource accesses. A light-
weight wireless networking stack supports packet forwarding,
routing and TDMA-based network scheduling. Nano-RK has
been implemented on the Atmel ATMEGA128 processor with
the Chipcon CC2420 802.15.4 transceiver chip. Our results
show that a light-weight embedded resource kernel with rich
functionality and timing support is practical and constitutes
a simple and alternative paradigm for supporting distributed
sensing tasks.

1 Introduction
The rapid proliferation of sensor networks has placed increas-
ing demands upon the system infrastructure for supporting scal-
able distributed sensor applications. As applications for sensors
in areas as diverse as security surveillance, traffic monitoring,
smart spaces and smart buildings continues to grow, infrastruc-
tural support for sensor network applications in the form of
system software is becoming increasingly important. The push
provided by the scaling of technology and the need to support
increasingly complicated and diverse applications has resulted
in the need for traditional multitasking operating system (OS)
abstractions and programming paradigms. The case for small-
footprint real-time OS support in sensor networks is strength-
ened by the fact that many sensor networking applications are
time-sensitive in nature i.e. the data must be delivered from the
source to the destination within a timing constraint. For exam-
ple, in a surveillance application, data relayed by a task which
is responsible for detecting intruders and subsequently alerting
the gateway nodes of the system should be able to reach the
gateway on a timely basis.

In this paper, we present Nano-RK, a small-footprint em-
bedded real-time operating system with networking support.
Nano-RK supports the classical operating system multitasking

abstractions allowing sensor application developers to work in
a familiar paradigm resulting in short learning curves, quicker
application development times and improved productivity. We
show that an efficient implementation of such a paradigm
is practical. We associate tasks with priorities and support
priority-based preemption i.e, a task can always be preempted
by a higher-priority task that becomes eligible to run. For
timing sensitive applications, we use priority-based preemptive
scheduling to implement the rate-monotonic paradigm [18] of
real-time scheduling so that a periodic sensor task set with tim-
ing deadlines can be scheduled such that their timing guarantees
are honored. Since modern sensor networks use ad-hoc multi-
hop wireless networking for packet relaying, we provide port-
based socket abstractions that can be used by sensing tasks for
sending and receiving data.

Since sensor nodes are resource-constrained and energy-
constrained, we provide functionality whereby the operating
system can enforce limits on the resource usage of individual
applications and on the energy budget used by individual ap-
plications and the system as a whole. In particular, we imple-
ment CPU reservations and Network Bandwidth reservations
wherein dedicated access of individual application to system
resources is guaranteed by the OS. The OS also implements
sensor reservations to enforce usage on the number of accesses
to individual sensors. Since the energy used by each task is the
total sum of energy consumed by the CPU/microcontroller, the
radio interface and the individual sensors, a particular setting
for each of these leads to an energy reservation. Since we use
a static design-time approach for admission control, we pro-
vide tools for estimating the energy budget of each application
and (hence) the system lifetime. The CPU, network and sensor
reservation values of tasks can be iteratively modified by the
system designer until the battery lifetime requirements of the
node are satisfied.

1.1 Related Work
Infrastructural software support for sensor networks was in-
troduced by Hill et al. in [13]. They proposed TinyOS, a
low-footprint component-based operating system that supports
modularity and concurrency using an event-driven approach.
TinyOS 1.0 supports an event-driven model wherein interrupts
can register events, which can then be acted upon by other non-
blocking functions. We believe that there are several drawbacks
to this approach. The TinyOS design paradigm is a significant
departure from the traditional programming paradigm involving
threads, making it less intuitive for application developers. In
contrast, we support a traditional multitasking paradigm retain-
ing task abstractions and multitasking. Unlike TinyOS, where
tasks cannot be interrupted, we support priority-based preemp-

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

tion. Nano-RK provides timeliness guarantees for tasks with
real-time requirements. We provide task management, task syn-
chronization and high-level networking primitives for the de-
velopers use. While our footprint size and RAM requirements
are larger than that of TinyOS, our requirements are consistent
with current embedded microcontrollers. A sensor network mi-
crocontroller may typically have 32-64KB of ROM and 4-8 KB
of RAM. Therefore, Nano-RK is optimized primarily for RAM
and secondarily for ROM. SOS [11] is architecturally similar to
TinyOS with the additional capability for loading dynamic run-
time modules. In contrast to SOS, we propose a static, multi-
tasking paradigm with timeliness and resource reservation sup-
port.

The Mantis OS [12] is the most closely related work to ours
in the existing literature. In comparison to Mantis, we pro-
vide explicit support for periodic task scheduling that naturally
captures the duty cycles of multiple sensor tasks. We support
real-time tasksets that have deadlines associated with their data
delivery. We use the mechanisms of CPU and network reser-
vations to enforce limits on the resource usage of individual
tasks. With respect to networking we provide a rich API set for
socket-like abstractions, and a generic system support for net-
work scheduling and routing. Nano-RK supports power man-
agement techniques and provides several power-aware APIs for
system use.1

While low-footprint operating systems such as μC/OS,
OSEK and Emeralds [16] support real-time scheduling, they do
not have support for wireless networking. Our networking stack
is significantly smaller in terms of footprint as compared to ex-
isting implementation of wireless protocols like Zigbee (around
25 KB ROM and 1.5 KB RAM) and Bluetooth (around 50KB
ROM). We also provide high-level socket-type abstractions, and
hooks for users to develop custom MAC protocols.

Our system infrastructure can be used to complement dis-
tributed sensor applications such as an energy-efficient surveil-
lance system ([1, 2]). Our contributions are compatible with
the literature on real-time networking / resource allocation pro-
tocols [6, 10], energy-efficient routing/ scheduling schemes
[4, 14] , data aggregation schemes [17], energy efficient topol-
ogy control [9] and localization schemes [5, 8]. Nano-RK can
be used as a software platform for building higher-layer middle-
ware abstractions like [3]. Our energy reservation mechanism
can also be used to prevent the type of energy DoS attacks de-
scribed in [7].

Finally, our work complements [21] in extending the Re-
source Kernel (RK) paradigm to energy-limited resource-
constrained environments like sensor networks (and hence the
name “Nano-RK”).

1.2 Organization of The Paper
The rest of this paper is organized as follows. Section 2 de-
scribes the requirements and design goals of a real-time operat-
ing system for sensor networks. Section 3 describes how a typ-
ical sensor application can leverage the programming paradigm
to create a distributed sensing application. In Section 4, we de-
scribe the Nano-RK architecture and application programming
interface in detail. Section 5 describes our implementation of
Nano-RK on the ATMega128 processor. Section 6 presents an
early evaluation of Nano-RK features. Finally, Section 7 sum-
marizes our contributions and discusses potential avenues for
future work.

1Power-aware APIs can also be used by applications, albeit with prudence.

Device Period Execution Time
Radio Sporadic 10 ms
Microphone 200 Hz 10 us
Light Sensor 166 Hz 10 ms
Smart Camera 1 Hz 300 ms
GPS 5 Hz 10 ms

Figure 1: An example sensor taskset.

2 Design Goals for a Sensor RTOS
We present the following design goals for an RTOS targeting
wireless sensor networks.

• Multitasking: The OS should provide a simple and intu-
itive programming paradigm for easy use by application
developers. It is desirable to retain the traditional multi-
tasking paradigm familiar to both desktop and embedded
system programmers. Application developers should be
able to concentrate on application logic rather than low-
level system issues such as scheduling and networking.

• Networking Stack Support: The OS should support mul-
tihop networking, routing and simple user-level network-
ing abstractions similar to sockets. In particular, low-level
networking details such as reliable packet transmission,
multicasting, queue management etc. should be handled
by the OS.

• Support for Priority-based Preemption: Node battery
lifetime continues to be a major challenge in sensor net-
works. Hence, given that energy consumed by process-
ing per bit is significantly less than the per-bit energy con-
sumed by the radio interface, there is a trend toward in-
creased local processing (such as embedded vision and
sound processing). This typically results in increased task
execution times. In such situations where task run-times
are large, there is a need for priority-based preemption to
give precedence to higher priority events.

True preemptive multitasking becomes necessary in a sys-
tem where multiple inputs to the system must be serviced
at different rates within a required period. For instance,
imagine a sensing platform consisting of a microphone,
light sensor, radio interface, a GPS for position informa-
tion or time synchronization and a smart camera system.
Figure 1 shows typical periods and execution times for
these devices. Manually scheduling such a task set can
become daunting using timer interrupts.

A non-preemptive scheme might handle the radio with
an external interrupt, the light and microphone with two
priority-based timers, and leave the GPS and camera pro-
cessing for the main program loop. Even in this situation,
the developer may encounter difficulties because the cam-
era servicing time is longer than the period of the GPS.
Given that many low-end microcontrollers have limited
timer interrupts, it can become difficult to schedule such
a task set. Developers may need to resort to manual time
splicing of their functions, thus making future modifica-
tions difficult. With a preemptive priority-based system,
each of these sensing functions would be supported by a
prioritized periodic task.

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

• Timeliness and Schedulability: Most sensor applications
such as surveillance tend to be time-sensitive in nature
where packets must be relayed and forwarded on a timely
basis. While routing and network link scheduling are im-
portant components in ensuring that packets meet their
end-to-end delay bounds, timing support on each node in
the network is also essential. In order to satisfy end-to-end
deadlines, local tasks on each node have deadlines asso-
ciated with the completion of their local data relaying and
processing. Managing the deadlines of these tasks requires
support of a real-time operating system.

• Battery Lifetime Requirements: Guaranteeing sensor
node battery lifetimes of 3 to 5 years is a very desirable
objective in many sensor networks. If limits on the usage
of energy can be enforced, lifetime guarantee requirements
of the system as a whole can likely be provided (under rea-
sonable assumptions about operating conditions such as
network connectivity). The OS can also ensure that the
system energy is apportioned in a manner commensurate
with task importance such that critical tasks are guaranteed
their energy budget.

• Enforcement of Resource Usage Limits: Since sensor
nodes are resource-constrained, precious CPU cycles, net-
work buffers and bandwidth should be apportioned to ap-
plication needs. OS support for guaranteed, timely and
limited access to system resources is conducive to sup-
porting application deadlines and balanced apportioning
of system slack (residual unused resources). This mech-
anism can also be used to place some limits on the impact
of faulty or malicious tasks on system operation.

• Unified Sensor Interface Abstraction: Providing a uni-
fied and simple abstraction for accessing sensor read-
ings and actuating responses would greatly benefit the
end-user. In particular, low-level details associated with
sensor/actuator configurations should be abstracted away
from the user. Sensors should be supported using device
drivers that can return real-world units as well as raw ADC
values.

• Small Footprint: The current trend of low-end embedded
processors is towards larger ROM sizes (64 KB to 128 KB)
and smaller RAM sizes (2 KB to 8 KB). The OS architec-
ture should be compliant with this trend by optimizing for
RAM with a higher priority than ROM and optimizing for
runtime efficiency. This memory constraint also implies
that when the choice exists, one prefers a static configu-
ration to a dynamic decision that requires additional data
storage and run-time manipulations.

3 Nano-RK Programming Model
In this section, we show an example application that uses mul-
tiple tasks running in Nano-RK to monitor sensors and relay
information to a remote node. Each task operates at a differ-
ent frequency and priority. The example network consists of a
sender node and a receiver node. The sender node hosts three
tasks responsible for sensing sound, light and temperature. The
receiver node collects packets from the sensing node and sets an
LED signifying which sensor was triggered. The microphone is
sampled at 1 KHz and is filtered such that a packet is sent only
if an increase in volume above a particular threshold is detected.
If people enter a room and begin working, an initial packet is
sent. The system adjusts to the new ambient sound level, thus

suppressing future packets. The light sensor is monitored once
per second and a packet is transmitted only if the value changes
beyond a certain threshold averaged over the past 10 readings.
This allows the sensor to detect sudden changes like when an
overhead light is turned on, but the task ignores slowly shifting
changes in intensity levels like the sun moving during the day.
The temperature sensor is read every three seconds and a packet
is transmitted whenever the temperature changes by more than
2 degrees from the previously transmitted packet. If the temper-
ature exceeds a certain threshold indicating fire or some other
safety concern, a high priority packet is sent each time the sen-
sor is read. The tasks are written using the C programming
language. Shown below is a sample task that communicates on
a port. The prefix nrk_ is used on Nano-RK-specific datatypes
and system calls (only for the sake of illustration).

void Sound_Task()
{
int i, status, sound,prev_sound;
// Transmit Buffer Stored in App.
char tx_buff[2];
nrk_port_des my_port;

// setup socket on port 0 to broadcast
port_des = nrk_port(tx_buff, 2, 0);
// set to broadcast to all nodes
nrk_connect(port_des, 0xFFFF);
while (1) {

sound = read_sensor(MIC);
printf("T1 Sound = %d\r",sound);
tx_buff[0] = sound;
if (sound_change(sound,prev_sound)) {

// Send Data using the socket
nrk_port_send(my_port);
wait_until_sent();
printf("T1 Sent Packet\r");

}
prev_sound = sound;
nrk_suspend_task();

}
}

The next code segment shows how a task is created, and how its
period and reservation are configured. Since we prefer a static
design-time approach, task parameters like period and reser-
vation capacities are populated during initialization and image
creation rather than at run-time using system APIs. However,
API support is available for programmers who need flexible re-
configurability of taskset properties. (These dynamic configu-
ration calls can be unlinked from the final executable image if
desired.)

nrk_task_type Task1;

Task1.task = Sound_Task;
Task1.Ptos = (void *) &Stack1[STACKSIZE - 1];
Task1.TaskID = 1;
Task1.priority = 3;
Task1.Period = 10;
Task1.set_cpu_reserve = 5;
Task1.set_network_reserve = 3;
Task1.set_sensor_reserve = 3;
nrk_activate_task (Task1);

The next code sample shows a receiver task. For the sake of
demonstration purposes, each type of sensor packet is collected
by a different task listening on a different port. The task runs
at a priority based on its CPU reservation parameters, which in
turn will likely depend on the sensor frequency.

void Get_Sound_Task()
{

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

Figure 2: Nano-RK Architecture Diagram

int i, status;
char rx_buff[2];
nrk_port_des my_port;

// setup receive socket on port 0
my_port = nrk_port(rx_buff, 2, 0, 0);
// Listen on this socket for a packet
nrk_listen(my_port);

while (1) {
CLR_LED(); // clear indicator
// Non-block call to wait
// for data on this socket
nrk_port_read();
nrk_wait_until_read();
SET_LED(); // light up reception indicator

}
}

The Appendix lists the complete set of Nano-RK APIs.

4 The Nano-RK Architecture
The particular requirements of systems support in sensor net-
working that were discussed earlier impose unique challenges
with respect to designing an RTOS. In this section, we describe
the architecture of Nano-RK, its constructs and capabilities.
The overall system architecture of Nano-RK is shown in Fig-
ure 2.

4.1 Static Approach
Given the memory constraints of embedded sensor operating
systems, Nano-RK uses a static design-time framework. This
approach is consistent with sensor networking assumptions be-
cause as compared to traditional operating systems (where pro-
cesses can be dynamically spawned), the OS and the applica-
tions are co-located in a single address space. In particular,
admission control and real-time schedulability analysis tests
are carried out offline as compared to taking a dynamic online
approach. We would like to stress that a static approach does
not mean that task properties and configuration parameters can-
not be reconfigured during run-time. Rather, a static approach
enforces the checks to ensure that the dynamic reconfiguration
does not adversely affect application and system guarantees in a
pre-deployment offline setting as compared to running dynamic
admission control algorithms. Data- (or control-) dependent
modifications to the task code such as changing task periods, re-
source usage limits, resource priorities and configuration of var-
ious parameters such as the network buffer sizes and stack sizes
of each task can be changed to accommodate mode changes.

With current energy and memory constraints, the run-time con-
figurations will need to be verified offline at design-time2. This
results in a light-weight operating system with a small footprint
while retaining the rich set of functionality found in conven-
tional RTOSs.

4.2 The Reservation Paradigm
The reservation paradigm, as implemented in a Resource Ker-
nel [21], is a simple and practical paradigm for guaranteeing
timeliness and enforcing temporal isolation in real-time oper-
ating systems. In resource kernels, applications specify time-
liness and resource requirements, and the OS enforces guaran-
teed access to system resources and schedules tasks so that the
application timeliness requirements are satisfied. While the re-
source kernel abstraction has so far been used in dynamic run-
time settings, the resource reservation paradigm is desirable for
static settings as well. A sensor application task can specify its
requirement of CPU cycles, network bandwidth and network
buffers over fixed periods which will be enforced by the Nano-
RK kernel. Only tasks that have not depleted their reservation
quota rates are eligible for scheduling. In deference to the strin-
gent constraints of sensor nodes, exactly a single task is associ-
ated with a reservation. In contrast, the classical resource ker-
nel concept allows for zero, one or more tasks to be bound to a
reservation.

In summary, Nano-RK supports CPU reservations,
sender/receiver network bandwidth reservations and sen-
sor/actuator reservations. All of these reservations can be
combined to enforce a virtual node-wide (and perhaps even
system-wide) energy reservation.

4.3 Power Awareness Support
Since maximizing battery lifetime is often a primary objective
in sensor networks, there is a need for aggressive power savings
by operating at low duty cycles. Nano-RK enforces this in the
form of virtual energy reservations. Note that the energy con-
sumed by a task is the total sum of the CPU/microcontroller en-
ergy, radio interface energy and the energy associated with turn-
ing on sensors and actuators. The CPU and radio energy con-
sumed by the task can be adjusted fairly accurately by chang-
ing the CPU and network reservation sizes. In order to bound
the energy consumed by sensors, Nano-RK provides sensor
reservations. Our unified sensor interface provides function-
ality wherein sensors are turned off (gated) by default and any
access to a sensor is an atomic operation that consists of the sen-
sor being turned on, its value being read and then being turned
off again. This makes it possible for the operating system to
set an upper limit on the number of accesses made to a sensor
over a particular period. Thus it is is possible to map a resource
tuple of (CPU, Network, Sensor) reservations to a particular
power level. Given periodic tasks, one can calculate the mean
power used by all tasks over a hyper-period, giving a reason-
ably accurate estimate of the node lifetime. By modifying the
values of the (CPU, Network, Sensor) reservation-tuple, the
mean energy consumed by each task can be varied. This can
be used for either controlling the node lifetime or for varying
the proportion of system energy allotted to each task (for exam-
ple, certain mission-critical tasks can be allocated a high energy
budget). We again note that energy reservations is implemented
by controlling the (CPU, Network, Sensor) reservation-tuple
at a pre-deployment stage. This is consistent with the predomi-
nantly static approach that Nano-RK adopts.

2Future revisions of Nano-RK may relax this constraint.

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

Figure 3: FireFly Sensor node w/ ultrasonic sensor.

4.4 Socket Abstractions and Routing
Since sensor nodes operate in a multihop networking environ-
ment, it may be necessary to route data periodically from sen-
sor nodes to one or multiple gateways, or among nodes in a
neighborhood for local coordination. Thus, nodes would benefit
greatly from a sockets-like abstraction that masks the low-level
details of MAC scheduling and routing from the application.
In typical distributed sensor tasks, multiple nodes co-ordinate
to achieve a common objective (e.g. sensing the presence of
an intruder). Nano-RK’s socket-like abstractions allow tasks
to communicate with each other, with APIs for enabling a task
to bind to a unique port. For memory efficiency, applications
handle their own data buffers. The operating system is respon-
sible for populating application buffers upon the reception of
packets. The OS is also responsible for handling (reliable or
unreliable) one-hop transmission of packet on behalf of the ap-
plication. With corresponding OS control flags, it is possible to
collapse multiple packets that have a common “next hop to des-
tination” into a single packet, thus resulting in energy-efficient
data forwarding.

Routing table data structures and destination look-up func-
tions are managed by Nano-RK. We provide the basic infras-
tructural support over which ad-hoc routing protocols such as
AODV [20] and DSR [19] can be implemented in the OS.

5 An Implementation of Nano-RK
In this section, we describe in detail our implementation of a
static reservation-based preemptive operating system and the
networking stack for the Atmel ATMega128 using the Chip-
con CC2420 radio interface. Figure 4 shows a breakdown of
Nano-RK’s current resource requirements.

5.1 Hardware and Sensor Support
Nano-RK currently operates on an Atmel ATMEGA128-based
sensor node shown in Figure 3 called FireFly built at CMU.
The ATMEGA128L processor is an 8-bit microcontroller con-
sisting of 128 KB of code space and 4 KB of data memory. It
uses the Chipcon CC2420 802.15.4 wireless transceiver chip for
communication. The platform has the following sensors: light,
temperature, sound, passive infrared motion detection, and dual
axis acceleration. In addition to sensors, the board has an ultra-
sonic transceiver add-on and 1 MB of external flash memory.
All sensor peripherals can be gated by the main processor to
conserve power. The processor has two internal 8-bit and four
16-bit timers, an 8-channel 10-bit ADC, a watchdog timer and
six different sleep modes. The instruction set includes 135 in-
structions with multiplication instructions taking two clock cy-
cles and the rest executing in a single cycle.

Power Energy
CPU (0.05mW ∗ tidle) +

(24.0mW ∗ tactive)

Idle 0.05mW 0.05mW ∗ tidle

Active 24.0mW 24.0mW ∗ tactive

Network (.06mW ∗ tidle) + (1.8μJ ∗
Nrx_bytes) + (1.6μJ ∗
Ntx_bytes)

RX 59.1mW 1.8μJ per byte
TX 52.1mW 1.6μJ per byte
Idle .06mW .06mW ∗ tidle

Sensor
Light, Temp .09mW 11.25nJ per reading
Microphone 2.34mW 2.87μJ per reading
PIR 5.09mW 1μJ per reading
Accel 1.8mW 11.25nJ per reading
Ultrasonic TX 60mW 15μJ per ping
Ultrasonic RX 30.8mW 30.8mW ∗ tactive

Table 1: Energy statistics for current hardware setup.

Most of the sensors use the Atmel’s onboard analog to dig-
ital converter (ADC), with the exception of the accelerometer
which requires software PWM (pulse width modulation) de-
coding. Nano-RK provides a set of sensor system calls that
read raw sensor data and convert the data into meaningful units.
It also ensures that the sensor reservations are updated when
these calls are made. These functions are atomic, preventing
deadlock due to hardware communication interruptions.

5.2 Task Management and Scheduling
Nano-RK task control block (TCB) structures are populated
during initialization and system image creation3. They store
the register context of all task (registers and stack), the task’s
priority, period of recurrence, (CPU, network, Sensor) reser-
vation sizes, port identifiers etc. Two linked lists of TCB point-
ers are used to order the set of active and suspended tasks re-
spectively, based on period of recurrence. Tasks can block on
certain events (such as being awakened at a certain point of time
or the arrival of a network packet) and can be unsuspended and
enqueued in the OS active list when the pending events occur.
We suspend tasks that have pending events rather than using a
polling-based implementation of Nano-RK system calls. This is
done for energy-efficiency reasons because if there are no tasks
eligible to run, the system can be powered down to sleep.

Our system uses priority-based preemptive scheduling and
while we provide explicit support for periodic tasks, we also
support aperiodic and sporadic tasks in our framework. The
highest priority task that is eligible to run in the system is al-
ways scheduled by the operating system. A periodic task can
suspend itself after the completion of its current instance using
the wait_until_next_period() system call.

We implement priority ceiling protocol emulation (Highest
Locker Priority protocol) to bound the blocking time encoun-
tered by a higher priority process due to the phenomenon of pri-
ority inversion (wherein a shared resource needed by the high-
priority process is currently being used by a lower-priority pro-

3While we provide API support to modify fields in the TCB during run-time,
we encourage a static configuration for a small-footprint ROM image.

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

Component Resource
Context Swap Time 45 μs
Mutex Structure Overhead 5 bytes per resource
Stack Size Per Task 32 → 128 (typically 64) bytes
OS Struct Overhead 50 bytes per task
Network Structure Overhead 164 bytes
8 tasks, 8 mutexes, and
4 16-byte network buffers < 2KB RAM, 10KB ROM

Figure 4: Breakdown of a Nano-RK configuration.

cess). In particular, each mutex is associated with a priority ceil-
ing. When a mutex is acquired (using lock_mutex()), the
priority of the task is elevated to the priority ceiling of the mu-
tex. Once the mutex is released (using the unlock_mutex()
system call), the priority of the task reverts to its original level.
This results in bounded priority inversion which can be ac-
counted for in the offline schedulability test. Thus, real-time
synchronization is supported in Nano-RK.

Rather than provide explicit message box support, we pro-
vide system support for conventional semaphores that can be
used by tasks to manipulate application buffers in a con-
trolled manner for facilitating inter-process communication (us-
ing message boxes). This obviates the necessity for OS buffer
space for storing message data and allows efficient zero copying
[15] mechanisms to facilitate information sharing among tasks.
Semaphores can also be used as a generalization of mutexes for
guarding access to multiple resources.

5.3 Timing
Our implementation is based on the POSIX time structure
timeval. We use a structure composed of two 32-bit num-
bers to represent (seconds, nanoseconds) fields in our
time structures. For periodic tasks, we operate the timer in a
one-shot mode wherein the next timing interrupt is triggered
when either a task is scheduled to be awakened because of an
event or because it becomes eligible for scheduling. In either
case, the global TOD (time of day) counter field in the OS is up-
dated. The TOD counter field is incremented periodically, and
overflows will not occur for practically foreseeable intervals of
time. Our system thus allows support for fine-granularity tim-
ing requirements of real-time applications while maintaining a
(practically) non-overflowing notion of absolute time.

5.4 Reservation Support
CPU reservations are created statically by populating the cor-
responding task’s TCB structure with reservation information4.
In order to support CPU reservations, we associate each task
with a ticks_consumed field, that accounts for the CPU cy-
cles used by that application. When the ticks_consumed
parameter exceeds the reservation size quota (reservation) spec-
ified by the system call, based on the policy of the reservation
(hard or soft) one of the two following operations is carried
out: if the reservation policy is hard, the application is imme-
diately suspended and the reservation is replenished during the
next period; if the reservation policy is soft, the application can
consume the slack cycles unused by other tasks and when the

4We also support using cpu_resv_create() and
cpu_resv_modify() APIs during run-time. However, we stress that
these calls should be used with discretion to prevent malicious/faulty applica-
tions from dominating the use of system resources.

system slack is depleted, it is suspended. For soft reservations,
the CPU reservation quota is replenished during the next pe-
riod of that task independent of whether slack resources were
consumed or not. Since we take an offline approach, Nano-RK
has full knowledge of system slack cycles. We allow an ap-
plication to query the status and usage of its reservation using
the cpu_resv_query() so that it can potentially adapt its
behavior accordingly. Highly energy-sensitive deployments of
Nano-RK environments will likely discourage or even disallow
the use of soft reservations, due to the excess energy that can be
consumed by prolonged execution or communications.

Network reservations are implemented statically by config-
uring the task TCB structures with parameters for setting a
quota on the network bandwidth that is usable by that partic-
ular task. We provide two types of network reservations: net-
work sender reservations that set a limit on bytes or packets
that can be transmitted in a given period and network receiver
reservations that enforce limits on the amount of received data
or active radio receiver time in a given period. Each time a
packet is received, task TCB parameters bytes_consumed
and packet_used are incremented. When the network band-
width quota equals the network reservation size, based on the
network reservation policy of hard or soft, the application is ei-
ther suspended or is eligible to access slack bandwidth in the
system. The packet-count reservation sets a quota for the ra-
dio energy consumed while the number of bytes over a period
enforces the limits on bandwidth consumption.

Sensor reservations are implemented in a similar manner by
statically populating task TCB parameters to specify the num-
ber of times a sensor can be read in a given period. Each
sensor_read() call increments a counter. If this counter
exceeds the reservation quota, the process is suspended and the
quota is replenished during the next period of the task.

As discussed earlier, virtual energy reservations can
be implemented by judiciously choosing values of
(CPU, Network, Sensor) reservation values.

5.5 Network Protocol Stack
Nano-RK contains a lightweight network protocol stack that al-
lows for port-based communication. Since the network stack
is tightly integrated with the OS and execution/communication
information is available, optimizations using global applica-
tion knowledge such as automatic packet aggregation, network
reservations, and buffer management are possible. An incom-
ing data packet triggers an interrupt that handles the arrival of
the packet. Packet transmissions are handled by a periodic net-
work task responsible for servicing all outgoing packets of all
tasks.

In traditional Unix-based systems, the OS is responsible for
allocating and managing buffers for network communication.
Statically allocating uniform buffers can be wasteful in sen-
sor applications that transmit and receive only a few bytes per
packet. In Nano-RK, the networking buffers are sized and allo-
cated by the applications, but are managed by the network stack
using a zerocopy buffer mechanism [15]. Upon successful re-
ception of a packet by the OS interrupt routine, a data ready
status flag is set that allows the application to directly manipu-
late the memory. The memory will not be touched again by the
OS until the application explicitly resets the data ready status
flag (using port_receive_release() or by calling an-
other port_read() command). This allows the application
developer to process the data in place to conserve memory and
CPU cycles.

Packets transferred over the network contain a port and a des-
tination address in their header. Upon reception of a packet des-

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

Figure 5: Nano-RK network stack showing placement of
buffers in the application.

tined for the current node, the port is extracted from the header
and used to identify which buffer the packet’s data should be
placed into. If the destination address is configured as a broad-
cast packet (0xFFFF), then all applications in the network that
are listening on a particular port will receive the data. Unlike the
traditional socket model, multiple applications on the same sen-
sor node can listen on a single port. In this mode of operation,
all listening applications must read the data before the OS will
update the port with new packets. Though this would necessi-
tate handling conflicts at the user level, it allows for multiple
applications to share buffers, thus saving memory. Tasks that
do not want to handle such conflicts can choose to use unique
port numbers.

Information describing each socket is stored in a port_des
data structure. This structure contains a pointer to the pay-
load buffer, the size of the buffer, the port, destination address,
message priority and hardware-specific parameters. The struc-
ture is instantiated through the use of the port() function
call. The port_des data structure must then be passed to
all transmit and receive functions. The hardware-specific pa-
rameters in this structure allow full configuration of the Chip-
con CC2420 features such as encryption, radio transmit power,
CRC error checking, clear channel assessment, and frequency
selection. Internally, the OS contains an array of pointers to
port data structures. This array is indexed by the port num-
ber. The server functionality of the network stack consists
of three main commands: listen(), sock_read() and
select(). The listen() function takes a port data de-
scriptor as a parameter and is used to notify the OS that the
application is expecting packets on a particular port. When a
packet is received by the radio transceiver, an external inter-
rupt routine is triggered which reads the packet from the radio’s
FIFO. Header information is collected before data, allowing the
interrupt routine to take appropriate action without buffering
the entire packet. If the destination address matches the current
node’s address, then the port is used to direct the memory into
the application-defined buffer. If the port is unknown or found
to be busy, then the packet is either dropped or is overwritten
in the buffer (depending on a user-defined replacement policy).
After the packet has been copied into the correct buffer, a sta-
tus flag associated with that port is set, handing control of the
buffer to the application. At this point, the scheduler is called
to see if a task is waiting on an incoming packet. Once it re-

sumes execution, the task can gain access to the buffer using
the port_read() function. The port_read() function
is non-blocking returning 1 only if a packet was correctly re-
ceived. The OS will not update that buffer until the application
has relinquished its control with either another port_read()
call or an explicit port_read_release() call. Using
the wait_until_read() function call, the application can
block until a packet has been received. The select() func-
tion can be called with an 8-bit port index mask and a time-
out. This is similar to the original BSD sockets implementation
which supported 32 open file descriptors per process, and used
one bit corresponding to each file descriptor in the mask. The
select() function will hand over control of the task and not
return until a matched packet is received or the timeout expires.
If a selected packet is received, then select() will return its
port descriptor.

The interface to the client functionality of the network stack
consists of a connect() command and a port_write()
function. The connect() command registers the outgoing
port descriptor with the network stack. The port_write()
command takes as an argument a port descriptor and updates
a data ready field. Each time the network task is called, it
will check all registered ports to see if there is a pending mes-
sage for transmission. If more than one message resides in
the transmit queue, the priority fields can determine the order
in which they are to be sent. If the "next hop" of the mes-
sages are identical and have a size smaller than the maximum
payload size, then the messages are aggregated and sent as a
single packet. Since the application and OS share the same
buffer, port_write_status() can be used to check if the
packet was sent by the network task before updating the existing
buffer with new data. The task can also turn over control until
the packet is sent using the wait_until_sent() scheduler
command.

5.5.1 Routing and MAC Support
Routing and MAC protocols in sensor network environments
can be dramatically different (compared to traditional networks)
and even be application-specific. Nano-RK tries to isolate this
functionality allowing developers to implement their own pro-
tocols. We provide a basic template for a CSMA-CA MAC pro-
tocol with static routing tables. Though it is beyond the scope
of this paper, we have also developed a TDMA-based proto-
col that utilizes global time synchronization to schedule packet
transmissions. In the following section, we will discuss the in-
frastructure currently in place allowing for custom MAC and
routing protocols.

When a packet is received by the OS, a routing function is
called by the receive packet interrupt. This routing function can
then access a routing table to determine if the current node is
along the path to the destination. The routing function can also
receive control packets such as route request packets used in
ad-hoc routing protocols like AODV and DSR. These control
packets have the ability to add, remove or update entries in the
routing table. If the destination of the packet is found in the
routing table, then the packet is added to a forwarding buffer
inside the OS. Like any normal application transmit buffer, this
forwarding buffer will be checked the next time the networking
task is called.

The MAC layer control resides for the most part in the trans-
mit portion of the network task. The only MAC layer control
required in the receiver interrupt is the ability to automatically
and immediately acknowledge a received packet to ensure re-
liable transmission. The MAC layer functionality such as col-

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

Figure 6: Low Power Listen transmit and receive waveforms.

lision sensing back-off times or TDMA-based access schemes
are also incorporated into the networking task. Since this task
is periodically called by the OS and is responsible for all data
transmissions, it is the ideal place to implement custom MAC
protocols. Along these same lines, Nano-RK includes a driver
for low-level radio controls.

6 Experimental Evaluation
In this section, we provide simple examples that use the Nano-
RK infrastructure. The first example is a power-efficient multi-
hop networking MAC. The second example demonstrates how
the energy reservation functionality provided by the OS can be
used to guarantee pre-specified network (battery) lifetimes.

6.1 Low-Power Listening MAC
In this section, we show how the abstractions of periodic tasks
naturally capture the duty cycle of distributed sensing applica-
tions. Using a method similar to Low-Power Listening (LPL)
described in [22], we tested sending data over multiple hops.
Figure 6 shows the basic operation of LPL. The receiver wakes
up once every tper for a short duration (100μs) to assess the
channel. If a message preamble is detected, the receiver con-
tinues to stay awake in order to receive the packet, otherwise it
goes back to sleep. This implies that the sender needs to trans-
mit a preamble for a period long enough for the receiver to hear
it i.e, the transmitter synchronization preamble pulse width is
tper . There is an inherent trade-off between receiver power and
transmitter power for operating at a particular application duty
cycle and at a particular tper . We would like the OS network
task period (which is equal to tper) to be set such that the total
energy expended per packet is minimized. In the graph shown
in Figure 8, we consider the effects of total energy consumed
as a function of tper for a 4-node chain where the application
duty cycle requirements are 1 packet every 10 seconds. This
packet contains the aggregated readings of temperature, light
and sound sensors. For this configuration with our hardware
setup, we experimentally found the optimal tper to be around
100ms, as shown in the graph. We also plot the multihop end-
to-end latency associated with the delivery of packets in the 4-
hop chain network for the same period of the network task.

6.2 Effectiveness of Energy Reservations
In this subsection, we show how energy reservations and net-
work bandwidth reservations can be utilized to maximize the
network (battery) lifetime of sensor networks. Most sensor net-
works are topologically organized to form a forwarding tree that
pushes sensor data to one or more gateway. The duty cycles of

Figure 7: Sensor testbed setup. Topology (a) used for MAC
experiment, (b) used for energy reservation experiment

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

200

Period (ms)

E
ne

rg
y

(m
W

)
an

d
La

te
nc

y
(*

10
m

s)

Energy
Latency

Figure 8: Graph of energy and multi-hop packet latency vs
duty-cycle length. Packet latency was measured over four hops
with a packet being sent once every 10 seconds.

the individual nodes are chosen judiciously in order to guar-
antee the lifetime requirements of the sensor network. While
implementing large distributed sensing systems, it is possible,
even likely, that application code on one or more sensor nodes
is configured in an energy-unfriendly manner by transmitting
an excessive number of packets or by not aggressively turning
its power components off. OS-enforced energy reservations are
critical in ensuring that the network remains connected over its
operational lifetime.

Our experimental setup consisted of a sensor network that
was arranged as shown in Figure 7 with a target lifetime of 2
years.

The duty cycles for achieving the lifetime requirements of 2
years are shown in Table 2. Since forwarding functionality is
handled by the OS, if reservations were not used, the OS would
simply forward packets further up the tree. We considered an

Node Reserve
[TX pkt/10 sec,
RX pkt/10 sec]

TX Rate
[pkt/10 sec]

Total
Packets
Handled
without

Reserve

Total
Packets
Handled
with

Reserve
a [1,2] 1 720 720

b n/a 300 216000 216000

c [1,2] 1 1362 1350

d [1,2] 1 195113 1358

e [1,2] 1 196643 3211

Table 2: Enforcement from Energy Reservations

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

energy-efficient variant of naive packet forwarding where the
network tasks of nodes higher up in the tree hierarchy collapse
data belonging to their children in their forwarding buffers and
tag their data forming a single packet. This aggregated packet is
then forwarded up the tree. This is possible because sensor data
payload sizes are typically small (2-4 bytes). In such a scenario,
the duty cycles of all nodes5 in the tree are typically equal. A
sensor module operating on node d was configured incorrectly
to send 300 packets every 10 seconds rather than 1 packet every
10 seconds.

Two experiments were conducted, one without energy reser-
vations and another with energy reservation in place. The total
number of packets handled6 by each board was monitored for 2
hours for each experiment. The energy reservation for a node is
enforced by setting a limit on the number of packets transmitted
and on the time that the radio receiver is kept on.

After collecting the counter values for each node shown in
Table 2, we used the sensor node’s power characteristics shown
in Table 1 to calculate the mean power for each node and from
the node with maximum mean power, the network lifetime was
calculated assuming a 2000 mAH battery. The network lifetime
was found to be 34 days and 2.9 years when reservations were
not used and used respectively. This demonstrates how reserva-
tions can find natural practical applications in designing robust
sensor networks and contribute to significant improvements.

7 Conclusions and Future Work
In this paper, we described Nano-RK, a reservation-based
energy-aware real-time operating system with wireless net-
working support for resource-constrained sensor network en-
vironments. We support a classically structured multitasking
OS with API support for task management, synchronization,
IPC and high-level networking abstractions, with these func-
tions specifically tailored to the constrained sensor network en-
vironments. We enforce limits on CPU, bandwidth and sen-
sor usage of individual tasks by using a reservation-based ap-
proach to enforce bounds on timeliness, QoS and node life-
time. We adopt a static design-time approach as compared to
a dynamic run-time approach for creating an embedded sensor
taskset. Our OS design uses several optimizations for memory-
and energy-efficiency reasons while retaining a rich set of capa-
bilities. Nano-RK will be made available for public use in the
near future.

While we have shown that traditional RTOS abstractions are
possible and natural for supporting sensor networking applica-
tions, there are several additions, enhancements, and optimiza-
tions that we are currently exploring. In particular, while the
basic operating system abstractions are in place, the networking
architecture of our sensor network is still work-in-progress. We
do not currently support end-to-end deadline guarantees associ-
ated with packet delivery and are exploring scheduling and rout-
ing schemes based on Time Division Multiple Access (TDMA)
scheduling using global time synchronization. We currently
support only static routing and are exploring the use of opti-
mized dynamic energy-efficient custom routing schemes. We
also plan to make further optimizations to the OS for support-
ing energy-efficiency including support for low duty-cycle op-
eration using TDMA techniques. We are currently designing
OS-supported bootstrapping protocols for initializing and con-
figuring the taskset parameters and for the distributed collection

5This is expressed as a per-task receive-time budget.
6This was achieved by maintaining separate counters for number of packets

transmitted and number of packets received.

of connectivity information for large-scale sensor networks.
Acknowledgements: This work was supported in part by

the Office of Naval Research, the National Science Foundation,
Bosch Corporation and by Taiwan’s Institute for Information
Industry.

References
[1] Tian He, Sudha Krishnamurthy, John A. Stankovic, Tarek Abdelzaher, Liqian Luo,

Radu Stoleru, Ting Yan, Lin Gu, Jonathan Hui, Bruce Krogh. Efficient Surveillance
System Using Wireless Sensor Networks MobiSys’04, Boston, MA, June 2004.

[2] Juang P, Oki H, Wang Y, Martonosi M, Peh L-S, Rubenstein D Energy-efficient
computing for wildlife tracking: design tradeoffs and early experiences with zebranet
In Proceedings of ACM ASPLOS Conf, 2002

[3] Tarek Abdelzaher et al EnviroTrack: Towards an Environmental Computing Paradigm
for Distributed Sensor Networks IEEE International Conference on Distributed Com-
puting Systems, Tokyo, Japan, March 2004

[4] Hyung Seok Kim, Tarek Abdelzaher, Wook Hyun Kwon Minimum-Energy Asyn-
chronous Dissemination to Mobile Sinks in Wireless Sensor Networks ACM SenSys,
Los Angeles, CA, November, 2003.

[5] Tian He, Chengdu Huang, Brian Blum, John Stankovic, Tarek Abdelzaher Range-
Free Localization Schemes for Large Scale Sensor Networks The 9th Annual Interna-
tional Conference on Mobile Computing and Networking (Mobicom), San Diego, CA,
September 2003

[6] John A. Stankovic, Tarek Abdelzaher, Chenyang Lu, Lui Sha, Jennifer Hou Real-
Time Coomunication and Coordination in Embedded Sensor Networks Proceedings
of the IEEE, Vol. 91, No. 7, July 2003.

[7] A. D. Wood and J. Stankovic Denial of Service in Sensor Networks IEEE Computer,
35(10):54-62, 2002.

[8] Wei-Peng Chen, Jennifer C. Hou, and Lui Sha Dynamic clustering for acoustic target
tracking in wireless sensor networks IEEE Trans. on Mobile Computing, Special issue
in self-reconfiguring sensor networks, Vol. 3, Number 3, July-September 2004.

[9] Ning Li, Jennifer C. Hou and Lui Sha Design and analysis of a MST-based distributed
topology control algorithm for wireless ad-hoc networks IEEE Trans. on Wireless
Communications, Vol. 4, No. 3, pp. 1195–1207, May 2005.

[10] Simone Giannecchini, Marco Caccamo, Chi-Sheng Shih Collaborative Resource
Allocation in Wireless Sensor Networks ECRTS 2004: 35-44

[11] Simon Han, Ramkumar Rengaswamy, Roy S Shea, Eddie Kohler, Mani B Srivas-
tava SOS : A Dynamic Operating System for Sensor Nodes In Third International
Conference on Mobile Systems, Applications and Services (Mobisys) June 2005

[12] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng,
R. Han MANTIS: System Support For MultimodAl NeTworks of In-situ Sensors 2nd
ACM International Workshop on Wireless Sensor Networks and Applications (WSNA)
2003

[13] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, Kristofer Pis-
ter System architecture directions for network sensors ASPLOS 2000, Cambridge,
November 2000.

[14] Wei Ye, John Heidemann, and Deborah Estrin. An Energy-Efficient MAC protocol
for Wireless Sensor Networks. In Proceedings of the IEEE Infocom, pp. 1567-1576
June, 2002.

[15] Hsiao Keng, and J. Chu Zero-copy TCP in Solaris Proceedings of the USENIX,
1996.

[16] Zuberi, K. M., Pillai, P., and Sin, K. G. EMERALDS: A small-memory real-time
microkernel In Proceedings of the 17th ACM Symposium on Operating System Prin-
ciples ACM Press, pp. 277–291. June 1999

[17] Chalermek Intanagonwiwat, Ramesh Govindan and Deborah Estrin Directed dif-
fusion: A scalable and robust communication paradigm for sensor networks In Pro-
ceedings of the Sixth Annual International Conference on Mobile Computing and Net-
working (MobiCOM ’00), August 2000

[18] C. L. Liu and J. W. Layland Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment Journal of the ACM, V20, N1, 1973, pp. 46-61.

[19] D. Johnson and D. Maltz. Dynamic Source Routing in Ad Hoc Wireless Networks.
In T. Imielinsinki and H. Korth, Editors. Mobile Computing. Kluwer Academic Pub-
lishers, 1996

[20] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector
(AODV) Routing. In IETF RFC 3561, July 2003.

[21] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource kernels: A resource-
centric approach to real-time and multimedia systems. In Proc. of the SPIE/ACM
Conference on Multimedia Computing and Networking. January 1998

[22] J. Polastre, J. Hill, D. Culler Versatile Low Power Media Access for Wireless
Networks In SenSys November 2004

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

Appendix. The Nano-RK API
The system calls provided by the OS can be classified based on
functionality. In its default configuration, Nano-RK supports a
maximum of 16 tasks, 16 ports, 8 mutexes and 8 semaphores.
For richer (or poorer) environments, constants in header files
will need to be consistently re-defined.

Task Management APIs

activate_task() Activates a periodic task; an aperi-
odic task has a period of -1

wait_for_next_period() Suspend task until beginning of
next period

wait_until() Suspends Task until absolute time T
wait() Suspends task for at least t
get_tid() Returns TID of current task
terminate_task() Permanently ends a periodic task
∗get_priority() Returns priority of specified task
∗set_priority() Changes priority of specified task

Network Communication APIs

port() Set parameters and return
port_des

connect() Register port_des with network task
listen() Listen for message on port_des
port_send() Non-blocking send
port_send_status() Check if message was sent
port_receive() Non-blocking read
port_receive_release() App finished with rx buffer
wait_until_received() Block until packet received
wait_until_sent() Block until packet sent
select() Block until one wakeup event, or a

timeout

Task Synchronization APIs

set_priority_ceiling() Sets mutex priority ceiling
get_priority_ceiling() Gets mutex priority ceiling
sem_init() Creates a semaphore and sets it to v
sem_wait() P(sem) wait for s>0 then s=s-1
sem_signal() V(sem) s=s+1
lock_mutex() Puts data into a message box
unlock_mutex() Receives data from a message box

Sensor APIs

init_sensor() Initialize a sensor
get_sensor_status() Returns the status of a sensor
set_sensor_status() Sets a sensor parameter
read_sensor() Returns a sensor value
convert_sensor() Translate sensor value to real world

unit
wait_until_sensor() Suspend task until a sensor com-

pletes
power_wake() Power up a sensor
power_down() Power down a sensor

∗This functionality may be optionally removed or unlinked from Nano-RK
due to their run-time implications. Please use with caution.

†Transmit power will be set in conjunction with the routing scheme.

Reservation APIs
cpu_rsv_query() Queries CPU reserve properties
∗cpu_rsv_modify() Modify CPU reserve properties
netsndr_rsv_query() Queries network sender reserve

properties
∗netsndr_rsv_modify() Modifies network sender reserve

properties
netrcvr_rsv_query() Queries network receiver reserve

properties
∗netrcvr_rsv_modify() Modifies network receiver reserve

properties
snsr_rsv_query() Queries sensor reserve properties
∗snsr_rsv_modify() Modify sensor reserve properties

Power Management APIs

query_energy() Query residual battery energy
set_energy_mode() Set energy savings mode (future)
get_energy_mode() Get energy savings mode (future)
†tx_power_set() Change radio transmitter power
powerdown() Power the system down for t sec-

onds

Radio APIs
radio_init() Initialize the radio
radio_config() Configure the radio
radio_rx_on() Turn on the radio receiver
radio_rx_off() Turn off the radio receiver
radio_tx_packet() Transmit a packet
radio_read_byte() Read a byte of a packet

Scheduling APIs

set_period() Sets period of task
set_deadline() Sets deadline of periodic task
get_time() Returns global OS time
set_sched_policy() Changes the scheduling policy used

UART APIs
kprint() Safe print to serial port
set_UART() Sets the UART parameters
putc() Sends a single character over the

UART
getc() Read a character from the UART

Routing APIs
†add_route() Delete route from routing table
del_route() Add a route into the routing table

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05)
0-7695-2490-7/05 $20.00 © 2005 IEEE

