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Nanotechnology is a novel branch of science that deals with the characterization, creation, and utilization ofAbstract
materials, devices, and systems at the nanometer scale. Advances in nanotechnology are spurring a revolution in
science, engineering and therapeutics, particularly in drug delivery. Targeted delivery of therapeutic molecules is
the most desirable feature of an effective drug therapy. Conventional chemotherapy faces major drawbacks such
as poor specificity of the drug, increased adverse effects, and reduced therapeutic efficacy. Application of
nanotechnology in drug delivery systems has provided new avenues for engineering materials with molecular
precision. This aids in fabricating nanoscale delivery devices that combine diagnostic and therapeutic actions for
immediate administration of therapy. Nanotechnology can generate a library of sophisticated drug delivery
systems that integrate molecular recognition and site-specific delivery of the therapeutic agents. It formulates
therapeutic agents in biocompatible nanomaterials such as nanoparticles, nanocapsules, liposomes, and micelles.
This review focuses on some of the nano-sized systems used in drug delivery and discusses the potential
applications of nanotechnology in the delivery of macromolecular therapeutic agents.

Nanotechnology is a multidisciplinary branch in science that The potential linkage between nanotechnology and biological
sciences is enormous. Physiological functions depend greatly onhas the ability to characterize, manipulate, and organize matter
nano-sized units such as viruses, nucleic acids, ribosomes, andsystematically at the nanometer scale. The term ‘nanotechnology’
components of the extracellular matrix.[2] Nanotechnology facili-is used to describe various research areas where the characteristic
tates the utilization of small-sized materials in the body that makesdimensions are in the nanometer range, typically between 0.1 and
them suitable for these diverse biological functions. Properties100nm.[1] Advances in science have now made it possible to
such as subcellular size, controlled-release capability, and suscep-manipulate atoms and molecules in order to construct materials
tibility to external activation make nanodevices more suitable forwith nanometer-scale accuracy. Although in its infancy, na-
new applications in medical science, especially in pharmaceuticalnotechnology is revolutionizing science, engineering, and thera-
industries.peutics by novel technological breakthroughs. Apart from areas

such as electronics and robotics, this technology is expected to The major challenge faced by pharmaceutical industries in the
make important developments in biomedical sciences, including discovery and development of novel drugs is the delivery of drugs
gene therapy, tissue engineering, drug delivery, and development at the right time to the specific target site in a safe and reproducible
(figure 1). manner.[3] In the last few decades, there has been considerable
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Even though there are several ways of achieving nanoscale
delivery systems, it is believed that the most stable and versatile
systems are nano-sized versions of synthetic materials that have
already been used in drug delivery applications, i.e. miniaturized
versions of degradable polymers such as poly(lactide-co-glycol-
ide) [PLGA].[2] Nanodelivery systems can be given by a variety of
routes and can be easily internalized by different types of human
cells by various mechanisms including clathrin- and caveoli-
mediated endocytosis, pinocytosis, and phagocytosis.[6] Nanode-
livery focuses on formulating drugs in biocompatible nano-sized
carriers such as nanoparticles, nanocapsules, liposomes, micelles,
dendrimers, emulsions, hydrogels, nanospheres, niosomes, and
nanotubes. This review focuses on some of these nanodelivery
systems used in drug delivery and their relevance in the emerging
field of nucleic acid- and peptide-based delivery as well as vaccine
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Fig. 1. Various applications of nanotechnology in science. delivery.

progress in drug delivery technology; however, the major require- 1. Nanotechnology in Drug Delivery
ments such as continuous release of therapeutic agents over ex-
tended period of time, targeted delivery of agents, and improved

Novel drug delivery technologies are important strategic tools
ease of administration remain unmet. Several potential therapeutic

used by the pharmaceutical industry for expanding drug markets.
agents have been limited by their inability to reach target tissues or

Nanotechnology can be successfully applied in basic biology as
cells. For instance, cytostatic chemotherapeutic agents damage well as in the development of new biological technologies such as
both malignant and normal cells due to nonspecificity of action.[4]

biocompatible drug delivery systems, imaging probes, or na-
Nano-sized systems can be manipulated at the molecular level for nodevices. In the past, most drugs have been formulated for
site-selective targeting of encapsulated therapeutic agents. delivery via the oral or parenteral routes, which may not always be

the most efficient routes for a particular treatment.[6] For instance,Pharmaceutical industries can take advantage of the unique
most of the drugs administered through the oral or parenteral routeproperties of these systems as drugs or as constituents of drugs, as
follow first-order kinetics; however, the ideal release profile forwell as design new strategies at the nanoscale level for controlled
most drugs involves a steady release rate (zero-order kinetics) sorelease and drug targeting. This technology can be used for design-
that the drug level in the body remains constant while the drug ising delivery devices that interact specifically at the subcellular
being administered.level and then translate this effect into cellular- and tissue-specific

It is widely believed that precise control of the drug carrier canclinical applications for maximum therapeutic outcomes and limit-
help in the modulation of drug release in order to achieve a desireded adverse effects.[5] Moreover, nanodelivery systems can pene-
kinetic profile. Therefore, effective delivery of the drug to varioustrate or overcome anatomical barriers such as the complex branch-
parts of the body is directly affected by the particle size of the druging of the pulmonary system, the blood brain barrier, and the tight
or drug carrier encapsulating the drug. Additional problems in-

epithelial junctions of the skin that hinder the delivery of a drug to
clude the instability of the drug in the biological environment and

the desired physiological site.[6] These systems are generally be-
drug loss due to rapid clearance and metabolism.[1] Moreover,

lieved to be a prerequisite for efficient drug targeting because newer classes of macromolecular drugs, such as proteins and
carrier systems with a diameter larger than that of a capillary tend nucleic acids, require novel delivery technologies that will maxi-
to physically clog in the blood vessels. Even though the diameter mize therapeutic outcomes and minimize adverse effects.[8]

of capillary blood vessels is approximately 5μm, generally carrier Several approaches have been developed to circumvent the
systems between 10 and 200nm or smaller in size are most feasible problems associated with nonspecific drug delivery. Since most
for drug targeting, since carrier systems larger than 400nm in drugs act as protagonists or antagonists to different molecules and
diameter are easily scavenged by the reticuloendothelial system chemicals within the body, a delivery system that can respond to
(RES).[7] However, in some cases carrier systems smaller than the the concentrations of these molecules in the body becomes very
lower limits (approximately 5nm in diameter) are also used so as important.[9] Therefore, designing a newer generation of nano-
to enable the complete excretion of carrier systems, such as sized systems for target-specific drug therapy and early diagnosis
nonbiodegradable polymeric carriers through the renal route.[4] of pathologies becomes the priority research area.

© 2006 Adis Data Information BV. All rights reserved. Am J Drug Deliv 2006; 4 (2)
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In recent years, significant research has been undertaken to 2).[19] Nanoparticles as delivery systems provide two basic advan-
develop nanotechnology for drug delivery since it is an appropri- tages:
ate system for delivering biotechnology-based drugs such as pro- 1. they can easily penetrate through small capillaries and are taken
teins, peptides or genes by either local or site-specific delivery to up by cells allowing efficient accumulation of the drug at the target
the target tissue.[10] The additional advantages of nanostructure- sites;[20,21] and
mediated drug delivery include its ability to enhance drug bioavai-

2. biodegradable nanoparticles facilitate sustained release of thelability, improve the timed release of drug molecules, and enable
drug within the target site over an extended period of time.precision drug targeting. Nanodelivery systems can address issues

associated with current pharmaceuticals such as the reformulation In nanoparticulate delivery systems, a broad range of both
of old drugs to reduce their adverse effects and reformulation of natural and synthetic polymers have been employed to encapsulate
drug candidates that did not pass through the trial phases of new drugs in the polymer matrix. Polymers used for the delivery
drug development.[6] Additionally, innovative drug delivery sys- systems exhibit several desirable properties as drug carrier includ-
tems may make it possible to use certain chemical entities or ing technical flexibility, biodegradability, and biocompatibility.[22]

biologics that were good therapeutically but were difficult to Polymers undergo hydrolysis forming biocompatible moieties,
administer or had serious adverse effects. For example, drug such as lactic acid and glycolic acid, that are easily removed from
targeting enables the delivery of chemotherapeutic agents directly the body by the citric acid cycle.[23] Additionally, structural manip-
to tumors, reducing systemic adverse effects. Moreover, this tech- ulation of polymer materials allows easy incorporation of drug
nology may aid in increasing product life, performance, and ac- molecules enabling greater control of the pharmacokinetic behav-
ceptability, either by enhancing efficacy or improving safety and ior of the active drug constituent. Some of the most commonly
patient compliance.[1]

used polymers are synthetic polymers such as PLGA, polylactide
Other advantages of nanodelivery systems include the potential

(PLA), polylactide-co-poly(ethylene glycol) and polyacrylates,
to deliver drug molecules intracellularly to the target site.[11,12] For

and natural polymers such as gelatin, albumin, collagen, and
example, a nanoscale delivery system encapsulating DNA or RNA

poliglusam.[10,24-26]
can be transported to the target site inside the cell to repair genetic

PLA and PLGA have been the most extensively employed andmutations or alter gene expression profiles.[6] However, nanode-
investigated polymers for drug delivery.[27,28] As compared withlivery systems may not be suitable for drugs that are less potent
the natural polymers, synthetic polymers such as PLGA have thebecause higher doses of such drugs would require larger delivery
added advantage of sustained release of the encapsulated therapeu-systems, which would be difficult to administer.[1] On account of
tic agent over an extended period of time. The release rate of thetheir small size, safe doses of nanoparticles have to be optimized

that will provide a manageable mass or volume for administration. drug can be extended from days to months via slowing the degra-
Nevertheless, several nanoscale systems, as mentioned earlier, can dation process of the polymer by changing its composition and
be successfully employed for the targeted delivery of molecular weight.[29] PLGA microparticles have been formulated
macromolecular drugs including DNA, proteins, and peptides. and are being successfully used in the depot formulation of

Nanoparticles, liposomes, micelles, and nanocapsules are con-
sidered some of the most promising tools for drug delivery on
account of their versatility for formulations, biocompatibility, and
sustained-release properties. Several of these nanodelivery sys-
tems, such as dendrimers,[13,14] nanotubes,[12,15] micelles,[16,17] and
emulsions,[18] have been reviewed recently. This review outlines
some promising nanodelivery systems including nanoparticles,
liposomes, and nanocapsules and their potential applications in
gene, protein, and vaccine delivery.

2. Nanodelivery Systems

2.1 Nanoparticles

Nanoparticles are small polymeric colloidal particles varying in
size from 10–100nm with a therapeutic agent adsorbed, attached,
dissolved, dispersed, or encapsulated in its polymer matrix (figure
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Fig. 2. Schematic representation of various nanotechnology-based deliv-
ery systems: (a) nanoparticles, (b) liposomes, and (c) nanocapsules. 
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leuprorelin acetate (Lupron Depot®)1, a luteinizing hormone- 2.2 Liposomes

releasing hormone for the treatment of patients with hormone-
Liposomes are spherical phospholipid vesicles typically rang-dependent cancers and precocious puberty.[30] PLGA nanopar-

ing between 100 and 200nm in size with an inner compartmentticles can be formulated in a similar manner.
that can be used for the encapsulation of drugs[3] (figure 2).

PLGA nanoparticles are very useful in the delivery of therapeu- Liposomes are inert, biocompatible systems with little toxicity and
tic agents to the cells as these nanoparticles rapidly escape from antigenic reactions. Liposomal design can be easily manipulated
the endolysosomal compartment into cytosol following their up- to provide protection to the enclosed drug from enzymatic degra-
take.[31] It has been demonstrated that PLGA nanoparticles are dation and to increase its cellular uptake.[43] Anionic and neutral
taken up by human dendritic cells, thus implicating PLGA nano- liposomes have received limited attention due to their poor encap-
particles in the selective activation of T cell-mediated immune sulation or association efficiencies of macromolecular drugs.[44]

response.[31] Another report established that dexamethasone-load- Cationic liposomes are the most widely used systems for drug
delivery owing to the electrostatic interaction between the nega-ed nanoparticles demonstrated greater and sustained antiprolifera-
tively charged drug molecules and positively charged lipid carriertive activity in vascular smooth muscle cells as compared with the
that results in a more stable complex. Typically these complexesactivity demonstrated with the drug alone.[32] This was due to the
have a net positive charge that interacts with the negative charge offact that dexamethasone-loaded nanoparticles were more effective
the plasma membrane facilitating internalization of the complexin sustaining intracellular dexamethasone levels, which allowed
into the cell by endocytosis[45] (figure 3). It has been suggested thatfor more efficient interaction with the cytoplasmic glucocorticoid
membrane destabilization by cationic liposomes causes the anion-receptors.[32]

ic lipids from the cytoplasm-facing lipid layer to tumble to the
Various therapeutic agents including low molecular weight luminal layer diffusing into the liposome. These anionic lipids

lipophilic or hydrophilic drugs and high molecular weight DNA or then replace cationic lipids, releasing the drug moiety into the
antisense oligonucleotides can be encapsulated in PLGA nanopar- perinuclear area and finally into the cytoplasm and nucleus.[46] In
ticles.[23] Nanoparticles can also be used for targeting specific cell order to further facilitate the release of nucleic acids from the
populations by conjugating them with specific ligands or for the endosomal or lysosomal compartment, helper lipids such as di-

oleylphosphatidylethanolamine are generally used. Although ca-delivery of antigens for vaccination as these systems are capable of
tionic liposomes are good in in vitro models, in vivo they demon-enhancing mucosal immunity, which is extremely important in
strate nonspecific binding to the cellular components, blood plas-disease prevention. Some of the other polymers that have been
ma components or the endothelial lining of the vessel, resulting inused or are being investigated for nanoscale drug carriers include
a short biological half-life.[45]

poly(3-hydroxybutanoic acid),[33] polyalkylcyanoacrylate,[34]

poly(ethylene glycol) [PEG],[35] poly(ethylene oxide),[36] and co-
polymers such as PLA-PEG.[37,38]

Nanoparticles are very useful drug delivery systems; however,
the process of assembling polymers together with different classes
of drug molecules is usually difficult as most of the time a complex
mixture of particles of different sizes and shapes is obtained.
Finding methods of particle formation that are suitable and com-
patible with drugs has been one of the major challenges in this
area.[2] Various methods including solvent emulsion evaporation
or displacement, mold replication, colloidal lithography, interfa-
cial polymerization, nanoprecipitation, and nanoimprinting have
been developed to make nano-sized formulation of polymers.[39-41]

The drug is coupled with the polymer by sequestering, conjuga-
tion, and micelle formation.[42] Unfortunately, most of these meth-
ods are limited by their incompatibility with most drugs. In the
future, newer and better methods have to be developed to produce
controlled particles that are compatible with drug incorporation.
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Fig. 3. Endocytosis-mediated uptake and various barriers hindering the
delivery of DNA drugs into the nucleus: (a) extracellular nucleases; (b)
endocytosis, (c) endosomal escape, (d) cytoplasmic stability, and (e) nu-
clear entry.

1 The use of trade names is for product identification purposes only and does not imply endorsement.
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Successful clinical application of these cationic reagents de- Therefore, nanocapsules are essentially nanoparticles consisting of
pends on a number of factors, such as its chemical structure, target the drug in a hollow space that is enclosed by a shell. These
cell type, length, the method of complex formation, and the charge systems can be designed such that the breakdown of the capsule
ratio.[47] The major problem with the use of liposomes is the and release of the drug are controlled.[5]

toxicity associated with the high charge ratio of cationic lipid Polymeric nanocapsules can be manipulated at the molecular
species and the drug. Therefore, cationic liposomes should be level and can be prepared in specific sizes, shapes, and in reasona-
delivered to the target site so as to minimize adverse effects. ble quantities. Depending on the method of preparation, nanocap-
Adding a targeting ligand to liposomes, such as an antibody, sules with different properties and release characteristics can be
facilitates specific cell targeting (figure 2). Several studies have obtained. For instance, some nanocapsules swell or shrink in
demonstrated that antibody-associated liposomes can augment response to changes in pH, facilitating controlled release of the
cell-specific delivery and therapeutic activity of nucleic acids.[48,49]

enclosed drug. Furthermore, the encapsulation of the drug protects
Another concern is the size of the liposomes. Small liposomes it from degradation both during storage and after administration,

have longer circulation half-life than large liposomes. Liposomes allowing site-specific drug delivery.[58] Since the drug is not in
administered systemically are rapidly cleared in vivo from the direct contact with tissue at the site of administration, irritation due
blood circulation by the RES.[50-52] Liposomes were actually intro- to the drug is reduced. In addition, nanocapsules can reduce the
duced as drug delivery systems in the 1960s; however, due to rapid harmful adverse effects of the drug by allowing multifold de-
clearance by the RES, liposomal delivery systems had limited creases in drug dosages. The main advantage of this system is the
success. In 1987, this drawback was overcome by the introduction low polymer content and high loading capacity for both lipophilic
of GM-1 glycolipid into liposomal formulations, which radically as well as hydrophilic drugs.[57] Additional advantages include
reduced the nonspecific scavenging of liposomes by the RES.[53] increased bioavailability of the drug, higher safety and efficacy,
Later, PEG-bound lipid was used instead of GM-1 glycolipid as it and improved patient compliance.
was easier to supply and could be easily manipulated for specific Nanocapsules can either be produced as monodisperse particles
applications.[4] This liposome has been shown to circulate in the with exactly defined properties or tailored for the specific applica-
bloodstream for a longer time and can be targeted in cancer tion. Nanocapsules can be synthesized directly by interfacial po-
therapy to the solid tumor sites by the enhanced permeability and lymerization of monomers or by means of nanodeposition of
retention (EPR) effect.[54] Encapsulating doxorubicin in PEG- preformed polymers.[35] Surface engineering by the interfacial
coated liposomal systems demonstrated excellent EPR-based tu- deposition method can provide suitable size distribution and nec-
mor therapy results and reduced toxicity of the original drug.[54] A essary surface characteristics to the nanocapsules.[59] The basic
doxorubicin-containing PEG-coated liposome (Doxil®) has been principle involved in all the methodologies proposed for preparing
approved in the US and EU for chemotherapy against Kaposi’s nanocapsules entails the preparation of either oil/water emulsions
sarcoma and ovarian cancer.[55] Cationic liposomes have also been (oily core suspended in water) or water/oil emulsions (aqueous
extensively employed for the delivery of DNA, small-interfering core suspended in oil). Oil-based nanocapsule delivery systems
RNA, and antisense oligonucleotides. prepared by interfacial polymerization of alkylcyanoacrylate have

Even though liposomes are not very good in vivo models, the been proposed for the delivery of several drugs by various routes
fact that they can be administered in vivo via the vascular system of administration. Because of their oily vesicular nature and ul-
and stored in water for an extended period of time makes them trafine particle size, poly(alkylcyanoacrylate) [PACA] nanocap-
attractive candidates for drug delivery.[46,50] Liposomes have been sules can be utilized for sustained drug release.
used successfully as in vitro delivery systems; however, there is

The ability of PACA nanocapsules to deliver drug to blood
still a limited understanding of their behavior in vivo and particu-

after oral administration led to widespread utilization of this
larly inside the cell. For successful clinical applications, a more

system for oral delivery of unstable molecules such as peptides
lucid correlation between the drug-liposome complex and all the

and compounds that caused local adverse effects on the mucosae,
steps that lead to efficient translocation needs to be established.

such as anti-inflammatory agents.[60,61] Oral administration of in-
dometacin encapsulated in PACA nanocapsules has been shown to2.3 Nanocapsules
dramatically reduce the mucosal adverse effects of the drug with

Colloidal drug delivery systems such as nanoparticles and increased efficacy.[62] Similarly, oral delivery of insulin and ocular
liposomes have been studied extensively for site-specific delivery delivery of ganciclovir encapsulated in PACA nanocapsules has
of drugs.[56] More recently, nanocapsules have been proposed as a demonstrated increased efficacy and site-specific delivery of these
promising colloidal polymeric drug delivery system. Nanocap- drugs.[42,63] Furthermore, intramuscular administration of
sules are vesicular carrier systems containing the drug in a cavity diclofenac nanocapsules showed decreased inflammation at the
that is surrounded by a unique polymer membrane[57] (figure 2). injection site with increased therapeutic efficacy.[64]
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Nanocapsules are being investigated for the site-specific deliv- gene expression. However, the engineered virus may revert back
ery of various drugs including oligonucleotides, proteins, peptides, to its wild form causing harmful effects. Large-scale production of
and small molecular agents. Despite several successful applica- viral vectors is difficult and some viruses, such as adenoviruses,
tions, in vivo delivery of nanocapsules is limited by their distribu- can also cause immunogenic and inflammatory reactions leading
tion, particularly their recognition by the mononuclear phagocyte to de novo carcinogenesis.[69] Due to these safety issues, alterna-
systems after intravenous administration.[58] Other drawbacks in- tive nonviral gene delivery systems have been developed. These
clude improper encapsulation of the active molecule and modula- systems provide several advantages, including the possibility of
tion of its release rate that largely depends on the surface proper- transfecting cells with large DNA molecules, low cytotoxicity,
ties of the nanocapsules. Further development of nanocapsule less immunogenic reactions, reduced cost, and reproducibili-
delivery systems with precise manipulation of the surface proper- ty.[70,71] Nonviral delivery systems also have their own drawbacks,
ties and appropriate particle size can lead to successful application such as being restricted to extrachromosomal plasmid expression;
of these systems for the delivery of various drugs. furthermore, the delivered plasmid may even escape from the

nucleus during cell division resulting in plasmid dilution and
integration into inactive chromatin.[72,73] However, these delivery3. Pharmaceutical Applications of Nanotechnology
systems can be manipulated for efficient delivery and enhanced
site specificity.

3.1 Gene Therapy Nonviral nanodelivery systems such as cationic lipids and
polymers are one of the most extensively studied systems for the

With the human genome sequenced, gene or DNA delivery is
delivery of nucleic acids as their structure can be easily manipulat-

becoming the main focus of gene therapy. Delivery of exogenous
ed, enabling the investigation of structure-function relation-

DNA plasmid into the cells is a powerful tool in genetic diseases as
ships.[74-76] Condensing DNA with positively charged na-

it controls gene structure, regulation, and function. The nucleus is
nomolecules such as cationic lipids and cationic polymers, pro-

considered the ultimate delivery site for DNA; however, DNA
tects it from nuclease degradation and results in a more stable

delivery to mitochondria is also important.[65]

complex.[77] Both in vivo and in vitro delivery of DNA has been
Entry into the nucleus is essential for drugs targeting DNA and

studied using various nanocarriers such as polyethylenimine, 2-
the delivery of therapeutic genes in gene therapy.[66] Basically, in

diethylaminoether (DEAE)-dextran, artificial lipids, proteins, and
gene therapy, genetic material including DNA is introduced into

peptides.[78,79]

cells either to block the expression of harmful proteins or to
The transfection efficiency of DNA can be enhanced by coup-

produce therapeutic proteins. Therefore, gene therapy is a practical
ling molecules such as transferrin, asialoorosomucoid, folate, an-

approach for curing diseases rather than treating the symptoms
tibodies (CD3, CD34), or calcium phosphate to the DNA

alone. In order to access the nuclear transcription machinery,
polyplexes.[80-82] Furthermore, nuclear localization sequence

therapeutic DNA must cross the extracellular and intracellular
(NLS) tags can be attached directly to the DNA molecule or to the

barriers (figure 3). DNA is degraded by extracellular nucleases
delivery system in order to increase the efficiency of DNA uptake

and, hence, to begin with, DNA must be condensed or protected
through the nuclear pore complex (NPC) into the nucleus.[67] Zanta

with vectors that prevent it from nuclease degradation.[67] DNA
and coworkers[83] reported successful nuclear targeting of a report-

then enters the cell by endocytosis and is generally degraded in
er gene plasmid by covalently linking it to a single Simian Virus

this process due to low pH and enzymatic action. Nonetheless, the
40-derived NLS-containing peptide. However, binding to a NLS

DNA molecules that survive finally escape from the endosome
may modify the chemical nature of DNA and interfere with the

and enter the nucleus through nuclear pores or during cell division
plasmid transcription. Future studies should focus on understand-

when the nuclear envelope ruptures.[68] As a result of all these
ing the mechanism of the uptake of carrier-DNA complex which

barriers, the number of potential DNA molecules decreases at each
will help in the processing and targeting of these macromolecules

step of their passage from the extracellular environment to the
in the intracellular compartment in a more efficient way.

nucleus.
DNA delivery presents the challenge of not only delivering 3.2 Protein Delivery

DNA to the right cell type but also to the correct cellular organelle,
i.e. the nucleus. Appropriate delivery systems are required to Proteins are polymers of amino acids that perform a wide range
protect DNA from nuclease degradation and to enhance its thera- of cellular functions. Proteins and peptides possess and control
peutic efficacy. Among the DNA delivery systems developed so biological activities that mark them as important therapeutic
far, viral vectors are one of the most widely used strategies for agents. Some of the examples include antimicrobial peptides, anti-
clinical applications owing to their inherent ability to transport inflammatory enzymes, and antioxidants such as catalase and
genetic material into the cell and nucleus, leading to enhanced superoxide dismutase.[84] However, most proteins and peptides are
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rapidly eliminated from the circulation by renal filtration, proteo- variants are commercially available. Additional advantages in-
lytic degradation, receptor-mediated clearance, and accumulation clude optimized pharmacokinetics, decreased dosage frequency,
in nonspecific organs and tissues.[85] High molecular weight pro- enhanced efficacy, bioavailability, solubility, and stability. Mathi-
teins may generate neutralizing antibodies leading to an immune owitz et al.[93] were able to deliver insulin in diabetic rats using
response. Additionally, most of them have limited biodistribution polyanhydride nanospheres. Small molecular carriers are being
in vivo as they are unable to cross biological membranes in the used to deliver insulin and heparin in animals.[94,95] Endogenous
absence of specific transport systems. proteins are generally imported into the nucleus via the NPC in an

NLS-dependent and ATP-dependent fashion.[96] Numerous pro-Clinical application of proteins and peptides is further limited
teins and peptides including growth factors, hormones,by their short biological half-lives due to low solubility or poor
monoclonal antibodies, and cytokines are undergoing clinical in-stability.[86] For instance, a number of commercial peptides, in-
vestigation for a wide range of clinical conditions.cluding insulin for diabetes, Fuzeon® for HIV, and Forteo® for

A major hindrance in the development of protein/peptide-basedosteoporosis, require regular injections. Protein drugs normally
drugs is the cost, as large quantities of proteins are required forexert their action either extracellularly by interacting with recep-
formulation and thorough bioavailability studies.[84] Further devel-tors on the cell surface or have targets inside the cell. In the case of
opment of suitable delivery systems is required for site-specificintracellularly acting peptides and proteins, low permeability of
delivery of protein drugs for maximum efficacy and minimumcell membranes to these macromolecules presents an additional
adverse effects.obstacle for the development of proteins and peptides as therapeu-

tic agents. Endogenous proteins that are about 40kDa in size
3.3 Vaccine Deliverycannot easily diffuse into the nucleus via the NPC. Moreover,

proteins and peptides administered by the oral route show poor Vaccines are one of the most valuable medical interventions as
bioavailability due to their rapid degradation by proteolytic en- they have the capability of completely eradicating a disease.
zymes in the gastrointestinal tract.[87] Parenteral delivery of pro- Vaccine development faces major challenges such as noncompli-
teins and peptides is the most popular route as it bypasses the ance for needle systems, the requirement of large number of doses,
biological barriers that deter the passage of proteins and also leads and insufficient availability of vaccines in certain parts of the
to pharmacologic levels of proteins in a relatively short time.[88]

world.[97] Therefore, new vaccine delivery strategies that require
Advances in the field of molecular biology have led to the use fewer doses and provide lifelong, complete immunity against

of protein drugs for the treatment of a number of diseases. Howev- diseases are being developed.
er, these formulations require a delivery system that would protect An ideal theoretical vaccine will never be convincing unless
protein and peptide drugs from enzymatic degradation and deliver formulated and delivered suitably. Currently, various formulation
them to the target site. To address these problems several ap- techniques including adjuvants are being evaluated to deliver
proaches have been explored. Conjugating proteins and peptides vaccines in a safe and effective manner. Adjuvants are substances
with nanodelivery systems such as nanoparticles or liposomes that when co-administered with the desired antigen can modulate
prolongs their blood circulation by reducing glomerular filtration. and produce an enhanced antigen-specific immune response.[98,99]

In these systems, the protein drug is encapsulated or attached to the Adjuvants can either be used as immunostimulatory agents that
polymeric or liposomal matrix that releases the protein in a con- stimulate the innate immune system or as vaccine delivery systems
trolled manner by undergoing enzymatic digestion or hydrolysis. that target antigen-presenting cells.[94] Adjuvants play a critical
With the exceptions of BioPORTER® (Gene Therapy Systems, role in surmounting the poor immunogenicity of subunit vaccines
Inc., San Diego, CA, USA) which is a cationic lipid-based carri- in which the isolated component containing antigen fails to induce
er[89] and TransIT® (Panvera, Madison, WI, USA) which is a immunity on its own.
histone-based polyamine,[90] most of these systems do not effi- Since 1926, when it was first reported that aluminum com-
ciently deliver proteins to their intracellular targets. This could be pounds increased the immune response elicited by diphtheria
due to the fact that the protein encapsulated in nanocarrier systems toxoid vaccine,[100] several natural and synthetic compounds hav-
may undergo denaturation due to exposure to organic solvents ing adjuvant properties have been established. However, to date,
during the formulation procedure and/or the acidic environment the only adjuvants licensed for human use by the US FDA are the
generated during the degradation of the polymer matrix.[91,92]

so-called ‘alum’ adjuvants composed of aluminum salts. However,
PEGylation that involves linking specific PEG polymers to alum adjuvants have been associated with allergic reactions in

protein and peptide macromolecules is considered to be a useful some populations and increased levels of IgE antibody response in
method for protein delivery. Currently, PEG is the most widely others, making them generally unsuitable for mucosal deliv-
used polymer for modifying therapeutically active proteins be- ery.[101-103] In addition, they produce T-helper type 2 biased immu-
cause it is less toxic, economical and many of its molecular weight nogenicity with decreased levels of T-helper type 1 responses
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restricted only to the stimulation of antibodies with little or no anisms, delivery systems customized for site-specific delivery and
induction of cell-mediated immunity.[104,105] increased therapeutic efficacy are required.

Other potential adjuvants that have advanced to the clinical trial Nanoscale carriers are promising drug delivery systems, as they
phase have been verified to be very toxic for regular clinical use. provide several advantages over conventional delivery systems
As a result, there is a need for the development of safer and including a subcellular size, sustained release properties, and
effective adjuvants for delivery of vaccines that will provide a biocompatibility. In the future, developing nanodelivery systems
complete immune response including stimulation of antibodies that are economical, reproducible and easily inclusive with current
and cell-mediated immunity. Additionally, these adjuvants should infrastructure will definitely improve current drug treatment. With
be biocompatible, biodegradable, stable, and easily manufac- positive development in the field of nanoscale science, the goal of
tured.[24,98] site-specific drug delivery will soon be attained. Advances in

Although the mechanism of action of most adjuvants is only nanotechnology coupled with improved therapeutic methods will
partially understood, adjuvants administered through mucosal or revolutionize medical science and the way healthcare is adminis-
topical route are drawing interest as they are capable of stimulating tered.
the innate immune system providing the added advantage of easy
administration and better patient compliance.[106] Modified cholera Acknowledgments
toxin and E. coli heat labile enterotoxin are the most commonly
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