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Nanofabrication for all-soft and high-density
electronic devices based on liquid metal
Min-gu Kim 1,2,3, Devin K. Brown 1,2 & Oliver Brand 1,2✉

Innovations in soft material synthesis and fabrication technologies have led to the develop-

ment of integrated soft electronic devices. Such soft devices offer opportunities to interact

with biological cells, mimicking their soft environment. However, existing fabrication tech-

nologies cannot create the submicron-scale, soft transducers needed for healthcare and

medical applications involving single cells. This work presents a nanofabrication strategy to

create submicron-scale, all-soft electronic devices based on eutectic gallium-indium alloy

(EGaIn) using a hybrid method utilizing electron-beam lithography and soft lithography. The

hybrid lithography process is applied to a biphasic structure, comprising a metallic adhesion

layer coated with EGaIn, to create soft nano/microstructures embedded in elastomeric

materials. Submicron-scale EGaIn thin-film patterning with feature sizes as small as 180 nm

and 1 μm line spacing was achieved, resulting in the highest resolution EGaIn patterning

technique to date. The resulting soft and stretchable EGaIn patterns offer a currently unri-

valed combination of resolution, electrical conductivity, and electronic/wiring density.
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B
iological materials with dimensions ranging from the
nanoscale, e.g. deoxyribonucleic acid (DNA), to the mac-
roscale, e.g. tissues and organs, are generally curved, soft,

and elastic, with low Young’s moduli E ranging from 100 Pa for
brain tissue to 10 kPa for skin1,2. The resulting mismatch in
mechanical properties at the interface of biology and traditional
electronics often causes non-conformal contact, resulting in dis-
comfort and performance degradation3,4. Furthermore, the large
mechanical discrepancy at the cell-electrode interface affects
multiple aspects of the cell’s behavior, such as its growth and
differentiation, resulting in significant challenges for a variety of
healthcare and medical devices5,6. In this respect, innovations in
soft functional material synthesis and fabrication technologies
have led to the development of integrated soft electronic devices
for applications in human organs-on-chips as well as skin- or
body-integrated electronics with material interfaces that are better
matched from a mechanical properties point of view6–9. Biome-
dical applications, including platelet contraction (<5%), as well as
intracranial (<7 kPa), intraocular (<5 kPa), and blood (<20 kPa)
pressure applications, require submicron- or micron-scale soft
sensing components with high-resolution sensing capabilities in
the low strain and pressure regime6,10–12.

To enable soft and stretchable properties in electronic devices,
both design and material strategies have been investigated13. In
design-focused approaches, compliant two-dimensional (2D)
serpentine or three-dimensional (3D) helical patterns are formed
from solid metal thin films on soft substrates to endure
mechanical deformation14–16. These engineered 2D/3D network
architectures can interface with biological materials over large
areas. However, their limited resolution (10 μm line width for 2D
serpentine patterns14 and 50 μm line width for 3D helical pat-
terns15) is one of the drawbacks for the fabrication of submicron-
or nanoscale devices. Advanced nanoprinting techniques, such as
nanotransfer printing, can create complex patterns with tens of
nanometer resolution using high-resolution stamps fabricated by
electron-beam lithography (EBL) or laser interference lithography
(LIL)16–18. However, these printed nano patterns are not com-
pliant structures, and the nanotransfer process is also limited to
print on rigid substrates only. Moreover, the rigid metal patterns
ultimately limit the strain the pattern can endure and lower the
density of electronic components because of the use of space-
consuming serpentine or helical wiring interconnections. On the
other hand, material-focused approaches utilize elastic con-
ductors based on conductive nanomaterials that are either
embedded into polymer matrices or dispensed directly onto a soft
substrate19–21. These printing approaches enable inexpensive
fabrication processes for conductive circuits without the need of
serpentine geometries, but the relatively low resolution (50–150
μm for conventional printing methods19–21) and low conductivity
(<1 × 104 S m−1 for single-walled-carbon-nanotube-doped elastic
conductors20) of these conductors still limit their usability for
high-density electronics integration. Overall, the major limita-
tions for both approaches are patterning resolution, scalability,
and resulting electronic density. In particular, scaling patterns
down to submicron or even nanoscale dimensions is technically
difficult using transfer printing techniques for serpentine or
helical metal patterns or direct printing techniques for conductive
nanomaterial networks13–21.

As an alternative to these more conventional approaches, the
use of intrinsically soft, low melting temperature metals, such as
gallium-based liquid metal (eutectic gallium-indium alloy, EGaIn,
75% Ga and 25% In, by weight), is a promising approach for all-
soft electronic devices22–24. EGaIn offers a number of advantages,
including a low melting temperature (MP < 15 °C), favorable
mechanical stretchability (being a liquid, the stretchability is
typically limited by the mechanical properties of the encasing

material), thermal conductivity (k= 26.6Wm−1K−1), and elec-
trical conductivity (σ= 3.4 × 106 Sm−1)22,23. Under atmospheric
oxygen level, a thin oxide layer (t ≈ 1–3 nm) is formed on the
EGaIn surface, which allows EGaIn to be molded to elastomeric
substrates25. Being a liquid-phase conductor with a brittle oxide
layer on the surface, the shape of EGaIn-filled microchannels can
be easily changed in response to applied mechanical forces, with a
new oxide layer being formed instantaneously on the EGaIn sur-
face after deformation, thus making it shape reconfigurable22. The
moldable characteristics of EGaIn have resulted in the develop-
ment of a broad range of patterning methods based on
lithography-enabled stamping and stencil printing26–33, micro-
fluidic injection34–36, as well as additive37–39 and subtractive40–45

patterning processes. However, creating fine and uniform EGaIn
thin-film patterns using current EGaIn patterning technologies
remains a major technical challenge because of the high surface
tension of EGaIn (γ= 624mNm−1)23. Using soft lithography28,29

or a selective wetting process31, the smallest EGaIn features
demonstrated so far have a resolution of 2 μm with a thickness of ≈
2 μm. Creating smaller and, especially, sub-micrometer EGaIn
thin-film patterns remains challenging22,28,29,31,39,46,47.

For interfacing with individual cells, the ability to pattern sub-
micrometer metallic structures embedded in soft substrates is,
however, of significant interest. Considering the size of a single
biological cell, such as platelets with a diameter of 2–3 μm,
mechanotransducers should be manufactured with submicron-
scale features and soft, biomimetic properties1,48,49. Existing
fabrication technologies, including the transfer printing of com-
pliant solid metal patterns13–15, nanoprinting17,18, direct printing
of nanomaterials19–21, and EGaIn patterning26–45, are currently
not suitable to fabricate such soft and stretchable electronic
devices with submicron-scale resolution.

Building on our initial work50, this paper describes a nano-
fabrication strategy to create submicron-scale, all-soft electronic
devices based on EGaIn. In particular, a hybrid lithography
process is introduced that combines electron-beam lithography
(EBL) for nano/microstructure fabrication with soft lithography
for EGaIn transfer. This hybrid lithography process is applied to a
biphasic structure, consisting of a metallic adhesion layer coated
with EGaIn. The proposed hybrid fabrication approach enables
high-resolution and high-density all-soft electronic devices,
including passive electronic components, resistive strain sensor
arrays, and microelectrode arrays. In particular, EGaIn thin-film
patterning with feature sizes as small as 180 nm and 1 μm line
spacing is demonstrated. The intrinsically soft EGaIn structures,
patterned by the developed hybrid lithography technique, offer a
currently unrivaled combination of resolution, electrical con-
ductivity, and electronic/wiring density. Thanks to the intrinsi-
cally soft EGaIn properties, the fabricated soft devices can endure
mechanical deformation up to 30%, while maintaining electrical
functionality.

Results
Nanofabrication based on hybrid lithography process. Figure 1a
shows a schematic of the investigated nanofabrication process that
combines EBL and soft lithography for submicron-scale EGaIn
thin-film patterning. The fabrication process is comprised of three
fundamental steps: nano/microstructure fabrication using EBL (or
any other lithography technique able to pattern submicrometer
features), EGaIn transfer using a stamping process, and soft
material encapsulation and final release from the silicon (Si)
carrier wafer. The process starts by spin-coating a water-soluble
sacrificial material (poly(acrylic acid), PAA) on a silicon wafer at
2000 rpm for 30 s and baking the film at 100 °C for 60 s. On top of
the PAA sacrificial layer, a 600-nm-thick parylene-C barrier film is
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deposited by chemical vapor deposition (CVD) in order to protect
the underlying PAA during the subsequent EGaIn patterning as
well as while releasing the fabricated soft electronic devices from
the Si wafer after the soft material encapsulation. EBL is then used
to pattern a spin-coated poly(methylmethacrylate) (PMMA) layer
with a thickness between 300 nm and 1 µm. After exposure in the
EBL tool (Elionix ELS G-100), the PMMA film is developed using
a mixture of methyl isobutyl ketone (MIBK) and isopropanol with
1:1 ratio. Alternatively, other lithography processes with sub-
micron resolution can be considered for this step. In the next step,
a stamping process is used to transfer an EGaIn thin film onto the
patterned PMMA structures. To improve the adhesion and uni-
formity of the stamped EGaIn on the parylene-C-coated substrate,

a biphasic structure was adopted51,52. To this end, a thin metallic
adhesion layer (such as Ti/Au, 5 nm/30 nm in thickness) is first
deposited using electron-beam evaporation on the patterned
PMMA nano/microstructures. The purpose of this metallic
adhesion layer is to enhance the adhesion and wetting char-
acteristics during the EGaIn stamping process while maintaining
EGaIn’s electrical and mechanical properties. Then, a non-
structured PDMS stamp is wet with EGaIn and gently pressed
2–3 times onto the Au-coated nano/microstructures, transferring
a thin EGaIn film which forms an alloy with the underlying Au
adhesion layer51–53. A PMMA lift-off process with acetone is then
used to pattern the stamped EGaIn on Au. To highlight the impact
of the Au adhesion layer on the EGaIn wettability, the EGaIn
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stamping process was carried out on patterned PMMA structures
without and with the use of the Au adhesion layer (see Supple-
mentary Fig. 1a–c). Without the adhesion layer (Supplementary
Fig. 1a), the stamped EGaIn is not uniformly spread onto the
patterned PMMA structure, resulting in non-uniform and rough
EGaIn surfaces with EGaIn droplets as well as non-covered areas
after PMMA lift-off. In contrast, by utilizing the Au adhesion layer
during the EGaIn stamping process (Supplementary Fig. 1b, c),
the stamped EGaIn uniformly spreads across the Au film and fills
concave nano/micropatterns up to the designed PMMA thickness.
Next, the remaining EGaIn structures are covered with a soft
elastomer (e.g., poly(dimethylsiloxane), PDMS), and the fabricated
devices are released from the Si carrier wafer by dissolving the
sacrificial PAA layer in water for >6 h. Finally, the parylene-C
barrier layer is etched using an oxygen plasma in a reactive-ion
etching (RIE) system27, and the back side of the soft electronic
device is sealed with a soft elastomer. It should be noted that
optical lithography with a positive-tone photoresist can be utilized
as well for the microstructure fabrication. Moreover, other litho-
graphy techniques able to pattern submicron-scale sacrificial
structures, such as direct laser writing54 or 3D nanoprinting55, can
be potentially utilized for cost-effective fabrication. The detailed
fabrication process is described in the section Methods.

The EGaIn stamped on the Au adhesion layer demonstrated
strong adhesion and uniform wetting and, therefore, could be
successfully patterned using the PMMA lift-off process without
any structural deformation. Figure 1b shows the patterned Au
after lift-off without EGaIn stamping as well as the stamped and
patterned EGaIn on Au. The images highlight the ability to
pattern EGaIn using PMMA nano/microstructures written using
EBL. Figure 1c, d depict the soft elastomer encapsulation and the
release of the patterned EGaIn structures. In particular, Fig. 1c
shows patterned square-shaped EGaIn dot arrays having dot
dimensions from 50 μm down to 500 nm, while Supplementary
Fig. 2 highlights 3D profile images of patterned EGaIn dot arrays
of 1 µm and 500 nm width. EGaIn electrodes, including the
square-shaped dot arrays, were patterned on the parylene-C
barrier layer (Fig. 1c and Supplementary Fig. 3), encapsulated
with PDMS and released from the Si wafer, as illustrated in
Fig. 1a. Finally, Fig. 1d shows a fabricated all-soft electronic
device based on EGaIn with PDMS encapsulation attached to the
tip of a fingernail. The total thickness of the soft elastomer is
controllable by selecting a proper target spin speed. The tested
PDMS thickness was ≈ 50 μm, allowing for conformal wrapping
on non-flat surfaces for skin- or body-integrated bioelectronic
devices.

Characterization of patterned liquid metal nano/micro-
structures. To highlight the patterning capabilities of the hybrid
lithography technique, EGaIn lines with different widths were
fabricated using a 1-µm-thick PMMA layer. Figure 2a, b show
SEM images and 3D profiles of the EGaIn lines with width
ranging from 500 nm to 10 µm, respectively. As is highlighted
in the 3D profiles in Fig. 2b, the patterned EGaIn lines exhibit
sharp edges without EGaIn aggregation or loss during the lift-
off process, which is attributed to the uniform and strong
adhesion between Au and EGaIn51,52. During the PMMA lift-
off process, all EGaIn on the top of the PMMA layer is washed
away together with the PMMA. As a result, EGaIn only remains
in areas where the underlying gold film is in direct contact with
the Parylene-C layer after the lift-off process. The thickness of
the resulting patterned EGaIn will be equal or less than the
thickness of the PMMA layer. Figure 2c shows the measured
EGaIn thickness after the lift-off process as a function of the
patterned EGaIn line width and compares it to the designed

PMMA thickness. The measured EGaIn thickness of ≈ 918 nm
is slightly smaller than the PMMA thickness of 1 μm. Using a
soft, deformable PDMS stamp for the EGaIn transfer, the
stamped EGaIn uniformly spreads across the Au thin film while
not covering all PMMA edges, which ultimately enables the
EGaIn thin-film patterning using the PMMA lift-off process.
The results of Fig. 2 indicate that the thickness of the resulting
EGaIn film can be adjusted by controlling the thickness of the
PMMA film. Also, the stamped EGaIn film uniformly fills the
concave nano/microstructures.

Figure 3a shows the measured cross-sectional area of fabricated
EGaIn lines as a function of their measured line width and
compare it with the designed cross-sectional area. The measured
cross-sectional area of patterned EGaIn lines matches well with
the designed value, which also confirms that EGaIn was
uniformly patterned without EGaIn aggregation or loss during
the lift-off process. Therefore, it is expected that the actual
resistance of the patterned lines matches well with calculated
values. To verify this, Fig. 3b depicts the measured resistance of
fabricated EGaIn lines as a function of their line width for lines
with 200 µm length, and compares these experimental values with
values calculated based on the EGaIn structure dimensions alone
as well as a theoretical parallel circuit formed by the combined Au
and EGaIn structure. As expected, the measured resistance
linearly scales with 1/width and the measured values closely
match the calculated values based on the patterned EGaIn
structure alone (assuming bulky resistivity of EGaIn), with <12%
deviation. Thus, the effect of the thin Au adhesion layer used for
the EGaIn transfer on the total resistivity of the combined
structure appears to be minor. This indicates that the resistivity of
the EGaIn dominates the resistance of the patterned biphasic
EGaIn structures even in the presence of the Au adhesion layer40.
To further demonstrate this, a different metallic adhesion layer,
Cu, was adopted and the results compared to those obtained with
the Au adhesion layer. Figure 3c shows patterned Au structures
after the lift-off process without prior EGaIn stamping and the
stamped and patterned EGaIn structures on the Au thin film,
respectively. As expected, the resistance of EGaIn lines patterned
on the Au adhesion layer agreed well with calculated values.
Using the same resistor design and fabrication process, the EGaIn
patterning process was performed using a thin Cu adhesion layer.
Again, the stamped EGaIn uniformly spreads on the Cu film and
no EGaIn aggregation or loss around the edges is observed during
the lift-off process, as seen in Fig. 3d. The use of a thin Cu
adhesion layer for the EGaIn patterning showed identical
structures and electrical characteristics in comparison with the
Au adhesion layer, which again confirms that the electrical
performance of the biphasic EGaIn structures is mainly
determined by the electrical properties of EGaIn as well as the
geometry of the structures40,52.

The lateral resolution and line spacing achievable with the
hybrid lithography technique has been investigated in more
detail. Figure 4a, b show fabricated EGaIn structures used to
evaluate the lateral resolution as well as the line spacing of the
hybrid lithography technique, respectively. Using a PMMA film
with 1 µm thickness, EGaIn lines with a designed width down to
500 nm at 1 µm spacing exhibit a constant ≈ 900 nm EGaIn
thickness. On the other hand, EGaIn lines with a designed width
of 100 nm collapsed downward after the lift-off process, yielding
an effective line width of 370 ± 120 nm at a thickness of 350 nm,
as shown in Fig. 4c. It is assumed that the high aspect ratio (AR)
>10 of the initial design is responsible for this structural
instability. At the same time, it is noted that the amount of
EGaIn transferred is as designed, with the measured cross-
sectional area of the patterned EGaIn line agreeing well with the
designed value. Therefore, the aspect ratio of the PMMA
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structures is regarded as one of the most important design
parameters when it comes to the structural stability of the
fabricated EGaIn patterns. The smallest line spacing fabricated
consistently between EGaIn features was 1 μm (Fig. 4b). To
further investigate the impact of the AR on the achievable line
width, PMMA film thicknesses from 1 μm down to 300 nm were
used for EGaIn thin-film patterning. Figure 4d depicts the
measured EGaIn thickness as a function of the designed EGaIn
line width for different thicknesses of the PMMA resist. As
expected, EGaIn lines with width >500 nm were patterned as
designed without structural deformation because both designed
and measured AR of the lines was <2 for the tested PMMA
thicknesses ranging from 1 μm to 300 nm, as highlighted in
Fig. 4e. In the case of lines with 100 nm width, patterned EGaIn
structures for the PMMA thicknesses >600 nm collapsed down-
ward because of the high designed AR > 6. However, this
mechanical deformation can be minimized by adopting a 300-
nm PMMA thickness. In this case, patterning of 180 ± 72 nm
EGaIn thin-film lines with 250-nm line thickness can be achieved,
as shown in Fig. 4f.

High-resolution and high-density all-soft electronic devices. To
demonstrate the high-resolution patterning capability, all-soft pas-
sive electronic components, such as soft resistive sensor arrays and
soft interdigitated capacitors, were investigated. Figure 5a shows a
photograph of an array with eight EGaIn-based soft resistors, as
well as an SEM image of two of the resistors with 500 nm and 1 μm
line width, respectively. The patterned EGaIn resistor array was
encapsulated with PDMS and subsequently released from the Si
wafer, resulting in an all-soft, resistive sensing platform. To
demonstrate its strain sensing capability, considering biomedical
applications requiring high-resolution sensing devices in the low
strain/pressure regime, the resistance of a soft resistive element was
measured while bending the array around cylinders with known
radii. Figure 5b shows the fabricated soft strain sensor array with
500 nm and 1 μm line widths, which have similar structures with
Fig. 5a, but featuring straight-line resistors. In this particular
experiment, a strain sensor array was characterized by attaching it
to circular cylinders with bending radii ranging from 7.5mm to 70
mm. Finite element simulations were performed in COMSOL
Multiphysics (COMSOL Inc., Burlington MA) using a fluid-
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structure interaction physics. To simulate the bending deformation,
the soft resistive sensor array embedded in PDMS was wrapped
around the surface of the circular cylinders using a prescribed
displacement and boundary loads applied to the outer faces of the
PDMS (Supplementary Fig. 4). Figure 5c depicts the measured and
simulated relative resistance changes ΔR/R for the soft resistive
sensors with 500 nm and 1 μm line widths as a function of the
bending radius. The resistance change upon bending can be
understood by considering the effect of geometrical changes on the
sensing resistor29,56. With decreasing bending radius, the measured
ΔR/R for both 500-nm and 1-μm-wide straight-line resistors gra-
dually increased by 7–8% by bending the resistor along the length
direction and showed similar trends as the numerical simulation.

Similarly, Fig. 5d highlights a fabricated high-resolution, soft
interdigitated capacitor with 5 μm line width and line spacing and
up to 90 interdigitated electrodes (IDEs). Previously, soft
interdigitated capacitors fabricated using a reverse stamping
technique based on soft lithography were demonstrated with 50
μm line width, 100 μm line spacing, and up to 34 IDEs29,56.
Figure 5e depicts the measured capacitance as a function of probing

frequency up to 1MHz for capacitors with different number of
IDEs. The resulting capacitance was 0.2 pF in the case of 10 IDEs
and linearly increased to 1.1 pF in case of the capacitor with 90
IDEs. Finite element simulations (COMSOL Multiphysics, COM-
SOL Inc., Burlington MA) were employed to simulate the
capacitance using an electrostatic physics model (Supplementary
Fig. 5). The measured capacitance for capacitors with different
number of IDEs agrees within <15% with the simulated values.

Moreover, an all-soft microelectrode array (asMEA) with 100
electrodes, each 10 μm in diameter with 5-μm wide interconnec-
tions, was fabricated to highlight the high-density fabrication
capability, as seen in Fig. 5f. The fabricated asMEA was then
transferred to a PDMS substrate. Bending and twisting forces were
applied to a single resistor, fabricated for a reliability test with the
same dimensions (5 μm width, 1 μm thickness, and 1mm length) as
the asMEA microelectrodes (Supplementary Fig. 6). Figure 5g
depicts the measured relative resistance change as a function of the
number of bending (7.5 mm in radius) and twisting (180° twisting
angle) cycles. The measured relative resistance changes are <±1%
for up to 1000 bending and twisting cycles. Finally, commercial
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light-emitting diodes (LEDs) were integrated using a soft circuit and
subjected to stretching and folding deformations, in order to
demonstrate the flexibility and stretchability of the fabricated soft
electronic components, as shown in Fig. 5h. Thanks to the
intrinsically soft properties of EGaIn, the fabricated devices endure
mechanical strain >30% as well as folding deformation, while
maintaining their electrical functionality.

Discussion
This work presents a nanofabrication strategy for submicron-
scale, all-soft electronic devices, and transducers based on
EGaIn. Figure 6 shows a comparison of resolution and film
thickness of published liquid metal patterning technologies,
including lithography-enabled26–32, microfluidic injection36,
and additive37 and subtractive40 patterning processes and

highlights the resolution and film thickness range demonstrated
using the nanofabrication strategy proposed in this work.
Additive direct write and injection approaches enable simple,
fast, and large-area EGaIn patterning. Direct writing techniques
enable printing EGaIn patterns at desired locations, but their
resolution (res) is limited to ≈ 100 μm with thicknesses (t) >50
μm because of the size limitation of the printing nozzles37.
Microfluidic injection34,35 and vacuum filling36 approaches
provide resolutions >10 μm, but the microchannels must have
relatively large thicknesses >50 μm to reduce pressure drops,
and their practical uses are limited when the EGaIn film needs
to be exposed to the surface for additional processing. Sub-
tractive and lithography-enabled patterning processes provide
better resolution with wide-range patterning capabilities. Sub-
tractive laser ablation enables to pattern fine EGaIn lines with
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res ≈ 5 μm and t < 1 μm;40 however, the serial process makes
EGaIn removal slow when patterning small EGaIn features on
large substrates. Patterning using lithography-defined stencils is
simple and high-throughput and enables EGaIn structures on
elastomeric substrates with res ≈ 10 μm and t ≈ 2 μm using
microfabricated metal stencil films26 and res ≈ 20 μm and t ≈ 10
μm using photolithography and photoresist lift-off steps27. The
limitations of this approach are the relatively low resolution,
rough EGaIn surfaces, and considerable EGaIn waste during the
stencil lift-off process. Soft lithography methods based on
additive and subtractive reverse stamping processes enable

wide-range EGaIn thin-film patterning from the single micro-
meter to the centimeter scale28–30. While micrometer-scale
EGaIn thin-film patterning has been demonstrated, scaling these
processes down to submicron features is difficult because of the
high surface tension of EGaIn. Overall, patterning smooth
and uniform EGaIn films with high-resolution and the ability
to scale remains one of the primary technical hurdles for EGaIn-
based soft electronic devices, as summarized in Supplementary
Table 1.

The hybrid fabrication technique developed here to create
submicrometer-scale EGaIn geometries is based on electron-beam
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lithography for micro/nanopattern definition in a PMMA electron-
beam resist and soft lithography for EGaIn stamping. The nano-
fabrication technique was applied to a biphasic structure, com-
prising a metallic adhesion layer coated with EGaIn. The stamped
EGaIn uniformly spreads across the Au or Cu thin films and fills
concave nano/micropatterns in the underlying PMMA resist with
EGaIn up to the chosen PMMA thickness. Submicron-scale EGaIn
thin-film patterning with line width as small as 180 nm and line
spacing as small as 1 μm was achieved, resulting in the highest
resolution EGaIn patterning to date.

The developed nanofabrication process based on hybrid litho-
graphy shows competitive performance in terms of resolution,
achievable wiring density, as well as strain limit, if compared to
other types of stretchable conductors, namely serpentine solid metal
and nanomaterial composite conductors. Serpentine solid metal
patterns on a soft elastomer exhibit excellent electrical conductivity
and can endure large mechanical strain. However, the necessary
serpentine wires increase space requirements and, thus, lower the
achievable wiring density compared to EGaIn wires with the same
lateral resolution. On the other hand, nanoprinting techniques can
create complex patterns with tens of nanometer resolution relying
on high-resolution stamps fabricated using EBL or LIL processes.
However, the printed nano patterns are not compliant structures,
and the nanotransfer process is typically limited to print only on
rigid substrates. Finally, printing conductive nanomaterials enables
simple and inexpensive fabrication of conductors without the need
for serpentine geometries. However, their limited resolution com-
bined with the low electrical conductivity are major drawbacks.
Considering this, intrinsically soft liquid metal patterned by the
developed hybrid lithography technique offers a currently unrivaled
combination of resolution, electrical conductivity, and resulting
electronic/wiring density.

The demonstrated EGaIn-based submicron-scale and high-
density soft passive electronic devices and sensor arrays fabricated
using the hybrid lithography process are currently difficult if not
impossible to build with other fabrication methods. Therefore, we
anticipate that the developed EGaIn nanofabrication technique
based on the hybrid lithography will open up exciting opportunities
in the development of integrated soft electronic devices for

applications in human organs-on-chips as well as skin- or body-
integrated electronics. For example, considering the size of a single
biological cell and its soft and dynamic properties, the demonstrated
all-soft mechanotransducer array can be applied to integrated single-
cell-level biological sensing platforms, possibly allowing to monitor
disease progression and therapy. Similarly, the developed passive
electronic devices can potentially be applied to all-soft and wireless
pressure sensing devices based on RLC circuits for physiological
pressure monitoring in the human body, such as intracranial
pressure, intraocular pressure, cardiovascular pressure, and others.

Methods
Nano/microstructure fabrication process. A water-soluble sacrificial layer, poly
(acrylic acid) (PAA, Polyscience, Inc.), was spun on a Si wafer at 2000 rpm for
30 s and baked at 100 °C for 60 s, resulting in ≈ 2 µm film thickness. On top of
the PAA sacrificial layer, a parylene-C film with 600 nm thickness was deposited
by chemical vapor deposition (CVD, SCS Labcoter PDS 2010). For nano/
microstructure definition, electron-beam lithography (EBL, Elionix ELS G-100)
was utilized to pattern spin-coated poly(methylmethacrylate) (PMMA, Micro-
Chem Corp.) films with thicknesses ranging from 300 nm to 1 µm. In the EBL
process, the samples with different PMMA thicknesses were all exposed using a
1-nA current with a proximity effect correction (β= 30 and η= 0.6). The
applied dose was adjusted from 400 µC cm−2 to 630 µC cm−2 because of the
different PMMA thicknesses. For example, a dose of 510 µC cm−2 was selected
for the 1-μm-thick PMMA film. Then, a thin metallic adhesion layer, either Ti/
Au or Ti/Cu, was deposited onto the PMMA nano/micropatterns using an
electron-beam evaporator with a target thickness of 5 nm/30 nm.

PDMS stamp preparation and EGaIn stamping process. For PDMS stamp
fabrication, a general replica molding process was used using an acrylic master
fabricated using a CO2 laser cutter (Hermes LS500XL). Liquid PDMS (10:1 ratio of
PDMS pre-polymer and curing agent, Sylgard 184, Dow Corning) was drop-casted
on the acrylic master and cured at 60 °C for 8 h. PDMS stamps with various shapes
(e.g. circle or rectangle) and sizes (e.g. 5 mm ×5mm to 30 mm ×30mm) were
designed and fabricated to stamp EGaIn onto the Au- or Cu-coated nano/
microstructures.

EGaIn (gallium-indium eutectic, >%99.99 trace metal basis, Sigma-Aldrich) was
dispensed on a donor PDMS substrate using a syringe and spread and flattened by a
PDMS roller. In the next step, the fabricated PDMS stamp was wet with EGaIn by
pressing it on the EGaIn-coated donor PDMS substrate and gently stamped 2–3 times
onto the Au- or Cu-coated nano/micropatterns to transfer the EGaIn thin film. The
stamped EGaIn on Au or Cu was finally patterned using a PMMA lift-off process with
acetone.

Soft material encapsulation and release process. The patterned EGaIn structures
were encapsulated with liquid PDMS (10:1 ratio of PDMS pre-polymer and curing
agent, Sylgard 184, Dow Corning) either by spin coating or drop casting. The fab-
ricated soft electronic devices were then released by submerging the samples into
water for >6 h. After the PAA sacrificial layer etching was completed, the fabricated
soft devices were floating on the water surface and could gently be transferred to a
glass substrate to etch the parylene-C layer. The parylene-C layer was etched using an
oxygen plasma in a reactive-ion etching system (RIE, Vision 320 RIE) for >7min or
until the parylene-C film was completely removed. Under the etching conditions of
200 mTorr pressure and 200W power, the tested parylene-C etch rate using oxygen
plasma was ≈ 100 nmmin−1. After etching the palylene-C layer, the soft electronic
devices were encapsulated again with PDMS for backside sealing.

Electrical and mechanical characterization, and optical measurement. Electrical
testing of the soft passive components and circuits was performed using a multimeter
(Hewlett Packard 34401A), a source meter (Keithley 2636A), and an LCR meter
(Agilent 4284 A). All testing was performed at room temperature under ambient
pressure. For bending characterization, different size circular glass cylinders (radius:
65, 32.5, 27.5, 13.5, and 7.5mm) were used. High-resolution optical images of the
patterned EGaIn structures were obtained using scanning electron microscopy (SEM,
Hitachi S-3700N Variable Pressure SEM). 3D images and cross-sections were
obtained using a laser confocal microscope (Olympus, LEXT OLS 4000).

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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