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Abstract

Background: Amplicon sequencing on Illumina sequencing platforms leverages their deep sequencing and multiplexing

capacity but is limited in genetic resolution due to short read lengths. While Oxford Nanopore or Pacific Biosciences

sequencing platforms overcome this limitation, their application has been limited due to higher error rates or lower data

output. Results: In this study, we introduce an amplicon sequencing workflow, i.e., NanoAmpli-Seq, that builds on the

intramolecular-ligated nanopore consensus sequencing (INC-Seq) approach and demonstrate its application for full-length

16S rRNA gene sequencing. NanoAmpli-Seq includes vital improvements to the INC-Seq protocol that reduces sample

processing time while significantly improving sequence accuracy. The developed protocol includes chopSeq software for

fragmentation and read orientation correction of INC-Seq consensus reads while nanoClust algorithm was designed for

read partitioning-based de novo clustering and within cluster consensus calling to obtain accurate full-length 16S rRNA gene

sequences. Conclusions: NanoAmpli-Seq accurately estimates the diversity of tested mock communities with average

consensus sequence accuracy of 99.5% for 2D and 1D2 sequencing on the nanopore sequencing platform. Nearly all residual

errors in NanoAmpli-Seq sequences originate from deletions in homopolymer regions, indicating that homopolymer aware

base calling or error correction may allow for sequencing accuracy comparable to short-read sequencing platforms.
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Background

Amplicon sequencing, particularly sequencing of the small sub-

unit rRNA (SSU rRNA) gene and internal transcribed spacer re-

gions, is widely used for profiling of microbial community struc-

ture andmembership [1–4]. Thewide-scale application of ampli-

con sequencing has been driven mainly by the ability to multi-

plex 100s of samples on a single sequencing run and obtain mil-

lions of sequences of target communities on high-throughput

sequencing platforms [1, 4]. The primary limitation of these

commonly used technologies (e.g., Illumina’s MiSeq, Ion Torrent

PGM) is that their read lengths are short, ranging from 150 to

400 bp [5]. While excellent at bulk profiling of microbial commu-

nities through multiplexed deep sequencing, short read lengths

are limited in the taxonomic resolution of sequenced reads and,

more so, are not amenable to robust phylogenetic analyses to

assess the relationship between sequences originating from un-

known microbes with those in publicly available databases. An

important effect of the proliferation in short read sequencing ap-

plications has been a decrease in the rate at which long higher-

quality sequences, particularly of SSU rRNA genes, are being de-

posited in public databases. This effect is to some extent being
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2 Accurate amplicon sequencing on the nanopore platform using NanoAmpli-Seq.

mitigated through assembly and curation of near full-length SSU

rRNA genes from metagenomic datasets [6–9] and will continue

to be mitigated with novel approaches for SSU rRNA sequencing

using synthetic long read approaches [10].

The introduction of single-molecule sequencing platforms,

such as Pacific Bioscience’s (PacBio’s) single-molecule real-time

sequencing (SMRT) and single-molecule sensing technologies on

the Oxford Nanopore Technologies (ONT) MinION platform, has

opened the possibility of obtaining ultra-long reads [5, 11].While

sequencing throughput and rawdata quality of long-read single-

molecule sequencing approaches are yet to rival that of short

read platforms, the ability to obtain ultra-long reads can over-

come several limitations of the latter [12]. For instance, long-

read sequencing combined with various error correction ap-

proaches [13, 14] has been used to obtain high-quality single

contig microbial genomes [14] or increase assembly quality of

previously sequenced but fragmented eukaryotic genomes as-

semblies [15, 16], which was not feasible using short-read ap-

proaches. Long-read sequencing capabilities have also been re-

cently leveraged to sequence near full-length SSU rRNA genes

(e.g., 16S rRNA) [17–21] or even the entire rrn operon [20, 22].

A majority of the studies utilizing either the SMRT or

nanopore sequencing platforms have restricted their data anal-

yses efforts to sequence classification due to the fact that widely

used sequence classifiers are tolerant of high sequencing error

rates [23, 24]. However, these classification-only approaches are

limited in their ability to differentiate between closely related

sequences, risk false detections (i.e., read incorrectly classified

at the family or genus levels due to high error rates), and are un-

able to identify organisms that are not represented in the refer-

ence databases. In contrast, some studies have gone beyond se-

quence classification by using consensus sequence construction

to improve overall sequence accuracy. The consensus sequence

creation efforts thus far can be categorized into two approaches.

The first approach involves mapping raw, noisy reads to custom

or publicly available reference databases (i.e., SILVA) [25]. Subse-

quently, readsmapping to the same reference sequence are then

used for the semi-automated or manual construction of a con-

sensus sequence using overlapping alignments [20, 22]. While

this approach does result in improved accuracy of the consensus

sequence, clustering of reads based on mapping of noisy reads

to reference databases has significant limitations. First, incor-

rect mapping to a reference database is likely due to high er-

ror rates of raw nanopore reads. Second, the reliance on a ref-

erence database ensures that reads originating from organisms

not represented in the reference database are typically discarded

as these could lead to clustering errors during operational taxo-

nomic unit (OTU) construction. The more robust alternative to-

wards high accuracy consensus sequence generation would be

a completely de novo approach, i.e., generation of a consensus

sequence without the use of any reference database.

To our knowledge, there are three reports of de novo data pro-

cessing to reduce error rate from long-read sequencing of ampli-

cons frommixedmicrobial communities [17, 21, 26]. Both Singer

et al. [26] and Schloss et al. [17] utilized the circular consensus

sequencing approach of SMRT sequencing coupled with a range

of quality filtering (i.e., mismatches to primer, quality scores)

and sequence clustering (i.e., pre-cluster) to generate consen-

sus sequences from reads clustered into OTUs and achieved er-

ror rates of 0.5% [26] and 0.027% [17] for full-length 16S rRNA

gene sequencing libraries. For the latter effort [17], the number

of OTUs in the processed data were also highly similar to the

theoretical number of OTUs in tested mock communities, indi-

cating that the application of this protocol for naturally derived

mixed microbial communities is likely to result in robust di-

versity estimates. Li et al. [21] developed the intramolecular-

ligated nanopore consensus sequencing (INC-Seq) protocol for

consensus-based error correction of nanopore sequencing reads

with a median accuracy of 97%–98%. The INC-Seq workflow

involves amplicon concatemerization to link multiple identi-

cal copies of the same amplicon on a single DNA molecule,

sequencing of the concatemerized molecules using 2D se-

quencing chemistry on the nanopore sequencing platform,

followed by consensus-based error correction after aligning

the physically linked concatemers on each sequenced DNA

strand. By using this approach, Li et al [21] were able to

increase the median sequence accuracy of processed reads

to 97%–98%. While this significant improvement allowed for

taxonomic classification of sequences to the species level,

it did not allow for sequence clustering for diversity esti-

mation due to residual median error rates of approximately

2%–3%.

In this study, we leverage and expand on the INC-Seq pro-

tocol developed by Li et al. [21] to provide a complete work-

flow for amplicon sequencing and de novo data processing

called NanoAmpli-Seq. This protocol was applied to near full-

length 16S rRNA gene of mock communities that resulted in

high-quality sequences with a mean sequence accuracy of

99.5 ±0.08%. The current version of NanoAmpli-Seq includes

modifications to the library preparation protocol for INC-Seq

and fixes a key issue with INC-Seq consensus sequences while

adding a novel read partitioning-based sequence clustering ap-

proach. These improvements result in an accurate estimation

of diversity of mixed microbial communities and results in

higher sequence accuracy by allowing within-OTU sequence

alignment and consensus calling. Further, we demonstrate that

NanoAmpli-Seq works equally well on the (now obsolete) 2D se-

quencing chemistry and the recently released 1D2 sequencing

chemistry on the MinION device. While important limitations

such as suboptimal reconstruction of community structure and

an error rate of ∼0.5% remain, the proposed approach may be

used for sequencing of long amplicons from complex microbial

communities to assess community membership with cautious

utilization of sequences from low-abundance OTUs due to likely

lower sequence accuracy ranging from 99% to 99.5% accuracy.

Results

Experimental design and workflow

The NanoAmpli-Seq protocol was developed and validated us-

ing amplicon pools consisting of near full-length 16S rRNA

gene of a single organism (Listeria monocytogens) or an equimo-

lar amplicon pool of near full-length 16S rRNA genes from

10 organisms (Supplementary Table S1). The amplicon pools

were generated by polymerase chain reaction (PCR) amplify-

ing near full-length 16S rRNA genes from genomic DNA of the

target organism(s) using primers and PCR reaction conditions

as described in the Materials and Methods section. The re-

spective amplicon pools were subsequently prepared for se-

quencing using the INC-Seq workflow as outlined in Fig. 1,

with a few significant modifications. Briefly, the amplicon pools

were self-ligated to form plasmid-like structures; this was fol-

lowed by digestion with plasmid-safe DNAse to remove the

remaining non-ligated linear amplicons. The DNA pool con-

sisting of plasmid-like structures was subject to rolling cir-

cle amplification (RCA) using random hexamer-free protocol

using a combination of primase/polymerase (PrimPol) and hi-
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Calus et al. 3

Figure 1: Overview of the sample preparation protocol for 16S rRNA gene amplicon pool preparation, plasmid-like structure construction, enzymatic debranching and

mechanical fragmentation, and 2D and 1D2 library preparation including intermediate cleanup steps.

fidelity Phi29 DNA polymerase [27]. The RCA product was sub-

ject to two rounds of T7 endonuclease I debranching and g-TUBE

fragmentation followed by gap filling and DNA damage repair.

Description of the protocol including reagent volumes and incu-

bation conditions is provided in the Materials and Methods sec-

tion, and a step-by-step protocol is provided in the Supplemen-

tary text. The prepared amplicon pools for both single-organism

and 10-organism mock community samples were then subject

to library preparation using the standard 2D (SQK-LSK208) (runs

1 and 2) and 1D2 (SQK-LSK308) (runs 3 and 4) kits using ONT

specifications and sequenced on the MinION MK1b device fol-

lowed by base calling using Albacore 1.2.4.

Each resulting read consisted of multiple concatamerized

physically linked amplicons from the one original 16S rRNA

gene amplicon. The long concatemerized amplicon reads were

subject to INC-Seq’s anchor-based alignment and consensus

error correction using three different alignment options (i.e.,

blastn, Graphmap, and partial order alignment [POA]) and fol-

lowed by iteratively running PBDAGCON on the consensus for

error correction (INC-Seq flag “iterative”). Reads with irregular

segment length, unmappable anchors, and potentially chimeric

molecules (i.e., concatemers from more than one original 16S

rRNA gene amplicon) were removed during the generation of

the INC-Seq consensus read. Manual inspection of INC-Seq con-

sensus reads revealed that a vast majority had an incorrect ori-

entation of primers (Fig. 2A). Specifically, the forward and re-

verse primers did not occur at the ends of the INC-Seq consensus

reads but rather were co-located at varying positions along the

length of each read. Efforts to manually split INC-Seq reads and

re-orient the forward and reverse splits based on primer orienta-

tion revealed the presence of tandem repeats of nearly identical

sequences, which affected efforts to merge the forward and re-

verse read splits (Fig. 2B, 2C).

To this end, we developed the chopSeq algorithm as part

of the NanoAmpli-Seq workflow. The chopSeq algorithm uses

pairwise2 open source library from Biopython package to iden-

tify user provided primers (forward “–f,” reverse “–r”) sequences

including degenerate bases in the INC-Seq consensus reads.

Primer detection is carried out in different orientations and

primer match scores for each orientation are generated. Subse-

quently, primer sequences in the INC-Seq consensus read with

the highest mean score are re-oriented, and any overhang is re-

moved. Re-orienting reads using primer orientation resulted in

the identification of insertions consisting of repeated sequence

patterns, i.e., tandem repeats. These tandem repeats were iden-

tified using etandem algorithm from EMBOS open source soft-

ware package [28], and various features of these repeats were

delineated, i.e., tandemminimum repeat, tandemmaximum re-

peat, and mismatch rate. The percent identity between tandem

repeats is estimated iteratively measuring the sequence simi-

larity between co-occurring segments using window size rang-

ing from 10 bp to 350 bp with diminishing sequence similarity

threshold with increasing window size. The sequence similar-

ity threshold with increasing window size was applied as longer

tandem repeats tend to have lower similarity to each other com-

pared to shorter. After completing re-orientation of reads and

the removal of tandem repeats, the forward and reverse splits

are merged into a single read, and any read that does not match

prescribed length threshold (i.e., 1300–1450 bp) is discarded. This

process of primer identification and tandem repeat removal can

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ig

a
s
c
ie

n
c
e
/a

rtic
le

/7
/1

2
/g

iy
1
4
0
/5

2
0
2
4
5
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



4 Accurate amplicon sequencing on the nanopore platform using NanoAmpli-Seq.

Figure 2: (A) Example of INC-Seq consensus reads showing the improper orientation with forward (maroon) and reverse (green) primers co-located and incorrectly

oriented. (B) Manual splitting and re-orientation of the reads revealed the presence of tandem repeats in the forward and reverse splits that were identified and

removed using chopSeq. (C) An expanded view of tandem repeat region in Fig. 2B.

also be visualized by turning on verbosity mode (flag = −v), and

the results can be exported in fasta format.

To enable fully reference-free analyses, we developed the

nanoClust algorithm, which takes the fasta file of chopSeq-

corrected reads as input and then performs read partitioning-

based de novo clustering using VSEARCH [29] to delineate OTUs

at a user-specified sequence similarity threshold (i.e., 97% in

this study) followed by within-OTU read alignment and consen-

sus calling for each OTU. The nanoClust algorithm is written

in python, relies on Biopython packages, and was explicitly de-

signed for de novo clustering because standard de novo clustering

approaches such as VSEARCH [29] and the clustering approaches

available in mothur [30, 31] vastly overestimated the richness

of the mock community when using chopSeq-corrected reads

(see details below). The nanoClust algorithm takes chopSeq-

corrected reads in fasta format; splits the reads into partitions

based on user-defined partition size; implements VSEARCH [29]

for dereplication, chimera detection and removal in each par-

tition, and clustering for each partition to identify the parti-

tion category with optimal (i.e., maximum) number of OTUs

(not counting singleton OTUs); and discards singletons. Follow-

ing this, nanoClust extracts read IDs for each OTU bin from the

best-performing partition. The extracted read IDs for each OTU

bin are then used to obtain full-length chopSeq-corrected reads;

a subset of reads that fall within 10% of the average full-length

read distributionwithin each OTU bin are aligned usingMultiple

Alignment using Fast Fourier Transform (MAFFT) [32, 33] with G-

INS-i option, followed by consensus calling to obtain full-length

representative sequence for each OTU. The entire data process-

ing workflow is shown in Fig. 3.

Modifications to the original INC-Seq protocol

significantly reduces time required for amplicon

concatemer pool preparation

While the proposed DNA preparation protocol is based on the

previously developed INC-Seq approach [21], it contains mul-

tiple improvements that allow for faster and more efficient li-

brary preparation. These modifications include reduced incu-

bation times for self-ligation step and plasmid-safe DNAse di-

gestion process. More importantly, the current protocol utilizes

Tth PrimPol [27] and Phi29 DNA polymerase enzymes for RCA

that minimize the formation of unspecific products that may

occur when using random hexamers. Similarly, the NanoAmpli-

Seq protocol utilizes T7 endonuclease I enzyme for enzymatic

debranching of RCA product combined with mechanical frag-

mentation step involving use of the g-TUBE. Thus, while our

protocol increases the number of intermediate steps for sam-

ple preparation, by optimizing each step, it reduces the overall

time required for sample DNA preparation to 6 hours (approxi-

mately 70% reduction compared to the original INC-Seq proto-

col). These improvements not only result in analyses of near full-

length 16S rRNA gene (i.e., twice the amplicon size of the previ-

ously developed INC-Seq approach), but the combination of the

improved protocol with appropriate data processing modifica-

tions resulted in significant increase in high-quality data post-

processing.

NanoAmpli-Seq data yield for 2D and 1D2 experiments

Runs 1, 2, 3, and 4 resulted in 29,420, 59,490, 142,233, and 301,432

raw records with post-base calling read lengths ranging from 5

bp to 43kbp and 5 bp to 234 kbp for 2D and 1D2 sequencing pro-

tocols (Supplementary Fig. S1). The pass reads to total raw reads

ratio ranged from 28% for 2D to 7%–9% for the 1D2 experiments

(Table 1). It is unclear if the low yield of pass reads, particularly

for the 1D2 experiments, were due to the concatemerization pro-

cess or DNA damage during enzymatic debranching and me-

chanical fragmentation that was unrepaired in the subsequent

steps or due to base calling issues. All pass reads were subjected

to INC-Seq processing to allow for consensus-based error correc-

tion using reads with a minimum of three concatemers per read

(i.e., reads with less than three concatemers were excluded from

any subsequent analyses) as compared to the six concatemer

threshold used by Li et al. [21]. The number of concatemers per

read passing INC-Seq threshold ranged from 3 to 21 and 3 to 42

for 2D and 1D2 data (Supplementary Fig. S1). The total number of

reads passing the three concatemer threshold ranged from 36%
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Calus et al. 5

Figure 3: (A) Overview of the INC-Seq-based anchor alignment and iterative consensus calling using PBDAGCON. (B) INC-Seq consensus reads were subject to chopSeq-

based read reorientation followed by tandem repeat removal and size selection to retain reads between 1300 and 1450bp. (C) chopSeq-corrected reads are subject to

partitioning followed by VSEARCH-based binning to identify optimal binning results using partition that generates maximum number of OTUs (without singletons).

MAFTT-G-INS-i was then used for sequence alignment of a subset of full-length reads from each OTU bin for the best-performing partition, and the alignment was

used to create the OTU consensus read.

to 75% of the base called reads depending on the experiment,

sequencing protocol, and alignment approach during INC-Seq

processing (Table 1). This was significantly higher than those re-

ported by Li et al. [21], primarily due to the use of three compared

to six concatemer threshold recommended previously.

INC-Seq processed reads demonstrated incorrect read

orientation and presence of tandem repeats

While the median read lengths for post-INC-Seq were generally

in the expected range (i.e., 1350–1450 bp) (Table 1) and similar

for all three alignment methods used (Supplementary Fig. 2),

manual inspection of the reads revealed several instances of in-

correct read orientation (Fig. 2). The amplicon pool preparation

protocol relies on RCA of plasmid-like structures constructed

through self-ligation of linear amplicons followed by a combi-

nation of enzymatic debranching and mechanical fragmenta-

tion to generate linear molecules with multiple concatemers.

Considering the fragmentation and debranching steps are not

driven by sequence specificity, it would be reasonable to as-

sume that the resulting linear amplicon is unlikely to have the

correct orientation, i.e., 16S rRNA gene-specific forward and re-

verse primers do not flank the entire amplified region. Indeed,

we found a vast majority of the 2D and 1D2 INC-Seq consen-

sus reads were incorrectly oriented for the single organism se-

quencing runs, with forward and reverse primers not located at

the ends of the reads. As a result, the reads were chopped at the

primer sites and re-oriented to allow for the forward and reverse

primers to be correctly oriented. However, during the process of

read re-orientation, we also discovered the presence of inserts
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6 Accurate amplicon sequencing on the nanopore platform using NanoAmpli-Seq.

Table 1: Summary of the total number of reads and median read lengths at each step of the data processing workflow for all experiments

Number of reads Median read length

Protocol 2D 1D2 2D 1D2 2D 1D2 2D 1D2

Experiment One organism One organism Ten organism Ten organism One organism One organism Ten organism Ten organism

Run 1 4 2 3 1 4 2 3

Raw records 29,420 301,432 59,490 142,233 – – – –

Pass reads 8,108 20,888 16,403 12,011 4,868 7,305 5,401 6,418

INC-Seq aligner Blastn

INC-Seq 3,911 7,618 7,011 9,081 1,394 1,433 1,396 1,413

chopSeq 3,911 7,618 7,011 9,081 1,383 1,387 1,377 1,374

chopSeq-size select 3,748 7,288 5,186 7,265 1,384 1,388 1,377 1,375

nanoClust 2,997 6,153 3,677 5,465 1,396 1,398 1,384 1,386

INC-Seq aligner Graphmap

INC-Seq 3,902 7,631 7,004 9,169 1,400 1,439 1,401 1,420

chopSeq 3,902 7,631 7,004 9,169 1,384 1,388 1,378 1,377

chopSeq-size select 3,765 7,399 5,190 7,496 1,384 1,389 1,377 1,377

nanoClust 2,981 6,179 4,141 5,490 1,397 1,396 1,384 1,386

INC-Seq aligner POA

INC-Seq 3,913 7,643 7,025 9,191 1,414 1,457 1,415 1,443

chopSeq 3,913 7,643 7,025 9,191 1,394 1,396 1,386 1,387

chopSeq-size select 3,779 7,088 5,076 6,954 1,394 1,396 1,385 1,386

nanoClust 3,184 5,993 3,916 5,622 1,398 1,389 1,384 1,386
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Figure 4: Histogram of tandem repeat length distribution of the INC-Seq consensus reads did not show any effect of the aligner used during the INC-Seq process but

rather a marked effect of the sequencing chemistry. Results are only shown for INC-Seq consensus reads generated using blastn aligner.

in the form of tandem repeats. Additional inspection of these

inserts revealed that they were composed of multiple repetitive

sequences, with the length of these inserts ranging from 10 bp

to in excess of 1,500 bp (for rare cases), with median tandem re-

peat size ranging from 12 bp to 62 bp. The proportion of INC-Seq

consensus reads with tandem repeats varied from 60% to 75%

but did not reveal any significant effect of type of aligner used

during INC-Seq consensus calling or the sequencing chemistry

itself. Interestingly, however, the length distribution for the tan-

dem repeatswas strongly associatedwith the sequencing chem-

istry (Fig. 4).

Specifically, the 1D2 reads had longer tandem repeats as com-

pared to the 2D reads and demonstrated a bimodal distribution

of tandem repeat lengths as compared to the 2D data, which

showed a unimodal tandem repeat length distribution (Fig. 4).

While the template and complements in the 2D sequencing

chemistry are physically linked by a hairpin adapter, they are

not physically linked in the 1D2 sequencing chemistry; this could

likely be the cause of differences in tandem repeat length distri-

bution between 2D and 1D2 experiments.
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Figure 5: While the distribution of percent identities of INC-Seq and chopSeq processed reads (chopSeq SS) to reference sequences was on average 97%–98%, variable

lengths of the INC-Seq processed reads aligned to the reference sequences. In contrast, nearly the entire length of the chopSeq processed reads aligned to the reference

sequence without affecting overall sequence similarity. Results are only shown for INC-Seq reads generated using blastn aligner.

Read re-orientation and tandem repeat removal

significantly improves sequence quality

Basic Local Alignment Search Tool n (BLASTn) analyses of INC-

Seq reads against reference database composed of 16S rRNA

gene sequences of 1 (run 1 and run 4) or 10 organisms (run 2

and run 3) revealed that a combination of incorrect read ori-

entation and presence of tandem repeats significantly affected

overall sequence quality. While the average sequence similar-

ity between INC-Seq consensus reads and the reference se-

quences was 97 ± 0.37%, the portion of the INC-Seq consen-

sus read demonstrating a contiguous alignment to the reference

sequence varied significantly (Fig. 5); the remaining section of

the read typically resulted in shorter secondary alignments with

similar sequence similarity to that of the primary alignment.

Post-chopSeq, the average proportion of the read aligning to the

reference sequences increased from 73 ± 14.6% to 96 ± 2.3%.

The additional step of discarding reads less than 1,300 bp and

greater than 1,450 bp increased the average proportion of the

read aligned to 98.4 ± 0.7%. The sequence similarity between

chopSeq (97.5 ± 0.42%) and chopSeq followed by size selection

(chopSeq SS) (98 ± 0.23%) remained similar to or slightly better

than INC-Seq processed read. This demonstrates that read reori-

entation and tandem repeat removal resulted in reconstruction

of readswith a high level of similarity to the reference sequences

(Fig. 5).

Inspections of the read to reference alignment length ratio

indicated that the primary source of sequence error for both

INC-Seq and chopSeq-corrected reads originated fromdeletions;

i.e., themajority of reads had a read to reference alignment ratio

lower than 1. While deletions in reads were also strongly associ-

ated with sequence accuracy for post-chopSeq and size selected

reads, a small proportion of chopSeq-corrected reads showed

read to reference alignment ratios of greater than 1 (Fig. 6), sug-

gesting that insertions were less prominent than deletions.

De novo clustering of chopSeq-corrected sequences

followed by within cluster consensus calling

significantly enhances sequence accuracy

The overall sequence accuracy increased to an average of

98 ± 0.23% following chopSeq read correction and size selection,

with 98.4 ± 0.7% of the read aligning to the reference (Fig. 5).

However, approximately 5% and 10% of reads for the 2D and 1D2

runs, respectively, exhibited sequence accuracy of less than 95%,

with some sequences aligning over less than 50% of the read

length even after chopSeq correction and size selection. These

poor-quality reads could not be selectively filtered out based on

any commonly used quality filtering criteria (e.g., maximum ho-

mopolymers length, primer mismatches) and significantly af-

fected clustering of reads into OTUs. For instance, VSEARCH-

based clustering of full-length post-chopSeq and size selected

reads (INC-Seq aligner: blastn) at a 97% sequence similarity

threshold resulted in 817 (with 777 singletons) and 1,301 (with

1,238 singletons) for 2D and 1D2 data for single-organism exper-

iments and 2,122 (with 1,742 singletons) and 2,725 (with 2,447

singletons) for 2D and 1D2 data for 10-organism experiments.

We hypothesized that accrual of residual errors over the entire

read length hampered the accuracy of the OTU clustering and

that accurate clustering was more likely over shorter regions of

the reads due to fewer absolute errors. To this end, we developed

nanoClust, which utilizes partitioning of reads in user-defined

lengths, followed by application of VSEARCH within each par-

tition for dereplication, singleton removal, chimera detection

and removal, and clustering at user-defined sequence similarity

threshold (i.e., 97% sequence similarity in this study), followed

by within-cluster sequence clustering and consensus calling.

We tested the effect of the choice of partition length on

the estimation of the richness of the mock communities (i.e.,

number of observed OTUs) and overall sequence accuracy post

within-OTU MAFFT-G-INS-i alignment and consensus sequence

construction. To this effect, we varied the number of parti-
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8 Accurate amplicon sequencing on the nanopore platform using NanoAmpli-Seq.
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Figure 6: The ratio of the alignment length of INC-Seq and chopSeq-corrected reads to that of the corresponding reference sequences was consistently lower than 1,

suggesting that deletions in the INC-Seq and chopSeq-corrected reads were the primary cause of dissimilarity with the reference sequences. Results are shown only

for INC-Seq reads generated using blastn aligner.

tions from one (i.e., partition length of 1,300 bp) to seven (i.e.,

partition length 180 bp). With increasing number of partitions

(i.e., decreasing partition length), the number of OTUs being de-

tected was significantly inflated above the theoretical thresh-

old while at the same time the average sequence accuracy de-

creased (Fig. 7).

Thiswas consistent for both the 1-organismand 10-organism

experiments for both 1D2 and 2D experiments (Fig. 7). As the par-

tition size increased (i.e., the number of partitions decreased),

the number of OTUs decreased and the overall sequence accu-

racy increased. The highest average consensus sequence accu-

racy was observed with a single partition while the number of

OTUs was lower than theoretical for the 10-organism experi-

ment. Further, using a single partition approach also resulted in

discarding a significant number of sequences that were deemed

singletons prior to OTU clustering. Specifically, while three fewer

OTUs were detected in the single partition approach, the total

number of sequences retained post-clustering was 20% lower as

compared to when a two- or three-partition approach was used.

Considering the trade-off between sequencing depth (and the

resultant impact on detection of lower-abundance OTUs) and

the extent of deviation from the theoretical number of OTUs and

overall sequence accuracy, we recommend using either the two-

or three-partition approach, which results in similar outcomes

on all three metrics.

The nanoClust approach with three partitions was far supe-

rior to the direct clustering of full-length reads and resulted in

an accurate determination of the number of OTUs, with one-two

spurious OTUs (when using a three-concatemers threshold for

INC-Seq) and no false negatives (Table 2) depending on the type
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Calus et al. 9

Figure 7: Increasing the number of partitions (and decreasing partition length) during nanoClust processing results in inflation in the number of OTUs observed and

a decrease in overall sequence accuracy.

of experiment and INC-Seq aligner used. MAFFT-G-INS-i align-

ment of 50 reads from each OTU resulted in consensus reads

with the entire read aligned to the reference and average con-

sensus read accuracy of 99.5% and accuracy values for individ-

ual OTUs ranging from 99.2% to 100% (Fig. 8). Nearly all errors in

the nanoClust consensus reads originate from single base-pair

deletions in a fewhomopolymers regions (homopolymers>4 bp)

and no detectable insertions, with one-two mismatches associ-

ated with the spurious OTUs.While accurate OTU estimation al-

lowed for single OTUs to be detected in the one-organism exper-

iment, the overall community structure deviated from the the-

oretical community structure for the 10-organism experiments

(Supplementary Fig. S4); thus, additional protocol optimization

is essential to ensure that the levels of deviation from theo-

retical community structure do not exceed what may be seen

from PCR biases [34]. Phylogenetic analyses of the consensus se-

quences demonstrated close placement of the OTU consensus

sequences with their corresponding references, with excellent

pairwise alignment between the two (Supplementary Fig. S3).

The nanoClust implementation in this study included a spec-

ified threshold of a maximum of 50 reads per OTU to generate

OTU consensus sequences. This was feasible because our study

focuses on a single organism and even mock community of 10

organisms. Thus, the process of consensus constructionwas not

limited by the number of reads that could be recruited. However,

it would be critical to determine the potential for poor-quality

consensus sequence due to fewer reads with an OTU in natu-

rally derived mixed microbial communities. To this end, we var-
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10 Accurate amplicon sequencing on the nanopore platform using NanoAmpli-Seq.

Table 2:Number of OTUs detected and consensus sequence accuracy for all experiments using the nanoClust for OTU clustering and consensus
calling approach

Number of OTUs Average consensus accuracy (%)

Protocol 2D 1D2 2D 1D2 2D 1D2 2D 1D2

Experiment One organism One organism Ten organism Ten organism One organism One organism Ten organism Ten organism

Run 1 4 2 3 1 4 2 3

Theoretical 1 1 10 10

INC-Seq aligner Blastn

OTUs detected 1 1 11 11 99.36 99.5 99.47 99.61

Spurious OTUs 0 0 1 1 – – 99.22 99.37

Non-Detect 0 0 0 0 – – – –

INC-Seq aligner Graphmap

OTUs detected 1 1 11 11 99.43 99.43 99.44 99.61

Spurious OTUs 0 0 1 1 – – 99.29 99.5

Non-Detect 0 0 0 0 – – – –

INC-Seq aligner POA

OTUs detected 1 2 10 12 99.5 99.61 99.60 99.52

Spurious OTUs 0 1 0 2 – 99.57 – 98.67

Non-Detect 0 0 0 0 – – – –

Figure 8: Relative abundance of OTUs for 1-organism (A, E) and 10-organism experiments (B, F) for 2D (blue data points) and 1D2 (red data points) experiments post-

nanoClustwhen using blastn algorithmduring INC-Seq. nanoClust clustering and consensus sequence generation resulted in few spurious OTUs and average similarity

to the reference sequence of ∼99.5%. Results are shown for 1-organism (C, G) and 10- organism experiments (D, H) for 2D (blue data points) and 1D2 (red data points)

experiments with the use of blastn during INC-Seq. The results were similar for Graphmap and POA alignment methods used during INC-Seq.

ied the number of reads used for consensus sequence construc-

tion from 5 to 100 for 2D and 1D2 data from the one-organism

experiment (Fig. 9).

The consensus sequence accuracy surpasses 99% with the

use of more than five reads for consensus sequence construc-

tion and plateaus at approximately 10–15 reads. However, the

variability in accuracy with repeated random sampling of data

was much more pronounced when fewer than 50 reads were

used for both 2D and 1D2 data. This suggests that consensus

sequence accuracy is reliably high only for OTUs where a mini-

mumof 50 reads are available for use in constructing the consen-

sus sequence. This would have an impact on sequence quality

of low-abundance OTUs.

NanoAmpli-Seq-based improvements in sequence

accuracy are not primarily associated with changes in

nanopore sequencing chemistry

The INC-Seq study [21] utilized data generated from flow cells

with R7 pores, while the present study used R9.4 and 9.5 pores

with reported higher sequencing accuracy. Improvements in

sequencing chemistry and base calling allowed us to reduce

the concatemer threshold for INC-Seq from six to three, which

significantly increased the amount of data used for analysis.

The second significant improvement of the updated sequencing

chemistry is the higher sequencing output. However, neither of

these improvements result in improved data quality post-INC-

Seq processing alone (Fig. 5). Thus, the chopSeq and nanoClust

algorithms are critical for obtaining 99.5% sequence accuracy.

To demonstrate this, we re-processed the “Ladder replicate”

data made available through the original INC-Seq study [21] us-

ing the NanoAmpli-Seq workflow. While re-analyzing R7 chem-
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Calus et al. 11

Figure 9: Consensus sequence accuracy plateaus with the use of 10–15 reads for MAFFT-G-INS-i alignment and consensus calling. However, with increasing number

of reads used for consensus calling, the variability in consensus sequence accuracy from repeated sampling of data diminishes significantly for both 2D and 1D2

sequencing chemistry. Data are shown for one-organism experiment where the blastn aligner was used during INC-Seq.

istry generated data from Li et al. [21], we detected tandem re-

peats and an incorrect primer orientation issue highlighted in

this study. chopSeq was successfully able to remove tandem re-

peats and re-orient reads such that nearly the entire length of

the read was now correctly aligned to the reference sequence

for most of the reads. Thus, while INC-Seq reaches a median se-

quence accuracy of 97%–98% (as described in the Li et al. [21]),

post-processing by chopSeq improves read quality through read

re-orientation and tandem repeat removal (Fig. 10).

Furthermore, nanoClust-based clustering and consensus

calling results in an average sequence accuracy of 99.5% for the

data generated by Li et al. [21]. The data generated by Li et al.

[21] included the V3–V6 region of the 16S rRNA gene from 10-

organism mock community with a staggered community struc-

ture including closely related organisms. This resulted in a theo-

retical number of eight OTUs at 97% sequence similarity. Specif-

ically, Staphylococcus aureus and Staphylococcus epidermis clus-

tered into a single OTU at 97% sequence similarity (their 16S

rRNA geneV3–V6 hypervariable regions are 98.8% similar to each

other) and Klebsiella pneumoniae and Salmonella typhimurium clus-

tered into a single OTU at 97% sequence similarity (their 16S

rRNA geneV3–V6 hypervariable regions are 97.6% similar to each

other). Further, Li et al. [21] generated only 2,100 INC-Seq con-

sensus reads combined for the two replicate sequencing runs.

As a result, two of the low-abundanceOTUswith a relative abun-

dance of 0.2% (Neisseria) and 0.1% (Faecalibacterium) were not de-

tected after processing with chopSeq and nanoClust. This non-

detection of low-abundance OTUs is primarily a function of low

sequencing depth rather than of the NanoAmpli-Seq workflow.

Further, the sequence accuracy of most of the detected OTUs

was in excess of 99.5%, while that of a single OTU (i.e., Fusobac-

terium) was 98.75% (Fig. 11). Thus, we conclude that incorporat-

ing chopSeq correction of INC-Seq consensus reads followed by

nanoClust-based clustering and consensus calling was vital for

improved sequence accuracy, irrespective of the changes in the

sequencing chemistry.

Discussion and Conclusions

The current study uses mock communities to develop and val-

idate the NanoAmpli-Seq workflow for long amplicon sequenc-

ing on the nanopore sequencing platform. While this study fo-

cuses on the near full-length 16S rRNA gene, in principle the

approach outlined by the NanoAmpli-Seq workflow should be

amenable to amplicons generated from PCR amplification of any

target gene irrespective of target gene length. While leverag-

ing the previously described INC-Seq protocol, NanoAmpli-Seq

adds several novel components that significantly enhance the

amplicon sequencing workflow for the nanopore platform. The

improvements over the previously described INC-Seq protocol

involve modifications to both library preparation (i.e., PrimPol-

based primer synthesis for RCA, debranching and fragmenta-

tion, shorter protocol length) and the data analyses. Specifically,

we identify and fix the issues associated with incorrect read ori-

entation and presence of tandem repeats in INC-Seq consensus

reads, thus allowing for nearly the entire length of the chopSeq-

corrected reads to be aligned to the reference with accuracies

(97%–98%) similar to those described by Li et al. [21]. While the

original INC-Seq protocol prescribed a concatemer threshold of

six, we halved the concatemer threshold to three, thus, more

than doubling the number of INC-Seq consensus reads available

as a proportion of the base called reads. We could use a lower

INC-Seq concatemer threshold due to both enhanced base call-

ing and sequencing accuracy of the nanopore platform [35] and

the ability to perform another round of alignment and consen-

sus calling during the nanoClust step.

The correction of INC-Seq consensus reads using chopSeq

did not allow for sequences with high enough quality for direct

OTU clustering using VSEARCH. However, the read partitioning-

based sequence clustering allowed for accurate determination

of the number of OTUs in the mock community. Further, de novo

sequence clustering using nanoClust provided the opportunity

to significantly increase the number of sequences used for con-

sensus calling. In this study, we used 50 reads for consensus call-

ing (i.e., 150× coverage considering three concatemer threshold
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12 Accurate amplicon sequencing on the nanopore platform using NanoAmpli-Seq.
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Figure 10: chopSeq-based read re-orientation and tandem repeat removal allowed for nearly the entire length of the read to be aligned to the reference sequences (A,

B) while maintaining the median sequence accuracy of INC-Seq consensus reads to ∼97%–98%.

set for INC-Seq), which resulted in average sequence accuracy

of 99.5%. The use of more than 50 reads for consensus calling in

nanoClust did not improve sequence accuracy, while reducing

the number of reads resulted in reduced precision. This thresh-

old of 50 reads for both the 2D and 1D2 sequencing data sug-

gests that the OTUs with fewer than 50 reads are likely to have

sequence quality lower than those OTUs with greater than 50

reads. It should, however, be noted that using a 10-read thresh-

old (i.e., 30× coverage [20] when including three concatemer

threshold for INC-Seq) consistently allowed for sequence accu-

racy consistently higher than 99%; thus, sequence classification

to species level using any of the current sequence classification

approaches [36, 37] (i.e., RDP classifier) would be reliable even for

lower-abundance OTUs.

While the NanoAmpli-Seq workflow represents a significant

improvement in amplicon sequencing on the nanopore plat-

form, some fundamental limitations remain. For instance, the

NanoAmpli-Seq sequence accuracy is still lower than those re-

ported for short amplicons [3] or those generated from the as-

sembly of SSU rRNA from metagenomic sequencing on the Il-

lumina platform [7, 9] and the full-length 16S rRNA sequencing

on the PacBio platform using the approach described previously

[17]. Our analysis shows that the sequence accuracy does not

improve with more than 50 sequences used in the nanoClust-

based consensus calling process. Nearly all of the errors in the

OTU consensus sequences originate from single deletions at

homopolymers regions, specifically for homopolymers greater

than 4 bp. This homopolymer error issue on the nanopore plat-

form is well known [14, 38] and is likely best resolved during the

base calling process rather than subsequent data processing or

by processing signal data (rather than base called data) all the

way through clustering, followed by base calling as the final step.

The second limitation of our approach is the lowdata yield at the

base calling step, i.e., base called reads represents only a small
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Calus et al. 13

Figure 11: Sequence accuracy of detected OTUs post-nanoClust for combined ladder replicate was ∼99.5% (red squares). Two OTUs were not detected post-nanoClust

processing (green line) due to their low abundance (<0.5%) in the constructed mock community (black line). The blue line shows the relative abundance as reported

by Li et al.

portion (i.e., 7%–9% for 1D2 data) of the raw records. This data

loss is significant and could potentially deter the widespread

use of the nanopore platform for amplicon sequencing. While

the precise cause of the low yield of pass reads post-base calling

is unclear, the proportion of pass reads in our study is not sig-

nificantly different from those reported elsewhere. One current

option would be to directly work with 1D rather than 1D2 data.

However, the maximum sequence accuracy of 1D reads post-

INC-Seq consensus construction was only 94% and unsuitable

for processing with chopSeq and nanoClust. The NanoAmpli-

Seq workflow includes a de novo clustering step. As long as the

sequence accuracy post-chopSeq is ∼97% (3–10 concatemers re-

quired), the binning process should provide for sufficient cov-

erage for consensus-based sequence correction to accuracies in

excess of 99%. The final limitation of our approach is that the

nanoClust relies on generating consensus sequences from mul-

tiple DNA sequences and thus there is the likelihood of cluster-

ing and generating a multi-species consensus from closely re-

lated species, i.e., those within 97% sequence similarity to each

other. While we did not find evidence for this “multispecies con-

sensus sequence” while analyzing data from Li et al. [21], which

included closely related organisms, this possibility cannot be ig-

nored. Thus, we recommend that researchers refrain from de-

positing NanoAmpli-Seq processed sequences in publicly avail-

able references databases but rather utilize this approach for

rapid screening of mixed microbial communities and limit the

use of NanoAmpli-Seq processed data for within-study micro-

bial community comparisons. Future improvement to avoid the

likelihood of “multispecies consensus sequence” would be to

utilize primers with bar codes consisting of randomN bases (i.e.,

unique molecular tags), similar to that used by Karst et al. [10].

This could allow clustering of reads originating from the same

original sequence using the unique molecular tags.

Methods

Mock community description and preparation

Two different mock communities were constructed for the ex-

periments outlined in this study. First, a single-organism mock

community was constructed by amplifying the near full-length

of the 16S rRNA gene from genomic DNA of Listeria monocyto-

gens using primers sets 8F (5′-AGRGTTTGATCMTGGCTCAG-3′)

and 1387R (5′-GGGCGGWGTGTACAAG-3′), both with 5′ phospho-

rylated primers (Eurofins Genomics) [26]. Phosphorylated ends

are essential for the subsequent self-ligation step. PCR reaction

mix was prepared in 25 µL volumes with use of 12.5 µL of Q5

High-Fidelity 2X Master Mix (New England Biolabs Inc., M0492L),

0.8 µL of 10 pmol of each primer, 9.9 µL of nuclease-free wa-

ter (Roche Ltd.), and 1 ng of bacterial DNA in total followed

by PCR amplification as described previously [26]. PCR ampli-

cons from replicate PCR reactions were combined and purified

with use of HighPrep PCRmagnetic beads (MagBio, AC-60 050) at

0.45× ratio. The 10-organismmock community was constructed

from purified near full-length 16S rRNA amplicons of 10 organ-

isms. Briefly, genomic DNA from 10 bacteria were obtained from

DSMZ, Germany (Supplementary Table S1) and the aforemen-

tioned primers, PCR reactionmix, and thermocycling conditions

were used to independently PCR amplify the near full-length 16S

rRNA gene, followed by purification using HighPrep PCR mag-

netic beads as detailed above. The purified amplicons from each

organismwere quantified on the Qubit using dsDNA HS kit, nor-

malized to 4 ng/µL, and combined to generate an amplicon pool

consisting of an equimolar proportion of the 16S rRNA gene am-

plicons of the 10 organisms.

DNA sequencing library preparation

To circularize the linear amplicons into plasmid-like structures,

5 µL of Blunt/TA Ligase Master Mix (New England Biolabs,
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M0367L) was added to 55 µL of amplicon pool at a concen-

tration of 1 ng/µL and incubated for 10 minutes at 15◦C then

10 minutes at room temperature (total time = 20 minutes). Not

all linear amplicons self-ligate into plasmid-like structures, but

some are likely to cause long chimeric linear amplicons. These

long chimeric structures were removed using magnetic bead-

based purification with the following modifications. HighPrep

PCR magnetic beads were homogenized by vortexing followed

by aliquoting 50 µL into a sterile 2-mL tube and placed on a

magnetic rack for 3 minutes. A total of 25 µL of the supernatant

was carefully removed using a sterile pipette to concentrate the

beads to 2× its original concentration. The tube was removed

from the magnetic rack and vortexed vigorously to resuspend

the beads. This concentrated bead solution was used at a ra-

tio of 0.35× to remove any amplicons greater than 2,000 bp in

the post-ligation reaction mix. Briefly, the post-ligation product

was mixed with concentrated bead solution at the 0.35× ratio

by vortexing followed by incubation for 3 minutes at room tem-

perature. The tube was placed on the magnetic rack to separate

the beads from solution, followed by transferring of clear liquid

containing DNA structures less than 2,000 bp into new sterile

tubes. Sample containing short self-ligated molecules was sub-

ject to another round of concentration using standard magnetic

beads at 0.5× ratios according to manufacturer’s instructions

and eluted in 15 µL of warm nuclease-free water. Concentrated

and cleaned DNA pool consisting of plasmid-like structures and

remaining linear amplicons was then processed with Plasmid-

Safe ATP-Dependent DNase (Epicentre, E3101K) reagents to di-

gest linear amplicons using the mini-prep protocol according to

manufacturer’s instructions and was followed by another round

of cleanup with magnetic beads at 0.45× ratio as described be-

fore and then eluted in 15 µL of warm nuclease-free water.

The pool containing plasmid-like structures was subject to

RCA with use of TruPrime RCA Kit (Sygnis, 390 100) random

hexamer-free protocol. Samples were prepared in triplicate and

processed according to manufacturer’s protocol with all incuba-

tions performed in triplicate for 120–150 minutes depending on

the assay efficiency. The progress of RCAwasmonitored bymea-

suring the concentration of DNA using Qubit 2.0 Fluorometer at

90, 120, or 150 minute time points. The negative control sam-

ple, consisting of reagents without any circularized plasmid-

like amplicons, was processed and analyzed concomitantly with

the samples. The final concentration of the RCA product after

150 minutes of incubation was typically 70 ng/µL when using a

starting DNA concentration of 0.35–0.4 ng/µL with no detectable

unspecific product formation in the negative controls.

Replicate RCA products were combined (∼4.5 µg of DNA in

total) and subject to de-branching and fragmentation of post-

RCA molecules to remove hyperbranching structures generated

during RCA. The RCA product was first treated with T7 endonu-

clease I enzyme (New England Biolabs, M0302S) by adding 2 µL

of the reagent to the 65 µL of RCA product followed by vortexing

and incubation as recommended by the manufacturer. Subse-

quently, the reactionmixwas transferred into a g-TUBE (Covaris,

520 079) and centrifuged at 1,800 rpm for 4 minutes or until

the entire reaction mix passed through the fragmentation hole.

The g-TUBE was reversed, and the centrifugation process was

repeated. Post-debranching and fragmentation, short fragments

were removed using the modified bead-based cleanup step us-

ing concentrated bead solution (see above for concentration pro-

cedure). Concentrated beads were mixed with fragmented RCA

product at a 0.35× ratio, vortexed for 15 seconds, and incu-

bated at room temperature for 3 minutes, then placed on amag-

netic rack until the beads separated and the supernatant was re-

moved. The beads were subsequently washed with 70% freshly

prepared ethanol according to the manufacturer’s protocols.

Size-selected amplicons bound to the beadswere eluted in 41 µL

ofwarmnuclease-freewater. Preliminary experiments indicated

that one round of de-branching did not completely resolve the

hyperbranching structure, which was inferred based on poor se-

quencing yield likely caused by pore blocking by hyperbranched

DNA. As a result, a second round of enzymatic de-branching us-

ing T7 endonuclease I was added, and the de-branched product

was cleaned a second time using the bead-based cleanup step.

Supplementary Fig. S4 shows example BioAnalyzer traces of the

RCA product post-debranching/fragmentation and post-cleanup

using magnetic bead-based protocol.

Finally, the de-branched RCA product was treated with NEB-

Next FFPE DNA Repair Mix (New England Biolabs, M6630S) for

gap filling and DNA damage repair caused during g-TUBE frag-

mentation and T7 endonuclease I enzyme. All reagent compo-

nents were combined with de-branched RCA product accord-

ing to the manufacturer’s recommendations and incubated at

12◦C for 10 minutes then at 20◦C for another 10 minutes. Post-

incubation, the repaired RCA product was cleaned using stan-

dardmagnetic beads at 0.5× ratio,washedwith 70% ethanol, and

eluted in 46 µL of warm nuclease-free water. The concentration

of the DNA product was measured using Qubit and was approx-

imately 20–25 ng/µL, with a total yield of ∼1,000 ng of DNA with

product size typically ranging from 1,500 bp to 20,000 bp. A total

of 45 µL DNA pool of concatemerized amplicons was prepared

for sequencing using the standard 2D and 1D2 library prepara-

tion protocol by ONT (SQK-LSK208, SQK-LSK308) according to

themanufacturer’s specifications to obtain pre-sequencingmix.

Moreover, the final concentration for prepared libraries was de-

termined using dsDNA HS kit on the Qubit instrument. A de-

tailed step-by-step protocol is provided in the Supplementary

text.

DNA sequencing

The MinION MkIB was connected to Windows personal com-

puter compatible with ONT requirements. R9.4 (FLO-MIN106)

and R9.5 (FLO-MIN107) flow cells were placed onto the MinION

Mk1B (ONT). Platform quality control was performed using Min-

KNOW software (v1.4.2 for 2D and v1.6.11 for 1D2 libraries). Only

flow cells containing more than 1,100 active pores were used in

this study. Each flow cell was primed twice according to ONT

specifications using priming buffer consisting of equal parts of

running buffer (RBF1) and nuclease-free water with 10-minutes

breaks between subsequent primes. The loading mix was pre-

pared with a 12 µL pre-sequencing mix, 75 µL of RBF1, and 63

µL of nuclease-freewater. Loadingmixwas sequencedwithMin-

KNOW settings appropriate for 2D or 1D2 options and standard

48 hour processing time for every run. Albacore 1.2.4 was used

to convert raw signals into HDF5 file format using switch options

FLO-MIN106 and SQK-LSK208 for 2D data and FLO-MIN107 and

SQK-LSK308 for 1D2 data.

Data processing

HDF5 raw signals from each sequencing run were converted to

FASTQ format using Fast5-to-Fastq [39] and then from FASTQ to

FASTA with seqtk [40]. The resultant data were subject to INC-

Seq [21] processing using blastn, Graphmap, and POA aligners

with concatemer threshold of 3 with the iterative flag for con-

sensus error correction using PBDAGCON. INC-Seq consensus

reads were subject to chopSeq by specifying forward and reverse
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primer sequences and upper (1,450 bp) and lower (1,300 bp) read

size thresholds for size selection (chopSeq SS). The chopSeq-

processed reads were subsequently processed using nanoClust

with partition size limits (flag “-s”) of 0,450,451,900,901,1300,

which splits the reads into three partitions of 450, 450, and

400 bp, respectively, prior to further processing. VSEARCH was

used for chimera removal (using uchime) followed by cluster-

ing of reads in each partition at a hard-coded sequence sim-

ilarity threshold of 97%. For the optimal binning results, nan-

oClust calculates local average length of the reads present for

each OTU generated with VSEARCH. This is followed by MAFFT-

G-INS-i multiple sequence alignment followed by majority con-

sensus calling of the first 50 reads present at the size variabil-

ity threshold (+/−10%). Finally nanoClust outputs an OTU table

with reads corresponding to each OTU after discarding single-

tons.

Fasta files from all stages (i.e., raw, INC-Seq, chopSeq,

chopSeq SS, and OTU consensus sequence) were analyzed for

read lengths in R [41]. The number of concatemers on each raw

read was estimated by dividing the length of each raw read

with the length of its corresponding INC-Seq consensus read.

At each stage of processing, the reads were aligned to reference

dataset using blastn, and only the match with the highest bit

score was considered. The ratio of read to reference alignment

at appropriate points (as discussed above) was estimated based

on blastn results. The percent identity from the blastn results

was used to measure consensus sequence accuracy for the nan-

oClust output. All figures for the manuscript were generated in

R using packages “ggplot2” [42], “gridExtra” [43], and “cowplot”

[44], as appropriate. Neighbor-joining tree construction (Supple-

mentary Figs. S3 and S4) was performed after muscle alignment

[45] (default parameters) and using Jukes-Cantormodelwas con-

structed in Geneious (version 8) using 100 bootstraps.

Availability of source code and requirements

Project name: NanoAmpli-Seq

Project home page: https://github.com/umerijaz/nanopore

Operating system: Linux

Programming language: Python

License: MIT License

RRID:SCR 016710

Availability of supporting data

All data are available in the European Nucleotide Archive under

primary accession number PRJEB21005. Intermediate and final

fasta files for amplicon sequencing processing workflow are in-

cluded in the GigaScience GigaDB repository [46].

Additional files

Supplementary material R2.pdf
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