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Abstract 

Objective: Chitosan nanoparticle (nanochitosan) has a broad antimicrobial spectrum against diverse pathogenic 

microorganisms. However, its effect on dental caries-associated microorganisms, such as Streptococcus mutans and 

Candida albicans is yet to be explored. These microorganisms are known for causing early childhood caries. Therefore, 

this study was aimed at investigating nanochitosan inhibition capacity against dual-species biofilms of S. mutans and 

C. albicans. In this study, nanochitosan antimicrobial activity is reported against mono and dual biofilm species of S. 

mutans and/or C. albicans at 3 and 18 h incubation time. Nanochitosan inhibition capacity was observed through 

biofilm mass quantity and cell viability.

Results: The present study successfully synthesized nanochitosan with average diameter of approximately 

20–30 nm, and also established dual-species biofilms of S. mutans and C. albicans in vitro. With nanochitosan treat-

ment, the cell viability of both microorganisms significantly decreased with the increasing concentration of nano-

chitosan. There was no significant decrease in biofilm mass both in the dual and single-species biofilms after 3 h of 

incubation. However, greater inhibition of biofilm was observed at 18 h incubation.
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Introduction

Early childhood caries (ECC) is an aggressive form of 

dental caries which affects most children (< 72  months 

age) in developing countries. In South East Asia region, 

the prevalence is reported to be in ranges of 25% to 95% 

[3]. The onset of ECC starts with formation of biofilms 

from cariogenic microorganisms, dominated by Strepto-

coccus mutans and Candida albicans. Microorganisms 

interact synergistically in forming dual-species biofilms 

[1–7]. Previous work showed that glucosyltransferase 

(GTF) enzymes produced by S. mutans could bind to 

the surface of C. albicans cells, making C. albicans pro-

duce glucan as a component of extracellular polymeric 

substances (EPS). This interaction significantly increases 

EPS formation and enhances antimicrobial drug toler-

ance in dual-species biofilms, leading to dental caries 

aggressive form in human and rodent model [2].

Treatment for oral biofilm-associated disease is com-

plicated because of its multifactorial etiology. Moreover, 

biofilms are composed of > 90% EPS which make biofilms 

more resistant to antimicrobial substances owing to their 

limited diffusion to reach microorganism cells [8, 9]. 

One of treatments that have been investigated widely is 

by using nanoparticles. Nanoparticles are proven to have 

superior penetration ability, effective antimicrobial activ-

ity [8, 9], and cost effective, compared to treatment with 

naturally derived anti-biofilm agents [10, 11].

Chitosan is a polymer comprised of β-(1-4)-linked 

d-glucosamine and N-acetyl-d-glucosamine which pos-

sesses superior properties: antimicrobial, biocompatible, 
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and low toxicity [12–22]. Several reports examined nano-

chitosan antimicrobial activity against single-species bio-

films in either Streptococcus mutans [23] or C. albicans 

[24] only; however its effect against both dual-species 

biofilms have yet to be reported elsewhere. This study 

was therefore conducted to evaluate the potential ability 

of nanochitosan as an antimicrobial agent against syner-

gism of S. mutans and C. albicans biofilms.

Main text

Materials and methods

Preparation of nanochitosan solution

Chitosan nanoparticles were prepared by ionic gelation 

with tripolyphosphate (TPP) crosslinking as described 

previously [25], with slight modifications. Then, trans-

mission electron microscopy (JEM-2100 TEM, JEOL, 

Tokyo, Japan) was used to characterize the average par-

ticle size and morphology of the chitosan nanoparticles.

Microorganism strains and culture conditions

Streptococcus mutans ATCC 25175 and Candida albi-

cans ATCC 10231 strains were used. Both microorgan-

isms were cultured separately in a medium triptic soy 

broth (TSB) (Oxoid Limited, Hampshire, UK) supple-

mented with 1% sucrose (Himedia Laboratories, Mum-

bai, India) for 18  h at 37  °C. Streptococcus mutans was 

cultured anaerobically (10%  CO2, 80%  N2, 10%  H2) and 

Candida albicans was cultured aerobically [4].

Saliva coating

The study obtained ethical approval from the ethical 

research committee of Faculty of Dentistry, University 

of Indonesia (no. 24/Ethical Approval/FKGUI/UI/2017). 

Unstimulated saliva from one healthy person was col-

lected then centrifuged at 3000 rpm for 10 min at 4  °C. 

The supernatant was taken and sterilized using a 0.22 μm 

filter. The total protein concentration of saliva was then 

measured using a Qubit Protein Assay Kit (Thermo Fis-

cher Scientific, Massachusetts, USA) and diluted using 

PBS (Phosphate Buffer Saline) to reach a concentration 

of 200  ng/mL. Subsequently, 200 µL of sterilized saliva 

were added to the 96-well plate and incubated for 1 h at 

37 °C, then the unattached salivary protein on each well 

was removed [26].

Biofilm formation

The microorganisms which had been cultured for 18  h 

were harvested by centrifugation (5000  rpm, 10  min, 

4 °C). Each pellet was diluted using TSB + 1% sucrose, up 

to OD600 = 0.1, measured using a UV/VIS spectropho-

tometer (SP-8001, Metertech Inc., Taipei, Taiwan).

In the dual-species biofilms group, equal volumes 

(100 µL) of each microorganism were inoculated into 

the wells. Besides, for the single-species biofilms, 200 

µL of one microorganism suspensions (S. mutans or C. 

albicans) were inoculated on each well. Next, dual-spe-

cies biofilms and single-species biofilms well-plate were 

incubated for 90  min under anaerobic condition (10% 

 CO2, 80%  N2, 10%  H2).

After 90 min, supernatant was removed and replaced 

with 200 µL of different nanochitosan concentrations: 

0% (control group), 15%, 30%, and 45%. The nanochi-

tosan solution was diluted with TSB + 1% sucrose 

medium to obtain appropriate concentration. Then, 

well plate were re-incubated anaerobically (10%  CO2, 

80%  N2, 10%  H2) at different incubation time: 3  h and 

18  h. After incubation, the supernatant was aspirated 

and the wells were washed with PBS two times. Each 

experiment was carried out in triplicate [4, 27, 28].

Biofilm mass quantification

Biofilm mass quantification was carried out using a 

0.1% (v/v) crystal violet. The absorbance value was 

measured using a microplate reader (M965+, Meter-

tech Inc., Taipei, Taiwan), at 600 nm. The percentage of 

biofilm mass remaining was calculated by the following 

formula [5, 28]:

While the percentage biofilm mass reduction was cal-

culated by the following formula:

The control group in the formula above refers to 0% 

nanochitosan group in experiment.

Analysis of viability of S. mutans and C. albicans

The biofilms that have been formed were scraped off 

from each well and put into a microtube filled with 200 

µL TSB medium + 1% sucrose to obtain biofilm suspen-

sion. It was then gradually diluted (1:100) using PBS 

until  10−6 for counting S. mutans and  10−4 for count-

ing C. albicans. S. mutans from single-species biofilm 

suspension were grown in the Brain Heart Infusion 

agar (Himedia Laboratories, India) at 37  °C anaerobi-

cally, and C. albicans from single-species biofilm sus-

pension were incubated on Saboraud Dextrose agar 

(Oxoid Limited, Hampshire, UK) at 37  °C aerobically. 

Dual-species biofilms suspension were incubated both 

on BHI agar and SD agar. Colonies were counted in the 

day after [5].

A600 nanochitosan group

A600 control group
× 100

A600 control group − A600 nanochitosan group

A600 control group
× 100
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Statistical analysis

The statistical analysis for co-colonization of S. mutans 

and C. albicans data was performed using Independ-

ent t test to compare the dual-species and single-species 

biofilms. Differences in viability, the remaining biofilm 

mass, and biofilm mass reduction among concentration 

of nanochitosan groups was determined using ANOVA 

One Way test followed by Multiple Comparison Tukey’s 

HSD test. The log transformation data was performed 

for viability of S. mutans and C. albicans before ANOVA 

One Way analysis. A value of p-value< 0.05 was consid-

ered statistically significant. All statistical analysis proce-

dures were performed using the SPSS software package, 

Version 16.0 (IBM Corp., NY, USA).

Results

The morphological analysis of nanochitosan

Figure  1 depicts the image produced by transmission 

electron microscopy (TEM) of nanochitosan. The diam-

eter of synthesized chitosan nanosphere ranged between 

20 and 30 nm. The morphology and surface appearance 

of synthesized nanochitosan was a nearly spherical shape 

with a smooth surface.

Streptococcus mutans and Candida albicans co‑colonization

The co-colonization between S. mutans and C. albi-

cans was evaluated from biofilm mass percentage 

in control group. Figure  2 shows the biofilm mass 

based on absorbance value which represents cells and 

extracellular matrix. At 3-h incubation, there was no 

significant increase in biofilm mass both in the dual and 

single-species biofilms. However, at 18-h incubation, 

the dual-species biofilms mass was significantly higher 

than the single-species biofilm mass of C. albicans and S. 

mutans. Another important key point is, the biofilm for-

mation grew more massively in dual-species group that 

was only started with half of the microbes, compared to 

those of single-species group.

Evaluation of nanochitosan antimicrobial activity 

on dual‑species biofilms

The effect of nanochitosan on dual-species biofilms 

was investigated through cell viability and biofilm mass 

changes. Figure  3a, b represents the cell viability of  C. 

albicans and S. mutans respectively, after treatment with 

nanochitosan at various concentrations. The cell viabil-

ity of both species significantly decreased at 3-h and 

18-h incubation, along with the increasing nanochitosan 

concentration.

Nanochitosan inhibition capacity was further con-

firmed by observing biofilm mass changes. Figure  3c 

shows that the remaining biofilm mass in single and 

dual-species at 3-h incubation increased along with the 

increasing nanochitosan concentration. Only at 18-h 

incubation, it started to show a decreasing trend of 

remaining biofilm mass, along with the increasing nan-

ochitosan concentration. To strengthen the inhibition 

data, biofilm mass reduction was also evaluated (Fig. 3d). 

At 3-h incubation time, no specific trend was observed. 

An increase in percentage of biofilm mass reduction 

started to be seen with the increase in concentration of 

nanochitosan used at 18-h incubation.

Discussion

The results of present study reflect the role of nano-

chitosan in inhibiting C. albicans and S. mutans as 

Fig. 1 The TEM image of chitosan nanoparticles (scale bar 50 nm). 

This figure shows that nanochitosan has the particle size below 

50 nm
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Fig. 2 Absorbance values that show the biofilm mass of each 

treatment group. An asterisk mark represents significant differences 

between absorbance value in dual-species and single-species
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Fig. 3 The viability of C. albicans (a) and S. mutans (b), the remaining biofilm mass (c) and biofilm mass reduction (d) in each treatment group. 

Bar which is designated as S. mutans and C. albicans means single-species biofilm group. Bars with different letters represent significantly different 

according to Tukey’s HSD test
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Fig. 3 (continued)
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dual-species biofilms. We observed nanochitosan activ-

ity at 3-h and 18-h incubation against biofilms. Three 

hours incubation is the time required for cell surface 

adhesion, where production of extracellular matrix is 

still low. Furthermore, as bacteria and fungi continued 

to form mature biofilms, the quantity of extracellular 

matrix increased significantly. This phenomenon can 

be observed by measuring absorbance value as depicted 

in Fig. 2, where there was an increase absorbance value 

from 3 to 18  h, especially for the dual-species biofilms 

mass which was significantly higher than single-species 

biofilm group [2, 29, 30].

Nanochitosan inhibition capability was evaluated by 

measuring: cell viability, remaining biofilm mass, and bio-

film mass reduction in dual-species biofilms after treating 

with nanochitosan at various concentrations. It has been 

previously studied [31, 32] that nanochitosan can inhibit 

the viability of biofilm cells with the effectivity of more 

than 90%. Accordingly, the novelty of this study stands on 

the effect of nanochitosan on dual-species biofilms. Dual-

species biofilms are more resistant to antimicrobial agent 

because the interactions that occur can affect develop-

ment, function, and structure of the biofilms formed; dif-

ferent from those in the single-species biofilm. One of the 

reasons is because dual-species biofilms produce more 

extracellular matrix than single-species biofilms, which 

causes limited diffusion of antimicrobial substances to 

reach microbial cells. As a nanoparticle, chitosan has 

higher penetration rate rather than other antimicro-

bial agents (micro size). After penetrating extracellular 

matrix of biofilms, nanochitosan as a cationic molecule 

will interact with anionic particles on the cell surface of 

microorganisms. Modes of action of nanochitosan as 

cationic biocide are adsorption on microorganism cells, 

diffusion through the cell wall, adsorption and destruc-

tion of the plasma membrane, cytoplasmic component 

leakage and cell death [33, 34]. Hence, we observed the S. 

mutans and C. albicans cell viability reduction compar-

ing the treatment groups (15%, 30%, 45% nanochitosan 

concentration) with the control group (0% nanochitosan) 

(Fig. 3a, b).

However, the percentage of biofilm mass at 3-h incu-

bation tends to increase along with the increasing nano-

chitosan concentration (Fig. 3c). This could be due to the 

fact that S. mutans enhance insoluble glucan synthesis by 

up-regulating glucosyltransferase B (gtfB) and glucosyl-

transferase B (gtfC) genes, as an initial response to lower 

pH [35]. Moreover, after reaching its maturation stage 

after 18-h incubation, the production of the extracellular 

matrix should be more stable and more numerous, yet 

as expected, there is an interference from nanochitosan 

resulting in a decrease in the percentage of biofilm mass 

[2, 36]. In all cases, the nanochitosan showed minimal 

inhibition capability against extracellular matrix disrup-

tion as shown in Fig. 3c, d, while the remaining biofilm 

mass was still high.

The results of the present study demonstrated that as 

little as 15% (v/v) nanochitosan exhibited prominent 

antimicrobial activity on dual-species of S. mutans and C. 

albicans biofilms by decreasing survival rate of microbial 

cells. Our experiments suggest that nanochitosan could 

potentially be developed as an oral-health care product, 

such as toothpaste and mouthwash.

Limitations

A limitation of this experiment is that we did not assess 

minimal inhibitory concentration (MIC) of nanochitosan 

against dual-species biofilms of Streptococcus mutans 

and Candida albicans.
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