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Nanobodies that block gating of the P2X7 ion channel
ameliorate inflammation

Welbeck Danquah,1*† Catherine Meyer-Schwesinger,2* Björn Rissiek,1,3* Carolina Pinto,1

Arnau Serracant-Prat,1 Miriam Amadi,1 Domenica Iacenda,1,3 Jan-Hendrik Knop,1,2

Anna Hammel,1,2 Philine Bergmann,1,4 Nicole Schwarz,1 Joana Assunção,5‡ Wendy Rotthier,5

Friedrich Haag,1 Eva Tolosa,1 Peter Bannas,1,6 Eric Boué-Grabot,4 Tim Magnus,3

Toon Laeremans,5§ Catelijne Stortelers,5 Friedrich Koch-Nolte1||

Ion channels are desirable therapeutic targets, yet ion channel–directed drugs with high selectivity and few side
effects are still needed. Unlike small-molecule inhibitors, antibodies are highly selective for target antigens but most-
ly fail to antagonize ion channel functions. Nanobodies—small, single-domain antibody fragments—may overcome
these problems. P2X7 is a ligand-gated ion channel that, upon sensing adenosine 5′-triphosphate released by dam-
aged cells, initiates a proinflammatory signaling cascade, including release of cytokines, such as interleukin-1b (IL-
1b). To further explore its function, we generated and characterized nanobodies against mouse P2X7 that effectively
blocked (13A7) or potentiated (14D5) gating of the channel. Systemic injection of nanobody 13A7 in mice blocked
P2X7 on T cells and macrophages in vivo and ameliorated experimental glomerulonephritis and allergic contact
dermatitis. We also generated nanobody Dano1, which specifically inhibited human P2X7. In endotoxin-treated human
blood, Dano1 was 1000 times more potent in preventing IL-1b release than small-molecule P2X7 antagonists cur-
rently in clinical development. Our results show that nanobody technology can generate potent, specific therapeu-
tics against ion channels, confirm P2X7 as a therapeutic target for inflammatory disorders, and characterize a potent
new drug candidate that targets P2X7.

INTRODUCTION
Genetic and pharmacological studies in humans have implicated the
adenosine 5′-triphosphate (ATP)–gated P2X7 ion channel as a ther-
apeutic target in several inflammatory diseases, including glomerulo-
nephritis, multiple sclerosis, and chronic pain (1–4). Consistently,
studies with P2X7-deficient mice have also corroborated a key role of
P2X7 in experimentally induced inflammatory diseases (5–8). P2X7 is
prominently expressed by monocytes and T cells and responds to
ATP released from damaged cells as a danger signal during inflamma-
tion (9, 10). ATP-induced gating of P2X7 permits influx of calcium
(Ca2+) and sodium (Na+) ions and efflux of potassium ions (K+).
P2X7 is a key player in the processing and release of the proinflam-
matory cytokine interleukin-1b (IL-1b) by lipopolysaccharide (LPS)–
primed macrophages and is involved in the ectodomain shedding of
membrane proteins and the externalization of phosphatidylserine by
T cells (9, 11, 12).

Selective small-molecule inhibitors of P2X7 have been developed
for the treatment of inflammatory diseases by Pfizer (CE-224,535),
AstraZeneca (AZ-10606120 and AZD9056), and other pharmaceutical
companies (13–16). Many of these P2X7 antagonists have shown
promising results in preclinical trials of glomerulonephritis, multiple

sclerosis, inflammatory pain, rheumatoid arthritis, and mood dis-
orders (13–18). However, the two compounds tested in phase 2 clinical
trials for rheumatoid arthritis, AZD9056 and CE-224,535, did not
show any benefit beyond that of methotrexate (NCT00520572 and
NCT00628095) (19, 20). Additional trials with AZD9056 for osteo-
arthritis, chronic obstructive pulmonary disease, and Crohn’s disease
showed a benefit only in Crohn’s disease (Eudra-CT2005-002319-26)
(21). These studies illustrate the limitations of small-molecule P2X7
inhibitors, including a small therapeutic window, short in vivo half-
life, side effects on other members of the P2X family, and conversion
into ineffective and potentially toxic metabolites. Thus, an unmet
medical need for potent, less toxic P2X7 antagonists remains (15, 18).

Because of their exquisite specificity, low toxicity, and simple phar-
macodynamics, antibodies are emerging as a potent class of therapeu-
tics in autoimmunity, cancer, and infection. They are large, tetrameric
proteins of ~150 kDa that do not pass the renal filtration barrier and
therefore exhibit a much longer half-life (>10 days) than small-molecule
drugs. Current anti-inflammatory antibodies are directed against cyto-
kines, cytokine receptors, and cell-cell interaction molecules. Although
ion channels are potential therapeutic targets on immune cells for in-
flammatory diseases, they have remained underexplored as targets of
antibody therapeutics (22). Although conventional antibodies can di-
minish ion channel function by inducing endocytosis, they rarely direct-
ly interfere with ion channel function (22). Because of a unique
propensity to bind functional crevices on proteins (23), nanobodies
may fulfill the need for highly specific therapeutics toward ion channels
(24, 25).

Nanobodies are therapeutic proteins based on the smallest antigen-
binding domains of naturally occurring heavy chain–only antibodies
from camelids. These single-domain antibodies are 1/10 the size of
conventional antibodies and exhibit many advantages over conventional
antibodies (26, 27). With a long flexible CDR3 loop, nanobodies can
bind conformational epitopes that are inaccessible to conventional
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antibodies, such as the cryptic active site of an enzyme (24, 25). More-
over, the single-domain format of nanobodies facilitates the construc-
tion of multispecific and multivalent biologics by genetically linking
nanobodies in a linear fashion (25, 27). In vivo, monomeric nano-
bodies penetrate tissues better and more rapidly than conventional anti-
bodies but are swiftly eliminated by renal filtration. The in vivo half-life
of mono- or multivalent nanobodies can be tuned, for instance by
genetic fusion to an albumin-specific nanobody (28). Similarly, genetic
fusion with targeting moieties of Fc domains can endow nanobodies
with additional effector functions, from translocation across the
blood-brain barrier to cytotoxicity (25, 29).

We hypothesized that nanobodies could be tailored to modulate
P2X7 function on macrophages and T cells in vivo and thereby provide
therapeutic benefit in inflammatory diseases. We set out to generate
highly specific P2X7 nanobodies (both antagonists and potentiators of
P2X7 function) and test their efficancy in models of inflamation.

RESULTS
Immunization of llamas with P2X7 in native conformation
yields potent functional nanobodies
To present the P2X7 ion channel in its native conformation to cells of
the llama immune system, we applied two immunization strategies:
human embryonic kidney (HEK) cells stably expressing P2X7 for
one group of llamas (mouse P2X7) and intradermal complementary
DNA (cDNA) immunizations with a gene gun followed by a boost with
P2X7-transfected HEK cells for a second group of llamas (mouse P2X7
and human P2X7) (Fig. 1A). Both groups showed P2X7-specific anti-
body responses (Fig. 1B). To select nanobodies that recognize native
mouse P2X7, we cloned nanobody-phage display libraries from the im-
munized animals and panned these libraries on P2X7-expressing cells.
Sequence analyses of selected target-binding clones revealed enrichment
of 18 nanobody families (table S1).

To evaluate the capacity of nanobodies to modulate the function of
P2X7, we used nucleotide-induced ectodomain shedding of CD62L by
Yac-1 mouse lymphoma cells as a convenient readout (fig. S1). Nano-
bodies from six distinct families either blocked or enhanced both
ATP-mediated and nicotinamide adenine dinucleotide (NAD+)–
mediated activation of P2X7. The most potent blocker, nanobody
13A7 [median inhibitory concentration (IC50), 12 nM], and the most
potent enhancer, nanobody 14D5 [median effective concentration
(EC50), 6 nM], were selected for further analyses. Flow cytometric
analyses with transfected HEK cells verified specific binding of these
nanobodies to mouse P2X7 but not to human P2X7, mouse P2X1, or
mouse P2X4 (Fig. 1C).

Dimerization enhances the potency of
P2X7-modulating nanobodies
The single-domain format of nanobodies facilitates their assembly into
dimers and multimers. Because P2X7 is a homotrimeric ion channel,
we reasoned that dimerization of nanobodies would improve binding
affinity and enhance functional potencies. Thus, we generated dimeric
molecules of nanobodies 13A7 and 14D5 by genetically fusing two
single domains via a flexible peptide linker (Fig. 2, A and B). To pro-
vide half-life extension (HLE) for in vivo applications, we genetically
fused homodimers of 13A7 and 14D5 to the albumin-binding nano-
body Alb8, which causes the fused product to adopt the serum half-life
of albumin in the respective host species (28). We also reconsti-
tuted a bivalent heavy chain antibody format by genetically fusing
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Fig. 1. Selection of P2X7-specific nanobodies from immunized llamas. (A) Llamas

413, 415, and 416 were immunized with P2X7-transfected HEK cells. Llamas 405 and

418 were immunized with a P2X7 cDNA expression vector and were boosted once

with P2X7-transfected HEK cells. The VHH repertoire was cloned fromperipheral blood

lymphocytes (PBLs) prepared 3 to 10 days after the fourth and fifth boosts. (B) Flow

cytometric analyses of the reactivity of llama immune sera obtained after the last boost

with untransfected and with mouse P2X7–transfected HEK cells. IgG, immunoglobulin G.

(C) Flow cytometric analyses of the reactivity of Nb-Fc fusion proteins with HEK cells co-

transfected with green fluorescent protein (GFP) and mouse P2X7, mouse P2X4, mouse

P2X1, or human P2X7. Control staining was performed with the indicated conventional

antibodies directed against mouse P2X1 (CR30), mouse P2X4 (RG96A246), mouse P2X7

(RH23A44), or human P2X7 (L4). Data are representative of two (B) or three (C)

independent experiments.
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the nanobodies to the hinge and Fc domains of mouse IgG2c. Compar-
ative dose-response analyses of monomeric 13A7 and 14D5 and their
dimeric counterparts revealed 7- to 50-fold increases in P2X7-blocking
and P2X7-enhancing potencies, respectively (Fig. 2, C and D). The three
different versions of bivalent nanobodies—nanobody-dimers, HLE-
dimers, and Fc fusions (Nb-Fc)—showed similar potencies. The
13A7 Nb-Fc format, a reconstituted heavy chain antibody, was more
than 100 times more potent than four previously described P2X7-
specific monoclonal antibodies (30–32) in blocking ATP-induced
shedding of CD62L by mouse T cells (Fig. 2E).

Bivalent nanobodies modulate ATP-induced ion channel
function in P2X7-expressing cells
Binding of extracellular ATP gates the P2X7 ion channel, resulting in
a sustained influx of Ca2+ and Na+ and an efflux of K+. To measure the
effect of P2X7-blocking (13A7) and P2X7-potentiating (14D5) nano-
bodies on ATP-induced P2X7 currents, we performed two-electrode

voltage-clamp recordings on mouse P2X7–expressing Xenopus oocytes
(Fig. 3A). Oocytes responded to the application of ATP with the
characteristic slow and sustained currents in the presence of control
Nb-Fc fusion proteins. In the presence of 13A7-Fc, ATP application
induced little, if any, detectable currents. In contrast, in the presence
of 14D5-Fc, ATP-evoked currents displayed faster activation and higher
current amplitudes.

In P2X7-transfected HEK293 cells, nanobody 13A7-dimer
effectively blocked ATP-induced Ca2+ influx, whereas 14D5-dimer po-
tentiated ATP-induced Ca2+ influx in these cells and sustained Ca2+

influx even in response to low, subthreshold concentrations of ATP
(Fig. 3B). When added to cells already showing sustained ATP-
induced Ca2+ influx, 13A7-dimer reversed Fluo-4 (Ca2+ indicator)
signals, whereas 14D5-dimer further potentiated these signals (Fig. 3C).
Nanobody titration analyses revealed a dose-dependent blockade of
P2X7, with similar subnanomolar IC50/EC50 values for blockade/
potentiation of both ATP-induced Ca2+ influx (Fig. 3D) and ATP-
induced shedding of CD62L (Fig. 2D), confirming that nanobodies
block different downstream effects of P2X7.

Monovalent and bivalent nanobodies 13A7 and 14D5 also effectively
blocked or potentiated ATP-induced pore formation (fig. S2A). The
effects of monovalent nanobodies 13A7 and 14D5 were readily reversed
when cells were washed, whereas bivalent nanobodies showed
continued functional effects even after washing, consistent with a slower
rate of dissociation of bivalent nanobodies (fig. S2A). Further pharma-
cological characterization showed that the small-molecule P2X7 antag-
onist A438079 and nanobody 13A7 both blocked the potentiating effect
of nanobody 14D5 on ATP-induced Ca2+ influx (fig. S2B). Moreover,
nanobodies 13A7 and 14D5 also respectively blocked and potentiated
gating of P2X7 by BzATP [2′(3′)-O-(4-benzoylbenzoyl)ATP], a
P2X7-specific agonist (fig. S2C), underscoring their specificity
toward P2X7.

Bivalent nanobodies modulate P2X7 function on primary
mouse macrophages and T cells
Pore formation, inflammasome assembly, activation of caspase-1, and
release of IL-1b are hallmarks of ATP-induced activation of P2X7 on
macrophages, whereas ectodomain shedding and cell death are hall-
marks of P2X7 activation on T cells. Treatment of mouse peritoneal
macrophages with dimeric nanobodies effectively blocked (13A7) or
potentiated (14D5) ATP-induced pore formation (fig. S3A), inflam-
masome assembly (fig. S3B), caspase-1–mediated cleavage of pro–
IL-1b (fig. S3C), and release of IL-1b (fig. S3D), but it did not affect
P2X7-independent inflammasome assembly in response to the K+

ionophore nigericin (fig. S3B). Dimeric nanobodies 13A7 and 14D5
also did not affect transcription of Il6 or Il1b genes in response to
P2X7-independent activation of nuclear factor kB by LPS (fig. S3E).
Treatment of primary T cells with dimeric nanobodies effectively
blocked (13A7) or potentiated (14D5) ATP-induced shedding of CD27
(fig. S4A) and NAD-induced cell death (fig. S4B). In contrast, these
nanobodies did not affect P2X7-independent proliferation of T cells in
response to CD3–cross-linking antibodies (fig. S4C), confirming that
the nanobodies act exclusively on P2X7-dependent cellular functions.

Nanobody 13A7-HLE blocks P2X7 in vivo in mice and
ameliorates allergic contact dermatitis
To assess the capacity of nanobody 13A7 to reach and block
P2X7 function on immune cells in vivo, we intravenously injected
half-life–extended dimeric 13A7-HLE into the mice. Splenic T cells
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and peritoneal macrophages were recovered at different time points
after nanobody injection and were challenged ex vivo with ATP to
assess target occupancy and functional blockade. 13A7-HLE effectively
blocked both ATP-induced shedding of CD27 by splenic T cells and
ATP-induced nuclear DAPI (4′,6-diamidino-2-phenylindole) uptake

by peritoneal macrophages within 2 hours of nanobody injection
(Fig. 4, A and B). Comparative analyses of dimeric (13A7-dimer) ver-
sus half-life–extended dimeric (13A7-HLE) nanobodies showed that
fusion to the albumin-specific nanobody Alb8 resulted in a much lon-
ger blockade of P2X7 in vivo (Fig. 4C). Blockade of P2X7 by 13A7-
HLE was still effective 96 hours after injection (Fig. 4B).

Next, we probed the therapeutic potential of 13A7-HLE in a mouse
model of allergic contact dermatitis in response to the contact allergen
1-fluoro-2,4-dinitrobenzene (DNFB). In this model, mice are sensi-
tized by epicutaneous application of DNFB to the shaved abdominal
skin (day 0). When challenged 6 days later with DNFB on the ear skin
(day 6), mice respond with a characteristic local inflammatory re-
sponse that can be monitored by the ear swelling reaction and the
release of inflammatory cytokines 24 hours after challenge. Mice defi-
cient for P2X7 are resistant to contact hypersensitivity, because dendritic
cells fail to produce IL-1b in response to the contact allergen in the sen-
sitization phase (8). Therefore, 13A7-HLE was systemically administered
on days 0, 3, and 6. Blocking P2X7 via 13A7-HLE ameliorated local in-
flammation, because animals treated with nanobody 13A7-HLE had a
significantly lower gain in ear weight than did control animals and sig-
nificantly lower levels of the inflammatory cytokines IL-6 and IL-1b in
ear tissue extracts (Fig. 4D). The therapeutic effect also required
application of nanobodies during the challenge phase, because a single
injection of 13A7-HLE before sensitization with DNFB did not signifi-
cantly decrease inflammation (Fig. 4D). This suggests that P2X7 plays
a role during both the sensitization and challenge phases of the in-
flammatory response, consistent with the finding that application of
the contact allergen to the ear causes local release of ATP (8).

Nanobody 13A7-HLE ameliorates experimental
glomerulonephritis in mice
To further assess the therapeutic potential of nanobody 13A7-HLE in
inflammatory diseases, we analyzed its effects in a mouse model of
experimental glomerulonephritis induced by injection of antibodies
against glomerular podocytes (33). Before injection and every 3 days
after injection of antipodocyte antibodies, we treated groups of mice
with either 13A7-HLE, a control nanobody-HLE, or the P2X7-potentiating
nanobody 14D5-HLE. We monitored disease progression using mark-
ers of renal function and acute inflammation, as well as by histological
analyses of kidney sections. All animals receiving antipodocyte antibo-
dies had deposits of immunoglobulin and complement component 3
along the basement membrane of glomerular capillaries (fig. S5).
Animals treated with 13A7-HLE showed little, if any, inflammation;
animals treated with 14D5-HLE had enhanced inflammation and kid-
ney damage (Fig. 5). Albuminuria was significantly reduced after 15
days in animals treated with 13A7-HLE compared to animals treated
with control nanobody-HLE (Fig. 5, A and B). Nanobody 13A7-HLE
prevented the development of nephrotic syndrome, maintaining normal
levels of blood urea nitrogen, serum triglycerides, and serum cholesterol
(Fig. 5D), as well as preventing a rise of the proinflammatory cytokine
IL-6 in serum and MCP-1 [monocyte chemoattractant protein-1 (MCP-1/
CCL2)] in urine (Fig. 5D). Nanobody 13A7-HLE also inhibited histo-
pathological signs of kidney damage, including tubular protein casts,
glomerular capillary occlusion, swelling of podocytes, and disrupted ne-
phrin staining at the filtration barrier (Fig. 5E). Immunohistochemical
analyses of inflammatory cells revealed significantly reduced infiltration
of Ly6G+ granulocytes and CD3+ T cells in the glomeruli of animals
treated with 13A7-HLE compared to animals treated with control
nanobody-HLE (Fig. 5F). Conversely, animals treated with 14D5-HLE
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Fig. 3. Bivalent nanobodies block (13A7) or potentiate (14D5) the ion channel

activity of P2X7. (A) Voltage-clamp recordings of ATP-induced currents in mouse

P2X7–expressing Xenopus oocytes. Oocytes were preincubated with bivalent nano-

bodies (100 nM) for 20 min at room temperature before application of ATP for 5 s.

Representative ATP-evoked currents recorded from individual oocytes are shown.

Columns show mean amplitudes of ATP currents (n = 7 to 8 oocytes for each con-

dition). (B to D) Flow cytometric analyses of Ca2+ influx into P2X7-transfected HEK

cells loaded with the Ca2+ indicator Fluo-4. (B) Cells preincubated with bivalent nano-

bodies (100 nM) were analyzed for 1 min before addition of ATP and were then

further analyzed for 2 min. (C) Cells were analyzed for 1 min before addition of

ATP. After further incubation for 3 min, bivalent nanobodies (1 mM) were added,

and cells were further analyzed for 3 min. (D) Cells preincubated with bivalent nano-

bodies (100 nM) were analyzed 10 min after addition of ATP. Data are representative of

two (A to C) or three (D) independent experiments. MFI, mean fluorescence intensity.
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showed enhanced glomerular infiltration of granulocytes and T cells
(Fig. 5G) and enhanced albuminuria (Fig. 5, A and B). Nanobody
14D5-HLE did not cause any significant effects on disease progression
in P2x7−/− animals, confirming that the aggravating effect of this nano-
body is mediated via P2X7 (Fig. 5C). Together, these data demonstrate
that the P2X7-antagonizing nanobody 13A7-HLE ameliorates inflam-
mation in two distinct disease models.

Human P2X7–specific nanobody Dano1 blocks IL-1b release
from endotoxin-exposed human monocytes
Using human P2X7–expressing HEK cells for panning of phage
display libraries, we selected a nanobody, designated Dano1, that re-

cognizes human P2X7 with high specificity. Dano1 does not cross-
react with mouse P2X7 or with human P2X1 or P2X4, the closest
orthologs of P2X7 (Fig. 6A). Dano1 blocked ATP-induced Ca2+ in-
flux and pore formation in these cells (Fig. 6B), and dimerization
reduced the IC50 of Dano1 for ATP-induced Ca2+ influx and pore
formation by HEK cells from 0.5 to 0.2 nM (Fig. 6C). Compared
to the previously described human P2X7–antagonistic conventional
monoclonal antibody (mAb) L4 (32), Dano1 demonstrated both
higher potency (20- to 50-fold lower IC50) and efficacy (>95% versus
60 to 70% maximal inhibition) (Fig. 6, B and C).

Dano1 blocked ATP-induced inflammasome assembly by LPS-primed
human monocytes (Fig. 7A) but affected neither P2X7-independent
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Fig. 4. Antagonist nanobody 13A7 blocks

ATP-induced activation of P2X7 on murine

T cells and macrophages in vivo and ame-

liorates allergic contact dermatitis. (A and

B) Bivalent half-life–extended (HLE) dimer nano-

body 13A7 or irrelevant control nanobody-

dimer HLE (3 mg/kg) was injected into mice.

Splenocytes and peritoneal macrophages were prepared 2 or 96 hours after

injection. Ectodomain shedding of CD27 was monitored by flow cytometry on

primary spleen cells treated for 20 min with solvent (Sol) or ATP in the presence

of HLE-nanobodies. Gating was performed on CD3+ T cells. DAPI uptake was

monitored on primary peritoneal macrophages treated for 20 min with solvent or

ATP in the presence of HLE-nanobodies. Numbers in the upper panels indicate the

percentage of cells in the respective quadrants; numbers on top of the lower panels

indicate the DAPI MFI of CD11b+ cells. (B) CD27+ cells (percentage of CD4+ cells) (top)

and DAPI MFI ± SD (bottom) were quantified from flow data as in (A) (n = 3 to 5

mice). P values were determined by Student’s t test. (C) Splenocytes were prepared

2 hours (top) and 24 hours (bottom) after systemic injection of 13A7-dimer (2 mg/kg),

13A7-dimer HLE (3 mg/kg), or control nanobody-dimer HLE. Cells were incubated for

20 min in the presence of solvent or ATP before costaining with antibodies against

CD4, CD25, and CD27. Gating was performed on CD4+ T cells. (D) Mice were sensi-

tized by the application of DNFB on the abdominal skin and challenged 6 days later

by the application of DNFB on the left ear. Groups of mice (n = 8) were treated with

13A7-dimer HLE or control nanobody-dimer HLE (3 mg/kg) on day 0 (d0) (2 hours

before sensitization) (top and bottom). Mice indicated in the upper panels received

additional nanobody injections on days 3 and 6 (2 hours before challenge). A control

group was treated with dexamethasone 2 hours before challenge. Twenty-four hours

after challenge, inflammation was scored as the difference in weight between the left

and right ears. Inflammatory cytokines in ear tissue were quantified by enzyme-linked

immunosorbent assay (ELISA). Data are from individual animals (n = 8), with means

and SD indicated by bars and vertical lines. P values were determined by one-way

analysis of variance (ANOVA), followed by Bonferroni posttest. Data are representative

of two (B and C), three (D, top), and one (D, bottom) independent experiments.
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inflammasome assembly induced by nige-
ricin (Fig. 7A) nor P2X7-independent
transcription of IL6 or IL1B in response to
LPS (Fig. 7B). Similarly, Dano1 effectively
blocked ATP-induced shedding of CD62L
and the externalization of phosphatidyl-
serine by human T cells (Fig. 7C) but
did not affect P2X7-independent prolif-
eration of T cells in response to anti-
CD3 antibodies (Fig. 7D).

The critical role of P2X7 in release of
the proinflammatory cytokine IL-1b un-
derscores its importance as a therapeutic
target in inflammation. To evaluate the
potential therapeutic benefit of Dano1,
we used a surrogate P2X7-mediated in-
flammation model and measured the re-
lease of IL-1b from monocytes in fresh
human blood treated with LPS and
ATP. Cells of all four healthy volunteer
donors responded to this treatment with
heightened secretion of IL-1b (Fig. 7, E
and F). Dano1 blocked ATP-induced re-
lease of IL-1b with subnanomolar IC50

(Fig. 7E). Dano1 demonstrated up to
1000-fold higher potency than the
small-molecule inhibitors of P2X7 cur-
rently in preclinical development for
neurological and inflammatory diseases
[JNJ47065567 (neurological diseases;
Janssen) and AZ10606120 (renal injury;
AstraZeneca)] (15, 16). Its high specificity
and potency make Dano1 an excellent
clinical candidate.

DISCUSSION
Our study describes highly potent nano-
body antagonists of the mouse and human
P2X7 ion channel with higher specificity,
better pharmacodynamics, and lower toxic-
ity than current small-molecule antago-
nists. These nanobodies represent the first
effective biologic antagonists of this
emerging drug target for inflammatory dis-
ease (15, 18). In two different experimental
mouse models of inflammatory diseases,
antibody-induced glomerulonephritis
and allergic contact dermatitis, systemic
injections of the half-life–extended antag-
onist nanobody 13A7 ameliorated dis-
ease. In a surrogate inflammation model
with endotoxin-exposed fresh human
blood samples, the nanobody Dano1
blocked the release of the proinflammatory
cytokine IL-1b with up to 1000-fold higher
potency than small-molecule inhibitors of
P2X7 currently in development for inflam-
matory and neurological diseases (15, 18).
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Fig. 5. P2X7-specific antagonist or potentiator nanobodies ameliorate (13A7) or worsen (14D5) inflammation in

antipodocyte induced glomerulonephritis. (A to G) Glomerulonephritis was induced by injection of antipodocyte (AP)

serum. Control mice received preimmune serum (PI). P2X7−/− animals were used in one control experiment (C), and

wild-type mice were used in all other experiments. Groups of mice (n = 6 to 10) were treated with P2X7-specific 13A7-

dimer HLE or 14D5-dimer HLE or control nanobody-dimer HLE (2 mg/kg) 2 hours before serum injection and additionally

every 3 days (1 mg/kg). Urine albumin levels (Ualb) were quantified by ELISA, and urine creatinine levels (Ucrea) were

determined by automated measurement (A to C). Data in (A) showmeans ± SEM from n = 6 to 8 animals. Data in (B) and

(C) are from individual animals (n = 8 to 16), with means and SEM indicated by bars and vertical lines. On the day of

killing, blood urea nitrogen (BUN), serum triglycerides, and serum cholesterol levels were determined by automated

measurement; IL-6 in serum and MCP-1 in urine were quantified by ELISA (D). Data in (B) to (D) are endpoint values

on day 15. P values were determined by Mann-Whitney U test (n = 6 to 13). (E) Kidney sections were stained with

periodic acid–Schiff. Tubular protein casts are marked by asterisks, and glomerular capillary occlusions and swollen

podocytes are marked by arrows and arrowheads, respectively. Sections were also stained with the DNA staining

dye draq5 and with antibodies against nephrin, a podocyte cell surface protein essential for the proper functioning

of the renal filtration barrier (bottom). (F and G) Granulocytes and T cells in kidney sections were stained with antibodies

against Ly6G and CD3, respectively, and infiltrating cells in glomeruli were quantified. Data are number of Ly6G+ and of

CD3+ cells per glomerulus (n = 100 glomeruli from 10 to 13 mice in each group). Data are means ± SEM. P values were

determined by Mann-Whitney U test. Data are representative of one (C and D), two (A), and three (B and E to G)

independent experiments. Results in (B) and (G) show the cumulative data of two experiments with comparable

endpoint values.
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In contrast to small molecules, biologics exhibit high specificity and
have few off-target effects. The duration of nanobody-mediated block-
ade of P2X7 in vivo could easily be tailored: although dimeric nano-
bodies blocked P2X7 in vivo for several hours, fusion to the antialbumin
nanobody Alb8 provided long-term in vivo blockade of P2X7 for at least
4 days, reflecting the serum half-life of mouse albumin of ca. 2 days.
Hence, the presence of the clinically validated albumin-binding module
provides the nanobodies with good pharmacokinetics and pharmaco-
dynamic properties in vivo and allows the translation from mouse
models and non-human primates to man (34). Clinical leads contain-
ing an albumin-binding module such as the anti-IL-6R nanobody
ALX-0061 are being given every 2 to 4 weeks by subcutaneous in-
jection for systemic lupus erythematosus and rheumatoid arthritis
(NCT02437890 and NCT02287922).

Nanobody Dano1 is applicable for the treatment of systemic hu-
man inflammatory disorders in which high levels of ATP and IL-
1b are found, including glomerulonephritis, lupus nephritis, and acute
dermatitis. Previous pharmacological and genetic studies have already
implicated P2X7 as a potential therapeutic target in glomerulo-
nephritis, and an increase in glomerular expression of P2X7 was ob-
served in renal biopsies from lupus nephritis patients, as well as in rat
and mouse glomerulonephritis models (1, 7). Taylor et al. showed that
rats treated with a small-molecule P2X7 antagonist as well as P2X7-

deficient mice display attenuated inflammatory kidney damage in re-
sponse to the injection of antibodies against the glomerular basement
membrane (7). Our results corroborate the therapeutic potential of
P2X7 antagonistic nanobodies in this indication, because 13A7-HLE
inhibited renal immune cell infiltration and P2X7-dependent kidney
pathology. Moreover, the finding that the P2X7-enhancing nanobody
14D5-HLE aggravated glomerular inflammation substantiates the
pathological role of P2X7 in this disease. It should be noted that the
P2X7 nanobodies have been administrated from the onset of inflam-
mation because the mouse model progresses more rapidly and
aggressively than the human disease, in which the nanobodies would
be applied in a therapeutical setting, after disease was established. In
the acute dermatitis inflammatory response, P2X7 evidently plays a
role during both the sensitization and challenge phases, consistent
with the finding that application of the contact allergen to the ear
causes local release of ATP (8). During the sensitization phase,
P2X7 expression on dendritic cells is important for the activation of
T cells (8). Nanobody 13A7-HLE effectively prevented local inflam-
mation and effectively blocked release of proinflammatory IL-6 and
IL-1b when present during the challenge phase, suggesting that
multiple P2X7-expressing immune subsets are involved. Both disease
indications hence seem valid options for the application of P2X7 an-
tagonist nanobodies.

In addition, inflammatory bowel dis-
ease is a potential indication, because
P2X7 and IL-1b participate in both initi-
ation and regulation of intestinal inflam-
mation (21, 30). P2X7 is differentially
expressed in the mucosa of patients with
active and quiescent inflammatory bowel
disease. An increase in the number of co-
lonic mast cells expressing P2X7 has
been observed in patients with Crohn’s
disease and in a mouse model of experi-
mentally induced colitis. In the latter,
treatment with a mouse P2X7–specific
antibody inhibited mast cell activation
and intestinal inflammation (30). More-
over, the small-molecule inhibitor of
P2X7 AZD9056 showed improved clini-
cal parameters in a phase 2 study in pa-
tients with moderate-to-severe Crohn’s
disease, although there was a lack of ob-
jective change in the biomarkers of in-
flammation (21). It seems that AZD9056
modulated pain rather than the chronic
inflammatory response in this setting,
consistent with the evidence for a role of
P2X7 in chronic pain (4, 5).

Llama immunization also yielded an-
other P2X7 nanobody, 14D5, that re-
duced the ATP threshold required for
gating of mouse P2X7. In comparison
to other P2X receptors, gating of P2X7
requires relatively high concentrations
of ATP (35). It is unknown whether such
high concentrations can be achieved in
extracellular compartments other than
the immediate vicinity of necrotic cells.
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Fig. 6. Characterization of a nanobody Dano1 as a highly specific and potent antagonist of human P2X7. (A) Flow

cytometric analyses illustrating the specificity of Dano1 using HEK293 T cells transiently cotransfected with GFP and

human P2X7, human P2X4, human P2X1, or mouse P2X7. Twenty-four hours after transfection, cells were stained with

Dano1-Fc or an irrelevant Nb-Fc. Control staining was performed with the indicated conventional antibodies directed

against P2X1, P2X4, or P2X7. pAb, polyclonal antibody. (B) Flow cytometric analyses illustrating the capacity of nanobody

Dano1 to block ATP-induced Ca2+ influx (top) and uptake of DAPI (bottom) by HEK293 cells stably transfected with

human P2X7. Cells loaded with the Ca2+ indicator Fluo-4 were preincubated with Dano1-Fc or mAb L4 and adjusted

to 37°C in a water bath for 2 min before flow cytometry. After addition of ATP and DAPI, cells were analyzed for 4 min

further. Gating of the ion channel was assessed by changes in the MFI of Fluo-4. Pore formation was assessed by the

changes in the MFI of DAPI. (C) HEK293 stably transfected with human P2X7 were loaded with Fluo-4 and incubated for

20 min with ATP in the presence of DAPI and serial dilutions of monomeric Dano1, bivalent Dano1-Fc, or mAb L4 before

fluorimetry. (A to C) Data are representative of three independent experiments.
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However, a number of substances including LL37, polymyxin B, and
ivermectin potentiate gating of P2X7 in an allosteric manner (36, 37).
It is conceivable that 14D5 similarly allosterically facilitates the confor-
mational change required for gating of P2X7. Systemic injections of
14D5-HLE aggravated disease parameters in the glomerulonephritis
model. Although such proinflammatory effects would be undesired

in a chronic inflammatory disease, enhancing P2X7-mediated inflamma-
tion might be therapeutically useful in other pathophysiological situations,
for instance, in cancer or infections with intracellular parasites.

The usefulness of nanobodies as specific modulators of P2X7
function in the clinic may be limited by three factors. First, common
allelic variants affect the sensitivity of P2X7 to extracellular ATP (38, 39).

P2X7 antagonist nanobodies could be
more effective in patients expressing
highly sensitive P2X7 variants. Although
we have verified Dano1 efficacy in hu-
man immune cells from several donors,
a full genotype analysis would be advisa-
ble before commencing clinical trials.
Second, nanobodies have a low intrinsic
propensity to cross the blood-brain barri-
er, similar to conventional antibodies,
which restricts brain uptake and ap-
plication to neurological disorders. For
inflammatory diseases of the central ner-
vous system, it may be necessary to engi-
neer P2X7 antagonist nanobodies for
improved crossing of the blood-brain
barrier (29, 40). Third, the development
of antibodies to a nanobody in a patient
is a potential limitation of any biologic.
Although nanobodies have a high intrin-
sic sequence identity to human germ line
VH (variable region of immunoglobulin
heavy chain), lead candidates are further
sequence-optimized for even lower im-
munogenicity (41). The level of treatment-
related antibodies toward nanobodies that
have been tested in clinical trails is in
the same range as that for marketed hu-
man and humanized antibodies (42).

Numerous examples of nanobodies in
successful clinical development now exist,
with eight different nanobodies currently
in clinical trials, the most advanced being
in phase 3 for thrombotic thrombocyto-
penic purpura (NCT02553317). Efficacy
of nanobodies in inflammatory disease
has been demonstrated in multiple clini-
cal trials, including phase 2 trials of vo-
bariluzumab directed against the IL-6
receptor for rheumatoid arthritis (34)
and of caplacizumab directed against
von Willebrand factor for acquired
thrombotic thrombocytopenic purpura
(NCT01284569 and NCT01020383) (42).
Our P2X7 antagonist nanobodies would
likely follow a similar translational path
to the clinic, after the successful assess-
ment of the pharmacological and phar-
macodynamic parameters and safety
profile in preclinical species.

The nanobodies described here may
represent the next generation of highly
specific, long-acting P2X7 antagonist
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Fig. 7. Antagonist nanobody Dano1 blocks ATP-induced activation of P2X7 in primary humanmonocytes and

T cells as well as ATP-induced release of IL-1b in endotoxin-exposed blood. (A) Inflammasome assembly was

monitored on human blood monocytes by flow cytometry using an antibody directed against the adaptor protein

ASC. Cells were treated for 2 hours with LPS and then further incubated for 30 min with ATP (top) or nigericin (bottom)

in the absence or presence of Dano1-Fc or control Nb-Fc (200 nM). Data shown in column diagrams are percentage of

speck+ cells ± SD calculated from flow data (n = 3 donors). P values were determined by one-way ANOVA, followed by

Bonferroni posttest. (B) P2X7-independent activation of NF-kB–mediated transcription of IL6 and IL1B in purified human

blood monocytes was monitored by quantitative reverse transcription PCR (qRT-PCR), after treatment of cells for 3 hours with

LPS in the absence or presence of Dano1-Fc or control Nb-Fc (200 nM). Data show the fold increase in gene transcription ±

SD (n = 4). P values were determined by one-way ANOVA, followed by Bonferroni posttest. (C) Ectodomain shedding of

CD62L and externalization of phosphatidylserine were monitored by flow cytometry on primary human T cells treated for

20 min with solvent or ATP in the presence of Dano1-Fc, control Nb-Fc, or mAb L4. Gating was performed on CD4+ T cells.

Numbers indicate percentage of cells in the respective quadrants. (D) Proliferation of human T cells in response to treatment

with anti-CD3 was monitored by flow cytometric analysis of eFluor dye dilution after incubation of cells for 4 days in the

absence or presence of half-life–extended nanobodies. Gating was performed on living CD4+ cells. Data show percentage of

proliferating cells ± SD (n = 3). P values were determined by one-way ANOVA, followed by Bonferroni posttest. (E and F)

IL-1b levels were monitored by ELISA after sequential treatment of blood samples with LPS for 1.5 hours and with ATP for

0.5 hour. Samples were treated in the presence of serial dilutions of Dano1-Fc or the small-molecule antagonists in clinical

development (JNJ47965567 or AZ10606120) (E) or with 100 nM Dano1-Fc (F). P values were determined by Student’s t test

(n = 4 donors). Data are representative of two (B, D, and E), three (A and C), or four (F) independent experiments.
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drugs. Given the central role of IL-1b in chronic inflammatory diseases,
antagonizing P2X7 may be an attractive alternative or complementary
strategy to blocking IL-1b. The modular nature of the nanobody tech-
nology allows the combinationof nanobodymoduleswith different spe-
cificities. Similarly, fusion to nanobodies that bind lineage-specific cell
surface proteins may allow targeting of P2X7-specific nanobodies to
specific cell types, such as regulatory T cells or inflammatory mono-
cytes. In general, the strategy described here—llama immunization
combined with nanobody development—may be useful for generating
specific functional biologics against other leukocyte ion channels that
are promising drug targets.

MATERIALS AND METHODS
Study design
Our study was designed to determine whether activation of the P2X7
ion channel can be inhibited in vitro and in vivo with anti-P2X7
nanobodies. We derived 19 new anti-P2X7 nanobodies. We identified
one nanobody (13A7) that inhibits ATP-induced gating of mouse
P2X7 and one nanobody (14D5) that potentiates ATP-induced gating
of mouse P2X7 and one nanobody (Dano1) that inhibits ATP-
induced gating of human P2X7. We used established preclinical in-
flammatory models to evaluate the inhibitory activity of mouse
P2X7–specific nanobody 13A7 in vivo. Previous studies had demonstrated
that disease in these models can be ameliorated by broad-spectrum
P2X7 antagonists (7, 8). In the mouse model of allergic contact der-
matitis [delayed type hypersensitivity (DTH) model], an ear-swelling re-
sponse is induced by painting the allergen DNFB onto the abdominal
skin (“sensitization”), followed 6 days later by a second application of
the allergen onto one ear (“challenge”). In the mouse model of glomer-
ulonephritis (GN model), an inflammatory response is induced by
injection of sheep anti-mouse podocyte antibodies, resulting in the dep-
osition of antibodies and complement components along glomerular cap-
illaries. The inflammatory response in the DTH model can be quantified
conveniently 24 hours after the challenge by the gain in ear weight
and the local release of the inflammatory cytokines IL-1b and IL-6.
In the GN model, the loss of albumin to the urine serves as an
indicator of damage to the glomerular filtration barrier and the ap-
pearance of neutrophils and T cells in glomeruli as an indicator of
the local inflammatory response. To ensure a sustained blockade of
P2X7 throughout the course of these aggressive disease models, we
injected half-life–extended dimeric nanobodies 2 hours before induc-
tion of disease and, again, every 3 days after induction of disease. Dos-
age and timing of nanobody administration were determined by
pharmacodynamic simulation studies aiming to maintain a serum con-
centration of 100 nM for the half-life–extended nanobodies (100-fold
above the IC50), on the basis of previously determined in vivo half-life
for HLE-dimeric nanobodies of 1.3 to 1.9 days. Animals were killed
after 7 days (DTH model) or 15 days (GN model), that is, at the
expected peak of the respective inflammatory responses.

To evaluate the inhibitory activity of the human P2X7–specific
nanobody Dano1 in vivo, we used a surrogate inflammation model in
which fresh samples of human blood were treated sequentially with
endotoxin (LPS) and ATP. This induces a massive, P2X7-dependent
release of IL-1b, providing a means to test the therapeutic potential of
Dano1 in inflammation. Mice were assigned randomly to experimen-
tal groups. The sample size was determined by power analyses. Studies
were blinded. Numbers of replicates are indicated in the figures or in
the corresponding legends for all experiments.

Selection and characterization of P2X7-specific Nanobodies
Phage libraries were selected in suspension on Chinese hamster ovary
cells transfected with mouse P2X7. Bound phages were eluted by tryp-
sinization, amplified in TG1 Escherichia coli, and reselected on Yac-1 cells
endogenously expressing mouse P2X7. Single colonies were picked for
screening of monovalent nanobodies by phage ELISA on fixed cells, af-
ter which positive hits were sequenced. For each unique sequence, pro-
tein expression was induced with isopropyl-b-D-thiogalactopyranoside
for 3 hours during exponential growth. Periplasmic lysates were gen-
erated by osmotic shock and removal of bacterial debris by high-speed
centrifugation. Nanobodies in crude periplasmic extracts were
screened for selective binding to P2X7-transfected HEK cells by flow
cytometry, either directly or after preincubation of extracts with fluo-
rescein isothiocyanate–labeled anti–c-mycmAb (clone 9E10) for 30 min
to form nanobody–anti-tag mAb complexes.

Multivalent formatting of Nanobodies
Homodimeric bivalent nanobodies were constructed by PCR using
a 35-GS linker (GGGGS)7 to fuse the two nanobodies. Half-life–
extended nanobody formats were constructed using PCR by fusing
the homodimeric nanobody via a 9-GS linker (GGGGSGGGG) to a
third nanobody, Alb8, an albumin-specific nanobody (28). The Nb-Fc
fusion format was generated by subcloning the VHH coding sequence
upstream of the hinge and Fc domains of mouse IgG2c in the pCSE2.5
eukaryotic expression vector (provided by T. Schirrmann, Technical
University Braunschweig, Germany) (43). Monovalent, bivalent, and
HLE nanobodies were expressed as c-myc-His6x–tagged proteins in
either E. coli, Pichia pastoris strain X-33, or HEK-6E cells (44) and
purified by immobilized metal affinity chromatography using Ni–
nitrilotriacetic acid beads (45). Fc fusion proteins were expressed in
HEK-6E cells and purified by affinity chromatography using pro-
tein G–Sepharose (GE Healthcare).

Ectodomain shedding and cell death by Yac-1 cells and
murine and human T cells
Anti-CD3 (145-2C11), anti-CD4 (RM4-5 and RPA-T4), anti-CD8
(RPA-T8), anti-CD25 (PC61), and anti-CD62L (MEL-14 and
DREG-56) were obtained from BD; anti-CD27 (LG.3A10) was from
BioLegend. Cells were preincubated with P2X7-specific or control
nanobodies for 15 min at 4°C and then further incubated for 20 min
at 37°C in RPMI medium in the absence or presence of ATP (46, 47).
Cells were washed, stained with fluorochrome-conjugated antibodies,
and analyzed by flow cytometry (FACSCanto II, BD; and FlowJo
software, Tree Star). For cell death analyses, T cells were stained with
fluorochrome-conjugated annexin V (BD) and antibodies in annexin
V–binding buffer for 20 min, washed, and analyzed by flow cytometry
in the presence of propidium iodide (Sigma).

T cell proliferation assays
Mouse CD4 T cells were purified from spleen and peripheral lymph
nodes by negative selection using magnetic beads (Miltenyi). Cells
were labeled with 2 mM carboxyfluorescein succinimidyl ester (CFSE;
Invitrogen) for 30 min at 37°C. Cells were washed and preincubated
in complete RPMI medium (supplemented with 10% fetal calf serum,
L-glutamine, pennicilin, and streptomycin; all from Gibco) in the ab-
sence or presence of nanobodies for 20 min before seeding onto a 24-
well plate coated with anti-CD3 and anti-CD28 (each at 1 mg per well;
BD) at 5 × 105 cells per well. Proliferation of T cells was analyzed after
3 days by CFSE dilution by flow cytometry. Human peripheral blood
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mononuclear cells were labeled with 2 mM eFluor 670 (eBioscience)
for 10 min at 37°C. Cells were washed and resuspended in complete
RPMI medium in the absence or presence of anti-CD3 (400 ng/ml;
OKT3, BioLegend). Cells were seeded onto a round-bottom 96-well
plate at 80,000 cells per well in the absence or presence of nanobodies
at a final concentration of 100 nM. Nanobodies were added a second
time after 2 days of culture. After 4 days, cells were stained with anti-
CD4 (RPA-T4) and anti-CD8 (SK1), and proliferation of living T cells
was analyzed by eFluor dye dilution by flow cytometry.

Experimentally induced allergic contact dermatitis
Three groups (n = 8) of adult 9- to 10-week-old female C57BL/6J mice
were sensitized by two applications in a 24-hour interval of DNFB
(Aldrich) (30 ml of a 0.5% solution in acetone/olive oil, 4:1; Acros Or-
ganics) to the shaved abdominal skin. Two hours before the first
application, two groups of mice received intraperitoneal injections of
half-life–extended, Alb8-fusion proteins of nanobody 13A7 or a con-
trol nanobody [3 mg/kg in 200 ml of phosphate-buffered saline (PBS)].
These mice received one further intraperitoneal injection of the re-
spective half-life–extended nanobodies on day 3 and an intravenous
injection on day 6, 2 hours before challenge (both at a concentration
of 3 mg/kg). The third group of mice received dexamethasone
(200 mg/200 ml; Sigma) per os on day 6, 2 hours before challenge.
Mice were challenged by the application of DNFB (20 ml of 0.2% so-
lution in acetone/olive oil) to the right ear. As control, mice received
applications of solvent (20 ml of acetone/olive oil, 4:1) to the left ear.
Mice were killed 24 hours after challenge, and the disease course was
monitored by measuring ear weight. The disease score is represented
as the difference in ear weight of the right ear (treated with DNFB)
and the left ear (treated with solvent). IL-6 and IL-1b in lysates of
challenged und unchallenged ears were determined by ELISA. Allergic
contact dermatitis experiments were performed by Washington Bio-
technology Inc., Bethesda, MD.

Experimentally induced antipodocyte nephritis
Groups of C57BL/6J mice (n = 6 to 10) received intravenous injections
of antipodocyte serum or preimmune serum (200 ml; concentrated
twofold by centrifugation through centrifugal filters) (33), preceded
by intravenous injections of half-life–extended nanobodies (2 mg/kg
in 100 ml of saline). The mice received further intraperitoneal injec-
tions of half-life–extended nanobodies (1 mg/kg in 1 ml of saline) ev-
ery 3 days. Urine was collected in metabolic cages for 4 to 6 hours
after nanobody injection. Disease course was monitored by protein-
uria using qualitative urine sticks. Mice were killed on day 15 or 21.
Albumin and MCP-1 in urine and IL-6 in serum were quantified by
sandwich ELISA (Bethyl, eBioscience) (33). Urine creatinine, blood
urea nitrogen, serum triglycerides, and serum cholesterol were
determined by an automated procedure in the central diagnostic lab-
oratory of the University Medical Center Hamburg. For detection of T
cells and granulocytes, 2-mm-thick paraffin sections obtained from kid-
neys fixed in 4% formalin were deparaffinized and rehydrated to water.
Antigen retrieval was performed by digestion with protease XXIV (5 mg/ml;
Sigma) for 15 min at 37°C (for Ly6G staining) or by boiling in citrate
buffer (pH 6.1) for 30 min at 98°C (for CD3 staining). Unspecific
binding was blocked by incubation with blocking buffer [5% normal
horse serum (Vector) in PBS–0.05% Triton X-100] for 30 min at room
temperature. Primary antibodies [rabbit anti-CD3 (1:1000; Dako) and
rat anti-Ly6G (1:400; Hycult Biotech)] were incubated overnight at 4°C in
blocking buffer. Visualization of staining was performed using the

ZytoChem Plus AP Polymer Kit (Zytomed Systems) according to
the manufacturer’s instructions using neufuchsin (Merck). Nuclei
were counterstained with hemalaun (Merck). CD3+ and Ly6G+ cells
in glomeruli were quantified in 10 high-power visual fields (400×) per
kidney in 6 to 10 mice per experimental group of n = 3 independent
experiments. A visual field comprised one to three glomeruli.

Statistical analysis
Statistical analyses were performed with GraphPad Prism. Two groups
were compared with Mann-Whitney U or Student’s t test. Three or more
groups were analyzed by one-way ANOVA, followed by Bonferroni
posttests.

SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/8/366/366ra162/DC1

Materials and Methods

Fig. S1. Screening nanobodies for specific binding to P2X7.

Fig. S2. Pharmacological characterization of nanobodies 13A7 and 14D5.

Fig. S3. Bivalent nanobodies block (13A7) or potentiate (14D5) ATP-induced activation of P2X7

in primary mouse macrophages.

Fig. S4. Bivalent nanobodies block (13A7) or potentiate (14D5) nucleotide-induced activation

of P2X7 in primary mouse T cells.

Fig. S5. Systemic injection of half-life–extended nanobodies ameliorates (13A7-HLE) or

enhances (14D5-HLE) nephritis induced by antipodocyte antibodies.

Table S1. Anti-mouse P2X7 nanobodies selected from llamas immunized with P2X7-

transfected HEK cells or with a P2X7 cDNA expression vector.
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