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We investigate the dynamics of the spaser-based nanolaser in the strong incoherent pumping
regime in the quantum limit when the photon number is the order of unity. We consider the
situation where the newly irradiated photon finds itself in the cloud of earlier irradiated photons
that are not thermalized. As the result the entanglement of nanoparticle with quantum dot degrees
of freedom in the nanolaser and the lasing intensity increases several times. In fact the nonthermal
bath effectively makes the nanolaser “more quantum” and master equation for the nanolaser density
matrix nonlinear and selfconsistent.
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Coherent manipulation and entanglement of photon
and condensed matter quantum degrees of freedom is the
topic of intensive discussions with possible applications
for quantum calculations [1, 2]. Recent discoveries in the
area of nanoplasmonics have raised high hopes for the fu-
ture development of ultrafast and super small quantum
optoelectronic devices [3–6]. The key element of an active
plasmonic devise is the spaser based nanolaser [7–10].
The nanolaser is the nanosystem coherent, entangled

and dissipative at the same time [11]. The spaser consists
of a quantum dot (QD) placed near a metallic nanoparti-
cle (NP). The physical principle of the spasers operation
is similar to that of laser. The role of photons is played
by surface plasmons (SPs), which are localized at the
NP. Confining SPs to the NP resembles a resonator. The
spaser generates and amplifies the near field of the NP.
SP amplification occurs because of nonradiative energy
transfer from the QD to the NP. This process originates
from the dipole-dipole (or any other near-field) interac-
tion between the QD and the plasmonic NP. The genera-
tion of a large number of SPs leads to the induced emis-
sion of the QD into the plasmonic mode and to the devel-
opment of generation of plasmons. Thus, the excitation
of the plasmonic mode is provided by pumping through
the excited QD. This process is inhibited by losses in the
NP, which together with pumping results in undamped
stationary oscillations of the spaser dipole moment.
There are two channels for energy dissipation in the

nanolaser. The first one is standard: it is phonon en-
ergy relaxation, Joule losses and other nonradiative pro-
cesses [7–10, 12]. The second channel is related to the
irradiation and absorbtion of photons, see Fig. 1. The
dissipation of energy in this channel is regulated by the
density matrix of the photon bath. There are ther-
mal photons that come from the thermal photon bath
(this photons come from afar). Other photons are gener-
ated by the nanolaser itself and they have the nonther-
mal distribution determined by the quantum state of the
nanolaser. Moreover the distribution of emitted photons
is determined by quantum dynamics of plasmon degrees

of freedom. These irradiated photons thermalize far from
the nanolazer. The nanoloser is typically placed into the
(nonuniform) dielectric matrix that in turn can be placed
into the resonator-box. We concentrate on the situation
when the irradiated photons do not immediately leave
the nanolaser but may return back or stay nearby after
the reflections on the inhomogeneities of the dielectric
matrix, the interfaces of the dielectric layers etc. These
photons effectively form the nonequilibrium photon bath
for the nanolaser.
The QD-transition frequency and the frequency of

FIG. 1. (Color online) The nonthermal bath effectively makes
the nanolaser “more quantum”: the graph shows the ratio of
the entanglement entropies Srad/Sth > 1 describing the en-
tanglement of plasmons and quantum dot degrees of freedom
in the nonequilibrium and thermal environment correspond-
ingly as the functions of the dissipation due to NP radiation.
Here αa is the ratio of the thermal and nothermal relaxation
times for nanoparticle; αa = 0 corresponds to linear Lind-
blad theory and thermal bath. Making the graph we kept
the ratio of the thermal and nothermal relaxation times for
the the quantum dot ασ = 0. Inset: energy balance dia-
gram of the nanolaser. The distribution of photons radiated
by the nanolaser is nonthermal and they effectively form the
nonequilibrium photon bath for the nanolazer.

ar
X

iv
:1

30
7.

72
84

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  2

7 
Ju

l 2
01

3



2

plasmonic resonance are typically larger than the temper-
ature of the thermal bath so the average thermal photon
number is much smaller than unity. However the aver-
age number of the nonthermal photons is typically of the
order of unity or larger depending on pumping. That
suggests the strong two-way influence of the nonequil-
bruim photon bath on the dynamics of the nanolaser,
see Fig. 1. When the new photon is irradiated by the
nanolaser it finds itself in the cloud of earlier irradiated
photons (nonequilibrium photon bath). The occupation
numbers of the photons in the bath influence on the rate
of the irradiation and so on the nanolaser quantum state.
Intuitively when we drive the quantum system by some

bath it results in the suppression of the quantum cor-
relations (entanglement) between the system degrees of
freedom. The bath typically results in the random forces
with the dispersion related to the effective temperature
of the bath [13, 14]. That thermal forces destroy entan-
glement [15]. In our case this simple picture does not
work: our bath is essentially nonthermal (our quantum
system in fact produces the bath for itself) that effec-
tively results in the nonlinear coupling of the bath with
the quantum system.
We show below that the nonequilibrium nature of

the thermostat changes the quantum physics of the
nanolaser. It induces in particular strong (nonlinear)
dependence of the plasmon number and the degree of
the QD-NP entanglement on the dissipation rates. We
demonstrate that the nonequilbrium nature of the pho-
ton bath makes the dissipation in the master equation for
the nanolaser density matrix selfconsistently dependent
on the occupation number distribution of emitted pho-
tons. So the master equations becomes nonlinear. As the
result quantum fluctuations strongly increase. In fact the
nonthermal bath effectively makes the nanolaser “more
quantum” than that with the thermal bath only.
Standard approach for description of an open strong

dissipative quantum system like nanolaser is the master
equation approach for the reduced density matrix [14, 16,
17]. In usually used Linblad master equations the dissi-
pation is related with the thermal bath. In our case the
irradiation becomes effectively the nonequilibrium bath
with the state determined by the coherent quantum dy-
namics of the nanolaser. The possible way to resolve the
coexistence of strong dissipation and quantum physics in
nanolaser far from equilibrium is the nonlinear master
equation for the nanolaser density matrix.
The master equation for reduced density matrix has

the form [14, 16, 17]

d

dt
ρ̂ = −i[Ĥ, ρ̂] + L̂ρ̂, (1)

where ρ̂ is the reduced density matrix, L̂ is Lindbladian
superoperator, and Ĥ0 is system Hamiltonian. Lindbla-
dian describes the dissipation and typically it does not
depend on the system state. This approach works well for
thermal reservoirs. But in our case the irradiation plays
the role of nonthermal (nonequilibrium) reservoir. We

can take the nonequilibrium bath into account making
Eq. (1) effectively nonlinear. Typically the information
about the bath is encoded in the c-number parameters of
the Lindbladian. In our case the state of the irradiative
bath depends on the reduced density matrix ρ̂. So the
c-number parameters of the Lindbladian responsible for
the irradiation are related to ρ̂. They can be considered
as certain averages of the appropriate system operators
with ρ̂. Thus the Lindbladian selfconsistently depends
on ρ̂.
Using this approach we have found the nonlinear dy-

namics of plasmon and as a result the stationary value
of the average plasmon number is by several times larger
than that found from the linear Lindbladian equation.
We calculated entanglement entropy and got that the de-
gree of entanglement between plasmon and quantum dot
strongly increases near generation threshold. We predict
that registering the nonequilibrium irradiation of pho-
tons we can make judgements about the quantum state
of the nanolaser.
The Hamiltonian of for the surface plasmons ĤSP =

~ωSPâ
†a, where ωSP is the plasmon frequency and â† is

the plasmon creation operator in the dipole mode. The
Hamiltonian of the QD ĤQD = ~ωQDσ̂

†σ̂, where ωQD is
the transition frequency between the levels being in reso-
nance with the SP, and σ̂ is the operator of the transition
between the excited |e〉 and ground |g〉 states of the QD.
The interaction between SP and QD we take in the Janes-
Cummings form: Ĥi = ~ωRâ

†σ̂+h.c., where the coupling
constant ωR is the Rabi frequency. So Hamiltonian of the
spaser Ĥ = ĤSP + ĤQD + Ĥi [11, 18, 19].

The Lindblad superoperator acts on the density ma-

trix as follows: L̂ρ̂ =
∑

j(V̂j ρ̂V̂
†
j − 1

2{ρ̂, V̂
†
j V̂j}), where V̂j

are transition operators. We will distinguish two types
of reservoirs. The first one is the bath in thermal equi-
librium. For the atomic system there two types of the
transition operators corresponding to damping to this
reservoirs are:

V̂ th
σdump1

= σ̂

√

1 +N th
σ

τ thσ
, V̂ (th)

σdump2
= σ̂†

√

N th
σ

τ thσ
, (2)

where τ thσ is the damping rate. Here N th
σ is the aver-

age number of quanta in the thermal bath at the QD
transition frequency. Similarly we write the transition
operators acting on the plasmon degrees of freedom

V̂ th
adump1

= â

√

2[1 +N th
a ]

τ tha
, V̂ th

adump2
= â†

√

2N th
a

τ tha
, (3)

where τ tha is the dumping rate of nanoparticle dipole mo-
ment and N th

a is the average number of quanta in the
thermal bath at the frequency of plasmonic resonance. At
optical frequency and room temperature N th

σ = N th
a = 0.

To consider incoherent pumping, following Ref. [14] we
describe pumping using the Lindblad superoperator:

V̂σpump
= σ̂†

√

1

τp
, (4)
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where τp is the pumping rate.
The second type of reservoir is connected to the irra-

diation of NP and QD dipole moments. It consists of the
cloud irradiated nonequilibrium photons near the spaser.
Formally, the Lindblad operators for this type of reser-
voirs are analogous to ones for thermal bath:

V̂ rad
σdump1

= σ̂

√

1 +N rad
σ

τ radσ

, V̂ rad
σdump2

= σ̂†

√

N rad
σ

τ radσ

, (5)

for QD and

V̂ rad
adump1

= â

√

[1 +N rad
a ]

τ rada

, V̂ rad
adump2

= â†

√

N rad
a

τ rada

, (6)

for metal NP.
Lindbladian superoperators given above are more or

less standard. But now we take into account that there
are two types of reservoirs for dissipation of energy
in nanolaser (spaser) and the state of our nonequilib-
rium photon reservoir selfconsistently depends on the
nanolaser state. The electric filed operator is propor-
tional to the dipole moment that in turn is linear opera-
tor over the creation (annihilation ) plasmon operators.
So the average number of nonequilibrium photons should
be proportional to the average number of surface plas-
mons on metal NP. The coefficient of proportionality is
the model constant: it is fixed by the matrix elements
of the dipole moment. For simplicity we take unity for
this constant: qualitatively, all our results are stable with
the respect to the choice of this constant. More general
situation we would consider in [20]. Then the average
number of nonequilibrium photons should be the same
as the average number of surface plasmons on metal NP:

N rad
σ = N rad

a = 〈â†â〉 ≡ tr
{

ρ̂[N rad
a,σ ]â

†â
}

. (7)

So now the Lindbladian depends on the density matrix,

L̂ = L̂[ρ̂], (8)

and the master equation (1) becomes nonlinear. This is
one of our key statements.
Here we assume that the dipole moment of NP is much

larger that one of the QD. So the nanoparticle mostly ir-
radiates. In more general situation one can get in Eq. (7)
the superposition of 〈σ̂z〉 and 〈â†â〉. Similarly one can
consider the situation when some fraction of the irradia-
tion returns back to the nanolaser [20].
We can understand the origin of nonlinearity in our

selfconsistent Lindblad equations writing the energy of
the electromagnetic field where we explicitly distinguish
the electric field generated by “cold” photons from the
thermal bath and the electric field generated by the irra-
diated “hot” photons:

∫

d3r
(Ehot +Ecold)

2

8π
, (9)

where we have used the superposition principle. Then it
follows that the interaction Hamiltonian looks like

∫

d3r
Êhot · Êcold

4π
. (10)

Each electric field operator can be expanded in the
standard way over the creation and annihilation opera-
tors corresponding to the thermal bath and cloud of hot
irradiated photons. Then the interaction

Ĥint ∼
∑

k

(ak,hota
†
k,cold) + h.c., (11)

where 〈a†k,coldak′,hot〉 = 0 and 〈a†k,cold(hot)ak′,cold(hot)〉 =

δk,k′n
(cold(hot))
k , where n

cold(hot)
k is the distribution func-

tion of cold (hot) photons. We identify above N th(rad)

with the average occupation numbers of cold (hot) pho-
tons.
In fact what we have done with the Lindblad equa-

tions is similar to the Landauer-Buttiker approach [21–
26] in quantum transport theory of mesoscopic nanocir-
cuits. There observables describing transport phenom-
ena (like the current operator) are expanded over the
second-quantization creation-annihilation electron oper-
ators that correspond to different electron reservoirs that
are not generally in equilibrium with each other (even not
necessary equilibrium themselves), see, e.g., Refs. [27, 28]
for a review. The core of the Landauer-Buttiker approach
is having electron density matrix in the interaction pic-
ture being the direct product of the reservoir density
matrices. Electrons coming into the nanowire from the
“cold” reservoir have one sort of creation-annihilation
operators while the electrons coming to this nanowire
from the “hot” reservoir are described by another set of
creation-annihilation operators. In our case we have ther-
mal bath (cold reservoir) and irradiation (hot reservoir).
The nonequilibrium nature of the thermostat strongly

influences on the quantum physics of the nanolaser. First
of all it induces the (nonlinear) dependence of the plas-
mon number and the degree of the QD-NP entanglement
(reduced entropy) on the dissipation due to NP (αa) and
QD (ασ) radiation. If we have equilibrium thermostat
then the plasmon number and the reduced entropy are
nearly independent on the dissipation channels.

The numerical simulation has been performed by trun-
cated Hilbert space of the nanolaser on 100 plasmons.
This assumption is confirmed by the fact that the av-
erage number of plasmon is the order of unity and the
accuracy of this truncation is much more than enough.

We consider below the illustrative examples that show
the importance of the nonequilibrium two-channel dissi-
pation. The parameters we choose are typical for exper-
iment, see, e.g., Ref. [8]. We focus on the system with
the positive pumping and different ratio of thermal re-
laxation times of NP (τ tha ) and QD (τ thσ ) and investigate
the influence of the radiation losses on plasmon number
and entropy. For convenience we introduce the following
notations: αa = τ tha /τ rada and ασ = τ thσ /τ radσ .
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FIG. 2. (Color online) The dependence of plasmon number (a,b) and entropy (c,d) on the dissipation in the two channels:
due to radiation for NP (αa) and QD (ασ) respectively. Left and right figures correspond to τ th

a = 10−14s, τ th

σ = 10−11s,
τp = 10−12s and τ th

a = 10−12s, τ th

σ = 10−12s, τp = 10−12s (we took typical experimental parameters). We remind, αa (ασ) is
the ratio of the thermal and nothermal relaxation times for nanoparticle and quantum dot respectively; αa = 0 and ασ = 0
corresponds to linear Lindblad theory and thermal bath. It should be noted that the color gradients in the density plots of the
plasmon number and entropy here are induced by the nonequilibrium dissipation.

The first case corresponds to high Joule losses in metal-
lic NP (τ tha = 10−14s) and small thermal losses in QD
(τ thσ = 10−11s), the pumping value is less than the thresh-
old value. In such situation the plasmon number de-
creases due to radiation because the loss intensity due to
radiation is proportional to the plasmon number. But the
entropy increases due to radiation because the nonequi-
librium thermal bath is common for NP and QD and they
interact with each other through this reservoir (fig.1).
It should be noted that maximum of the entropy cor-
responds to strong dissipation in the NP-channel while
the strong QD-radiation is not accompanied by the in-
crease of the entropy. This is because the nonequilibrium

bath is largely formed by the NP-radiation rather than
the QD-one. The entanglement entropy is determined
by the formula S = − tr(ρ̂NP ln ρ̂NP) where ρ̂NP = trQD(ρ̂)
according to [29].

The second case corresponds to comparable value of
NP and QD thermal losses (τ tha = τ thσ = 10−12s), the
pumping value is slightly more than the threshold value.
In this situation there is the value of NP radiation losses
in which the plasmon number achieves maximum value.
At the same time the entropy in such radiation losses
has a minimum. Further increase of NP radiation losses
causes decrease of plasmon number and increase of en-
tropy, Fig. 2. In all cases QD radiation causes decreases
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both plasmon number and entropy.

To, conclude, we investigate the dynamics of the spaser
based nanolaser in the nonequilibrium selfgenerated en-
vironment where the newly irradiated photon finds itself
in the cloud of earlier irradiated photons. The nonther-
mal bath effectively makes the nanolaser “more quan-
tum” as follows from the entanglement entropy. We ob-
tain self-consistent nonlinear quantum master equation
for the nanolaser density matrix which includes the in-
fluence of both thermal and non-thermal reservoirs. We
find that nonequilubrium and nonlinear effects result in
increase of number of plasmons to the order of magnitude
(the same applies for photon intensity).

We thank A. Vinogradov and Yu. Lozovik for helpful

discussions. The work was funded by RFBR No. 13-
02-91177, 13-02-00579, 13-02-00407, NSF Grant DMR
1158666, Dynasty foundation, the Grant of President
of Russian Federation for support of Leading Scientific
Schools No. 6170.2012.2, RAS presidium and Russian
Federal Government programs.

SUPPLEMENTARY MATERIAL

1. The set of main equation

We wrote in the manuscript the Lindblad equations in
the superoperator form. Here we write down the set of
Lindblad equations explicitly:

d

dt
ρ̂ = −i[ĤJCM, ρ̂]− +

2

τ rada

[1 + 〈â†â〉]

(

âρ̂â† −
1

2
{ρ̂, â†â}+

)

+
2

τ rada

〈â†â〉

(

â†ρ̂â−
1

2
{ρ̂, ââ†}+

)

+

2

τ tha
[1 + 〈nth〉]

(

âρ̂â† −
1

2
{ρ̂, â†â}+

)

+
2

τ tha
〈nth〉

(

â†ρ̂â−
1

2
{ρ̂, ââ†}+

)

+

1

τ radD

[1 + 〈â†â〉]

(

σ̂−ρ̂σ̂+ −
1

2
{ρ̂, σ̂+σ̂−}+

)

+
1

τ radD

〈â†â〉

(

σ̂+ρ̂σ̂− −
1

2
{ρ̂, σ̂−σ̂+}+

)

+

1

τ thD
[1 + 〈nth〉]

(

σ̂−ρ̂σ̂+ −
1

2
{ρ̂, σ̂+σ̂−}+

)

+
1

τ thD
〈nth〉

(

σ̂+ρ̂σ̂− −
1

2
{ρ̂, σ̂−σ̂+}+

)

+

2

τs
(σ̂z ρ̂σ̂z − ρ̂) +

1

τp

(

σ̂−ρ̂σ̂+ −
1

2
{ρ̂, σ̂+σ̂−}+

)

. (12)

This nonlinear Lindblad equation is generalization of the
linear one. The first term corresponds to the interaction
between NP and QD. The second and third terms and
the sixth and the seventh ones describe the dissipation
due to the nonequilibrium photon bath of NP and QD
respectively. Here we assume that 〈nrad〉 = 〈â†â〉. More
accurate justification of this assumption is given in the
main text. The fourth and the fifth terms and the eighth
and the ninth ones correspond to the standard thermal
reservoir dissipation. Finally, the penultimate term de-
scribes the phase destroying processes and the last one
corresponds to the incoherent pumping [14].

2. Discussion

We write in the paper that registering the nonequi-
librium irradiation of photons we can make judgements
about the quantum state of the nanolaser. Below we
make this claim more quantitative. One can detect these
nonequilibrium photons experimentally by the photode-
tectors and find the spectrum of photons, their average
photon number and photon number cumulants. This
information would allow making judgments about the

quantum state of the nanolaser, for example, from the
average number of photons that is proportional to the
average number of plasmons, because of the irradiated
photon number 〈â+â〉 is proportional to the nanoparti-
cle dipole moment intensity. From the photon distribu-
tion function one can extract information about the plas-
mon distribution. Interference experiments can detect
the non-diagonal elements of the photon density matrix.
Then one can try to detect the photon entropy.

Below we comment why the average number of
nonequilibrium photons should be the same as the aver-
age number of surface plasmons on metal NP. The elec-
tric filed operator is proportional to the dipole moment
that in turn is linear operator over the creation (annihi-
lation ) plasmon operators. So more accurate to say that
the average number of nonequilibrium photons should be
proportional the average number of surface plasmons on
metal NP. The coefficient of proportionality is the model
constant: it is fixed by the matrix elements of the dipole
moment.

We give analogy in the paper between Landauer-
Buttiker formalism for quantum electronic transport and
our approach. Initially the Landauer-Buttiker formal-
ism was formulated in such a way that both contacts
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were in equilibrium (though not in equilibrium with each
other), while in our work we have an equilibrated bath
of phonons and nonequilibrium bath of photons. Last
time the Landauer-Buttiker formalism was significantly
developed, see Refs. [27-28]. It is not necessary now
in the Landauer-Buttiker formalism having both termi-
nals equilibrium. The most important is having elec-
tron density matrix in the interaction picture being the
direct product of the terminal density matrices. For
example, consider the following structure: Left termi-
nal – quantum wire – quantum dot — quantum wire –
Right terminal. When the quantum dot is large enough
(coulomb blockade is negligible), the quantum dot can
be considered as the nonequilibrium bath with the elec-
tron distribution function being the linear combination
of electron distribution functions in the leads, see the
review of Blanter and Buttiker. The idea to consider
the quantum dots as the nonequilibrium bath in the
Landauer-Buttiker formalism resulted in the quantum
“circuit theory” theory of transport in quantum circuits,
see, e.g., [28] and the review [27].

We discuss in the text the “pumping value” and the
“threshold value” and say that “the pumping value is
slightly more than the threshold value”. From Lindblad
equation we can obtain the equation for the value of

incoherent pumping D0 =
τσ/2−τp
τσ/2+τp

and from the semi-

classical theory the pumping threshold Dth = 1/ω2
Rτaτσ

corresponding to generation of coherent plasmon. So if
the pumping intensity τp such that D0 < Dth we write
“that the pumping value is less than the threshold value”
and if the pumping intensity τp such that D0 > Dth

we write “the pumping value is more than the threshold
value”.

It is known that the Master equation in the Lindblad
form is derived within the following approximations. The
first approximation is a consequence of the weak-coupling
assumption, which allows one to expand the exact equa-
tion of motion for the density matrix to the second order
with respect to the interaction between the system and
the reservoir. Together with the decomposition of the
density matrix into the system and reservoir parts this
leads to the Born approximation to the master equation.
Below we clerify how this assumption is adequate for the
system with the strong coupling regime between the NP
and QD dipole moments and the second type of reservoir,
i.e. a cloud of the irradiated nonequilibrium photons near

the spacer. Weak-coupling regime assumes that the in-
teraction between system and reservoir is much less than
the frequency of system oscillation. Since the nanolaser
operates at optical frequency, ωSP ∼ 1015s−1, the Born
approximation requires that the interaction constant is
much less than ωSP. It is true for nanolaser interacting
with the thermal bath [30]. In our case, the average num-
ber of irradiated photons does not far exceed unity, so our
effective interaction constant (bare interaction constant
times the average number of photons) is still much less
than ωSP as we have for the case of the equilibrium reser-
voir. And the Born approximation remains true.
The second approximation is the Markov approxima-

tion in which the quantum master equation is made local
in time by replacing the system density matrix at the
retarded time with that at the present time. The rele-
vant physical condition for this approximation is that the
reservoir correlation time is small compared to the relax-
ation time of the system. Below we explain how this ap-
proximation is in accord with our statement that “When
the new photon is irradiated by the nanolaser it finds
itself in the cloud of earlier irradiated photons. The oc-
cupation numbers of the photons in the bath influence on
the rate of the irradiation and on the nanolaser quantum
state.” We can estimate the nonthermal reservoir corre-
lation times. The correlation will be significant between
the photons in the nonequilibrium reservoir that fly the
distance of the order of the nanolaser size. So their cor-
relation time: tcor ∼ lsp/c ∼ 10−15s. The smallest relax-
ation time of the nanolaser is of the order of τa ∼ 10−14s.
Because of the small number of the generated plasmons
this time scale does not significantly change. So the re-
lation tcor ≪ τa remains true.
The system oscillates at optical frequencies that are

much larger than the system-reservoir coupling constant
as we discussed above (it should be noted that the rotat-
ing wave approximation is valid with accuracy ∼ γ2/ω2

where γ is the interaction constant between system and
reservoir and ω is the eigen frequency of the system,
so called Bloch-Ziegert shift). Also we note that the
nonequilibrium nature of the reservoir does not break this
relation because of the small mean plasmon number. So
the terms in the Hamiltonian that do not conserve energy
may be neglected and so we again arrive to the rotating
wave approximation. Another reason: the hottest pho-
tons in the nonequilibrium reservoir have the frequency
of the order of the plasmon frequency and this is large
frequency.
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