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INTRODUCTION  1 

Cancer is a heterogeneous disease and use of multiple drugs simultaneously can result in drug resistance 2 

which is either intrinsic or acquired known as multidrug resistance (MDR). Multidrug resistance renders 3 

cancer cells immune to standard treatments with many anticancer agents and is a major challenge in 4 

cancer therapy as it needs to address multiple phenotypes including multidrug resistance phenotypes. 5 

Tumor heterogeneity and tumor cell resistance to anticancer drugs thus remains key formidable 6 

challenges for effective targeting of drug delivery systems for successful chemotherapy. Drug resistance 7 

towards antineoplastic agents is a result of reduction in the effective concentration of drug in the cell prior 8 

to its interaction with the target or due to a combination of processes. The numerous mechanism of drug 9 

resistance reported includes (a) over expression of drug efflux pumps such as permeability glycoprotein 10 

(P-gp), multidrug resistance associated protein (MRP) and breast cancer resistance protein (BCRP) (b) 11 

alterations in lipid metabolism (ceramide pathway) (c) drug elimination by detoxification systems (d) 12 

drug sequestration inside lysosomes and endosomes (e) reduced drug uptake due to altered surface 13 

receptors/carriers (f) inactivation of drugs via glutathione-mediated reduction (g) over expression of 14 

target enzymes such as up-regulated thymidylate synthase (h) altered drug targets such as topoisomerase 15 

II (i) increased DNA repair capacity (j) reduced ability to undergo apoptosis (k) hypoxia up-regulated 16 

expression of MDR-linked genes such as ABC transporters, Bcl-2 family genes, glutathione, 17 

metallothionein, etc through activation of transcription factor HIF1 (l) chromosomal abnormalities in 18 

cancer cells lead to over-expression of anti-apoptotic genes  (m)  altered signal transduction pathways in 19 

cancer cells governed via integrin receptors, growth factor receptors etc leads to blockage of apoptosis 20 

and expression of MDR-linked genes those involved in DNA repair and drug-efflux pumps (Broxterman 21 

et al., 2003).  22 

Drug resistance mechanism of antineoplastic agents [Table 1] and mechanism of multidrug resistance in 23 

tumor cells is shown in [Figure 1]. 24 

 25 

Multidrug Efflux Pumps  26 

Drug efflux pumps expressed on human cancer cells majorly contribute to MDR (Sharom, 1997). These 27 

efflux pumps belong to ATP-binding cassette (ABC) family and include (a) Permeability glycoprotein 28 

(P-gp) also known as multidrug resistance protein 1 (MDR1) or cluster of differentiation 243 (CD243) a 29 

ATP-binding cassette sub-family B member 1 encoded in human by ABCB1 gene (b) Multidrug 30 

Resistance Associated Protein 1 (MRP1) a ATP-binding cassette sub-family C member 1 encoded in 31 

human by ABCC1 gene, Multidrug Resistance Associated Protein 2 (MRP2) also called as canalicular 32 

multispecific organic anion transporter 1 (cMOAT) a ATP-binding cassette sub-family C member 2 33 

encoded in human by  ABCC2 gene (c) Breast Cancer Resistance Protein (BCRP) also known as 34 

cluster of differentiation (CDw338) a member of white sub-family and ATP-binding cassette G member 2 35 

encoded in human by ABCG2 gene (Ozben, 2006). 36 

 37 

P-Glycoprotein (P-gp)  38 

P-gp is the first member of ATP-binding cassette (ABC) super family and is an ATP-powered drug efflux 39 

pump membrane transporter (Sharom, 1997; Fardel et. al., 1996). Over-expression of P-gp in mammalian 40 

and human cancer cells results in MDR.  P-gp has two isoforms expressed in human, class I and III 41 

isoforms are drug transporters (MDR1/ABCB1) while class II isoforms export phosphatidylcholine into 42 

bile (MDR2/3/ABCB4) (Sharom, 1997). P-gp encoded by MDR1 gene is present in human tissues 43 

including liver, kidney, pancreas, small and large intestine while P-gp encoded by MDR2 gene is present 44 

at high levels only in liver (Fardel et. al., 1996). Carcinoma of colon, kidney, adrenal gland, pancreas and 45 

liver express high P-gp levels while intermediate P-gp levels are expressed in neuroblastomas, soft tissue 46 

carcinomas, hematological malignancies including CD34-positive acute myeloid leukemias, etc with low 47 

P-gp levels expressed in malignancies of lung, esophagus, stomach, ovary, breast, melanomas, 48 

lymphomas, multiple myelomas and acute promyelocytic leukemia but may display elevated P-gp levels 49 

after chemotherapy due to acquired drug resistance (Velingkar and Dandekar,  2010). P-gp interacts with 50 

structurally diverse substrates such as anticancer drugs, HIV protease inhibitors, analgesics, calcium 51 

channel blockers, immunosuppressive agents, cardiac glycosides, antihelminthics, antibiotics, H2-receptor 52 



antagonists, steroids, fluorescent dyes, linear and cyclic peptides, ionophores, peptides, lipids, small 53 

cytokines such as interleukin-2, intereukin-4 and interferon-, MDR chemosensitizers and many more 54 

(Velingkar and Dandekar,  2010). 55 

 56 

First generation inhibitors 57 

These are non-selective, less potent with poor and low binding affinity; requiring high doses to achieve 58 

plasma levels to reverse MDR, resulting in unacceptable patient toxicity. They are substrates for P-gp and 59 

act as competitive inhibitors thereby requiring high serum concentrations of chemosensitizers to produce 60 

adequate intracellular concentrations of cytotoxic drug due to which these inhibitors are unsuccessful in 61 

clinical trials (Dantzig et. al., 2003). First generation inhibitors include Verapamil, Trifluoperazine, 62 

Cyclosporine-A, Quinidine and Reserpine, Vincristine, Yohimbine, Tamoxifen and Toremifene. Due to 63 

unpredictable pharmacokinetic interactions of these substrates in presence of chemotherapy agents several 64 

novel chemosensitizers analogs were developed with less toxicity and greater potency. 65 

 66 

Second generation inhibitors 67 

Structural modifications of first generation inhibitors resulted in more potent second generation P-gp 68 

modulators with better pharmacological profile, reduced toxicity and better tolerability. They significantly 69 

inhibit metabolism and excretion of cytotoxic agents leading to unacceptable toxicity necessitating 70 

chemotherapy dose reductions. Successful treatment of refractory cancers and reversal of MDR in clinical 71 

trials have been possible by co-administration of these modulators with chemotherapy agents. Modulators 72 

include Dexverapamil, Dexniguldipine, Valspodar (PSC 833) and Biricodar citrate (VX-710).  73 

  74 

Third generation inhibitors  75 

They have high potency and specificity for P-gp transporters over second generation agents. They do not 76 

interfere with cytochrome P450 3A4 unaffecting drug pharmacokinetics with no dose alterations in 77 

chemotherapy. They include Tariquidar-XR9576, Zosuquidar-LY335979, Laniquidar-R101933, ONT-78 

093 (substituted diarylimidazole), Elacridar-GF120918, OC 144-093, Mitotane (NSC-38721), Annamycin 79 

and R101933 (Ozben, 2006). Most promising Tariquidar (non-transported P-gp inhibitor) which inhibits 80 

ATPase by interaction with protein is currently in phase III trials for non-small cell lung cancer but still 81 

suspended due to unfavorable toxicity. Clinical trial studies revealed that Tariquidar, LY335979, 82 

R101933 and ONT-093 can be administered with therapeutic doses and minimal interference with 83 

pharmacokinetics of cytotoxic agents. They have shown promise in clinical trials and continued 84 

development of these agents may establish the true therapeutic potential of P-gp mediated MDR reversal. 85 

 86 

Tariquidar a third generation inhibitor with no limitations of first and second generation inhibitors, have 87 

highest specificity which specifically and potently inhibits P-gp. Inhibition of ATPase activity of P-gp 88 

suggests that the modulating effect is derived from inhibition of substrate binding, inhibition of ATP 89 

hydrolysis and or both ( Fox and  Bates, 2007). Clinical trials of third-generation inhibitors (Thomas and 90 

Coley, 2003) showed better tolerability of Tariquidar with no significant pharmacokinetic interaction with 91 

chemotherapy. This makes Tariquidar an ideal agent for demonstrating P-gp inhibition activity in cancer. 92 

Targeted delivery of paclitaxel and tariquidar co-encapsulated in biotin functionalized PLGA 93 

nanoparticles revealed significantly higher cytotoxicity in vitro and greater tumor growth inhibition in 94 

vivo in drug-resistant tumor mouse model compared to paclitaxel nanoparticles alone with promising 95 

results in clinical trials (Patil et. al., 2009). 96 

 97 

Tumor microenvironment and MDR   98 

Tumors are core-shell structures with hypoxic core surrounded by tissues and proliferative cells. Tumor 99 

microenvironment is made of complex tissues containing extracellular matrix, activated fibroblasts, 100 

immune cells, pericytes, adipocytes, epithelial cells, glial cells, vascular and lymphatic endothelial cells 101 

and numerous proteins (Weber and Kuo, 2012; Van Kempen et al., 2003). The proliferative cells are 102 

highly vascularized, unorganized and discontinuous resulting in enhanced permeability and retention 103 

(EPR) effect widely exploited for passive targeting. The major factors contributing to tumor progression 104 
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and metastasis, enhanced drug resistance, poor prognosis and response to therapies includes cell mobility, 105 

survival potential, capacity to degrade extracellular tissue matrix and ability to adjust in new tissue 106 

environment (Otranto et. al., 2012; Singh and Kaur, 2013). All solid tumor microenvironment posses the 107 

following characteristics (Milane et. al., 2011) [Table 2] (a) leaky and unorganized tumor vasculature (b) 108 

hypoxia region (c) up-regulation of oncogenes (d) DNA repair mechanisms (e) down regulation of tumor 109 

suppressors and cell cycle regulation (f) increased growth factor receptors (g) low nutrients. Tumor 110 

microenvironment significantly contributes to drug resistance by reducing drug accessibility to tumor 111 

cells and reduces the oxygen radicals generated by antitumor drugs (Otranto et al., 2012; Singh and Kaur, 112 

2013). Hypoxia and acidity with low nutrient levels remains the two key factors characterizing tumor 113 

microenvironment (Wouters, 2003; Schornack and Gillies, 2003). Tumor hypoxia is low oxygen regions 114 

with partial oxygen pressure (pO2) levels below 10mm-Hg where normal tissues range from 24-66mm-Hg 115 

(Rofstad, 2000). Hypoxia microenvironment is characterized by low pH (acidic cell environment) and can 116 

be associated with activation of proteases that contributes to metastasis, low glucose levels, high 117 

interstitial fluid pressure due to leaky vasculature, impaired lymphatic drainage and high levels of P-gp 118 

(Tomida et. al., 2002). Hypoxia Inducible Factor (HIF) (Harris, 2002) is another mechanism that induces 119 

MDR and metastasis by up-regulating target genes by binding to hypoxia-response element (HRE) in the 120 

target. HIF-1 is a transcription factor activated in hypoxia. While tumor acidic pH results in poor tumor 121 

perfusion due to abnormal vascularization, hypoxia and metabolic abnormalities are associated with cell 122 

growth and increased capacity for transmembrane pH regulation. Both pO2 and pH are important 123 

determinants of tumor growth, metabolism and response to variety of therapies (Fukumura and Jain, 124 

2007). Acidic extracellular pH restricts uptake of weak base drugs such as Adriamycin, Doxorubicin and 125 

Mitoxantrone.  Both hypoxia and acidic pH contributes to growth and tumor metastasis (Harris, 2002). 126 

Hypoxia upregulates various angiogenic growth factors including Vascular Endothelial Growth Factor 127 

(VEGF), Angiopoietin (Ang) 2, Platelet Derived Growth Factor (PDGF), Placenta Growth Factor (PGF), 128 

Transforming Growth Factor α (TGFα), Interleukin (IL)-8 and Hepatocyte Growth Factor (HGF) of 129 

which Hypoxia Inducible Factor 1α (HIF1α) is considered  the master regulator of oxygen homeostasis. 130 

 131 

STRATEGIES TO OVERCOME MDR IN CANCER CELLS 132 

Modification of chemotherapy regimens  133 

Chemotherapy regimen includes "induction regimen" and"maintenance regimen" refers to initial disease 134 

treatment and ongoing chemotherapy to reduce chances of cancer recurrance or prevent growth of an 135 

existing cancer respectively. Combination chemotherapy utilizes synergistic effect of multiple 136 

antineoplastic drugs acting through different mechanisms, but due to their different dose-limiting adverse 137 

effects they are given together in chemotherapy regimens. Chemotherapy regimen needs to balance 138 

efficacy and toxicity through proper dosing schedule. Dose-dense regimens have more toxic effects than 139 

standard regimen causing treatment delays and toxicity with few survival improvements and early 140 

treatment discontinuation. A dose-dense approach is more effective than standard approach, as it hampers 141 

formation of blood vessels that feed tumors and tumor shrinkage following treatment promoting tumor 142 

dormancy by maintaining tumor size and preventing outgrowth. Chemotherapy regimens are identified by 143 

acronyms, identifying the drug combination agents. Eg: (i) Breast cancer: AC [Adriamycin, 144 

Cyclophosphamide], CAF [Cyclophosphamide, Adriamycin, Flurouracil], EC [Epirubicin, 145 

Cyclophosphamide], FEC [Flurouracil, Epirubicin, Cyclophosphamide] (ii) Colorectal cancer: FL 146 

[Fluorouracil, Leucovorin], FOLFOX [Fluorouracil, Leucovorin, Oxaliplatin], FOLFIRI [Fluorouracil, 147 

Leucovorin, Irinotecan]. Chemotherapy regimen is based on the assumption that the mutations conferring 148 

drug resistance will not convey resistance to all the agents in the regimen and high-dose chemotherapy 149 

regimens could be given to cancer patients. Such approach assumes that despite resistance to standard 150 

doses of anticancer drugs, a dose-response relationship exists for tumors and high doses of chemotherapy 151 

might overcome the resistance. 152 

 153 

Inactivation of MDR-associated genes by targeting specific mRNA for degradation             154 

Strategies to overcome multi drug resistance by silencing the expression of gene encoding P-gp efflux 155 

transporter i.e. MDR-1 or Survivin through RNA interference (RNAi) or small interfering RNA (siRNA) 156 
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has been explored. Transient RNAi mediated silencing can be achieved by siRNA or stable RNAi-157 

mediated gene silencing through short hairpin RNA (shRNA) transfection. The siRNAs assembles into 158 

endoribonuclease inside the cells containing complexes known as RNA-Induced Silencing Complexes 159 

(RISCs) which guides the RISCs to complementary RNA molecules, cleaving and destroying the target 160 

RNA. Antisense oligonucleotides and catalytic RNAs have been successful in inhibiting P-gp, MRP and 161 

BCRP expression and sensitized drug-resistant cells (Nadali et al., 2007; Ren et al., 2008). In vitro and in 162 

vivo studies with biotin-functionalized nanoparticles co-encapsulating paclitaxel and P-gp targeted siRNA 163 

partially overcame tumor drug resistance (Patil at. al., 2010).Two groups, Nieth et al. and Wu et. al. 164 

demonstrated that RNAi knock downs the MDR1/P-gp encoding mRNA and reverse the MDR phenotype 165 

of cancer cells. They further chemically synthesized siRNA to transiently down regulate MDR1/P-gp 166 

mRNA and protein expression. To overcome MDR in cancer Lage H., developed anti-ABC transporter 167 

shRNA expression vectors with high potential to overcome MDR through silencing specific ABC 168 

transporter transcripts. These studies revealed total knock down of mRNA and protein by inhibition of P-169 

gp and reversal of drug-resistant phenotype. Efficiency of RNAi to overcome MDR in vivo were 170 

performed by transfecting MDR cancer cells with anti-MDR shRNA expression plasmids. Treatment of 171 

these cells grown as xenografts in nude mice with vincristine revealed tumor growth inhibitin by 42% for 172 

the shRNA expressing tumors. Tumor growth inhibition by 80-fold was observed in cells transfected with 173 

anti-MDR1/P-gp shRNA expressing retroviruses implanted in nude mice (Milane et. al., 2011). 174 

 175 

Monoclonal antibodies for P-gp    176 

Monoclonal antibodies (MAbs) have potential for targeting P-gp and kill MDR tumor cells. Anti-P-gp 177 

MAbs such as MRK-16 and MRK-17 along with chemosensitizers reverses P-gp mediated MDR and 178 

conjugated MAbs such as bispecific antibody, immunotoxin and radioisotope conjugates enhance anti-179 

tumor activity. Combination of MRK-16 with Cyclosporin-A or PSC-833 reversed Doxorubicin 180 

resistance in K562/ADM cells and inhibited tumor growth in athymic mice bearing HCT-15/ADM2-2 181 

xenografts. MRK-16 increased Cyclosporine-A accumulation in MDR cells but not affected intracellular 182 

PSC-833 accumulation in MDR cells, instead Cyclosporin-A and PSC-833 increased MRK-16 binding to 183 

P-gp revealing a synergistic MDR reversal activity. MAbs with other anti-P-gp MAbs such as UIC2, 4E3 184 

and series of HYB antibodies have potential to inhibit drug transport (Tomida et al., 2002). 185 

 186 

Development of new anticancer drugs that are not substrates of P-gp 187 

Drug analogs such as Taxane analogs DJ-927 (Phase I), BMS-184476 (Phase I), RPR 109881A (Phase 188 

II), Ortataxel (Phase II), Trabectedin-ET-743 (Phase II and III) are not recognized by P-gp transporter and 189 

are evaluated in clinical trials for their broad spectrum activity in sensitive and resistant tumor cell lines to 190 

overcome MDR (Dong et al., 2010).. DJ-927 was more potent and cytotoxic than paclitaxel and docetaxel 191 

when compared in vitro and in vivo in various P-gp expressing tumor cell lines with high intracellular 192 

accumulation in P-gp positive cells. The expression of P-gp levels or P-gp modulators did not affect the 193 

tumoricidal efficacy of DJ-927. Phase I study of DJ-927 in combination with capecitabine was acceptable 194 

with no pharmacokinetic drug interactions in patients with advanced solid tumor malignancies and is 195 

recommended for further clinical studies. Preclinical studies showed that BMS-184476 was more potent 196 

than paclitaxel against taxane sensitive and resistant tumors. The P-gp over-expressing human colon 197 

cancer cell line (HCT-116/MDR) was 62-fold more resistant to paclitaxel and 15-fold resistant to BMS-198 

184476. Also the human ovarian cancer cells with acquired taxane resistance expressed 9-fold resistance 199 

to BMS-184467 and 32-fold to paclitaxel. Studies of BMS-184476 against human tumor xenografts with 200 

both acquired and primary taxane resistance models revealed superiority of BMS-184476 (Yared and  201 

Tkaczuk; 2012). 202 

 203 

Inhibitors of ABC transporters to reverse MDR 204 

Inhibition of ABC transporters should reverse MDR by increasing intracellular drug concentrations in 205 

tumor cells and restore drug sensitivity. These inhibitors transport themselves and then act as competitive 206 

antagonists while others are not transported but affect transporter function (Dong et al., 2010). Preclinical 207 

trials of first and second generation ABC transport inhibitors were not successful. They failed in clinical 208 
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trials due to their non-specificity, high concentrations to inhibit activity, undesirable drug interactions due 209 

to co-administration of inhibitors and anticancer drugs (eg: verapamil and doxorubicin), substrates of 210 

cytochrome P-450 and increased toxicity of anticancer drugs. Clinical trials of third generation inhibitors 211 

with LY335979 (Zosuquidar), GF120918 (Elacridar), R101933 and XR9576 (Tariquidar) are ongoing. 212 

Tariquidar in phase I studies revealed high potency in in vitro and in vivo studies. LY335979 prolonged 213 

survival by reducing tumor growth in mice with drug resistant tumors, GF120918 enhanced topotecan 214 

bioavailability in mice by sensitizing human MDR sarcoma MES-Dx5 cells.  Although phase I and II 215 

clinical trials of third generation inhibitors are promising but are limited to unpredictable pharmacokinetic 216 

drug interactions, simultaneous involvement of several drug transporters and variability in drug 217 

transporter expression levels among individuals restricts restoration of drug sensitivity of such modulators 218 

in clinic (Wu et. al., 2008). 219 

 220 

Nanotechnology based approaches to overcome MDR 221 

Nanocarriers to overcome MDR are extensively discussed in section “Nanocarriers as potential drug 222 

delivery systems in cancer therapy’.  Nanocarriers have been developed encapsulating anticancer drugs as 223 

P-gp substrates and /or with P-gp substrates.  224 

 225 

 Inhibition of MDR using peptides 226 

Synthetic P-gp peptides derived from fragments of extracellular loops of murine P-gp coupled with 227 

polyethylene glycol and loaded in Doxorubicin liposomes have shown MDR reversal with 83% increase in 228 

survival time of mice inoculated with P388R cells. Antitumor effect of peptide-conjugated Doxorubicin in 229 

human erythroleukemic (K562/ADR) resistant cells showed dose-dependent inhibition of cell growth 230 

against K562/ADR cells as compared with Doxorubicin alone (Dong et al., 2010). 231 

 232 

NANOCARRIERS AS POTENTIAL DRUG DELIVERY SYSTEMS IN CANCER THERAPY 233 

Nanovehicles such as polymeric nanoparticles, solid lipid nanoparticles, magnetic nanoparticles, 234 

dendrimers, liposomes, micelles, quantum dots etc. are extensively explored for cancer diagnosis, 235 

treatment, imaging and as ideal vectors to overcome drug resistance by diverting ABC-transporter 236 

mediated drug efflux mechanisms. The major classes of nanocarriers utilized for chemotherapeutic drug 237 

delivery are listed in [Table 3] (Ayers and Nasti, 2012).  238 

 239 

Polymeric Nanoparticles  240 

Polymeric nanoparticles have emerged as a versatile nanotechnology platform for controlled, sustained 241 

and targeted delivery of anticancer agents including small molecular weight drugs and macromolecules 242 

such as genes and proteins (Wang et al., 2009; Sahay et al., 2010; Tang et al., 2010). A significant 243 

reduction in tumor size and increased animal survival rate in rat xenograft glioma model with 244 

indomethacin loaded nanocapsules was observed by Bernardi et al., 2009. PLGA loaded cystatin 245 

nanoparticles and PLGA loaded cytokeratin specific monoclonal antibody nanoparticles neutralized 246 

excessive proteolysis preventing metastatic and invasive potential of breast tumor cells (Kos et al., 2009). 247 

Paclitaxel loaded PLA immuno-nanoparticles covalently coupled with humanized monoclonal antibodies 248 

(antiHER2) actively targeted tumor cells over expressing HER2 receptors (Cirstoiu et al., 2009). Folic acid 249 

receptors over-expressed on human cancer cells (Antony, 1996; Wang et al., 2010) are studied in tumor 250 

models including mouse M109 carcinoma, KB human epidermal carcinoma cell line and mouse J6456 251 

lymphoma (Alberto et al., 2004). Paclitaxel loaded PLA-PEG-ligand conjugated nanoparticles 252 

functionalized with biotin and folic acid enhanced drug accumulation in MCF-7 tumor xenograft model 253 

(Patil et al., 2009b). Lee et al. found that folic acid conjugated chitosan nanoparticles showed higher 254 

transfection activity than unmodified chitosan nanoparticles (Lee et al., 2006). Jiaqi Wang et al., 2010 255 

observed 35% reduction in tumor growth, inhibition of P-gp and mdr1 gene levels in KB-A-1 cells 256 

implanted in Balb/c-nu/nu mice targeted by folic acid conjugated antisense oligodeoxynucleotides-257 

hydroxypropyl-chitosan nanoparticles compared to bare antisense oligodeoxynucleotides to overcome 258 

tumor drug resistance. Folate functionalized PLGA nanoparticles loaded with anti-cancer drug nutlin-3a 259 

and chemosensitizer Curcumin enhanced therapeutic potential of nutlin-3a by modulating MDR of Y79 260 



retinoblastoma cell through Curcumin and enhanced the anticancer activity of nutlin-3a in drug resistance 261 

Y79 cells. Dual drug loaded nanoparticles revealed better therapeutic efficacy with enhanced expression or 262 

down regulation of proapoptotic/antiapoptotic proteins and down-regulation of Bcl2 and NF-B protein. 263 

Study demonstrated the role of Curcumin as MDR modulator to enhance the therapeutic potential of 264 

nutlin-3a for targeting multidrug resistance cancer (Das et al., 2012).  265 

Silencing P-gp expression by RNA interference with reduction-sensitive linear cationic click polymer 266 

nanoparticles (RCPNs) loaded with plasmid iMDR1-pDNA for gene delivery revealed higher transfection 267 

efficiency and lower cytotoxicity than PEI/DNA nanoparticles against human breast cancer MCF-7 cells 268 

and drug-resistant MCF-7/ADR cells (Gao et al., 2011).  Vincristine sulfate loaded nanoassemblies 269 

enhanced cytotoxicity by 36.5-fold and cellular accumulation by 12.6-fold in MCF-7 and P-gp over 270 

expressing MCF-7/ADR cells compared to vincristine sulfate solution and overcome MDR by clathrin and 271 

caveolae mediated endocytosis pathways (Zhang et al., 2011). Co-delivery of Paclitaxel and survivin 272 

shRNA nanoparticles lowered IC50 by 360-fold in Paclitaxel resistant lung cancer cells against A549/T 273 

cells compared to free Paclitaxel and enhanced efficacy with Paclitaxel induced apoptosis and cell arrest in 274 

G2/M phase. Nanoparticles facilitated drug accumulation in tumor cells and down-regulated of survivin 275 

shRNA into nuclei of lung cancer cells lowering the apoptosis threshold of drug resistant cells and renders 276 

chemotherapeutic agents more effective to overcome MDR (Shen et al., 2012). Docetaxel loaded poly(-277 

caprolactone)/Pluronic F68 nanoparticles increased drug uptake and enhanced cytotoxicity in docetaxel-278 

resistance human breast cancer cell line and MCF-7 TAX30 compared to poly caprolactone nanoparticles 279 

indicating its potential to overcome multidrug resistance (Mei et al., 2009). Lipid/particle assemblies 280 

(LNPs) loaded with Doxorubicin in DMAB-modified PLGA nanoparticles coated with DPPC lipid shell 281 

significantly increased accumulation and improved nucleus targeting in MCF-7 cells and P-gp over 282 

expressing resistant MCF-7/ADR cells relative to free drug and reversed the transporter-mediated drug 283 

resistance in human breast cancer. Cytotoxicity (IC50) of Doxorubicin loaded-LNPs was 30-fold lower 284 

than free Doxorubicin in MCF-7/ADR, indicating intracellular retention of Doxorubicin and bypassing 285 

drug resistance (Li et al., 2012). Co-delivery of MDR1 siRNA via lipid-modified dextran-based polymeric 286 

nanoparticles with Doxorubicin increased intracellular drug concentration in MDR cell nucleus and 287 

efficiently suppressed P-gp expression in drug resistant osteosarcoma cell lines (KHOSR2 and U-2OSR2) 288 

(Susa et al., 2010). Pramanik et al., developed composite nanoparticles of Doxorubicin with Curcumin a 289 

potent MDR inhibitor to overcome Doxorubicin resistance in multiple in-vivo models such as multiple 290 

myeloma, acute leukemia, prostate and ovarian cancers. Composite nanoparticles revealed no cardiac 291 

toxicity or bone marrow suppression compared to free Doxorubicin (Pramanik et al., 2012). P-glycoprotein 292 

mediated efflux can be effectively circumvented by co-administration of P-gp inhibitor/s and anticancer 293 

drug/s in nanoparticles which evades P-gp recognition at cell membrane and delivers drug in the cell 294 

cytoplasm or nucleus thereby sustaining delivery of the drug inside the cell. Chavanpatil et al. 295 

encapsulated paclitaxel a P-gp substrate and verapamil a P-gp inhibitor in PLGA nanoparticles to 296 

circumvent P-gp-mediated drug efflux in MDR tumor cells (Chavanpatil et al., 2006). Doxorubicin loaded 297 

aerosol OT (AOT)-alginate nanoparticles enhanced the cellular delivery and therapeutic efficacy of P-gp 298 

substrates in P-gp over expressing cells (Chavanpatil et al., 2007). Novel polymer-lipid hybrid 299 

nanoparticle loaded with doxorubicin and chemosensitizer (GG918) evaluated in human MDR breast 300 

cancer cell line (MDA435/LCC6/MDR1) demonstrated nuclear drug localization and anticancer activity 301 

towards MDR cells, while co-administration of the single-agents loaded nanoparticles resulted in high 302 

cellular internalization but were ineffective (Wong et al., 2006). Encapsulation of paclitaxel with P-gp 303 

modulator tariquidar in poly (D, L-lactide-co-glycolide) nanoparticles functionalized with biotin revealed 304 

higher in-vitro cytotoxicity and increased intracellular accumulation compared to paclitaxel nanoparticles 305 

alone in drug-resistant tumor cells to overcome tumor drug resistance through biotin receptor-mediated 306 

endocytosis (Patil et al., 2009a). 307 

 308 

 309 

Solid Lipid Nanoparticles (SLNs) 310 

In-vitro cytotoxicity in resistant P388/ADR cell line and in-vivo studies in P388/ADR leukemia mouse 311 

model revealed lowering of IC50 value by 9-fold and greater median survival time about 20 days 312 



(3.5mg/kg dose) with Doxorubicin SLN compared to Doxorubicin solution. While comparable cell uptake 313 

and IC50 values were obtained with both Idarubicin SLN and free Idarubicin in P-gp over expressing 314 

P388/ADR and HCT-15 cells mouse tumor models. Study revealed the potential of Doxorubicin SLN in 315 

overcoming P-gp-mediated MDR both in-vitro in P388/ADR leukemia cells and in-vivo in murine 316 

leukemia mouse model (Ma et al., 2009). Greater accumulation of Doxorubicin SLN in MCF-7/ADR cells 317 

over expressing P-gp with enhanced apoptotic cell death and decreased cell viability compared to plain 318 

Doxorubicin revealed the potential of Doxorubicin SLNs to overcome chemoresistance in adriamycin-319 

resistant breast cancer cell line. Decrease in the intensity of 116-kDa PARP band (DNA repair enzyme 320 

activated by DNA damage and used as apoptosis biochemical marker) in MCF-7/ADR cells treated with 321 

3μM either of Doxorubicin or SLN alone or Doxorubicin SLN indicated efficiency of Doxorubicin SLN to 322 

cause cell death through induction of apoptosis in Doxorubicin resistant cancer cells. Cellular uptake of 323 

Doxorubicin SLN was 17.1-fold and 21.6-fold higher than Doxorubicin alone implying potential of SLNs 324 

in diminishing P-gp mediated drug efflux (Kang et al., 2010). SLNs being easily internalized enhanced 325 

cellular uptake and cytotoxicity of Doxorubicin and Paclitaxel loaded solid lipid nanospheres in human 326 

promyelocytic leukemia cells (HL60) and human breast carcinoma cells (MCF-7) compared to free drug 327 

solutions. Paclitaxel solid lipid nanospheres were 100-fold more effective than free Paclitaxel in MCF-7 328 

cells with low sensitivity on HL60 cells. Doxorubicin SLN enhanced cytotoxicity and sensitivity on MCF-329 

7 cells (10-fold) and on HL60 cells (>40 fold) with IC50 at 1ng/ml compared to Doxorubicin solution 330 

reducing drug cell resistance. Such increased cytotoxicity of Doxorubicin nanocarriers compared to 331 

solution has been earlier reported with polymeric nanoparticles, micelles and liposomes. Enhanced 332 

intracellular accumulation and cytotoxicity of Doxorubicin loaded pluronic copolymer micelles have been 333 

reported by Kabanov and coworkers. Couvreur reported that Doxorubicin loaded polyalkylcyanoacrylate 334 

nanoparticle were more cytotoxic than Doxorubicin solution against P388 leukemia cells overcomed 335 

multidrug resistance and decreased cell viability against resistant MCF-7 cell-lines (Couvreur and 336 

Vauthier, 1991). Paclitaxel SLN enhanced cytotoxicity (100-fold) at concentration >5ng/ml on HL60 cells 337 

and at 1ng/ml on MCF-7 cells (Miglietta et al., 2000). Polymer-lipid hybrid nanoparticle with Doxorubicin 338 

and chemosensitizer (GG918) or their combination revealed high Doxorubicin uptake in human MDR 339 

breast cancer cell line (MDA435/LCC6/MDR1) compared to co-administration of two single-agent/s 340 

loaded hybrid nanoparticles (Wong et al., 2006). Tween®80 coated Edelfosine lipid nanoparticles revealed 341 

antiproliferative effect due to P-gp inhibitory action on C6 glioma cell lines and significantly reduced the 342 

tumor growth within 14 days post treatment in nude mice bearing C6 glioma xenograft tumor (Mendoza et 343 

al., 2011). Paclitaxel and Doxorubicin SLN exhibited higher cytotoxicity in human breast tumor drug 344 

sensitive MCF-7 and drug resistant MCF-7/ADR cells compared to Taxol and Doxorubicin solution.  345 

Paclitaxel and Doxorubicin loaded SLN revealed 31.0 and 4.3 fold reversal in drug resistance of MCF-7 346 

cells compared to MCF-7/ADR cells respectively (Miao et al., 2013). Doxorubicin-mitomycin co-loaded 347 

stealth polymer-lipid hybrid nanoparticles enhanced efficacy in sensitive and MDR human mammary 348 

tumor xenografts with 3-fold increase in life span, 10-20% tumor cure rate, inhibition of tumor 349 

angiogenesis with no severe tissue toxicity compared to liposomal Doxorubicin (Prasad et al., 2013). P-350 

glycoprotein efflux at the brain limits entry of Docetaxel for cancer treatment. Folic acid modified solid 351 

lipid nanoparticles loaded with docetaxel and ketoconazole (P-gp inhibitor) evaluated in brain endothelial 352 

cell lines for cytotoxicity and cell uptake revealed a brain permeation coefficient 44 times higher than that 353 

of Taxotere® (Venishetty et al., 2013]. Docetaxel loaded hepatoma-targeted SLNs revealed high cellular 354 

uptake by hepatoma cells, better biodistribution and enhanced antitumor efficacy due to increased drug 355 

accumulation and cytotoxicity in murine model bearing hepatoma and hepatocellular carcinoma cell line 356 

BEL7402 compared to Taxotere® or non-targeted SLNs for treatment of advanced and metastatic 357 

hepatocellular carcinoma [Xu et al., 2009]. A lipophilic paclitaxel derivative (2′-behenoyl-paclitaxel) 358 

(C22-PX) conjugated in lipid nanoparticle for metastatic breast cancer improved antitumor efficacy, tumor 359 

retention, better toleratability and higher plasma levels compared to Taxol in a subcutaneous 4T1 mouse 360 

mammary carcinoma model [Ma et al., 2013]. 361 

 362 

Liposomes 363 



Liposomal anthracyclines approved by US FDA for treatment of AIDS-related Kaposi’s sarcoma are 364 

pegylated liposomal doxorubicin [Doxil®/Caelyx®] and liposomal daunorubicin [DaunoXome®] which 365 

preferentially accumulates in tumor tissues via EPR effect to overcome drug resistance or accumulates 366 

within extracellular space of tumor stroma and leaks into tumor environment which provides 367 

pharmacologic advantage for liposomes over free drug to overcome drug resistance [Table 4]. Currently 368 

liposomes of Paclitaxel, Camptothecins and Vincristine are in clinical development. Liposomal strategies 369 

to enhance drug bioavailability and efficacy in drug-resistant cancer include (i) liposomes modified for 370 

controlled release (ii) ligand targeted liposomes such as immunoliposomes for for intracellular drug 371 

delivery in tumor cells.  372 

Liposomes directly interact with P-gp and inhibit P-gp through endocytosis. Liposome co-encapsulating 373 

Doxorubicin and Verapamil conjugated with human transferrin (Tf) showed greater cytotoxicity, selective 374 

targeting and reversal of P-gp mediated drug resistance in resistant leukemia K562 cells than non-targeted 375 

co-loaded liposomes. Doxorubicin liposomes increased cytotoxicity on HL60 cells and Vincristine 376 

resistant HL60 cells due to rapid internalization and drug release inside the cells (Gokhale et al., 1996). 377 

Robert Lee et al. found that uptake of folate-PEG-liposomal Doxorubicin by KB cells was 45-fold higher 378 

than non-targeted liposomal Doxorubicin (Lee et al., 1995). Liposomes overcome drug resistance due to 379 

endothelial P-gp efflux mechanism at blood-brain and blood-tumor barriers in brain tumors where the 380 

barriers allows extravasation of long circulating liposomes and circumvent drug resistance with stabilized 381 

liposomal Doxorubicin in rat intracranial sarcoma model (Siegal et al., 1995) and rat intracranial 9L 382 

gliosarcoma model (Zhou et al., 2002).  383 

 384 

Modified liposomes to overcome drug resistance 385 

New liposomal systems developed for treatment of drug-resistant cancers are listed in [Table 5] and 386 

[Table 6]. 387 

 388 

Micelles 389 

Micelles are efficient drug carriers with potential P-gp inhibitory action, altered drug internalization, 390 

subcellular localization and selective targeting. Seven anti-tumor drugs loaded polymeric micelles in 391 

clinical trials are Genexol®-PM, NK105, NC-6004, NC-4016, NK012, NK911 and SP1049C (Gong et al., 392 

2012). Micelles overcome drug resistance by combination of mechanisms including EPR effect, active 393 

internalization, endosomal-triggered release and drug escape. Folate decorated pH-sensitive Doxorubicin 394 

micelles showed high drug concentration in cytosol and nucleus due to triggered release in early 395 

endosomes (~pH 6) and high cytotoxicity in Doxorubicin resistant MCF-7 (MCF-7/DOXR) cells due to 396 

internalization via folate-receptor mediated endocytosis to overcome P-gp (Lee et al., 2005). Folate 397 

functionalized micelles co-encapsulating Paclitaxel and Verapamil in O-carboxymethylated chitosan 398 

modified with deoxycholic acid revealed greater cytotoxicity and higher cellular uptake in drug resistance 399 

MCF-7 and multi-drug-resistant MCF-7/ADR cells through synergistic effect of folate receptor-mediated 400 

endocytosis and Verapamil mediated efflux mechanism to overcome drug resistance in tumor cells (Wang 401 

et al., 2011). ZhangWei et al., revealed that pluronics lowered the IC50 in human lung adenocarcinoma cell 402 

lines SPC-A1 (8.7±0.4ng/ml) and A-549 (0.10±0.04µg/ml) with Paclitaxel-Pluronic P123/F127 mixed 403 

polymeric micelles compared to Taxol and free Paclitaxel (Wei et al., 2009). Lu et. al., developed 404 

dendrimer phthalocyanine-encapsulated polymeric micelle with Doxorubicin and revealed nuclear 405 

accumulation of Doxorubicin in doxorubicin-resistant MCF-7 breast cancer cells and xenograft model 406 

after photoirradiation with higher antitumor activity compared to photodynamic therapy alone (Lu et al., 407 

2011). Cambón et al., synthesized reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) 408 

block copolymers with potential P-gp inhibitory action in MDR cell line. Doxorubicin loaded in these 409 

polymeric micelles enhanced cell accumulation and cytotoxicity in MDR ovarian NCIADR-RES cell line 410 

over expressing P-gp (Cambón et al., 2013). Methotrexate conjugated mixed micelles of pluronic F127 411 

and P105 suppressed tumor growth in KBv MDR cells compared to physically entraped mixed micelles 412 

due to combined effect of tumor chemosensitization by pluronic and passive targeting by micelles (Chen et 413 

al., 2013). Vincristine sulfate nanocarriers improved cellular uptake, cytotoxicity in MCF-7 and P-gp over 414 

expressing MCF-7/Adr resistant cancer cells by bypass P-gp due to endocytosis mediated by clathrin and 415 



caveolae pathways (Zhang et al., 2011). Chemosensitizing ability of pluronics suppressed Doxorubicin 416 

induced MDR in murine lymphocytic leukemia cells (P388) and in BDF1 mice bearing (P388) ascite 417 

cancer cells with Doxorubicin-Pluronic P85 micelles (Sharma et al., 2008). Pluronics modulate MDR by 418 

intracellular ATP depletion, decreased mitochondrial potential and passive targeting. IC50 values of 419 

Paclitaxel-Pluronic P123/F127 mixed micelles revealed anti-proliferation activity against lung resistance 420 

protein over expressing human lung adenocarcinoma A-549 cells with 3 fold longer mean residence time 421 

and 31.8% reduction in tumor volume compared to Taxol after 28 days (Wei et al., 2010). Polyethylene 422 

glycol-polycaprolactone or Pluronic P105 micelle down-regulated the mitochondrial membrane potential 423 

and reduced ATP level to improve cytotoxicity (4 times), intracellular accumulation and overcome 424 

Doxorubicin resistance in human myelogenous leukemia (K562/ADR) cells compared to Doxorubicin 425 

solution at 12ng/mL (Han et  al., 2011). 426 

 427 

Mesoporous Silica Nanoparticles (MSNPs) 428 

Mesoporous silica nanoparticles [Figure 2] have high drug loading due to high pore volume and surface 429 

area, multifunctionalization for targeted and controlled delivery, enhanced cellular uptake and delivers 430 

therapeutics at cellular levels in cancer (Mamaeva et al., 2013; Mai  et al., 2013). Doxorubicin MSNPs 431 

surface conjugated with TAT peptide facilitated intranuclear drug localization in multidrug resistant MCF-432 

7/ADR cancer cells and overcome MDR compared to free Doxorubicin or non TAT peptide conjugated 433 

nanoparticles (Pan et al., 2013). Doxorubicin MSNPs lowered the IC50 value 8-fold compared to free 434 

Doxorubicin and overcome MDR in Doxorubicin resistant and P-gp over expressing cancer cell line MCF-435 

7/ADR by increased cell proliferation suppression effect (Shen et al., 2011). Chemotherapy efficacy was 436 

enhanced bypassing the efflux pump resistance in multidrug-resistance cancer cells by co-delivery of 437 

Doxorubicin and siRNAs in MSNPs (Chen et al., 2009). Rapid internalization of siRNA loaded magnetic 438 

MSNPs coated with polyethylenimine and surface modified with fusogenic peptide (KALA) in the tumor 439 

cells resulted in knockdown of enhanced green fluorescent protein (EGFP) and vascular endothelial 440 

growth factor (VEGF) and inhibited tumor growth by suppression of tumor neovascularization (Li et al., 441 

2013). Doxorubicin-CTAB micelles co-loaded pH responsive MSNPs overcome multi-drug resistance in 442 

both drug-resistant MCF-7/ADR cells and drug-sensitive MCF-7 cells due to chemosensitization potential 443 

of CTAB arresting the cell cycle and inducing apoptosis (He et al., 2011). Manganese oxide-based MSNPs 444 

loaded with Doxorubicin multifunctionalized as theranostics circumvented multidrug resistance, restored 445 

drugs anti-proliferative effect by endocytosis, P-gp inhibition and ATP depletion in cancer cells (Chen et 446 

al., 2012). Anticancer drug loaded magnetic MSNPs were internalized by A549 cells through an energy-447 

dependent clathrin induced endocytosis pathway and inhibited cancer cell growth under magnetic field 448 

(Liu et al., 2012; Sekhon et al., 2012). Exposure of Doxorubicin loaded zinc doped iron oxide nanocrystals 449 

in mesoporous silica framework surface-modified with pseudorotaxanes to AC field caused death of 450 

(MDA-MB-231) breast cancer cells (Thomas et al., 2010). Hyperthermia stimulated the intracellular GSH 451 

level in A549 human lung cancer cells and enhanced anti-cancer efficacy of Doxorubicin MSNPs by 452 

inducing cell death and apoptosis (Lee et al., 2011). Lejiao Jia et al., developed Paclitaxel MSNPs and 453 

revealed that anti-tumor activity of Paclitaxel in breast cancer cells (MCF-7) was dependent on pore-size 454 

and  apoptosis increased with increased nanoparticle pore size (Jia et al., 2013). Galactose functionalized 455 

Camptothecin MSNPs with photosensitizer (porphyrin) enhanced anti-cancer activity in human cell lines 456 

of colorectal (HCT-116), pancreatic (Capan-1) and breast cancer (MDA-MB-231) (Gary-Bobo et al., 457 

2012). 458 

 459 

Other Inorganic Nanoparticles 460 

Inorganic nanoparticles for cancer therapy include quantum dots, carbon nanotubes, silica nanoparticles, 461 

gold nanoparticles, iron oxide magnetic nanoparticles and ceramic nanoparticles. Doxorubicin covalently 462 

bounded to polyethylenimine via pH sensitive hydrazone linkage and conjugated to iron oxide 463 

nanoparticles functionalized with polyethylene glycol circumvented MDR and reduced cell viability in 464 

DOX-resistant cells over-expressed in rat glioma C6 cells compared to free drug (Kievit et al., 2011). Wu 465 

Yanan et al., studies reversed the effect of 5-Bromotetrandrine and magnetic iron oxide nanoparticle 466 

combining Daunorubicin in xenograft leukemia model and inhibited expression of Bcl-2 protein and up-467 
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regulated BAX and CASPASE-3 protein expression in K562/A02 cells xenograft tumor (Yanan et al., 468 

2009). Doxorubicin loaded pH sensitive poly(beta-amino ester) copolymer superparamagnetic iron oxide 469 

nanoparticle in drug-resistant C6 glioma cell lines (C6-ADR) revealed 300% higher cellular internalization 470 

24h post-treatment and reduced IC50 by 65% at 72h post-treatment compared to free Doxorubicin (Fang et 471 

al., 2012). Co-administration of Doxorubicin and magnetite nanoparticles in presence of magnetic field 472 

showed cytotoxic effects against breast cancer cell lines MDA-MB-468 with greater than 80% cell death 473 

in hyperthermia combination than with Doxorubicin alone (Sadeghi-Aliabadi et al., 2013). Similar drug 474 

resistance inhibitory effect of magnetite nanoparticles loaded with Doxorubicin and Tetrandrine against 475 

K562 leukemia cells have been reported by Chen B et al. and Wang X et al. (Chen et al., 2008; Wang et 476 

al., 2007). Significant reduction in transcriptions of Mdr-1 and Bcl-2 gene and increased expressions of 477 

Bax and caspase-3 in K562-n and K562-n/VCR cells in-vivo in nude mice revealed the potential of 478 

Daunorubicin magnetic nanoparticles to overcome multi-drug resistance (Chen et al., 2009). MDR1-479 

siRNA encapsulated magnetic chitosan iron oxide nanoparticle reversed multidrug resistance effect on 480 

MDR1 gene in BT325 glioblastoma cell line with 70-80% transfection efficiency by reduced expression of 481 

MDR1 at mRNA and protein level and decreased IC50 values in normal BT325 and transfected cell 482 

(Zhao et al.,  2013). Lectin functionalized Paclitaxel magnetic nanoparticles lowered the IC50 with higher 483 

cellular uptake and cytotoxic effect on Bcr-Abl positive K562 cells in chronic myelogenous leukemia 484 

(Singh et al., 2011). Cisplatin magnetic nanoparticles enhanced inhibition of A549 cells and cisplatin-485 

resistant A549 cells in multidrug resistance lung cancer cells, lowered the levels of MRP1, lung resistance-486 

related protein, Akt and Bad pathways and increased the levels of caspase-3 genes and proteins (Li et al., 487 

2013). Single drug Tetrandrine loaded magnetic nanoparticles revealed a 100-fold lowering in mdrl 488 

mRNA level but no reduction in total P-gp content while magnetic nanoparticles loaded with Adriamycin 489 

and Tetrandrine synergistically reversed multidrug resistant in K562/A02 resistant cell lines (Chen  et al., 490 

2008). Heparin coated Doxorubicin super-paramagnetic iron oxide nanoparticles promoted apoptosis due 491 

to regulation of anti-apoptotic genes including caspase-3, bax, bcl-2 and surviving in human ovarian 492 

cancer cell lines A2780 (Javid et al., 2011). 493 

Gold nanoparticles (AuNPs) are versatile platform for cancer drug delivery (Kumar et al., 2013; 494 

Kumar et al., 2011) and have recently entered cancer clinical trials phase I and II (Thakor et al., 2011; 495 

Vigderman et al., 2012). Gu et al., successfully synthesized doxorubicin grafted-PEGylated gold 496 

nanoparticles to overcome Doxorubicin resistant in cell lines (Gu et al., 2012). Oxaliplatin grafted on 497 

PEGylated AuNPs rapidly distributed in the nucleus and enhanced the chemotherapeutic efficacy (Brown 498 

et. al., 2010). AuNPs surface conjugated with therapeutic peptide (PMI or p12) and targeted peptide 499 

(CRGDK) was rapidly internalized for better efficacy in overcoming breast cancer (Kumar et al., 2012). 500 

AuNPs covalently grafted with doxorubicin through thioctic acid-PEG linker inhibited growth of drug 501 

resistant breast cancer cells due to high drug concentrations inside cancer cells due to acid sensitive release 502 

from endosomes (Wang et al., 2011). Zhang et al., observed similar effects with gold nanoparticle–DNA–503 

paclitaxel conjugate (Zhang et. al., 2011). Gold nanorods functionalized with gastrin-releasing peptide 504 

(Bombesin) showed uptake via GRP receptor-mediated endocytosis with high binding affinity to breast 505 

cancer cells (Chanda et al., 2009; Chanda et al., 2010). Selenium nanoparticles significantly enhanced the 506 

expression of pp38, Bax and cytochrome C in estrogen receptor-α positive cells (MCF-7) but not in 507 

estrogen receptor-α-negative cells (MDA-MB-231) and prevented mammary tumor growth by inducing 508 

cell death (Vekariya et al., 2012). 509 

Quantum dots are semiconductor inorganic fluorescent nanocrystals with small and uniform sizes (1-510 

20nm), high surface to volume ratio, surface conjugation with multiple ligands and biocompatibility 511 

(Geszke-Moritz et al., 2013; Zhang  et al., 2008). Water-soluble cadmium telluride (CdTe) quantum dots 512 

capped with negatively charged 3-mercapitalpropionic acid combined with Daunorubicin as a biomarker 513 

for simultaneous cellular imaging and inhibition of multidrug resistance for treatment of drug-sensitive 514 

leukemia K562 and drug-resistant leukemia K562/A02 cell lines was developed by Yanyan Zhou et al. 515 

The study revealed significant drug uptake in target cancer cells and cytotoxicity suppression in both cell 516 

lines (Zhou et al., 2010). Further Zhang  et al., demonstrated rapid uptake and increased apoptosis rate 517 

which activated apoptosis-related caspases protein expression in drug-resistant human hepatoma 518 

HepG2/ADM cells with Daunorubicin-3-mercaptopropionic acid-capped Cadmium telluride quantum dots 519 
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(Zhang et al., 2011). Paclitaxel-loaded PLGA quantum dots were more cytotoxic than free Paclitaxel in 520 

paclitaxel-resistant KB paclitaxel-50 cells than paclitaxel-sensitive KB, however treatment with Verapamil 521 

reversed the MDR activity and reduced viability of KB paclitaxel-50 cell (Kuo et al., 2009). Doxorubicin 522 

conjugated via pH-sensitive hydrazone bond and aptamer to quantum dots when targeted to mutated 523 

MUC1 mucin over expressed in ovarian carcinoma revealed higher cytotoxicity than free drug with 524 

preferential accumulation in ovarian tumor and drug release in acidic environment of cancer cells (Savla et 525 

al., 2011). 526 

 527 

Dendrimers  528 

Novel delivery systems comprising of Doxorubicin, dendrimer and vector protein rAFP3D to bind alpha-529 

fetoprotein receptors on tumor cell surface accumulated in the cells by receptor mediated endocytosis and 530 

demonstrated high cytotoxicity against human ovarian adenocarcinoma cell lines - Doxorubicin-sensitive 531 

SKOV3 cells and Doxorubicin-resistant SKVLB cells revealed low toxicity against human peripheral 532 

blood lymphocytes reversing the multidrug resistance in Doxorubicin-resistant cells (Yabbarov et al., 533 

2013). The cancer-targeting potential of folate/dextran/galactose ligands anchored on poly(propylene 534 

imine) dendrimers evaluated on HeLa and SiHa cell lines indicated an IC50 values of 0.05, 0.2, 0.8 and 535 

0.08μM for folate, dextran, galactose formulations and free paclitaxel respectively on HeLa cells while the 536 

IC50 values of 0.6, 0.8, 10 and 6μM with folate, dextran and galactose formulations and free PTX 537 

respectively with SiHa cells. The study revealed the targeting potential of ligands in the order folate > 538 

dextran > galactose (Kesharwani et al., 2011). Dendrimer phthalocyanine-encapsulated polymeric micelle 539 

combined with doxorubicin and mediated by photochemical internalization showed doxorubicin release 540 

from endo-lysosomes to nuclei after photoirradiation and nuclear accumulation of doxorubicin, higher 541 

antitumor activity than DPc/m-PDT alone in drug-resistant MCF-7 cells and xenograft model (Lu et al., 542 

2011). Biotin, a cell growth promoter is required for rapid proliferation of cancer cells and is over-543 

expressed on cancer cell surface than normal tissue. Bifunctional dendrimer conjugated with biotin a 544 

targeting moiety and fluoresceinisothiocyanate an imaging moiety exhibited higher cellular uptake by an 545 

energy-dependent process in HeLa cells than conjugate without biotin. Conjugation of targeting moieties 546 

such as sugar, folic acid, antibody, peptide and epidermal growth factor to dendrimers leads to preferential 547 

accumulation of drug in the targeted tissue or cells. Similar biotin-conjugate carriers have been reported to 548 

increase uptake of anti-cancer drugs in tumor cells (Yang et al., 2009). Cytotoxicity of dendrimers - 549 

chlorambucil conjugate and inhibition of [3H] thymidine incorporated in DNA on both MDA-MB-231 and 550 

MCF-7 breast cancer cells demonstrated that the conjugate had more potent antiproliferative activity and 551 

actively inhibited collagen biosynthesis than chlorambucil (Bielawski,et al., 2011). Similar cytotoxicity 552 

effects have been reported by Khandare et al. for conjugation of paclitaxel to linear PEG polymers and 553 

PAMAM dendrimers. PAMAM dendrimer-paclitaxel conjugate showed significantly higher toxicity while 554 

linear PEG-paclitaxel conjugate showed more than 25-fold lower toxicity compared to free drug with 555 

increased IC50 dose (Khandare et al., 2006). Surface modified G3 PAMAM dendrimers with permeation 556 

enhancing lauryl chains conjugated with Paclitaxel via glutaric anhydride linker revealed the potential to 557 

cross cellular barriers in cell monolayers indicated by increased apparent permeability coefficient and 558 

increased cytotoxicity in both human colon adenocarcinoma cell line (Caco-2) and primary cultured 559 

porcine brain endothelial cells (PBECs). The interactions of hydrophobic lauryl moieties of L6-G3-glu-pac 560 

dendrimer conjugate with plasma membrane revealed 12-fold greater permeability across both cell 561 

monolayers than free Paclitaxel (Teow et al., 2013). Dendrimer conjugated with methotrexate a dual-562 

acting molecule showed cytotoxicity due to its potent inhibitory activity against dihydrofolate reductase 563 

and binds folic acid receptor, upregulated on cancer cell surface (Li, et al., 2012) 564 

 565 

Nanostructured Lipid Carriers (NLCs)  566 

Mitoxantrone hydrochloride nanostructured lipid-dextran sulfate hybrid carriers enhanced cytotoxicity and 567 

invaded cells by clathrin-mediated endocytosis with high drug accumulation in breast cancer resistance 568 

protein overexpressing MCF-7/MX cells and overcome multidrug resistance compared to solution (Zhang 569 

et al., 2012). Oral bioavailability of Etoposide was enhanced 1.8, 3.0 and 3.5 fold in NLCs, PEG40-NLCs 570 

and DSPE-NLCs respectively compared to suspension. Etoposide DSPE-NLCs and NLCs revealed highest 571 
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cytotoxicity, lower cellular viability and strong inhibitory effects against human epithelial-like lung 572 

carcinoma cells (A549) than etoposide with IC50 values of 40.61±6.15 nM, 61.78±7.49 nM and 210.87± 573 

0.76 nM respectively after 24h (Némati et al., 1996; Zhang et al., 2011). Oleh Taratula et al., developed 574 

dual targeting NLCs loaded with an anticancer drug (Doxorubicin or Paclitaxel) to induce cell death and 575 

siRNA to target MRP1 mRNA and BCL2 mRNA to suppress pump and nonpump cellular resistance in 576 

lung cancer cells respectively and overcome resistance. Further conjugation of targeting moiety 577 

Luteinizing Hormone Releasing Hormone (LHRH peptide) to NLCs enhanced the targeting specificity to 578 

cancer cells overexpresseing LHRH receptors (Taratula et al., 2013). Folate decorated Paclitaxel and 579 

Doxorubicin loaded NLCs designed by Xing-Guo Zhang et al., exhibited high cytotoxicity against human 580 

breast cancer (MCF-7) cells and multi-drug resistant (MCF-7/ADR) cells with Paclitaxel NLCs and in 581 

MCF-7/ADR cells with Doxorubicin NLCs with MDR reversal potential of 34.3 fold for Paclitaxel NLCs 582 

and 6.4 fold for Doxorubicin NLCs. Similar cytotoxicity trend was observed against human ovarian cancer 583 

(SKOV3) cells and multi-drug resistant (SKOV3TR) cells with reversal power of 31.3 and 2.2 fold for 584 

Paclitaxel NLCss and Doxorubicin NLC respectively compared to Taxol and Doxorubicin solution (Zhang 585 

et al., 2008). Potential of active targeting the low density lipoprotein (LDL) receptors over expressed on 586 

cancer cells was utilized by Jaber Emami et al., and developed Paclitaxel loaded cholesterol NLCs which 587 

were taken by human colorectal cancer cell line (HT-29) through LDL receptor endocytic pathway and 588 

revealed IC50 values of 5.24±0.96ng/mL compared to 8.32±1.35ng/mL of free Paclitaxel solubilized in 589 

Cremophor-EL after 72h exposure (Emami et al., 2012). Folate decorated Paclitaxel and Doxorubicin 590 

NLCs exhibited high cytotoxicity in MCF-7 and MCF-7/ADR cells while Doxorubicin NLCs revealed 591 

high cytotoxicity only in MCF-7/ADR cells compared to Taxol and Doxorubicin solution, while Paclitaxel 592 

and Doxorubicin NLCs revealed same cytotoxicity trends against human ovarian cancer cells (SKOV3) 593 

and their multidrug resistant (SKOV3TR) cells. The reversal power of Paclitaxel and Doxorubicin NLCs 594 

were 34.3 and 6.4 folds respectively (Zhang et al., 2008).  595 

 596 

Nanovehicles enhance chemotherapeutics solubility, bioavailability, therapeutic index and overcome 597 

dose-limiting toxicity, non-specific biodistribution, non-targeting and emerging drug resistance in cancer 598 

therapy. Multifunctional nanocarriers along with distinct size and surface characteristics are able to target 599 

tumor cells through active and passive targeting approaches. Nanocarrier’s ability to down regulate ABC 600 

transporters or carry gene expression modulator/inhibitor enhance drugs intracellular tumor concentrations 601 

improving the chemotherapeutic efficacy. Thus nanotechnology is a novel approach for specific delivery 602 

of chemotherapeutics with potential to overcome complexity of multidrug resistance in tumors treatments. 603 

 604 

NANOCARRIERS INHIBITING MDR BASED ON DRUG EFFLUX PUMPS 605 

Silencing of drug resistance genes  606 

RNA interference (RNAi) technology has been explored as a therapeutic strategy to overcome multidrug 607 

resistance by silencing drug efflux transporter genes such as P-gp/MDR1 and MRP1. RNAi mediated 608 

silencing through siRNA, through transfection with short hairpin RNA (shRNA) (Chen et al., 2010; 609 

MacDiarmid et al., 2009; Patil et al., 2010; Saad et al., 2008) and decreased MDR1 expression with 610 

antisense oligodeoxynucleotides (Wang et al., 2010) are strategies to overcome P-gp associated MDR 611 

using RNAi. Targeting transferrin receptors with PEG coated siRNA nanoparticles silenced target gene 612 

M2 ribonucleotide reductase in refractory metastatic melanoma (Davis et al. 2010). Cationic and anionic 613 

liposome polycation-DNA nanoparticles loaded with C-Myc siRNA and Doxorubicin suppressed MDR1 614 

gene expression via silencing the transcription level by targeting transcription factors, intercalation of 615 

Doxorubicin, topoisomerase II inhibition, transcription inhibition of resistant tumors and tumor regression 616 

(Chen et al., 2010). Sigma receptors overexpressed on non-small cell lung cancer, breast tumor and 617 

prostate cancer targeted with anisamide decorated nanoparticles reduced tumor growth of C-Myc siRNA, 618 

down-regulated MDR1 expression and increased Doxorubicin accumulation in xenograft model of 619 

NCI/ADR-RES (OVCAR-8 derived) tumor (Banerjee et al., 2004). Bacterially derived minicells 620 

encapsulating siRNA targeting MDR1 gene transcripts with cytotoxic drugs down-regulated P-gp and 621 

increased survival of mice bearing human tumor xenografts (MacDiarmid et al., 2009). 622 

 623 



Inhibition of drug resistance proteins 624 

To overcome MDR, colloidal carries inhibiting drug resistance proteins P-gp includes polymeric 625 

nanoparticles (Kuo et al., 2009; Patil et al., 2009; Song et al., 2009, Khdair et al., 2009), quantum dots 626 

(Kuo et al., 2009), liposomes (Wu et al., 2007), nanoemulsions (Ganta and Amiji, 2009) etc. which 627 

contains combination of P-gp inhibitors with anticancer drugs such as Paclitaxel, Vincristine or 628 

Doxorubicin. Biotin or folic acid functionalized PLGA nanoparticles encapsulating Tariquidar and 629 

Paclitaxel resulted in higher cytotoxicity and inhibited tumor growth in human MDR tumor xenografts 630 

compared to Paclitaxel nanoparticles alone (Robey et al., 2008; Patil et al., 2009). Paclitaxel loaded 631 

theragnostic PLGA nanoparticles conjugated to quantum dots were more effective than free Paclitaxel in 632 

Paclitaxel-sensitive nasopharyngeal KB carcinoma cells and Paclitaxel-resistant KB PTX-50 while 633 

cyctoxicity enhanced in presence of Paclitaxel-loaded nanoparticles with Verapamil (Kuo et al. 2009). 634 

Transferrin coated liposomes co-encapsulating Doxorubicin and Verapamil exhibited 5 and 3-fold 635 

cytotoxicity in Doxorubicin-resistant human erythroleukemia K562 cells compared to non-targeted 636 

liposomes and transferrin targeted liposomes  with Doxorubicin alone respectively (Wu et al., 2007).  637 

 638 

NANOCARRIERS SUPPRESSING MECHANISM OF DRUG RESISTANCE INDEPENDENT OF 639 

EFFLUX TRANSPORTERS 640 

Silencing of Bcl-2 and HIF1 gene expression  641 

Nanotechnology approaches suppressing drug resistance mechanisms independent of drug efflux pumps 642 

are silencing of B-cell lymphoma 2 (Bcl-2) [Figure 3] and hypoxia-inducible factor alpha (HIF1-α) genes. 643 

Bcl-2 family proteins are regulators of apoptosis and HIF1-α gene encodes a transcription factor in cellular 644 

response to hypoxia (Rapisarda and Melillo, 2009). Two isoforms of Bcl-2, Isoform 1 (1G5M) and 645 

Isoform 2 (1G5O/1GJH) exhibit similar fold antiapoptotic activity, however their ability to bind the BAD 646 

and BAK proteins suggest differences in antiapoptotic activity of the isoforms. Bcl-2 gene damage is a 647 

major cause of cancer and resistance to cancer treatments because over-expression of anti-apoptotic genes 648 

and under-expression of pro-apoptotic genes results in lack of cell death. Hypoxia regions present in solid 649 

tumours are indicators of malignant progression, metastatic development and chemoresistance. The degree 650 

of intra-tumoural hypoxia depends on expression of HIF-1 which is composed of 2 sub-units HIF-1α and 651 

HIF-1β and is major factor for cell survival in hypoxic environment (O’Donnell et al., 2006). Matrine 652 

(active component of Sophora flavescence dry roots) in human gastric cancer MKN45 tumor cells 653 

activates caspase-3, 7 and up-regulates pro-apoptotic molecules Bok, Bak, Bax, Puma, Bim and induces 654 

apoptosis via Bcl-2 (Luo et al., 2007; Noguchi et al., 2003). Cationic cholesterol derivative with 655 

hydroxyethylamino head group, cholesteryl-3bcarboxyamidoethylene-N-hydroxyethylamine (I) on 656 

liposome significantly promoted gene transfection, Bcl-2 antisense phosphorothioate oligonucleotides 657 

complexed with cationic liposomes suppressed human cancer cell growth and induced apoptosis in human 658 

cervix epithelial carcinoma cell lines HeLa and mouse fibroblast NIH3T3 cells (Okayama et al., 1997). 659 

Positively charged chitosan coated PLGA nanoparticles with siRNA increased transfection and blocked 660 

the expression of anti-apoptotic Bcl-2 gene with significant cellular uptake and tumor regression (Jagani et 661 

al., 2013). Dong-feng Yu et al., developed cationic liposomes to downregulate the expression of Bcl-2 662 

gene with siRNA transfection with enhanced apoptosis and sensitivity of 5-Fluorouracil in gastric 663 

adenocarcinoma SGC-7901 cell (Yu et al., 2013). Suppression of Bcl-xL gene through co-delivery of 664 

Doxorubicin and small hairpin RNA (shRNA) in polyplexes conjugated with an anti-PSMA aptamer 665 

specifically binds the prostate-specific membrane antigen expressed on prostate cancer cell surface. 666 

Aptamer polyplexes revealed excellent tumoricidal efficacy and significantly lowered the IC50 values by 667 

17-fold compared to mixture of shRNA and Doxorubin (Kim et al., 2010). Gene silencing capability of 668 

siRNA loaded magnetic MSNPs coated with polyethyleneimine effectively knock downed both exogenous 669 

enhanced green fluorescent protein (EGFP) gene and endogenous Bcl-2 gene with negligible cytotoxicity 670 

and released siRNA in cancer cells (Li et al., 2011). Glycoprotein transferrin (Tf) is a ligand for transferrin 671 

receptors (TfR) overexpressed on cancer cells and internalized by receptor-mediated endocytosis. Novel 672 

transferrin receptor-targeted liposomes delivered phosphorothioate antisense oligodeoxyribonucleotide 673 

(ODN-G3139) in TfR positive K562 leukemia cells and downregulated Bcl-2 protein in K562 cells 2-fold 674 

greater than non-targeted liposomes and 10-fold greater than free G3139. Tf-conjugated liposomes with 675 
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G3139 reduced Bcl-2 transcription by >80%, lowered IC50 from 1.8μM to 0.18μM and sensitized K562 676 

cells to Daunorubicin (Chiu et al., 2006).  677 

 678 

Modulation of ceramide levels  679 

Ceramide lipids are endogenous lipids and potent mediators of cellular responses in cancer including 680 

apoptosis, cell growth suppressor, differentiation, cell migration and adhesion. Ceramides are located in 681 

cell membranes and mitochondrial outer membrane, releasing pro-apoptotic factors Cytochrome c by 682 

forming permeable channels. Few sphingolipids are vital signal transducer and cell regulator in growth 683 

suppression and apoptosis. Extracellular agent such as tumor necrosis factor α activates sphingomyelinase 684 

and cleaves membrane sphingomyelin to generate cellular ceramide. Ceramide are converted to 685 

sphingolipids in presence of P-gp and accelerates cancer cell death by co-administration of P-gp 686 

antagonists with short-chain ceramides (C6-ceramide) (Hannun and  Obeid, 1995; Pettus et al., 2002; 687 

Boddapati et al., 2008). Exposure to chemotherapy and/or anticancer drugs increase intracellular ceramide 688 

levels in cancer cells and is involved in membrane clustering of the death receptor. Most anticancer 689 

chemotherapeutics stimulate ceramide accumulation through increased ceramide synthesis or inhibition of 690 

ceramide catabolism. Neutralization of ceramide via glycosylation or phosphorylation in malignant cells is 691 

linked to multidrug resistance. New therapeutic strategies to overcome resistance focus on increasing 692 

endogenous ceramide levels by stimulating ceramide synthesis, inhibiting ceramide neutralization, or 693 

direct delivery of exogenous ceramide (Barth et al.,  2011). Cytotoxicity of C6-ceramide nanoliposomes 694 

with P-gp antagonist (Tamoxifen, Cyclosporine-A, VX-710 (Biricodar), Verapamil) in human CRC cell 695 

lines (HCT-15, HT-29, LoVo) revealed synergistic effect of caspase dependent apoptosis, poly ADP ribose 696 

polymerase(PARP) cleavage, DNA fragmentation, cell cycle arrest, increased mitochondrial membrane 697 

permeability and enhanced protein expression of tumor suppressor p53 (Morad et al.,  2013).  Shabbitsa et 698 

al., revealed that cytotoxicity and cellular uptake of ceramides are dependent on acyl chain length with the 699 

most active C6-ceramide (IC50 value = 3-14µM) and least active C16-ceramide (IC50 value = 100µM) in 700 

MDA435/LCC6 human breast cancer and J774 mouse macrophage cell lines (Shabbitsa and Mayera, 701 

2003). Cisplatin-Fe3O4 magnetic nanoparticles reversed resistance of ovarian carcinoma cell line 702 

SKOV3/DDP by 2.2 fold and down-regulated mRNA levels of Bcl-2 and survivin expression with 703 

increased cell apotosis (Jiang  et al., 2009). Similarly Daunorubicin-Fe3O4 magnetic nanoparticles lowered 704 

the transcriptions of Mdr-1 and Bcl-2 gene and increased the transcriptions and expressions of Bax and 705 

caspase-3 in K562-n and K562-n/VCR cells in nude mice to overcome MDR (Chen et al., 2009). 706 

Lonidamine and Paclitaxel dual loaded PLGA/PEG/EGFR-peptide targeted nanoparticles at 1μM 707 

paclitaxel/10μM lonidamine dose revealed <10% cell viability for all hypoxic cell lines and <5% cell 708 

viability for all normoxic cell lines overexpressing EGFR in human breast and ovarian cancer cell lines. 709 

EGFR-peptide targeted nanoparticles promoted mitochondrial binding of Bcl-2 proteins (Lonidamine) and 710 

hyperstabilizing microtubules (Paclitaxel) to overcome MDR (Milane et al., 2011). siRNA cationic 711 

polymeric nanoparticles downregulated Bcl-2 mRNA expression levels (<10%) in HepG2, HeLa and 712 

MDA-MB-231 cell lines and sensitized HeLa cells to Paclitaxel  (Beh et al., 2009). Transferrin targeted 713 

protamine lipid nanoparticles of antisense oligonucleotide (G3139) down-regulated Bcl-2 to overcome 714 

resistance in K562, MV4-11 and Raji leukemia cell lines and was more effective than non-targeted lipid 715 

nanoparticles and frees G3139 and induced caspase-dependent apoptosis (Yang et al., 2009). Co-716 

administration of Paclitaxel (20mg/kg) and C6-ceramide (100mg/kg) in poly(ethylene oxide)-modified 717 

poly(epsilon-caprolactone) nanoparticles revealed > 4.3 and 3-fold increase in tumor growth delay and 3.6 718 

and 3-fold increase in tumor volume doubling time in wild-type SKOV-3 and multidrug resistant (MDR-1 719 

positive) SKOV-3TR models respectively compared to individual agents (Devalapally et al., 2007). Tumor 720 

accumulation of Paclitaxel from Paclitaxel-C6-ceramide poly(beta-amino ester) nanoparticles was high 721 

compared to free drug in sensitive MCF-7 and multidrug resistant MCF-7TR (MDR-1 positive) human 722 

breast adenocarcinoma (van Vlerken et al., 2008). C6-ceramide nanoliposomes revealed caspase-dependent 723 

apoptosis and diminished survivin protein expression in treatment of human and rat natural killer-large 724 

granular lymphocytic leukemia cells (Liu et al., 2010). C6-ceramide loaded temperature-sensitive linear-725 

dendritic nanoparticle revealed preferential uptake of fluorescein isothiocyanate-labeled linear-dendritic 726 

nanoparticles into human MDA-MB-231 breast adenocarcinoma cells with growth inhibition and solid 727 
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tumor apoptosis with hyperthermia (Stover et al., 2008).  Cytotoxicity of cetyltrimethyl ammonium 728 

bromide stabilized SLNs loaded MBO-asGCS oligonucleotide with or without C6-ceramide evaluated in 729 

NCI/ADR-RES human ovary cancer cells revealed enhanced uptake of MBO-asGCS oligonucleotide with 730 

downregulation of GCS reversing resistance of cells to Doxorubicin (Siddiqui et al., 2010). Docetaxel 731 

loaded hyaluronic acid-ceramide nanoparticles enhanced intracellular uptake in CD44-overexpressing cell 732 

line (MCF-7) and revealed MDR effect in MCF-7/ADR cells (Cho et al., 2011). Doxorubicin loaded 733 

polyethylene glycol conjugated hyaluronic acid-ceramide revealed greater uptake in CD44 receptor 734 

expressed in SCC7 cell line (Cho et al., 2012). C6-ceramide nanoliposomal with Gemcitabine or an 735 

inhibitor of glucosylceramide synthase [D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol 736 

(PDMP)] in Gemcitabine resistant human pancreatic cancer cell line revealed cytotoxicity and inhibited 737 

tumor growth (Jiang et al., 2011). Transferrin modified ceramide liposomes initiated lysosomal membrane 738 

permeabilization resulting in leakage of hydrolytic enzymes (cathepsins) into cytoplasm, induced cancer 739 

cells apoptosis and revealed antitumor and pro-apoptotic effects in A2780-ovarian carcinoma xenograft 740 

mouse model compared to ceramide-free and ceramide-loaded non-modified liposomes (Koshkaryev et al., 741 

2012). Co-administration of Tamoxifen and Paclitaxel in poly(ethylene oxide) modified poly(epsilon-742 

caprolactone) polymeric nanoparticles enhanced antitumor efficacy, lowered IC50 of Paclitaxel by 10 and 743 

3-fold in SKOV3 cells and P-gp over-expressing SKOV3TR cells respectively (Devalapally et al., 2008). 744 

Polymeric nanoparticles co-encapsulating Paclitaxel and C6-ceramide enhanced apoptotic signaling and 745 

reduced tumor volume 2-fold over standard Paclitaxel monotherapy (van Vlerken et al., 2010). Ceramide-746 

generating properties of 4-HPR (Fenretinide) are being evaluated in phase II study of recurrent ovarian 747 

cancer and C6-ceramide nanoliposomes are being evaluated as neoplastic-selective agent (Chapman et al., 748 

2010).  749 

 750 

Targeting NF-B  751 

Transcriptional factor nuclear factor-kappa B (NF-κB) plays vital role in cancer development and 752 

resistance. Degradation of inhibitor κB after phosphorylation by inhibitor κB kinases activates NF-κB 753 

translocating into nucleus and initiating transcription contributing to tumor development, progression, 754 

chemoresistance, inflammation and autoimmune diseases (Li and Sethi, 2010; Zingarelli et al., 2003). NF-755 

κB is involved in multiple cellular processes including stress, cytokine gene expression, free radicals, 756 

cellular adhesion, cell cycle activation, apoptosis and oncogenesis (Baud and Karin, 2009). NF-κB is 757 

activated via two distinct signal transduction pathways in cancer, the canonical and non-canonical 758 

pathways. NF-κB regulates expression of key proteins such as Bcl-2, Bcl-XL, cellular inhibitors of 759 

apoptosis, survivin, TRAF, Cox-2, MMP9, iNOS and cell cycle regulatory components. Thus NF-B is a 760 

potential target for cancer therapeutics since inhibitors of NF-B mediates antitumor responses and 761 

enhances tumor sensitivity to anticancer drugs (Luqman and Pezzuto, 2010). Activation of NF-κB affects 762 

cancer cell survival while inhibition of NF-κB enhances sensitivity of cancer cells to antineoplastic agents 763 

(Schwartz et al., 1999). NF-κB is important in tumorigenic process due to its strong anti-apoptotic 764 

functions in cancer cells (Magné et al., 2006). Polyethylene glycol-5000 coated Curcumin PLGA 765 

nanoparticles induced apoptosis of leukemic cells, inhibited TNF-induced NF-κB activation and 766 

suppressed NF-κB-regulated proteins involved in cell proliferation (cyclin D1), invasion (MMP-9) and 767 

angiogenesis (VEGF) (Nair et al., 2010). Micellar aggregates of cross-linked copolymers N-768 

isopropylacrylamide with N-vinyl-2-pyrrolidone and poly(ethyleneglycol) monoacrylate encapsulating 769 

Curcumin induced cellular apoptosis, blocked NF-κB activation and down-regulated proinflammatory 770 

cytokines (IL-6, IL-8 and TNFα) in human pancreatic cancer cell lines (Bisht et al., 2007). Silica 771 

nanoparticles (50-200μg/mL) generated reactive oxygen species, mitochondrial depolarization and 772 

apoptosis in human umbilical vein endothelial cells (HUVECs), activated c-Jun N-terminal kinase (JNK), 773 

c-Jun, p53, caspase-3 and NF-κB, increased Bax expression and suppressed Bcl-2 protein while the 774 

highest concentration significantly increased the necrotic rate, LDH leakage, expression of CD54 and 775 

CD62E and  release of TF, IL-6, IL-8 and MCP-1 (Liu and Sun, 2010). Potential of gene therapy for 776 

targeting NF-κB has recently been explored as a new strategy in cancer (Tas et al., 2009). Degradation of 777 

TSP [Tween 85-s-s-polyethyleneimine (TSP)] a non-viral gene vector for p65 (shRNA) from TSP/p65 778 

shRNA nanoparticles with release of shRNA blocked NF-κB signaling pathway, induced cell apoptosis 779 
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and down-regulated p65 expression in breast cancer cells (Xiao et al., 2013). Inhibition of NF-B with 780 

pyrrolidine dithiocarbamate (PDTC) an antioxidant and heavy metals chelator suppressed release of IBα 781 

from NF-B and induced cell death in neuroblastoma cells (Schreck et al., 1992). Doxorubicin and NF-B 782 

inhibitor PDTC entrapped folic acid conjugated chitosan nanoparticles  enhanced intracellular targeting of 783 

tumor cells via folic acid receptor mediated endocytosis and lowered IC50 values compared to free drug to 784 

overcome resistance (Fan et al., 2010).  785 

 786 

NANOCARRIERS ADDRESSING EFFLUX PUMP DEPENDENT AND INDEPENDENT DRUG 787 

RESISTANCE MECHANISMS 788 

Simultaneously delivery of single/multiple anticancer agents in nanocarriers addressing both efflux pump 789 

dependent (P-gp) and independent (NF-B) drug resistance mechanisms enhances cell apoptosis and 790 

induce cancer cell death. Paclitaxel and Curcumin (NF-B and P-gp inhibitor) co-encapsulated in flaxseed 791 

oil nanoemulsion enhanced cancer cell sensitivity to Paclitaxel and cytotoxicity in SKOV3 and drug 792 

resistant SKOV3TR human ovarian adenocarcinoma cells (Ganta and Amiji, 2009). Doxorubicin and 793 

siRNA containing cationic liposomes simultaneously silenced MRP1 and Bcl-2 (Saad et al., 2008). 794 

Doxorubicin/Mitomycin/5-Fluorouracil loaded hydroxyapatite nanoparticles acted synergistically with 795 

recombinant mutant human tumor necrosis factor- (rmhTNFα) reduced P-gp levels of mRNA, increased 796 

intracellular concentration in human hepatoma xenografts of HepG2/ADM cells and suppressed tumor cell 797 

growth by apoptosis (Al-Bataineh et al., 2010; Ronaldson et al., 2010). 798 

 799 

PHYSICAL APPROACHES TO OVERCOME MDR  800 

Drug delivery with thermal therapy 801 

In hyperthermia therapy, cells undergo heat stress (41°C-46°C) resulting in activation and/or initiation of 802 

intracellular and extracellular degradation mechanisms like protein denaturation, protein folding, 803 

aggregation and DNA cross linking, changing tumor cell physiology and leading to apoptosis or making 804 

cancer cells more sensitive to anti-cancer drugs. Hyperthermia increases blood flow to the tumor cells and 805 

enhances delivery of nanocarriers and thus used as an adjunct treatment to increase efficacy of 806 

chemotherapy and enhance radiation induced tumor damage. Depending on the degree of temperature, 807 

hyperthermia is classified (i) in-thermo ablation; tumor subjected to >46°C (upto 56°C) causes cells to 808 

undergo direct tissue necrosis, coagulation or carbonization (ii) moderate hyperthermia (41°C-46°C) 809 

affects both cellular and tissue (iii) diathermia (<41°C) for rheumatic diseases. Cellular effects of moderate 810 

hyperthermia include induction and regulation of apoptosis, signal transduction and multidrug resistance. 811 

Super-paramagnetic iron oxide particles induced therapeutic hyperthermia; liposomal nanocarrier revealed 812 

high intra-tumoral accumulation of magnetic particles on application of magnetic field (100-120 kHz) to 813 

attain temperatures 40°C-45°C. Folate receptor targeted Doxorubicin liposomes with hyperthermia 814 

reduced IC50 in cervical carcinoma cells. Temperature sensitive poly(N-isopropylacrylamide) nanocarriers 815 

release anticancer drugs in presence of specific temperature triggers. Hyperthermia enables magnetic 816 

nanoparticles to enter tumor cells by generating heat in tissues/cells and is utilized for selective targeting 817 

through cancer-specific binding agents and controlled drug delivery over conventional hyperthermia 818 

(Chicheł et al., 2007; Kumar and Faruq, 2011). 819 

 820 

Drug delivery with ultrasound therapy 821 

Ultrasound induces thermal effects and helps nanocarrier’s extravasation in tumor, enhance drug diffusion 822 

through tumor interstitium, release drug from nanocarriers within tumor and increase intracellular drug 823 

accumulation on irradiation to enhance treatment of MDR cancer. Howard et al. demonstrated that 824 

sonication enhanced uptake of Paclitaxel 20-fold from micellar system in breast cancer tumor cell line and 825 

inhibited 90% cell proliferation. Doxorubicin-pluronic® P105 micelles with ultrasound resulted in high 826 

intracellular drug accumulation in promyelocytic leukemia HL-60 cells, ovarian carcinoma drug sensitive 827 

and multidrug resistant cells (A2780 and A2780/ADR) and breast cancer (MCF-7) cells (Marin et al., 828 

2002). Paclitaxel micelles of methoxy poly(ethylene glycol)-block-poly(D, L-lactide) enhanced 829 

intracellular drug accumulation 2-fold and cytotoxicity in drug-sensitive (MDCKII and MCF-7) and P-gp 830 

expressing (MDCKII-MDR and NCI-ADR) cell lines with ultrasound (Wan et al., 2012). Pure and mixed 831 
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micelles of pluronic® P105, PEG2000-diacylphospholipid and poly(ethylene glycol)-co-poly(β-benzyl-L-832 

aspartate) loaded Doxorubicin with ultrasound treatment enhanced intracellular drug accumulation in 833 

ovarian carcinoma tumor model in nu/nu mice and inhibited tumor growth rate (Gao et al., 2005). 834 

Ultrasound therapy downregulated levels of P-gp, MRP and lung resistance protein to 62.84±3.42%, 835 

10.26±1.18% and 3.05±0.37% in HepG2/ADM cells from 96.97±2.41%, 20.84±3.12% and 1.16±0.59% 836 

levels respectively. Ultrasound increased percent Bax in HepG2/ADM cells leading to cellular apoptosis 837 

and MDR reversal (Wu et al., 2011; Gao et al., 2012; Rapoport, 2004; Liu et al., 2001; Kedar et al., 2010; 838 

Howard et al., 2006; Milane et al., 2011). The studies indicate potential of ultrasound waves to disrupt 839 

nanocarrier core, form micropores in cell membrane allowing diffusion of drugs and modulate membrane 840 

drug efflux pumps function. However which mechanisms of ultrasound (heat, cavitation or 841 

microstreaming) are predominantly involved in modulating drug efflux transporter on cell membrane is 842 

still unclear. The studies on these aspects are underway in our lab. 843 

 844 

Drug delivery with photodynamic therapy   845 

Photodynamic therapy (PDT) has wide applications in cancer therapy due to its specificity and selectivity. 846 

PDT involves three components light, oxygen and a photosensitizer (non-toxic drug) to achieve 847 

photocytotoxicity. PDT includes administration of a photosensitizer which specifically accumulates in 848 

cancer cells and when illuminated with red visible light (620-690nm) generates reactive oxygen species in 849 

presence of tissue oxygen and causes cell death. Photofrin-2 (hematoporphyrin derivative) is the only PDT 850 

drug approved for clinical application in treatment of bladder, lung and esophageal cancer. Folic acid 851 

coated phospholipid-capped protoporphyrin IX (PpIX) loaded FITC-sensitized mesoporous silica 852 

nanocarriers (NanoPDT) effectively targeted receptors overexpressed on HeLa cells with high intracellular 853 

PpIX concentrations compared to free PpIX. NanoPDT on irradiation generated oxygen species, enhanced 854 

photocytotoxicity and inhibited 65% tumor growth in nude mice inoculated with B16F10 melanoma (Teng 855 

et al., 2013). Dendrimer phthalocyanine encapsulated polymeric micelle showed higher PDT efficacy in 856 

mice bearing human lung adenocarcinoma A549 cells, enhanced photocytotoxicity upon photoirradiation 857 

and accumulated in endolysosomes than Photofrin-2 (Nishiyama et al., 2009). However polyethylene-858 

glycol(PEG)-grafted transferrin-conjugated liposomes of second-generation photosensitizer 5, 10, 15, 20-859 

tetra (m-hydroxyphenyl) chlorin (Foscan) did not improved the photocytotoxicity or intracellular 860 

accumulation of Foscan in oesophageal cancer cell line when compared to unmodified liposomes (Paszko 861 

et al., 2013). Chitosan functionalized pluronic nanogel containing gold nanorod as photothermal therapy 862 

agent and chlorine e6 (Ce6) as photosensitizer for PDT enhanced tumor ablation in-vivo by combination of 863 

PDT followed by photothermal therapy compared to single therapy (Kim et al., 2013). Co-delivery of 864 

Docetaxel and photosensitizer zinc-phthalocyanine (ZnPc) loaded nanoparticles on irradiation decreased 865 

viability in HeLa cells after 72h and enhanced antitumor activity in orthotopic amelanotic melanoma 866 

animal model compared to Docetaxel nanoparticles alone (Conte et al., 2013). Hyperbranched poly(ether-867 

ester) (HPEE) loaded photosensitizer chlorin (e6) nanoparticles revealed better up taken by human oral 868 

tongue cancer CAL-27 cells after 4h with cytoplasmic localization and higher phototoxicity compared to 869 

free ce6 after irradiation (Li et al., 2012). Efficiency of second generation photosensitizers [2, 9, 17, 23-870 

tetrakis-(1,6-hexanedithiol) phthalocyaninato] zinc (II) in PDT either free or encapsulated in gold 871 

nanoparticles/liposomes on photodamage of fibroblast and breast cancer cells revealed breast cancer cell 872 

damage with phthalocyanine liposomes while gold nanoparticles improved the effect with PDT (Nombona 873 

et al., 2012). Hematoporphyrin loaded liposomes revealed higher intratumoral accumulation of 874 

photosensitizer compared to free drug in MS-2 fibrosarcoma mouse model. Necrosis or apoptosis 875 

contributes to PDT mediated cell death in cancer and is due to generation of reactive oxygen species 876 

causing oxidative damage of cellular organelles. Thus drug delivery in combination with PDT is a novel 877 

technique to selectively target cancer cells leading to cell lysis and overcome MDR in cancer therapy 878 

improving the efficacy.  879 

 880 

NANOTHERANOSTICS  881 

Nanotheranostics or quadrugnostic are third generation integrated nanovehicles comprising of four 882 

elements for diagnosis of tumor location/s, specific targeting to cancer cells, eradication of malignant cells 883 



with cytotoxic drug/s and neutralize drug resistance mechanism [Figure 4]. Nanotheranostics serve dual 884 

roles as diagnostics and therapeutics thereby reducing chemotherapy dose, toxicity and side-effects to 885 

healthy tissues and increase therapeutic index (Ahmed et al., 2012). Superparamagnetic iron-oxide 886 

nanoparticles (SPIONs) with magnetic properties have excellent potential in tumor-targeting, diagnosis, 887 

monitoring and therapy (Santhosh and Ulrih, 2013). Polysorbate 80 coated Temozolomide-loaded PLGA 888 

superparamagnetic nanoparticles revealed higher intracellular uptake with antiproliferative effect on 889 

malignant brain glioma C6 cells compared to non-polysorbate 80 coated nanoparticles (Ling et al., 2012). 890 

Diagnostic, targeting and therapeutic potential of Doxorubicin loaded SPION and plasmonic gold 891 

nanoparticles have been evaluated in cancer treatment (Maeng et al., 2010). PEG and PEI-coated SPIONs 892 

increased intracellular concentration of Doxorubicin in resistant rat glioma C6-ADR cell line with IC50 893 

values 3-5 fold lower compared to free Doxorubicin (Kievit et al., 2011). Fang et al., 2012 reported 3-fold 894 

lower IC50 with PBAE-coated SPIONs than free Doxorubicin in C6-ADR cells in accordance with Kievit 895 

et al.  Gu et al. revealed that Doxorubicin loaded PEGylated gold nanoparticles were more cytotoxic on 896 

MDR cells compared to free Doxorubicin but less effective on sensitive cell lines (human hepatoma cells 897 

HepG2 and HepG2-R-a MDR subline). PEGylated Doxorubicin gold nanoparticles increased intracellular 898 

uptake and nuclear localization significantly up to 6h by endocytosis (Gu et al., 2012).  Theragnostic 899 

nanoparticles incorporating Doxorubicin or Paclitaxel for imaging and targeted chemotherapy were 900 

developed by Ahmed et al., 2012 and Kelkar and Reineke, 2011. Paclitaxel loaded chitosan nanoparticles 901 

labeled with Cy5.5 (NIR fluorescence dye) were developed for imaging and cancer therapy in SCC7 902 

tumor-bearing mouse models (Min et al., 2008; Kim et al., 2010; Na et al., 2011; Ryu et al., 2011). 903 

Fluorescence property of Doxorubicin and photoluminescence of gold was utilized for imaging, 904 

monitoring drug uptake and tumor cells localization with folic acid decorated Doxorubicin gold nanorods 905 

(Newell et al., 2012). Chen et al. developed Doxorubicin encapsulated pH-responsive theragnostic 906 

nanoparticles with Cy5 for tissue targeting and imaging. Folate coated Doxorubicin SPIONs made of 907 

poly(ethylene oxide)-trimellitic anhydride chloride-folate increased anticancer efficacy in liver cancer, 908 

lowered expression of CD34 and Ki-67 markers of angiogenesis and cell proliferation respectively with 2 909 

and 4 fold decrease in tumor volume compared to free Doxorubicin and Doxil® respectively (Maeng et al., 910 

2010). Acetylated dendrimer-entrapped gold nanoparticles were taken by cell lysosomes and detected 911 

under X-ray after incubation in-vitro and in xenograft tumor model after  intratumoral and intraperitoneal 912 

administration for imaging human lung adencarcinoma cell line (SPC-A1 cell) (Wang et al., 2011). 913 

Cetuximab conjugated magneto-fluorescent silica nanoparticles for targeting EGFR receptor and in-vivo 914 

colon cancer imaging revealed high tumor uptake with application of an external magnetic field and MRI 915 

signal changes in human colon cancer xenograft mouse model (Cho et al., 2010). Folic acid-conjugated 916 

PEG-SPIONs labeled with Cy5.5 for imaging and active targeting to lung cancer resulted in higher 917 

intracellular uptake in KB cells and lung cancer model compared to non-folic acid coated nanoparticles 918 

(Yoo et al., 2012). Butyl rhodamine B fluorescent nanoparticles conjugated with anti-Her-2 monoclonal 919 

antibody were developed successfully for imaging and targeting ovarian cancer (Hun et al., 2008). 920 

Paclitaxel SPIONs significantly increased intracellular uptake and induced regrowth delay in-vivo in CT-921 

26 cells with no toxicity (Schleich et al., 2013). Folic acid decorated Tamoxifen magnetic nanoparticles 922 

were developed for imaging and detection of human breast cancer cells that over express folic acid 923 

receptors (Majd et al., 2013). Immuno-targeted gold-iron oxide nanoparticles selectively accumulated in 924 

SW1222 xenograft colorectal tumors compared to non-antigen-expressing tumor xenografts. Photothermal 925 

treatment with IR irradiation revealed > 65% of antigen-expressing tumor cells presented corrupt 926 

extracellular matrix and cytoplasmic acidophilia suggesting effectiveness of nanoparticle-assisted thermal 927 

therapy (Kirui et al., 2013; Luk et al., 2012; Xie et al., 2010; Lu et al., 2012). 928 

 929 

CONCLUSION  930 

Nanodrug delivery systems are versatile platform for delivery of anticancer drugs and have been utilized 931 

successfully towards overcoming cancer drug resistance mechanisms, maximizing chemotherapeutic 932 

efficacy. Nanocarriers have effectively overcome challenges of limited aqueous solubility, low 933 

bioavailability, lack of targeting cancer tissues, increase drug therapeutic index, preferential accumulation 934 

by EPR effect and divert ABC-transporter mediated drug efflux multidrug resistance with potential to be 935 



multi-functionalized for cancer treatment. Nanocarriers promise to alleviate many challenges in clinical 936 

cancer therapy to benefit patients in future. Cancer science is progressing rapidly and understanding the 937 

molecular basis of drug resistance in cancer promises more effective treatments. 938 
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TABLE 1: Drug Resistance Mechanisms of Anticancer Drugs 

Class Example  Cytotoxicity  

Mechanism 

Molecules in Resistance 

Mechanism 

Intercalators Doxorubicin 

Daunomycin 

Topoisomerase II 

inhibitor, superoxides  

and free radicals 

 

P-gp, Topoisomerase II, 

MRP,GST 

 

Alkylators 

Cyclophosphamide DNA alkylation O
6
-alkylguanine-DNA 

alkyltransferase, Glutathione, 

Aldehyde dehydrogenase 

 

Cisplatin DNA alkylation Glutathione, Metallothionein, 

DNA repair enzyme, 

multispecific organic anion 

transporter 

 

 

Antimetabolities 

BCNU DNA alkylation O
6
-alkylguanine-DNA 

alkyltransferase 

 

Methotrexate Folic acid  

antagonist 

Amplification of dihydrofolate 

reductase, MRP, decreased 

reduced folate carrier 

expression 

 

 

Vinca alkaloids 

5-Fluorouracil Uracil analog Amplification of thymidylate 

synthase 

 

Vinblastine Tubulin P-gp, MRP, Tubulin 

 

Vincristine Polymerization inhibitor Mutation 

 

Epidophylotoxins Etoposide Topoisomerase II 

inhibitor 

MRP, Glutathione, P-gp, 

Topoisomerase I 

 

Taxanes Paclitaxel Microtubule assembly 

inhibitor  

P-gp, altered α / β Tubulin 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

TABLE 2: Tumor Microenvironment Characteristics Contributing Towards MDR 

Increased Levels Decreased Levels 

Oncogenes Tumor suppressors 

Growth factors / receptors Oxidative phosphorylation 

Nutrient importers pH 

ABC transporters Cell cycle regulation 

Aerobic glycolysis Increased apoptosis  

Interstitial fluid pressure  

DNA repair  

Detoxification enzymes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

TABLE 3: Chemotherapeutic Nanodrug Delivery Systems 

Nanocarriers Properties  Characteristics 

Solid Lipid 

Nanoparticle (SLNs) 

Release drug in acidic 

microenvironment of multidrug 

resistance  cells 

 

Delivers anticancer drugs to overcome 

P-gp mediated multidrug resistance 

Polymeric 

Nanoparticles (NPs) 

Versatile platform for controlled, 

sustained and targeted delivery of 

anticancer agents including small 

molecular weight drugs and 

macromolecules (genes and 

proteins) 

Enhanced drug accumulation, 

reduction in tumor size/volume, 

increased animal survival rate in rat 

models, minimal cytotoxicity in 

cancer cell lines, high transfection 

activity, potential to overcome 

multidrug resistance  

 

Liposomes (LIPO) Made of lipid bilayers 

encapsulating both hydrophobic 

and hydrophilic drugs, stealth 

liposomes are surface coated with 

PEG 

Long-circulating, prevents non-

specific interactions, preferential 

accumulation in tumor tissues via 

enhanced permeability and retention 

effect to overcome drug resistance 

 

Micelles (MI) Small size, high payload capacity, 

greater solubilization potential for 

hydrophobic drugs, improved 

stability, long circulation 

 

Selective targeting, P-gp inhibitory 

action, altered drug internalization and 

sub-cellular localization properties  

Mesoporous Silica 

Nanoparticles 

(MSNPs) 

Inorganic nanocarriers with tunable 

size and shape, high drug loading 

due to high pore volume and 

surface area, multifunctionalization 

for targeted and controlled delivery 

Enhanced cellular uptake and 

bioavailability, circumvents unwanted 

biological interactions, delivers 

therapeutics at cellular levels for 

therapeutic and imaging in cancer 

 

Inorganic 

Nanoparticles   

(a) Iron Oxide 

Magnetic 

Nanoparticles 

Unique optical, electrical, magnetic 

and / or electrochemical properties, 

inert, stable, ease of 

functionalization 

Circumvents drug resistance 

associated with over expression of 

ATP-binding cassette transporters, 

increased intracellular drug retention, 

enhanced loss of cell viability 

 

(b) Gold 

Nanoparticles 

(AuNPs) 

Shape and size dependent  on 

electronic characteristics, versatile 

drug delivery system due to tunable 

optical properties  

 

Induces cellular DNA damage 

(c)  Quantum Dots 

(QD) 

Semiconductor inorganic 

fluorescent nanocrystals, small (1-

20nm) and uniform size, high 

surface to volume ratio, surface 

conjugation with multiple ligands, 

biocompatible, fluorescence 

properties help real time tracks 

within target cells  

Release of toxic compounds 

(cadmium) and generation of reactive 

oxygen species can result in long term 

toxicity  

 



 

TABLE 4: Marketed Liposomal Delivery Systems to Overcome Drug Resistance 

Marketed Liposomes Rationale Mechanism 

Pegylated liposomal 

Doxorubicin  

(Doxil
®
/Caelyx

®
) 

 

Non-pegylated liposomal 

Doxorubicin  

(Myocet
TM

) 

 

Liposomal Daunorubicin 

(DaunoXome
®
) 

 

 

Long-circulating liposomes preferentially 

accumulates in tumor tissue  

Liposome leads to altered biodistribution, 

reduced drug toxicity profiles with new 

chemotherapeutics combinations to overcome 

drug resistance 

Liposomal encapsulated Doxorubicin is less 

cardiotoxic than unencapsulated Doxorubicin 

and can be safely used in concurrent 

combination with other cardiotoxic 

chemotherapy drugs such as Trastuzumab 

Minimal side effects allow substitution with 

Doxorubicin in same treatment regimen 

improving safety with no loss of efficacy 

Increased tumor 

exposure 

 

Reduced toxicity 

profile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

TABLE 5: Modified Liposome Approaches to Overcome Multidrug Resistance  

Modified Liposomes Mechanism of Action 

Anionic liposomes Anionic lipids (Cardiolipin and Phosphatidylserine) inhibits 

P-gp by direct interaction with membrane lipids, enhance 

cellular absorption and cellular toxicity compared to free 

drugs  

 

Inhibitory phospholipids  Inhibits P-gp to overcome multidrug resistance 

 

Stimuli responsive liposomes Modified liposomes which release drug in target tissue upon 

hyperthermia treatment/temperature change, pH change or 

other stimuli 

  

Liposomes in combination 

with resistance inhibitors 

Liposome inhibits P-gp and successfully delivers  

chemotherapeutic to cancer cells and increase drug 

therapeutic index 

 

Liposomes encapsulating drug 

analogs  

Liposomes delivers hydrophobic drugs that are not substrates 

for P-gp or not effluxed by P-gp 

 

Gene therapy approaches Non-viral delivery of nucleic acid to tumor cells circumvents 

drug resistance, non-viral delivery of resistance genes to 

normal tissues gives chemoprotection 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

TABLE 6: Immunoliposomes and Ligands-Liposomes to Overcome Drug Resistance 

 

Liposomes  Mechanism 

Immunoliposomes for 

growth factor  receptors 

Targeting  growth factor receptors with liposomes encapsulating 

monoclonal antibodies (MAbs) for targeting undergo endocytosis 

pathways to overcome drug efflux pumps 

 

Immunoliposomes for 

endothelial receptors  

Unlike cancer cells, endothelial cells do not develop multidrug 

resistance  

 

Immunoliposomes for P-gp Multidrug resistance is reversed with MAbs against P-gp  
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