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A mathematical model is presented for three-dimensional unsteady boundary layer

slip flow of Newtonian nanofluids containing gyrotactic microorganisms over a

stretching cylinder. Both hydrodynamic and thermal slips are included. By applying

suitable similarity transformations, the governing equations are transformed into a set

of nonlinear ordinary differential equations with appropriate boundary conditions.

The transformed nonlinear ordinary differential boundary value problem is then

solved using the Runge-Kutta-Fehlberg fourth-fifth order numerical method in Ma-

ple 18 symbolic software. The effects of the controlling parameters on the dimension-

less velocity, temperature, nanoparticle volume fractions and microorganism motile

density functions have been illustrated graphically. Comparisons of the present paper

with the existing published results indicate good agreement and supports the validity

and the accuracy of our numerical computations. Increasing bioconvection Schmidt

number is observed to depress motile micro-organism density function. Increasing

thermal slip parameter leads to a decrease in temperature. Thermal slip also exerts a

strong influence on nano-particle concentration. The flow is accelerated with positive

unsteadiness parameter (accelerating cylinder) and temperature and micro-organism

density function are also increased. However nano-particle concentration is reduced

with positive unsteadiness parameter. Increasing hydrodynamic slip is observed

to boost temperatures and micro-organism density whereas it decelerates the flow

and reduces nano-particle concentrations. The study is relevant to nano-biopolymer

manufacturing processes. C 2016 Author(s). All article content, except where oth-

erwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4951675]

NOMENCLATURE

a radius (m)
a0 constant (m)

b velocity slip parameter
(

b =
2 (N1)0υ

a0

)

(−)
c thermal slip parameter

(

c =
2(D1)0
a0

)

(−)
b̃ chemotaxis constant (m)
C nanoparticles volume fraction (−)
Cf x̄ local skin friction coefficient (−)
cp specific heat at constant pressure

(

J
kgK

)

C∞ ambient nanoparticle volume fraction (−)
DB Brownian diffusion coefficient

(

m2

s

)

Dn miroorganism diffusion coefficient
(

m2

s

)
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DT thermophoretic diffusion coefficient
(

m2

s

)

D1 variable thermal slip factor (m)

(D1)0 constant thermal slip factor (m)

f (η) dimensionless stream function (−)
j⃗ vector flux of microorganism

(

kg

m2s

)

k thermal conductivity
�

W
mK

�
N1 variable first order velocity slip factor

�
s
m

�
(N1)0 constant first order velocity slip factor

�
s
m

�
Nnx̄ local density number of motile microorganisms (−)
Nb Brownian motion parameter

(

Nb =
τDBC∞

α

)

(−)
Nt thermophoresis parameter

(

Nt =
τDT (Tw−T∞)

αT∞

)

(−)
Nux̄ local Nusselt number (−)
n number of motile microorganism (−)
nw wall motile microorganism (−)
Pe bioconvection Péclet number

(

Pe =
b̃Wc

Dn

)

(−)
P Pressure

(

N

m2

)

Pr Prandtl number
�
Pr = υ

α

�
(−)

qm surface mass flux
�
m

s

�

qn surface motile microorganisms flux
(

W

m2K

)

qw surface heat flux
(

W

m2

)

r dimensional radial axis (m)

S unsteadiness parameter (−)
Sb bioconvection Schmidt number

(

Sb =
υ

Dn

)

(−)
Sc Schmidt number

(

Sc =
υ

DB

)

(−)
Shx̄ local Sherwood number (-)

t dimensional time (s)

T nanofluid temperature (K)

Tw surface temperature (K)

T∞ ambient temperature (K)

u dimensional velocity components along the r − axis
�
m
s

�
u dimensionless velocity component along the r − axis (−)
→
v velocity vector

�
m
s

�
v velocity components along the y − axis

�
m
s

�
v dimensionless velocity component along the y − axis (−)
w velocity components along the z − axis

�
m
s

�
w dimensionless velocity component along the z − axis (−)
Wc maximum cell (micro-organism) swimming speed

�
m
s

�
x dimensional coordinate along the surface (m)

x dimensionless coordinate along the surface (−)
y coordinate normal to the surface (m)

y dimensionless coordinate normal to the surface(−)
z dimensional axial axis (m)

z dimensionless axial axis (−)

Greek letters

α effective thermal diffusivity
(

m2

s

)

β constant of the expansion/contraction strength
�

1
s

�
η independent similarity variable (−)
θ(η) dimensionless temperature (−)
µ dynamic viscosity

(

kg

ms

)

υ kinematic viscosity
(

m2

s

)
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ρ fluid density
(

kg

m3

)

(ρc) f volumetric heat capacity of the fluid
(

J

m3K

)

(ρc)p volumetric heat capacity of the nanoparticle material
(

J

m3K

)

τ ratio of the effective heat capacity of the nanoparticle material to the fluid heat capacity
(

(ρc)p

(ρc) f

)

(−)
τw surface shear stress (−)
φ(η) dimensionless nanoparticles volume fraction (−)
χ(η) dimensionless number density of motile microorganism (−)

Subscripts

( )′ ordinary differentiation with respect to η

( )w condition at wall

I. INTRODUCTION

Studies on flows over stretching surfaces are important in manufacturing processes such as

aerodynamic extrusion of plastic sheets, boundary layer liquid film condensation, paper production

and glass blowing.1 Stasiak et al.2 have reported in detail on the influence of stretching on fluid

mechanical properties of biopolymer cylinder coatings. Furthermore in Thomas and Yang3 many

applications are documented for stretching nano-bio-polymers on cylinders, sheets, wedges and

other geometries to achieve modified properties. Stretching (or contracting) are therefore important

technologies which are critical to the performance of polymer products from the macroscopic to the

nanoscale. After the pioneering work of Khan and Pop4 several researchers have studied stretching

hydrodynamic flows with mass and heat transfer. Steady boundary layer flow due to a stretching sur-

face in a quiescent viscous and incompressible fluid with the Oberbeck-Boussinesq approximation

has been considered by Partha et al.5 and Ishak et al.,6 Bég et al.7 (with magnetohydrodynamic and

cross-diffusion effects) and Daskalakis.8 Akl9 quite recently investigated unsteady boundary layer

flow due to a stretching cylinder with prescribed temperature and obtained the solution analytically.

Bég et al.10 studied stretching flow of a magnetic polymer using the homotopy analysis method.

A significant development in materials science and thermal engineering in the past two decades

has been that of nanofluids. Nanofluids constitute a liquid suspension containing very fine particles

(diameter less than 50 nm) in a base fluid such as water, oil, ethylene glycol etc.11 Nanoparticles

can be made from nitride ceramics (AlN, SiN), metals (Cu, Ag, Au) and semiconductors (SiC).

The accumulation of nanoparticles into the base fluid can enhance the fluid flow and heat transfer

proficiency of the liquids and increase the low thermal conductivity of the base fluid. This has impli-

cations in medical applications, power generation, micro-manufacturing, thermal therapy for cancer

treatment, chemical and metallurgical sectors, microelectronics, aerospace and manufacturing.12

Representative works on convective boundary layer flow and application of nanofluids were con-

ducted by Buongiorno,13 Das et al.,14 Kakaç and Pramuanjaroenkij,15 Saidur et al.16 and Wen et al.17

Further studies have been communicated by Mahian et al.,18 Nield and Bejan,19 Haddad et al.,20

Sheremet and Pop21 and many others. There are two types of model for nanofluids which have been

commonly used by the researchers, namely Buongiorno’s model13 and the Tiwari-Das model.22

According to Buongiorno, the velocity of the nanofluid is considered as the sum of the base fluid

velocity and the relative/slip velocity. His model emphasizes the dominant mechanisms as Brow-

nian diffusion and thermophoresis. In contrast to Buongiorno’s model, the Tiwari-Das model22

considers the solid volume fraction of the nanoparticles. The Buongiorno model13 implies that

the Brownian diffusion and thermophoresis are the most prominent parameters the characteristise

nanofluid flows. Recently, work on convective boundary layer flow in nanofluids include Ghanbar-

pour et al.,23 Li et al.,24 Vanaki et al.,25 Zhao et al.,26 Serna,27 Mohyud-Din28 and others. Ferdows

et al.29 investigated radiative magnetohydrodynamic nano-polymer stretching flows. Uddin et al.30

studied numerically the stretching fluid dynamics of magnetic nano-bio-polymers.

Bioconvection refers to a macroscopic convection motion of fluid affected by density gradients

induced by hydrodynamic propulsion i.e. swimming, of motile microorganisms (see Kuznetsov31).
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Adding microorganisms (such as algae and bacteria) to base fluids (e.g. water) creates the process

of bioconvection which is directionally-orientated swimming typically towards an imposed or natu-

rally present stimulus e.g. light, gravity, magnetic field and chemical concentration (oxygen). The

density of the microorganism is inclined to be greater than that of the free stream fluid and this

can cause an unstable density profile with subsequent upending of the fluid against gravity (see

Raees et al.32). The base fluid has to be water for the majority of microorganisms to survive and

be active and it is assumed nanoparticle suspension remains stable and do not agglomerate for a

couple of weeks (see Anoop et al.33). For bioconvection to take place, the suspension must be dilute

since nanoparticles would increase the suspension’s viscosity and viscosity tends to dominates

bioconvection instability (see Pedley34).

A recent innovation for microfluidic devices is to combine nanofluids with bioconvection phe-

nomena (see Xu and Pop35). Aziz et al.36 have studied theoretically the natural bio-convection

boundary layer flow of nanofluids and verified that the bioconvection parameters influence mass,

heat, and motile microorganism transport rates. Latiff et al.37 studied unsteady forced bioconvec-

tion slip flow of a micropolar nanofluid from a stretching/shrinking sheet. Bioconvection may

have also have a role to play in bio-microsystems for mass transport augmentation and microflu-

idic devices such as bacteria-powered micromixers (see Tham et al.38). Other significant applica-

tions of nanofluid bioconvection arise in the synthesis of novel pharmacological agents (drugs)

as elaborated by Saranya and Radha39 and earlier for nano-bio-gels as discussed by Oh et al.40

Micro-organisms can be deployed strategically to enhance biodegradable polymeric nanomate-

rials and improve various desirable medical characteristics such as bioavailability, biocompati-

bility, encapsulation, DNA embedding in gene therapy, protein deliverability etc. The intelligent

manufacture of bio-nano-polymers allows drugs to be developed which achieve a “controlled

release” and this has been shown to increase therapeutic influence in patients. Examples of such

bio-nano-polymers are poly (lactic-co-glycolic acid), polylactic acid, chitosan, gelatin, poly hy-

droxy alkaonates, poly caprolactone and poly alkyl cyanoacrylate.

To optimize the fabrication of bio-nano-materials, numerical and physico-mathematical simu-

lation has an important role to play. This is a strong motivation for the present study in which the

objective is to investigate the effect of velocity slip, thermal slip and zero mass flux boundary condi-

tions on time-dependent bioconvection nanofluid boundary layer flow from a horizontal cylinder.

The effects of selected biophysical and thermo-physical parameters on the dimensionless velocity,

temperature, nanoparticle volume fraction, microorganism density function and furthermore on rate

of heat transfer, the rate of nanoparticle volume fraction and the rate of motile microorganism

density transfer rate are shown graphically and discussed. Validation of the present solutions which

are obtained via MAPLE18 symbolic software is conducted with earlier studies.

II. BIOCONVECTION NANOFLUID MATHEMATICAL MODEL

Consider the unsteady forced bioconvection flow of a nanofluid that contains both nanopar-

ticles and gyrotactic microorganisms over an infinite cylinder in contracting motion as shown in

Fig. 1. The diameter of the cylinder is assumed to be a function of time with unsteady radius

a
�
t
�
= a0



1 − β t where β the constant of the expansion/contraction strength, t is the time and a0

is the positive constant.

The nanoparticles fraction on the ambient is assumed to obey the passively controlled model pro-

posed by Kuznetsov and Nield42, while the nanoparticles and temperature distribution on the ambient

is assumed to be a constant C∞, T∞ respectively. It is worth mentioning that the micro-organisms

can only survive in water. This indicates that the base fluid has to be water. Under these assumptions

and the nanofluid model of Kuznetsov and Nield,42 the relevant transport equations are the conser-

vation of total mass, momentum, thermal energy, nanoparticle volume fraction and microorganisms

concentration (density) which may be stated in vector form as follows: (see Xu and Pop36)

∇ ·
→
v̄ = 0, (1)

∂
→
v̄

∂t̄
+

(→
v̄ · ∇

) →
v̄ = −

1

ρ
∇P⃗ + υ ∇2

→
v̄ , (2)
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FIG. 1. The physical model and coordinate system (see Fang et al.41).

∂T

∂t
+
→
v · ∇T = α ∇2T + τ


DB∇T · ∇C +

(

DT

T∞

)

∇T · ∇T


, (3)

∂C

∂t
+
→
v · ∇C = DB ∇2C + τ

 (

DT

T∞

)

∇2T


, (4)

∂n

∂t
+ ∇ · j⃗ = 0, (5)

where
→
v = (u, v, w) is the velocity vector of the nanofluid flow in the x − direction, y − direction

and the z − direction respectively, p is the pressure, T is the temperature, C is the nanoparticle

volumetric fraction, n is the density of the motile microorganism, ρ is the nanofluid density,

υ is the kinematic viscosity of the suspension of nanofluid and microorganisms, α is the ther-

mal diffusivity of the nanofluid, τ =
(ρc)p

(ρc) f
is a parameter with (ρc)p being heat capacity of the

nanoparticle and (ρc) f being the heat capacity of fluid, DB is the Brownian diffusion coefficient,

DT is the thermophoretic diffusion coefficient, T∞ is ambient temperature, j⃗ is the flux of micro-

organisms due to fluid convection, self-propelled swimming, and diffusion, which is defined by

j⃗ = n
→
v + n

∧
→
v − Dn ∇n. Also

∧
→
v =

(

b̃Wc

C∞

)

∇C is the velocity vector relating to the cell swimming

in nanofluids with Dn being the diffusivity of microorganisms, b̃ being the chemotaxis constant and

Wc being the maximum cell swimming speed. In cylindrical polar coordinates, r and z are measured

in the radial and axial directions, respectively, and based on the axisymmetric flow assumptions

with boundary layer approximations and an order of magnitude analysis, neglecting azimuthal

velocity component, Eqns. (1)–(5) can be written as: (see Zaimi et al.43)

∂u

∂r
+

u

r
+
∂w

∂z
= 0, (6)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= −

1

ρ

∂P

∂r
+ υ

(

∂2u

∂r
2
+
∂2u

∂z
2
+

1

r

∂u

∂r
−

u

r
2

)

, (7)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −

1

ρ

∂P

∂z
+ υ

(

∂2w

∂r
2
+
∂2w

∂z
2
+

1

r

∂w

∂r

)

, (8)

∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z
= α

(

∂2T

∂r
2
+

1

r

∂T

∂r
+
∂2T

∂z
2

)

+τ


DB

(

∂T

∂r

∂C

∂r
+
∂T

∂z

∂C

∂z

)

+
DT

T∞



(

∂T

∂r

)2

+

(

∂T

∂z

)2


,

(9)
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∂C

∂t
+ u

∂C

∂r
+ w

∂C

∂z
= DB

(

∂2C

∂r
2
+

1

r

∂C

∂r
+
∂2C

∂z
2

)

+
DT

T∞

(

∂2T

∂r
2
+

1

r

∂T

∂r
+
∂2T

∂z
2

)

, (10)

∂n

∂t
+ u

∂n

∂r
+ w

∂n

∂z
+

b̃Wc

C∞


∂

∂r

(

n
∂C

∂r

)

+
∂

∂z

(

n
∂C

∂z

)
= Dn

(

∂2n

∂r
2
+

1

r

∂n

∂r
+
∂2n

∂z
2

)

. (11)

The relevant boundary conditions corresponding to the physical problem may be stipulated follow-

ing Zaimi et al.43 as:

u
�
a
�
t
�
, z , t

�
= 0, w

�
a
�
t
�
, z , t

�
=

4 υ z

a2
0

�
1 − βt

� + N1 υ
∂w

∂r
,

T = Tw + D1

∂T

∂r
, DB

∂C

∂r
+

DT

T∞

∂T

∂r
= 0 , n = nw at r = a

�
t
�

w
�
∞, z , t

�
= 0, T → T∞, C → C∞, n → 0 as r → ∞,

(12)

where Tw is the constant surface temperature, N1 is the velocity slip factor, D1 is the variable

thermal slip factor, nw is the constant surface density of the motile microorganism, and T∞ and C∞
denote constant temperature and nanoparticle volume fraction far from the surface of the cylinder,

respectively.

III. SIMILARITY TRANSFORMATION OF MATHEMATICAL MODEL

To proceed, we introduce the following transformations: (Zaimi et al.43, Abbas et al.44)

η =

(

r

a0

)2
1

1 − βt
, u = −

1

a0

2 υ


1 − βt

f (η)
√
η

, w =
4 υ z

a2
0

�
1 − βt

� f ′ (η) ,

θ (η) =
T − T∞

Tw − T∞
, φ (η) =

C − C∞

C∞
, χ (η) =

n

nw

.

(13)

Eqn. (6) is satisfies automatically and since there is no longitudinal pressure gradient, Using (13),

we have transformed Eqs. (8)-(11) into a system of ordinary differential equations:

η f ′′′ + f ′′ + f f ′′ − ( f ′)2 − S (η f ′′ + f ′) = 0 (14)

ηθ ′′ + θ ′ + Pr f θ ′ − Pr S η θ ′ + η
�
Nb φ′θ ′ + Nt (θ ′)2

�
= 0, (15)

Nb η φ′′ + Nb φ′ + Sc Nb ( f φ′ − S η φ′ ) + Nt (η θ ′′ + θ ′) = 0, (16)

η χ′′ + χ′ + Sb ( f χ′ − S η χ′ ) − Pe

(

η χ φ′′ +
χ φ′

2
+ η φ′ χ′

)

= 0. (17)

The boundary conditions (13) are transformed into:

f (1) = 0, f ′(1) = 1 + b f ′′ (1) , θ (1) = 1 + c θ ′ (1) ,

Nb φ′ (1) + Nt θ ′ (1) = 0 , χ (1) = 1,

f ′(∞) = 0 , θ(∞) = φ(∞) = χ (∞) = 0.

(18)

Here, the controlling parameters involved in the above dimensionless Eqs. (14)-(18) are S =
a2

0
β

4 υ

is the unsteadiness parameter, Pr = υ
α

is the Prandtl number, Nb =
τDBC∞

α
is the Brownian motion

parameter, Nt =
τDT (Tw−T∞)

αT∞
is the thermophoresis parameter, Sc = υ

DB
is the Schmidt number,

Sb = υ
Dn

is the bioconvection Schmidt number, Pe =
b̃Wc

Dn
is the Péclet number, b =

2 (N1)0υ

a0
is the

velocity slip parameter, c =
2(D1)0
a0

is the thermal slip parameter . The pressure can be obtained from

Eq. (7) as

P

ρ
= constant+ υ

(

∂u

∂r
+

u

r

)

−
1

2
u

2
+


∂u

∂t
∂t. (19)
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IV. PHYSICAL QUANTITIES

The quantities of engineering interest in bio-nano-materials processing are the wall param-

eters. These are respectively local skin friction coefficient Cf x̄, local Nusselt number Nux̄, local

nano-particle mass transfer rate i.e. local Sherwood number, and finally the local density number of

motile micro-organisms, Nnx̄ defined as:

Cf x̄ =
τw

ρw
2
w/2

,Nu
x̄
=

a
�
t
�

qw

2k(Tw − T∞)
,Sh

x̄
=

a
�
t
�

qm

2DB(Cw − C∞)
,Nnx̄ =

a
�
t
�

qn

2knw

, (20)

where τw,qw, qm and qn represent the shear stress, surface heat flux, surface mass flux and the

surface motile microorganism flux and are defined by:

τw = µ
∂w

∂r

�����r=a(t)
,qw = −k

∂T

∂r

�����r=a(t)
,qm = −DB

∂C

∂r

�����r=a(t)
,qn = −Dn

∂n

∂r

�����r=a(t)
. (21)

Substitute Eqns. (21) and (13) into (20) we obtain:

Cf x̄z/a
�
t
�
= f ′′(1),Nux̄ = −θ ′(1),Shx̄ =

−φ′(1)
φ(1)

,Nnx̄ = −χ′(1). (22)

V. MAPLE 18 NUMERICAL SOLUTION, SPECIAL CASES AND VALIDATION

Numerical solutions to the ordinary differential Eq. (14) – (17) subject to the boundary condi-

tions (18) were obtained using Runge-Kutta-Felhbergh fourth-fifth order quadrature (shooting

methods) in the Maple software via built-in functions. This approach has been successfully used

by many researchers in order to solve high order systems of coupled, nonlinear ordinary differ-

ential equations (ODEs). Readers are referred for example to Uddin et al.,45 Khan et al.46 When

Eqns. (15) – (17) are removed the present generalized unsteady forced bioconvection nanofluid

dynamic model reduces to the model studied by Fang et al.47 and also setting Re = 1 we retrieve the

model of Fang et al.41 Furthermore for S = 0 (steady case), Nt = Nb = 0 (nano-particle absence)

and disregarding Eqns. (16) and (17), the general model developed in eqns. (14)-(18) reduces to

the case examined by Ishak et al.48 when M = 0 and Re = 1 is prescribed in their paper. Finally

the model studied by Zaimi et al.49 is retrieved exactly when Eqns. (16) and (17) are neglected

and Nt = Nb = 0 is prescribed in the general model defined by eqns. (14) to (18). To validate the

accuracy of our present code, we compare the numerical result for the local skin friction coefficient

f ′′ (1) and −θ ′ (1) when S = 0, M = 0 and Re =1 with the solutions given by Ishak et al.48 and

Wang.50 In real situations, minus sign of f ′′ (1) infers that the stretching cylinder/tube applies

dragging force on the fluid flow and vice versa (Ishak et al.48). Solutions obtained via MAPLE

18 are benchmarked with these previous studies and in all cases excellent agreement is obtained.

All comparison tables are documented in the Appendix (see Tables I and II). There is therefore

justifiably high confidence in the present MAPLE18 solutions.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the effects of parameters b, c, S and Sb on f ′(η), θ(η), φ(η) and

χ(η). All computations illustrated in the figs. 2-6 were performed using MAPLE18 software We fix

the value of Pr,Nb,Nt,Sc,Pe corresponding to Kuznetsov and Nield.51 The effects of these parame-

ters are well-established and are therefore not re-visited here. We focus principally on the influence

of unsteadiness (S), hydrodynamic wall slip (b), thermal slip (c) and bioconvection Schmidt number

(Sb).

Figs. 2(a)–2(d) shows the variations in dimensionless velocity, temperature, nanoparticle volume

fraction and motile microorganism density function, respectively for different values of unsteadiness

parameter (S) and velocity slip (b) for the stretching cylinder scenario. It is necessary to point out that

the value of positive S indicates accelerating flow and negative S corresponds to decelerating flow
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FIG. 2. Effect of unsteadiness (S) and velocity slip (b) on the (a) velocity (b) temperature, (c) nanoparticle volume fraction,

(d) motile microorganism density profiles.

of the surface of the cylinder, which is being stretched. Therefore for S, 0 the flow is unsteady and

for S = 0 it is steady. From Fig. 2(a), the dimensionless velocity decreases with increasing velocity

(hydrodynamic) slip for both positive and negative value of S. When slip ensues, the velocity close to

surface stretching wall is not equivalent to the stretching velocity of the wall. Additionally under slip

conditions, the dragging of the stretching wall can only be partially transmitted to the fluid and this

causes the fluid velocity to fall i.e. induces retardation in the boundary layer flow. These results are

consistent with published work by Mukhopadhyay52 and also Wang.53 Furthermore, the magnitude

of the wall shear stress decreases with an increase in the hydrodynamic slip factor.

The case of b = 0 applies to the classical non-slip scenario. The momentum boundary-layer

thickness decreases with an increase in the velocity slip parameter. In Fig. 2(b), for both S>0 (accel-

erating cylinder) or S<0 (decelerating cylinder), with an increasing the velocity slip, b, the dimen-

sionless temperature, θ(η), is markedly enhanced. However temperatures are somewhat greater for

the accelerating cylinder case as compared with the decelerating case. The thermal boundary-layer

thickness therefore increases with an increase in the velocity slip parameter. The deceleration in

the velocity field, f /(η), implies that momentum diffusion is reduced. This benefits the transport

of heat via thermal diffusion which manifests in a heating in the bio-nano-boundary layer regime

and an associated elevation in temperature. Thermal diffusivity is dominant in this case i.e. heat
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conduction is stronger than heat convection. Both velocity and temperature profiles are found to

decay smoothly from maxima at the cylinder surface to the free stream, indicating that a sufficiently

large infinity boundary condition has been imposed in the MAPLE18 computational domain. The

dimensionless nanoparticle volume fraction (nano-particle concentration), φ (η), as depicted in

Fig. 2(c) is observed to be reduced with increasing velocity slip. The nano-particle concentration

boundary-layer thickness will therefore be increased with a rise in the velocity slip parameter. The

dimensionless concentration also decreases for accelerated flow (S>0) whereas it is elevated for

decelerated (S<0) flow. The prescribed Schmidt number in Fig. 2 is 20.0. Schmidt number (Sc)

expresses the ratio of momentum diffusivity to species diffusivity i.e. viscous diffusion rate to

molecular (nano-particle) diffusion rate. Sc is also the ratio of the shear component for diffusivity

viscosity/density to the diffusivity for mass transfer D. It physically relates the relative thickness of

the hydrodynamic layer and mass-transfer boundary layer. We further note that Pr is prescribed as

6.8 as this quite accurately represents water-based nano-bio-polymers. The deceleration in the flow

with increasing hydrodynamic slip also acts to decrease molecular diffusion rate (via the Schmidt

number) and this will result in decreasing nano-particle boundary layer thickness. The depletion

in nanoparticle concentration will cause a corresponding elevation in nano-particle mass transfer

rate at the cylinder surface (wall). From Fig. 2(d), it is evident that the dimensionless microor-

ganism number density function, χ(η) increases as velocity slip increases i.e. with flow deceler-

ation. The behavior is different from the nano-particle concentration field. Unlike the diffusion of

nano-particles (which is molecular in nature), the micro-organisms move by flagellar propulsion

which is encouraged in slower flows. They are therefore able to propel more evenly through the

boundary layer for slower flow. The microorganism boundary layer thickness also increases with

increasing velocity slip. The implication is that more homogenous distributions of micro-organisms

through the boundary layer regime are achieved with deceleration in the flow. This is desirable in

the manufacture of biodegradable nano-polymers as further elaborated by Thomas and Yang.3 It is

also observed that χ(η) values are greater for the accelerating cylinder case (S >0) as compared

with the decelerating cylinder case (S<0). Therefore contrary responses in the micro-organism

number density magnitudes are induced depending on whether the boundary layer flow is acceler-

ating (which it does for no-slip) or the cylinder is accelerating. The former is associated with slip

absence (or presence which causes deceleration in the flow) whereas the latter is connected to the

unsteadiness in the cylinder stretching motion.

Figure 3(a)–3(c) display the collective influence of thermal slip parameter (c) and unsteadiness

parameter (S) on dimensionless temperature, concentration and microorganism profiles respec-

tively. It is apparent that the thermal slip parameter leads to a decline in dimensionless temperature

(Fig. 3(a)). The greatest effect is as expected at the cylinder surface. Physically, as the thermal

slip parameter rises, the fluid flow within the boundary layer will be less sensitive to the heating

effects of the cylinder surface and a reduced quantity of thermal energy (heat) will be transmitted

from the hot cylinder to the fluid, resulting in a fall in temperatures i.e. cooling and thinning of

the thermal boundary layer (decrease in thermal boundary layer thickness). For an accelerating

stretching cylinder (S>0), the temperatures are substantially higher than for a decelerating stretch-

ing cylinder (S<0). The dimensionless nano-particle concentration is found to be strongly increased

with greater thermal slip. Nano-particle concentration however is enhanced for the decelerating

stretching cylinder case whereas it is depressed for the accelerating cylinder case. Micro-organism

number density function (Fig 3(c)) is however significantly decreased with increasing thermal slip

effect. For an accelerating stretching cylinder (S>0), the micro-organism density is (as with temper-

ature) unlike nano-particle concentration, substantially higher than for a decelerating stretching

cylinder (S<0). Micro-organism number density and temperature profiles are very similar indicating

that fields respond in a similar fashion in the external boundary layer regime on the stretching

cylinder. Thermal diffusion and micro-organism propulsion obey similar physics in the flow as

opposed to nano-particle diffusion which has a distinctly different response. An increase in thermal

slip essentially thickens both the thermal and micro-organism number density boundary layers

whereas it thins the nano-particle concentration boundary layer thickness. Therefore biotechno-

logical engineers can achieve very different thermo-fluid characteristics in nano-bio-polymers by
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FIG. 3. Effect of unsteadiness (S) and thermal slip (c) on the dimensionless temperature, (b) nanoparticle volume fraction

and (c) microorganism density profiles.

judiciously utilizing thermal slip at the cylinder wall and also via the rate of cylinder stretching

(unsteadiness).

Fig. 4 illustrates the response of micro-organism number density to a variation in bioconvection

Schmidt number, Sb. This parameter features solely in the micro-organism density conservation
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FIG. 4. Effect of unsteadiness (S) and bioconvection Schmidt number (Sb) on the dimensionless motile microorganism

density function.

eqn. (17), in a similar way to the conventional Schmidt number (Sc) arises only in the nano-particle

species conservation eqn. (16). It is defined as Sb = υ
Dn

, in other words the ratio of momentum

diffusivity to diffusivity of microorganisms. For Sb >1 as studied in Fig. 4, momentum diffusivity

exceeds micro-organism diffusivity. As this parameter increases the difference in diffusivity is

amplified and momentum diffusion rate increasingly dominates the micro-organism diffusion rate

leading to a reduction in micro-organism density number magnitudes, χ(η). There is a correspond-

ing diminishing in the thickness of the micro-organism number density boundary layer. For an

accelerating stretching cylinder (S>0), the micro-organism density is significantly higher than for a

decelerating stretching cylinder (S<0).

Figs. 5 and 6 depict the variation of selected parameters on the heat transfer rate −θ ′ (1) and

motile micro-organism number transfer rate, −χ′ (1) are illustrated in. Figure 5 shows the variations

FIG. 5. Effect of velocity slip (b) and thermal slip (c) parameters on the wall heat transfer rate.
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FIG. 6. Effect of bioconvection Schmidt number (Sb) and bioconvection Péclet number (Pe) parameters on the microorgan-

ism density wall transfer rate.

of −θ ′ (1) versus c and S for different values of b. It is found that −θ ′ (1) decreases strongly with

increasing thermal slip (c) and relatively weakly with increasing hydrodynamic slip (b). For an

accelerating stretching cylinder (S>0), motile micro-organism number transfer rate is substantially

reduced whereas it is significantly enhanced for the decelerating stretching cylinder (S<0) case.

Figure 6 shows the effects of S, Sb and Pe on −χ′ (1). −χ′ (1) is found to be increased with

bioconvection Péclet number (Pe). Pe is directly proportional to b̃ (chemotaxis constant) and Wc

(maximum cell swimming speed) and inversely proportional to Dn (diffusivity of microorganisms).

Therefore for higher Pe values the micro-organism speed will be reduced and/or the diffusivity of

micro-organisms will be decreased. This will result in reduced concentrations of micro-organisms

in the boundary layer and an elevation in motile micro-organism mass transfer rate, −χ′ (1), to the

cylinder surface, as observed in Figure 6. −χ′ (1) is also observed to be decreased for a decelerating

cylinder (S<0) and increased for an accelerating cylinder (S>0). With increasing bioconvection

Schmidt number there is a substantial depression in motile micro-organism mass transfer rate,

−χ′ (1). We further note that since no tangible variations are computed in nano-particle mass trans-

fer rate
−φ′(1)
φ(1)

and local skin friction factor − f ′′ (1) with bioconvection Schmidt or biconvection

Péclet number, these distributions have been omitted.

VII. CONCLUSIONS

The unsteady bioconvective slip flow of a nanofluid (containing both nanoparticles and gyrotac-

tic microorganisms) in the external boundary layer from a stretching cylinder, is studied as a simula-

tion of bio-nano-polymer fabrication. The Buongiorno nanofluid model is employed with physically

more realistic passively controlled boundary conditions. Both thermal and hydrodynamic slip ef-

fects at the cylinder surface are considered. The governing transport equations are transformed

into a set of ordinary differential equations using similarity variables. The transformed well-posed

ninth order boundary value problem is solved using the Runge–Kutta-Felhberg fourth-fifth or-

der numerical method in MAPLE18 symbolic software. Validation with previous computations

is included. The computations have shown that increasing bioconvection Schmidt number re-

duces motile micro-organism density function. Increasing hydrodynamic slip enhances temper-

atures and motile micro-organism density function, but decreases nanoparticle volume fraction

(nano-particle concentration) values. Increasing thermal slip reduces temperatures and furthermore
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for an accelerating stretching cylinder (S>0), the temperatures are greater than for a decelerating

stretching cylinder (S<0). Nano-particle concentration is conversely elevated with greater thermal

slip whereas micro-organism number density function is greatly depressed with increasing thermal

slip effect. At any bioconvection Schmidt number, for an accelerating stretching cylinder (S>0),

the micro-organism density is much higher than for a decelerating stretching cylinder (S<0). Local

Nusselt number is reduced with increasing hydrodynamic and thermal slip and also for an accel-

erating cylinder. The local microorganism transfer rate is increased with greater values of biocon-

vection Péclet number whereas it is suppressed with greater bioconvection Schmidt number and

for an accelerating cylinder (positive values of unsteadiness parameter). The present work has been

confined to constant fluid properties and ignored electromagnetic effects. For future work, the pres-

ent model may therefore be extended to consider variable fluid properties and also multi-physical

effects e.g. chemical reaction, magnetohydrodynamics, second order slip and melting effects. These

are also relevant to bio-nano-polymer processing applications and efforts in this regard are under

way.
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APPENDIX: VALIDATION TABLES

TABLE I. Values of the skin friction factor f ′′(1) for Pr= 0.7.

Ishak et al.48 Wang50 Present Study

f ′′(1) -1.1780 -1.17776 -1.17805

TABLE II. Values of the Nusselt number −θ′(1) for Pr= 7.

Ishak et al.48 Wang50 Present Study

−θ′(1) 2.0587 2.059 2.05862
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