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Abstract Red beds are well‐known for recording stable natural remanent magnetization (NRM).

However, discriminating primary NRM from secondary remanence in red beds is difficult. The

Paleogene Nangqian red beds in eastern Tibetan Plateau variably record an overprint related to nearby

magmatism and thus provide a great opportunity to characterize remagnetization in red beds. Through

comprehensive rock magnetic, Mössbauer spectroscopic, and petrographic analyses, we find that

remagnetization was controlled by temperature. Remagnetized red beds contain abundant authigenic

hematite and goethite, with some larger grains unblocking at the Néel temperatures and the remainder

(nanoparticles) unblocking at lower temperatures. In contrast, red beds retaining primary NRM are

characterized by dominance of detrital hematite and magnetite, presence of fine‐grained authigenic

hematite, and absence of authigenic goethite and magnetite. High temperature behaviors of

NRM/susceptibility are indicative of remagnetization, but the presence of goethite appears to be a more

sensitive criterion for diagnosing remagnetization in red beds.

1. Introduction

Red beds, siliciclastic rocks pigmented by hematite, have been extensively investigated for paleogeography

and magnetostratigraphy (e.g., Dupont‐Nivet et al., 2007; Xian et al., 2019). The prevailing hypothesis states

that large detrital hematite grains in red beds carry a primary depositional remanent magnetization (DRM)

(e.g., Kruiver et al., 2000), whereas the fine‐grained pigmentary hematite carries a secondary chemical rema-

nent magnetization (CRM). The CRM, possibly formed long after deposition of the red beds, can partially or

completely obscure the DRM well below the Néel temperature of hematite and complicates paleomagnetic

interpretations (e.g., Deng et al., 2007; Stearns & Van der Voo, 1987). A central aspect of paleomagnetic stu-

dies on red beds is thus to distinguish CRM from DRM, which is, however, difficult because the mechanism

of CRM acquisition and the characteristics of authigenic hematite are not well understood. While experi-

mental study shows that CRMhas wide spectrum of unblocking temperature (200–650 °C) in contrast to that

of the DRM (600–680 °C) (Jiang et al., 2015), paleomagnetic studies of natural samples reveal that thermal

unblocking spectra of CRM can overlap with that of the DRM and extend up to the Néel temperature (Jiang

et al., 2017; Swanson‐Hysell et al., 2019). Uncertainty thus exists in interpreting the origin of the remanence

carried by high‐unblocking‐temperature hematite in red beds, whereas traditional paleomagnetic field tests,

even when available, often provide only weak constraints on the timing of remanence acquisition.

Therefore, rigorous criteria independent from paleomagnetic directional information are required for eval-

uating the origin of the remanence isolated at the highest unblocking temperatures and diagnosing insidious

remagnetization in red beds.

The Cenozoic Nangqian basin, located in the eastern Qiangtang terrane of the Tibetan Plateau (Figure 1a),

was formed by flexural subsidence of the lithosphere in the footwall of a thrust fault activated soon after

India‐Asia collision (Horton et al., 2002). It is filled with alluvial conglomerate and fluvial sandstone in

the older southern part of the basin and deltaic and lacustrine interbedded limestone, gypsum, and reddish

mudstone and siltstone in the younger northern part (Li et al., 2018). Age constraints of the basin are based
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on Paleogene fossils in the sedimentary rocks, and intrusions and volcanic rocks interbedded with the

uppermost strata at 38–37 Ma (Spurlin et al., 2005).

Prior paleomagnetic investigations of the Nangqian basin (Figure 1a) indicate that the red beds carry an

overprint with a different direction from that of the present day dipole field, but with the same direction

as that of the primary NRM from the magmatic rocks, suggesting that remagnetization of the red beds is

related to magmatism at 38–37 Ma (Roperch et al., 2017). Through careful inspection of the thermal

Figure 1. Previous paleomagnetic work in the Cenozoic Nangqian basin. (a) Geologic map of the Nangqian basin (Spurlin et al., 2005) with plotted paleomagnetic
sampling localities of red beds, numbers represent site names (14NQXX or 15NQXX). Each site includes 11–24 individual cores (Roperch et al., 2017). (b–h)
Thermal demagnetization trajectories of representative samples from the Nangqian red beds with three types (A, B, and C) identified. IS—in situ, circles—incli-
nation, dots—declination. (i) Equal‐area projections of the remanent magnetization isolated at high temperatures from individual Type B (red circles) and Type C
(blue square) samples in stratigraphic coordinates. Average of the site‐mean directions of the primary remanence carried by magmatic rocks (green triangle) and of
the overprint recorded by red beds (blue diamond) are also plotted. Shaded circles are the 95% confidence interval.
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demagnetization trajectories of Nangqian red beds studied by Roperch et al. (2017), we identify three types of

samples: (1) Type A (23% of the total 210 individual samples) has linear decay in remanence and a single

magnetic component isolated up to the Néel temperature of hematite (Figures 1b and 1c; supporting infor-

mation Figures S1a–S1h); (2) Type B (53%) has an intermediate temperature component (ITC) isolated from

200 °C to 650–665 °C, followed by a weak (as low as 3% of the NRM in intensity) high temperature compo-

nent (HTC) with a different direction and/or polarity isolated up to 680 °C (Figures 1d–1f; Figure S2); (3)

Type C (24%) also has two components, but the ITC is usually isolated below 300–600 °C, whereas the

HTC is isolated from 300–600 °C to 680 °C (Figures 1g and 1h; Figures S1i–S1t). The remanence of Type

A samples and the ITC from Types B and C samples define a site‐mean direction indistinguishable from that

of themagmatic rocks (Figure 1i). The HTC of individual Type B samples are scattered with amean direction

of declination/inclination = 181.9°/−28.6° (n= 111, k= 5.7, α95= 6.2) after bedding correction, whereas the

HTC of individual Type C samples has an elongated distribution and defines a different mean direction of

declination/inclination = 221.1°/−15.4° (n = 46, k = 9.1, α95 = 7.4) (Figure 1i). Compared to the primary

NRM isolated from the coeval red beds in the nearby Gongjue basin (150 km southeast of Nangqian) of

the eastern Qiangtang terrane (Tong et al., 2017; Zhang et al., 2018), the mean direction of the HTC of

Type B samples has abnormal lower declination and higher inclination, whereas the HTC of Type C samples

has similar declination and slightly lower inclination. Considering the Cenozoic regional clockwise rotation

history of the eastern Qiangtang terrane, and the possibility that the finer‐grained Nangqian red beds may

have suffered more from compaction‐induced inclination shallowing (Li et al., 2017; Tauxe & Kent, 2004),

the HTC of Type C samples probably represents the DRM (biased by inclination shallowing), whereas the

HTC of Type B samples was at least contaminated by CRM if not completely overprinted, as in the Type

A samples.

The acquisition of CRMwith variable unblocking temperatures and clear age constraint in the Nangqian red

beds thus provide an ideal natural laboratory to examine the mechanisms of remagnetization in red beds

along with pertinent features of remagnetized red beds (Types A and B samples), which can be contrasted

to those retaining primary NRM (Type C samples). In this study, we apply comprehensive rock magnetic

experiments, Mössbauer spectroscopy analyses, and scanning electron microscopy examinations with asso-

ciated energy‐dispersive X‐ray spectrometry analyses, to samples from the Nangqian red beds studied by

Roperch et al. (2017), aiming at characterizing the distinct properties of remagnetized red beds. These prop-

erties may provide robust property‐based criteria for diagnosing remagnetization in red beds in

future studies.

2. Results

We first applied a series of rock magnetic tests to understand the magnetic mineralogy and grain size of the

Nangqian red beds (Text SI). Room temperature hysteresis loops of the red beds samples are mostly rectan-

gular and show high coercivity (Bc) and remanent coercivity (Bcr) values (Figures S3 and S4a, Table S1), con-

sistent with the dominance of hematite as a magnetic carrier. Hysteresis loops of some Type C samples are

goosenecked (Figure S3f), indicating a significant contribution from magnetite in addition to the principal

magnetic phase of hematite (Tauxe et al., 1996). One baked sample adjacent to the dike has potbellied loops

and low saturation remanence ratios (Mrs/Mr = 0.47). In the plots of Mrs/Ms versus Bc, Types A and B sam-

ples cannot be discriminated from Type C samples (Figure S4a). The coercivity spectra of all the samples can

be fitted by two statistically significant components (Figure S3, Table S2). One component has low coercivity

(<130 mT) and contribution (<17%), representing magnetite and/or fine‐grained hematite (Özdemir &

Dunlop, 2014). The other has high coercivity (>400 mT) and contribution (>83%) and is interpreted to be

hematite and/or other hardmagnetic carriers. High‐temperature magnetic susceptibility versus temperature

(κ‐T) curves of Types A and B samples show distinct behaviors from Type C samples (Figure 2). Types A and

B samples are characterized by quasi‐linear and reversible descending trends of the magnetic susceptibility

up to 550 °C with most susceptibility lost, followed by a hump and then sharp drop of magnetic susceptibility

at >620 °C. In contrast, the hump is reached at 300 °C after quasi‐linear and reversible decrease of magnetic

susceptibility in Type C samples, and the majority of susceptibility is lost in the sharp drop above 620 °C.

Low temperature AC susceptibility measurement of a Type B sample reveal a dependence of susceptibility

on both temperature and frequency, persisting at 300–20 K (Figure S5), suggesting a broad blocking
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temperature spectrum and grain size distribution of magnetic nanoparticles (Worm & Jackson, 1999). The

low‐temperature saturation isothermal remanent magnetization (SIRM) warming curves after zero‐field

cooled (ZFC) and field cooled (FC) treatments for all samples show continuous decay in remanence

during warming (Figure 2), further implying a wide distribution of magnetic grain size and a strong

superparamagnetic (SP) portion at room temperature. The Verwey transition of magnetite at 120 K is

displayed in most samples, whereas the Morin transition of hematite at 250–260 K is likely smeared out

by progressive unblocking of SP hematite. Types A and B samples have widely separated FC and ZFC

curves (Figures 2a–2d) with a high ratio (>2) of FC versus ZFC remanence (MFC/MZFC) at 20 K (Figure S4b,

Table S4), pointing to the presence of goethite (Guyodo et al., 2003; Liu et al., 2006). In contrast, FC and ZFC

curves of Type C samples are not widely separated (Figures 2e and 2f), with MFC/MZFC at 20 K of ~1

(Figure S4b, Table S4). The low‐temperature cycling curves of a room‐temperature SIRM for one Type A

sample show a steep increase in remanence on cooling and a slight net loss of magnetization when

warming up to room temperature (Figure 3a), indicating a high concentration of goethite in these

samples in addition to fine‐grained hematite (France & Oldfield, 2000). After removing the contribution

of soft magnetic carriers by applying an alternating field (AF) demagnetization with a peak field of 200

mT, the room‐temperature SIRM cooling and warming curves for this sample are reversible up to 300 K.

The warming curves then show a sharp drop in remanence at 300–350 K [lower than Néel temperature of

goethite at 393 K, O'reilly, 1984] and continuous loss of remanence up to 400 K with irreversible cooling

curves from 400 to 20 K. The other two sample types (A and B) show an irreversible decrease in remanence

on cooling to 20 K and a substantial net loss of remanence when warming to room temperature, and weak

signals of the Verwey andMorin translations are discernable (Figures 3b and 3c). After AF demagnetization,

the warming curves show a gentle decrease in remanence between 350 and 400 K and are irreversible when

compared to the cooling curves of 400–20 K. The decrease in remanence between 350 and 400 K for all Types

A and B samples possibly represents unblocking of fine‐grained hematite instead of goethite. Compared to

the Type A sample showing a sharp drop in remanence at 300–350 K on the warming curves after AF demag-

netization, the two Types A and B samples without the sharp drop may contain less goethite and/or finer

goethite which unblocks together with fine‐grained hematite. Type C samples have similar room

Figure 2. High temperature susceptibility versus temperature (κ‐T) curves and field‐cooled (FC) and zero‐field‐cooled (ZFC) curves of representative samples.
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temperature SIRM cycling curves to these Types A and B samples without the sharp drop in remanence both

before and after AF demagnetization (Figure 3d). The gradual decrease in remanence above 300 K in the

warming curves after AF demagnetization is due to unblocking of fine‐grained hematite.

To better discriminate fine‐grained hematite and goethite, we then applied Mössbauer spectroscopy (see

supporting information for methods). The Mössbauer spectrum at 295 K from one Type A sample is repre-

sented by two sextets and three doublets (Figure 4, Table S5). One minor sextet fitted with a hyperfine field

distribution with a smaller magnetic hyperfine field (BHF) of 35.35 T has parameters close to those of goethite

at room temperature, and the other one, with BHF = 50.98 T, is similar to that of hematite (Dyar et al., 2006).

Modeling of the spectra reveals that the 6.4% of the iron resides in room‐temperature stable goethite and

42.15% of the iron resides in hematite, with the remainder in paramagnetic or superparamagnetic particles.

At 18 K, the Mössbauer spectrum of this sample was also fitted by two sextets, corresponding to goethite

(28.67%) and hematite (44.71%) and three doublets (Figure 4a). TheMössbauer spectrum for a Type B sample

is fitted by two sextets (one crystalline site and one minor hyperfine field distribution, both representing

hematite) and three doublets at 295 K, whereas at 18 K the two fitted sextets are due to goethite (23.81%)

and hematite (44.32%) (Figure 4b). For the two Type C samples (Figures 4c and 4d), the Mössbauer spectrum

is fitted by two sextets (again both representing hematite) and two doublets at 295 K and one sextet (corre-

sponding to hematite) and two doublets at 18 K. Themodeled hematite contribution also slightly increases at

18 K when compared to that at 295 K (Table S5). The fitted BHF values for all samples from the Nangqian red

Figure 3. Cycling of the room temperature saturation remanent magnetization for the representative samples. The sam-
ples were first given a 2.5 T field and thenmeasured during a cooling (black) and warming (yellow) cycle between 300 and
20 K. Next, the samples were demagnetized by an alternating field with a peak of 200 mT. The remaining remanence is
then measured when cooling (green) down to 20 K. Finally, remanence was measured when samples were warmed
(purple) and cooled (pink) between 20 and 400 K.
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beds are reduced when compared to stoichiometric goethite and hematite at 295 or 18 K, and this is likely

related to structural defects or small particle size of goethite and hematite (Berquó et al., 2007). The

significant increase in the modeled goethite contribution and the decrease in the paramagnetic doublets

in Types A and B samples at 18 K indicate that most of the goethite grains are (super)paramagnetic at

room temperature but are blocked at 18 K. The slight increase in the content of the hematite sextet in all

the samples at 18 K (Table S5) is likely associated with ordering of the smallest nanoparticles of hematite

(Bødker et al., 2000). Our Mössbauer spectroscopy analyses thus confirm the presence of nanogoethite in

Types A and B samples and that Type C samples contain an undetectable amount (<2%) of goethite.

To visually and chemically characterize the differences in magnetic minerals, we further conducted scan-

ning electron microscopy and X‐ray spectrometry examinations (see supporting information for methods).

In Type C samples, plate‐like detrital hematite at length scales of a few microns and minor detrital titano-

magnetite with solid‐state exsolution features at size of 5–50 μm are the main phase of magnetic minerals

(Figures 5a–5e), although very fine needle‐shaped hematite is well‐presented (Figure 5e). Early diagenetic

pyrite is also preserved (Figure 5f). In Types A and B samples, authigenic magnetite pseudomorphic after

Figure 4. Mössbauer spectrum acquired at 295 and 18 K for powder red bed samples. Dots with the black lines are data
and model fits. Red and yellow sextets are the fits diagnostic of hematite; green sextet represents goethite (significant
only in Types A and B samples, especially at low temperature). The central peaks comprised superposed doublets domi-
nated by Fe3+.
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framboidal or subeuhedral to euhedral pyrite is observed (Figures 5g and 5h). Detrital titanomagnetite and

hematite have been extensively altered with iron leached and deposited as authigenic hematite (Figures 5i–

5p). Omnipresent authigenic hematite replaces the preexisting detrital titanomagnetite and hematite, shows

growth zoning, and is mostly needle‐shaped grains with length <1 μm and width <0.1 μm.

3. Discussion

Detrital and authigenic hematite are the principal magnetic carriers in the Nangqian red beds; the minor

magnetic phase of magnetite also has both detrital and authigenic origin. According to the hematite grain

volume and unblocking temperature relationship (Swanson‐Hysell et al., 2011), the diameter of hematite

grains can be estimated. Type A samples have the widest unblocking temperature spectrum up to the

Néel temperature, indicating that hematite grain size varies from the SP‐stable single domain threshold

[<tens nm, Swanson‐Hysell et al., 2019] up to >500 nm. The ITC of Type B samples (<650 °C) is mostly car-

ried by hematite grains with diameters of <400 nm, whereas the HTC (>650 °C) is retained in hematite with

diameter of >400 nm. Hematite grains carrying the ITC of Type C samples (<300–600 °C) are <200 nm in

diameter, and those carrying the HTC are >200 nm. The DRM carried by detrital magnetite is thus

Figure 5. SEM backscattered electron images of samples from the Nangqian red beds (a–f) from Type C samples, (i,o) from Type A samples, and the remainder are
from Type B samples. DHem= detrital hematite; AHem= authigenic hematite; DMag = detrital magnetite; AMag = authigenic magnetite; Py = pyrite; Rt = rutile.
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completely swamped in secondary remanence carried by authigenic magnetite and hematite in Types A and

B samples.

Considering the limited concentration of authigenic magnetite in the Nangqian red beds (Figure 5), low tem-

perature properties of susceptibility and remanence (Figures 2 and 3) indicate that nanohematite (<tens nm)

is abundant in these rocks. Besides, Mössbauer spectra reveal that only small amounts of thermally stable

goethite are present in Types A and B samples at room temperature, but at 18 K > 20% of the absorption

is due to iron residing in goethite in these samples (Figures 4a and 4b). This value at 18 K is a conservative

estimation, because finer goethite may still be unblocked at such temperature, contributing to the

central doublets.

Circulation of externally derived magmatic or basinal fluid is not observed in the field and our petrographic

examinations (Figure 5). Instead, the thermal anomaly induced by magmatism is probably the controlling

factor for the remagnetization, although other factors (e.g., lithology) may also have an effect. This is further

supported by the observations that the completely remagnetized Type A samples are adjacent or close to the

magmatic bodies, whereas Type C samples retaining primary remanence are relatively far away (Figure 1a).

Low‐temperature thermochronology studies show that detrital zircon (U‐Th)/He [closure temperature: 170–

190 °C, Reiners et al., 2004] ages of the red beds are not reset (personal communication with Dr. Lin Li), but

apatite (U‐Th‐Sm)/He [closure temperature: 60–80 °C, Farley, 2000] ages of the magmatic rocks are reset

[20–15 Ma, Dai et al., 2013]. Reset clumped isotope of carbonate interbedded with the Nangqian red beds

yield T(Δ47) values of 45–76.5 °C (Li et al., 2018), which should be between the surface and peak tempera-

tures according to the modeled clumped isotope resetting process (Stolper & Eiler, 2015). Therefore, it is

likely that the Nangqian red beds were inhomogeneously heated up to 100–170 °C during the magmatism,

followed by a later homogeneous burial heating to >60 °C. During the diagenesis at 38–37 Ma, alteration of

detrital hematite, magnetite, other Fe‐bearing phases, and early diagenetic pyrite leached iron, forming fer-

rihydrite. In the crystallization of hematite and goethite from precursor ferrihydrite, their ratio strongly

depends on temperature (e.g., Das et al., 2011; Jiang et al., 2016). Type A samples closer to the magmatic

bodies suffered from the most intense heating: Detrital magnetic particles were almost completely altered,

and authigenic hematite grew to >500 nm with unblocking temperature up to 680 °C (Figure 1b).

Goethite in some Type A samples grew to large grains with unblocking temperatures of 27–77 °C

(Figure 3a), and the absolute abundance of goethite is high (Figure 4a). Type B samples suffered from inter-

mediate heating: Large detrital magnetic particles survived alteration, and some authigenic hematite grew to

moderate sizes (>400 nm) with high unblocking temperatures (>650 °C); the DRM carried by the large det-

rital hematite was thus contaminated or overprinted (Figures 1c and 1d). Goethite in these samples is finer

and less abundant (Figures 3c and 4b, Table S5). Type C samples were the least heated and altered; small

detrital magnetic particles were altered, authigenic hematite never grew above 200 nm, and DRM carried

by detrital hematite can be isolated at >600 °C (Figures 1e and 1f). Goethite is undetectable in these samples

(Figures 3d and 4d, Table S5), although it should have been formed simultaneously with dominant hematite

(Das et al., 2011). The reason might be that the crystallized goethite grains were the finest, thermodynami-

cally unstable, and dehydrated to hematite during subsequent burial heating (Berner, 1969; Till et al., 2015;

Weibel & Grobety, 1999). A difference in redox conditions, shown by alteration of early diagenetic pyrite to

authigenic magnetite in Types A and B samples and the preservation of pyrite in Type C samples (Figures 5f–

5h), may also have contributed to the remagnetization, similar to the remagnetization of the Tethyan lime-

stones (Huang, Lippert, Dekkers, et al., 2017; Huang, Lippert, Zhang, et al., 2017; Huang et al., 2019).

Consistent with the argument that concave (convex) shape of thermal decay curves potentially indicates

CRM (DRM) (Jiang et al., 2015), thermal decay curves of different types of the Nangqian red beds samples

are distinct (Figure S6). We find, however, that convex thermal decay curves of some Type A samples and

the high temperature portion of Type B samples cannot be correctly interpreted. High temperature κ‐T

curves of Types A and B samples have a small hump above 550 °C before a sharp but insignificant drop near

the Néel temperature of hematite, whereas κ‐T curves of Type C samples show a big hump near 300 °C fol-

lowed by a sharp and significant drop near the Néel temperature (Figure 2). More importantly, we find that

Types A and B samples contain a large amount of nanogoethite, characterized by widely separated FC and

ZFC curves (Figure 2) and the appearance of a significant goethite sextet in the Mössbauer spectrum

(Figures 4a and 4b) at low temperature. In contrast, little goethite is detected in Type C samples

(Figures 2 and 4). Therefore, in addition to the shape of thermal decay curves of the remanence, and high
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temperature κ‐T behavior, the presence of nanogoethite is potentially a sensitive indicator for remagnetiza-

tion in red beds.

Trace amounts of goethite have been detected by thermal demagnetization of the composite IRMs in remag-

netized Jurassic to Cretaceous red beds (Tsuchiyama et al., 2016; Yamashita et al., 2011). We realize, how-

ever, that most goethite grains in remagnetized red beds are possibly nanoscaled and can be detected by

low‐temperature experiments at best. To verify the universal existence of goethite in remagnetized red beds,

low‐temperature tests are required to systematically apply to more profiles in the future. We emphasize here

that goethite detected in this research is not related to recent weathering or groundwater flowing. Fresh sam-

ples were commonly taken after deep digging during the fieldwork, and goethite could have been detected in

all types of samples if this was the case.

4. Conclusions

Our study supports the proposition that CRM and DRM can be distinguished by difference in unblocking

temperatures of authigenic and detrital hematite. More importantly, we find that authigenic hematite can

grow to relatively large sizes, overlapping with those of detrital hematite, and CRM can thus completely

replace or contaminate the DRM. Preservation of DRM in red beds depends on separation of unblocking

temperatures and grain sizes between authigenic and detrital hematite, which is controlled by postdeposi-

tional temperatures in our case. Heating induced by burial or magmatism is possibly one of the main reasons

for remagnetization of red beds, especially for those in tectonically active orogenic belts. We emphasize that

directional change at high unblocking temperatures is not enough to discriminate DRM from CRM in red

beds. Combined rock magnetic tests, Mössbauer spectroscopy analyses, and petrographic examinations

should be carried out to evaluate the potential preservation of DRM in red beds. The presence of significant

amounts of nanogoethite potentially indicates remagnetization in red beds.
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