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Abstract: Event-activatedbiological-inspired subwavelength

(sub-λ) photonic neural networks are of key importance for

future energy-efficient and high-bandwidth artificial intelli-

gence systems. However, a miniaturized light-emitting

nanosource for spike-based operation of interest for neuro-

morphic optical computing is still lacking. In this work, we

propose and theoretically analyze a novel nanoscale nano-

photonic neuron circuit. It is formed by a quantum resonant

tunneling (QRT) nanostructure monolithic integrated into a

sub-λ metal-cavity nanolight-emitting diode (nanoLED). The

resulting optical nanosource displays a negative differential

conductancewhich controls theall-or-nothingoptical spiking

response of the nanoLED. Here we demonstrate efficient

activation of the spiking response via high-speed nonlinear

electricalmodulation of the nanoLED.Amodel that combines

the dynamical equations of the circuit which considers the

nonlinear voltage-controlled current characteristic, and rate

equations that takes into account the Purcell enhancement of

the spontaneous emission, is used to provide a theoretical

framework to investigate the optical spiking dynamic prop-

erties of the neuromorphic nanoLED. We show inhibitory-

and excitatory-like optical spikes at multi-gigahertz speeds

can be achieved upon receiving exceptionally low (sub-

10 mV) synaptic-like electrical activation signals, lower than

biological voltages of 100 mV, and with remarkably low en-

ergy consumption, in the range of 10–100 fJ per emitted spike.

Importantly, the energy per spike is roughly constant and

almost independent of the incoming modulating frequency

signal, which ismarkedly different from conventional current

modulation schemes. This method of spike generation in

neuromorphic nanoLED devices paves the way for sub-λ

incoherent neural elements for fast and efficient asynchro-

nous neural computation in photonic spiking neural net-

works.

Keywords: nanolight-emitting diodes (nanoLEDs); neuro-

morphic nanophotonic computing; Purcell effect; quan-

tum resonant tunneling (QRT); spiking neural networks;

subwavelength devices.

1 Introduction

Artificial intelligence (AI) systems using computing

algorithms of deep learning neural networks (DNNs) are

emerging rapidly [1]. Despite the truly remarkable

achievements of algorithms of neural networks executing

intelligent, human-like, tasks such as pattern recognition

and decision-making (e. g. AlphaGo [2]), the power budget

involved in running these DNNs in standard von Neumann

computers is growing exponentially [3]. Instead, the hu-

man brain is more than five orders of magnitude more

efficient than all current DNNs [4, 5]. The key difference

relies in the vast connectivity of the brain that takes

advantage of a unique sparse and extremely efficient in-

formation transfer via the action potentials in neurons

– known as “nerve impulses” or “spikes”.

Currently, AI systems rely on threemain generations of

neural networks based on their neuronal functionality [6]:

i) the McCullock-Pitt perceptron which performs thresh-

olding operation resulting in a digital output; ii) DNN

which adds continuous nonlinearity to the neuronal unit

enabling to havemultiple hidden layers between input and

output; and iii) spiking neural network (SNN) that uses

neuronal units that exchange information via spikes. SNNs

use the timing of the spikes (binary events) to process
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information whereas the neuronal unit is only active when

receiving or emitting spikes. This reduces substantially the

energy over a given period of time. It is estimated that in the

brain a consumption of only ∼104 adenosine triphosphate

(ATP) molecules is needed to transmit a spike (bit) at a

chemical synapse [7], equivalent to ∼1 fJ/bit at 32 bit/s.
Neuromorphic hardware elements for spiking emula-

tion have been addressed using electronics (e. g., True-

North using complementary metal-oxide-semiconductors

[8]) but typically operate at low speeds (∼kHz) and

consume several pJ/spike. For low energy, sub-pJ/spike,

synaptic-like functionalities, non-volatile materials such

as resistive random-access memory, phase-change mem-

ory and spin-transfer torque magnetic random-access-

memory offer alternatives to silicon (see [9–11] for a

comprehensive review). Despite the remarkable pro-

gresses, fan-out and parasitic constraints of electronic

approaches limit the power budget for scalable solutions.

In the context of photonics, demonstrations of optical

neural networks using coherent light-based DNN acceler-

ators [12, 13] and reservoir computing [14, 15], take

advantage of the high bandwidth-distance products, lower

electromagnetic interference and lower power consump-

tion of optical interconnects [16]. Although these archi-

tectures do not use spike-based learning they are capable

of remarkable light-based, human-like, recognition tasks

under supervised learning [15]. In order reproduce the

powerful computation of biological neurons at lower en-

ergy cost there has been numerous implementations of

spike-based photonic neurons using graphene excitable

lasers [17], distributed feedback (DFB) lasers [18], vertical-

cavity surface-emitting lasers (VCSEL) [19, 20], time-

delayed optoelectronic nanoscale resonators [21], micro-

pillar lasers [22], or phase change materials [23] to name a

few (for an extensive review see [24]). Nevertheless, the

large footprint (>100 μm2) of most of these elements is

imposing a bottleneck for compact and efficient optical

SNNs. A key driver for scalable SNNs is aggressive scaling-

down of existing photonic elements, specifically the opti-

cal source, to the sub-μm scale for efficient (<10 fJ/spike),

fast (>10 GHz) and miniaturized solutions. However, the

development of such a subwavelength-scale (sub-λ) light

source, well-matched for brain-like photonic spike-based

computing, remains a challenge.

In order to reduce the size of a light source well below

the micrometer scale, a plethora of nanolasers have been

proposed in the last 15 years using photonic crystal cavities

[25–27], metallic-cavity cavities [28] and plasmonic cavities

[29] (for an extensive review see [30, 31]), but the unlocking

of their potential for neuromorphic computing remains

unexplored. However, for short distance intra-chip in-

terconnections and brain-like asynchronous neural

computation, lasing is not a main requirement turning

incoherent nanolight-emitting diode (nanoLED) sources as

excellent alternatives to nanolasers. Differently from

nanolasers, nanoLEDs do not require a lasing threshold

and therefore do not need a high-Q cavity, resulting in

much lower current operation requirements [32]. Impor-

tantly, in recent years several advances have been made to

increase the efficiency of nanoLEDs towards >10% which

include Purcell enhancement of radiative emission [33–35],

suppression of nonradiative surface effects via chemical

passivation treatments [36], and efficient waveguide-

coupling methods [37, 38]. NanoLEDs have been already

demonstrated for a photonic crystal (PhC) LED [39], a

plasmonic LED [40] and a waveguide-coupled nanoLED

[37], showing output power levels in the order of tens to

hundreds of pW for the PhC case and up to 300 nW for the

waveguide-coupled case. Nonetheless, all these reported

LEDs are “linear” devices not featuring non-linear spiking-

like activation in the form of short pulses, which is crucial

to reproduce the biological neural dynamics, as already

shown for the case of optically pumpedmicrolasers [22]. To

overcome this, a circuit using a neuron-like super-

conducting-nanowire single-photon detector driving an

LED has been proposed for cryogenic neuromorphic

computing [41]. However, the low-temperature re-

quirements and slow speed (∼MHz) limited by the spon-

taneous emission rate (∼ns), limits this approach for

efficient, high-speed and compact solutions.

In this work, we propose and theoretically analyze a

novel sub-λ nanophotonic spiking neuron circuit. It is

based on a metal-cavity neuromorphic nanoLED for event-

driven neural computation. The semiconductor epitaxial

heterostructure of our neuron-like unit is formed by a

quantum resonant tunneling (QRT) nanostructure mono-

lithic integrated in a double heterostructure LED. The QRT

enables control of the injection of electrons into the active

region of the LED. This provides an intensity modulated

nanoLED with a voltage-controlled negative differential

conductance (NDC). The activation of the all-or-nothing

optical spiking response (called excitable) is achieved via

high-speed nonlinear electrical modulation of the

nanoLED. Importantly, the sub-λmetal-cavity offers strong

light–matter interaction at the nanoscale via the Purcell

effect [30], which scales inversely with the mode volume

[31, 38], leading to faster and more efficient light emission

and of advantage for high-bandwidth optical spiking. Us-

ing a model that combines the dynamical equations of the

circuit and rate equations, and using realistic parameters
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of a nanodevice that takes into account material parame-

ters, nonradiative effects and size scaling, we analyze the

characteristics of the fired optical spikes. We conclude that

for optical nanosources with ∼0.01 μm2 mode volume,

intensity modulated optical spiking with sub-nanosecond

refractory time responses can be achieved upon receiving

exceptionally low (sub-10 mV) incoming synaptic-like

activation signals, close to the shot-noise limit. This is

lower than the amplitude of 100 mV in biological coun-

terparts and much smaller than the typical switching

voltages (0.2–2 V) of memristive devices [42]. Notably, we

conclude the optical energy per spike is roughly constant

and therefore, at some extent, almost independent of

the incoming modulating frequency signal, a situation

markedly different from standard current modulation

methods of light sources [31, 37, 43]. This provides a new

modulation scheme in nanoLEDs featuring all the key

requirements of spike-based sub-λ neuromorphic optical

computing.

2 Key ingredients of neuromorphic

nanoLEDs

2.1 Low-dimensional quantum resonant
tunneling (QRT) nanostructures

Semiconductor QRT nanostructures use a single or multi-

ple double barrier quantum well (DBQW) of around 10 nm

thick in the epitaxial growth direction for 1D carrier

confinement and filtering [44]. The energy passband-like

filtering leads to a current-voltage (I-V) characteristic dis-

playing a region of NDC that persists at room-temperature

from direct current (DC) up to terahertz [44]. These struc-

tures when employing a single DBQW are widely known as

resonant tunneling diodes (RTDs), and can have cut-off

frequencies up to 1.9 THz [45]. Remarkably, the theoretical

cut-off frequency of single DBQW-QRTs is limited by the

tunneling escape time in the quantumwell [44]. As a result,

the quantum resonant tunneling effect and NDC charac-

teristic has been exploited in awide-range of electronic and

photonic devices, including THz quantum cascade lasers

for gas sensing [46], THz emitters and detectors for imaging

[47], and communications beyond 5G (world record oscil-

lation at 1.92 THz [45]), single-photon switches and de-

tectors [48, 49], electroluminescence in III-nitride LED

sources [50], III-V unipolar bistable QRT [51], bipolar

QRT-based LEDs [52–54] and lasers [55, 56], near-IR

photodetectors for optical communications [57], and mid-

IR detectors for sensing [58], to name only a few.

For neuron computation, early works evoked QRT-

based devices as potential nanoelectronic candidates for

cellular neural networks as a form of threshold logical

gates [59]. In the context of photonics, early works on n-

type (unipolar) QRT nanostructures integrated with highly

photo-sensitive absorption layers of interest for synaptic-

and autaptic-like bio-neural functionalities have been

exploited using either bistable or excitable regimes to

enable stochastic resonance [60], spiking [61] or autaptic

(self-feedback) neuron-like signaling [21]. Despite these

works, themonolithic integration of QRT nanostructures in

light-emitting configurations at the nanoscale for ultrafast

and energy-efficient spike-based sub-λ neuromorphic

functionalities remains unexplored.

2.2 Neuromorphic nanoLED device

The sub-λ nanophotonic spiking neuron unit proposed

here is formed by a quantum resonant tunneling (QRT)

nanostructure monolithic integrated in a double hetero-

structure LED, Figure 1A. The LED section consists of an

inverted p-i-nAlGAs/GaAs/AlGaAs double heterostructure.

The active region is made of GaAs for emission at ∼850 nm.

Depending on the target emission, alternative active ma-

terials can be considered, namely quantum wells or

quantum dots. The surrounding layers of AlGaAs (30% Al)

with a lower refractive index are included for light

confinement in the active region. The QRT section, crucial

for the neuromorphic functionality, consists of a nanolayer

formed by a lower band gap GaAs material, the well,

sandwiched between two thinner layers of a larger

bandgap AlAsmaterial, the barriers. The QRT ismonolithic

integrated in the cathode (n-type region) section of the

inverted p-i-n LED, Figure 1A. This minimizes the impact of

the QRT on the LED optical performance, as previously

considered in the monolithic integration of large area RTD-

lasers [55, 56]. This is different from the situation where the

QRT is embedded in the active region which shows poor

performance at RT mainly attributed to the inefficient

resonant tunneling hole injection and other hole current

contributions [52, 53]. The QRT enables control of the in-

jection of electrons into the active region of the LED. This

provides a nanoLEDwith voltage-controlled NDC, red solid

line in the top panel of Figure 1B, and is markedly different

from the “linear” DC current-voltage characteristics of

conventional LEDs (black dashed line). As a result, the all-

or-nothing spiking (pulse-like) dynamic properties of

B. Romeira et al.: NanoLEDs for neuromorphic computing 4151



neurons can be reproduced, with refractory time responses

limited only by the circuit's RC constant, lower panel of

Figure 1B, where R is the circuit resistance and C is the

circuit capacitance. We note despite the small sizes

considered here for the cross section of the nanodevices

(∼200 nm), Figure 1C, one can still assume the energy of the

QRT-based nanoLED is quantized only in the direction of

the current flow, whereas other quantization effects due to

the size of the structure in other directions will be negli-

gible.

Lastly, to achieve a sub-λ nanophotonic neuron with

dimensions approaching the sub-100 nmscale, Figure 1C, a

nanopillar metallic cavity is considered. Although here we

focus our analysis in metallic cavities we note that this

configuration could be exploited, in principle, to other

cavity configurations such as PhC or plasmonics. In the

metal-cavity, the pillar is surrounded by a dielectric cap

material (typically made of SiO2) and then coated with

metal (usually Au or Ag). The metal-cavity envisioned for

the neuromorphic nanoLED is similar to the one first re-

ported for a waveguide-coupled nanoLED operating at

room-temperature [37]. This enables LED devices with a

small footprint and light confinement approaching the

sub-100 nm scale. Crucial for the firing of fast spikes, the

enhancement of the radiative emission in the cavity mode

(also known as the Purcell effect [33]) allow us to poten-

tially decrease the refractory time response of the optical

spikes down to the 100 ps timescale. As will be discussed,

the main challenges are related with the internal efficiency

of the LEDs at room-temperature due to nonradiative

effects. However, recent work suggests that sub-micro-

meter nanopillars can achieve exceptional large extraction

efficiencies [62], which would strongly benefit the output

power of these sources, even in the situation of unavoid-

able large nonradiative effects.

2.3 Theoretical model

Here, we describe the theoretical model to analyze the

operation of the sub-λ neuromorphic nanoLED. It com-

bines the dynamical equations of the circuit, Figure 1B

(lower panel) and rate equations that takes into account the

Purcell enhancement of the spontaneous emission. In

particular, the rate equations model describing the

nanoLED follows a similar formalism already introduced in

[34]. However, differently from assuming a typical “linear”

DC current input driving the LED, in our case the neuro-

morphic nanoLED is driven by an N-shape nonlinear

voltage-controlled current, i(V), top panel of Figure 1B.

Firstly, the dynamical equations for the circuit, lower panel

of Figure 1B, allow us to obtain the circuit current, I, and

voltage, V, as a function of time:

dV

dt
� I − i(V)

C
(1)

dI

dt
� Vdc + Vac − RI − V

L
(2)

The parameters that enter these equations are as fol-

lows. The parameter Vdc is the circuit bias voltage, R and L

Figure 1: General description of the sub-λ nanophotonic neuron. A Schematic of the semiconductor epitaxial heterostructure (not to scale). It

is formed by a QRT nanostructure monolithic integrated in a AlGaAs/GaAs/AlGaAs light-emitting diode epitaxial heterostrucuture. In the inset

is shown the 10-nm thick QRT AlAs/GaAs/AlAs nanostructure in the n + n n + section. B (Top panel) Comparison of the I-V curves between a

standard nanoLED (dashed line) and a neuromorphic nanoLED (solid red line). The neuromorphic nanoLED features an i(V ) with a voltage-

controlled NDC. (Lower panel) Schematic of the circuit. The diode is modeled by a nonlinear voltage-controlled current source, i(V ), in parallel

with the equivalent capacitance, C. The resistance, R, and inductance, L, are the equivalent lumped elements of the LED and electrical

connections. The circuit includes a DC voltage source, Vdc, and a voltage time-dependent signal, Vac, for synaptic-like activation of the all-or-

nothing spiking response. C Schematic of the sub-λ nanophotonic neuron in a 200 nm cross section nanopillar using a metal-dielectric

configuration. Inset on top is shown the schematic representation of a biological neuron.
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are the equivalent resistance and inductance of the circuit,

respectively. The parameter Vac represents the voltage

time-dependent activation signal that provides an

incoming synaptic-like signal, in the form, for example, of

a pulse signal, to trigger the spiking response. As shown in

Figure 1B (lower panel), the LED I-V characteristic is

modeled by an N-shape nonlinear voltage-controlled cur-

rent source, i(V), in parallel with the LED equivalent

capacitance, C. The parameter i(V) is an analytical func-

tion which describes the I-V of the neuromorphic nanoLED

mainly defined by the current transport in the QRT nano-

structure given by [61, 63]:

i(V) �A1ln [1 + e(B1−C1+n1V)q/kBT

1 + e(B1−C1−n1V)q/kBT
][π

2
+ tan−1(C1 − n1V

D1
)]

+ H2(en2qV/kBT − 1)
(3)

where q is the electron charge, kB is the Boltzmann con-

stant, and T the temperature of operation (here assumed

T � 300 K). In Eq. (3), the first term (with the multiplying

parameterA1) describes the current flow through themost

favorable resonant state of the DBQW using the effective

mass approximation theory [64]. This describes the first

positive differential conductance (PDC) and the NDC re-

gions of the neuromorphic nanoLED. The second term

(with the multiplying factor H2) is the familiar diode I-V

characteristic and describes the current above the valley

region, i.e. the second PDC region. In the top panel of

Figure 1B is displayed a representative i(V) curve given by
Eq. (3). We note that from the dynamical analysis

perspective, simplified versions of Eq. (3) [65, 66] could

be employed to model the nonlinear I-V characteristic of

the neuromorphic nanoLED.

The nanoLED’s rate equations for carrier number, N,

and photon number, Nph, employed to describe the elec-

trically modulated nanocavity LED is given by:

dN

dt
� ηii(V)

q
− Rnr − Rl − Rsp, cav (4)

dNph

dt
� Rsp, cav −

Nph

τp
(5)

where ηi the injection efficiency, Rnr � (υsA/Va + CAn
2)N

describes the rate of nonradiative recombination, that ac-

counts for the surface recombination (described by the

surface velocity, υs, and by the surface area of the active

region,A), and for Auger recombination, CA, andwhere the

n is the carrier density such that n � N/Va, and Va is the

volume of the active region. The term Rsp, cav describes the

spontaneous recombination rate term in a single-mode

resonant cavity [67], and Rl describes the radiative decay

into all other modes (or leaky modes). The term Nph/τp

denotes the photon escape rate determined from the cavity

Q-factor (where τp � λ0Q/2πc is the photon lifetime and λ0

is the wavelength in free space).

Assuming inhomogeneous broadening of the elec-

tronic states for a bulk emitter, the photon creation rate by

spontaneous emission for homogeneously broadening

two-level atom in a resonant cavity can be derived from the

Fermi’s Golden rule [67]:

Rsp,cav �
π

ħ ε0εra
d
2
if

Vaωcav

V
∫
∞

ωg

ρj(ωvc)L(ωcav−ωvc)f c(1− f v)dωvc

(6)

We note that Eq. (6) assumes that the emitter spectral width

is broader than the single cavity mode spectral width for a

cavity centered at the peak emission. This is typically the

case for thermally broadened bulk activematerials and has

been recently extensively analyzed for bothnanolasers and

nanoLEDs [34, 67]. It is also the case of our neuromorphic

nanoLED operating at room-temperature. In Eq. (6), ε0 is

the dielectric permittivity of free space, εra is the relative

dielectric constant in the active material, dif is the average

dipole moment, V is the cavity mode volume close to the

physical cavity volume, ωcav is the cavity mode, ρj(ωvc) is
the joint density of states, L(ωcav − ωvc) is the homoge-

neous broadening lineshape, and f c, f v are the Fermi dis-

tribution functions calculated at the conduction and

valence energies, respectively. Since we are operating in

the regime of broad emitters (bulk emitter) as compared to

the cavity linewidth and we consider the realistic situation

of an active material consisting of an atomic ensemble of

incoherent (wide) solid state emitters at room-temperature,

dynamical effects of the microscopic polarization should

not play a role in the dynamic properties of the nanoLEDs

analyzed here.

For simplicity of the numerical analysis, the total

spontaneous emission in standard textbooks is often

approximated by the bimolecular recombination coeffi-

cient, B, of the active semiconductor material [68, 69]. In

this situation we can approximate the total spontaneous

emission as γ(n)Bn2, where γ(n) is the carrier-dependent
emission enhancement factor. The termRsp, cav can now be

defined as γm(n)Bn2, where γm(n) is the spontaneous

emission enhancement which depends, among other

factors, on the mode volume describing the modification

of the radiative emission rate in the presence of a small

cavity. A similar approach has been already shown to

describe reasonably well the static properties of nano-

lasers [28]. Typically, assuming a fixed value of the

B. Romeira et al.: NanoLEDs for neuromorphic computing 4153



radiative emission rate in the leaky modes, this results in

a modification of the spontaneous emission factor, β,

calculated as β � γm(n)/γ(n). The nanoLED section of the

theoretical model now reads:

dN

dt
� ηii(V)

q
− (υsA

Va

+ γ(n)Bn + CAn
2)N (7)

dNph

dt
� γm(n)BnN −

Nph

τp
(8)

For the nanoLEDS and range of parameters analyzed

here the bimolecular recombination approximation de-

scribes reasonablywell the expected static properties of the

nanoLEDs predicted by a full model using Rsp, cav [34], as in

our analysis we consider spontaneous emission enhance-

ment parameters, γm(n), in the range of values as a result of
the reduction of the mode volume predicted by the full

model using Rsp, cav.

In what follows, departing from the dynamical equa-

tions of the circuit, (1), (2), the rate-equation model of the

nanoLED, (7), (8), and the nonlinear voltage-controlled

current source, (3), we examine the various scenarios of

operation of neuromorphic micro- and nanoLEDs in terms

of efficiency, speed limits and optical spiking dynamic

properties and compare their performance with conven-

tional current modulation schemes of micro- and nanoLED

sources.

3 Static and spiking dynamics of

neuromorphic nanoLEDs

3.1 Static nonlinear characteristics

In this section, our aim is to analyze the static character-

istics of metal-cavity pillar-based LED structures, mono-

lithic integrated with a QRT nanostructure, while

considering realistic operation at room-temperature. We

assume a practical device showing a representative I-V

curve with similar features as the ones reported for a sub-

μm nanocolumn resonant tunneling device (not consid-

ering the LED section) [70]. The I-V curve given by Eq. (3) is

shown in Figure 2 and features a peak current of ∼100 μA, a

peak-to-valley-current ratio (PVCR) ∼4 and an NDC region

with a voltage range of about 50 mV. This I-V takes in to

account the voltage turn-on of the inverted p-i-n junction of

∼1.5 V obtained from SILVACO simulations of the nanoLED

portion of the full device [71]. We note that for the material

system analyzed here, I-Vs with PVCRs up to six at room-

temperature could be obtained using improved design of

the DBQW structure [72].

For practical analysis and direct comparison we as-

sume two representative neuromorphic LED structures

with identical circuit parameters and I-V characteristics.

The neuromorphic nanoLED is a disk metal-cavity nano-

pillar with a d � 200 nm cross-section, Figure 1C, where d is

the diameter of the semiconductor pillar, and themicroLED

has a similar disk geometry with d � 2 µm. Since both the

microLED and nanoLED rely on the same active material,

all the remaining physical parameters were kept constant

in both cases (including bimolecular recombination and

Auger recombination). We assume a GaAs active material

(thickness of 300 nm) using realistic room-temperature

bimolecular coefficient, B = 1.7 × 10−10 cm2 s−1, Auger coef-

ficient, C = 9.8 × 10−29 cm6 s−1, and surface velocity recom-

bination of 105 cm s−1. We assume an effectivemode volume

scaling keeping a fixed Va/V � 0.75, identical to the

nanopillar cavities analyzed in [67]. This corresponds to a

mode volume V∼0.01 μm2 for the 200 nm diameter disk

nanopillar and a mode volume of V∼1.2 μm2 for the 2 μm

diametermicropillar. For these sizeswe calculate a value of

the spontaneous emission enhancement of γm∼0.58 for the
nanoLED, and of γm∼0.01 for the microLED at a carrier

density of 2 × 1018 cm3 s−1. For simplicity of analysis, the

spontaneous emission enhancement is assumed constant

although this value can vary with current injection, as

analyzed in [67]. We note this represents the best case

scenario of spontaneous emission enhancement and does

not take into account non-parabolic bands of the bulk

material, or spatial variation of the field in the active region

which can further alter the mode volume and reduce the

Figure 2: Light-current-voltage characteristics of the neuromorphic

nanoLED showing the V-I nonlinear voltage-controlled current curve,

i(V) (yellow solid trace), and the P-I curve (red-dashed trace). The i(V )

with a region of NDC enables voltage induced on-off current

switching upon an incoming synaptic-like signal resulting in an all-

or-nothing neural spiking output in the optical domain.
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respective radiative enhancement, particularly in the case

of sub-μm devices [67]. However, our goal is not to provide

an extensive model that includes all relevant effects but

rather an intuitive physical description of practical neu-

romorphic nanoLEDs with specific focus on their optical

spiking dynamic properties. Lastly, we assume for the

nanoLED a low-Q factor, Q � 100, resulting in a photon

lifetime of τp � 45 fs, typical of metal-cavities, and assume

lower optical losses for the microLED resulting in a photon

lifetime of τp � 450 fs. In both situations, we use λ0 � 850

nm.

For analysis the calculated photon number in (7), (8) is

converted to an optical output power using:

P � Nphηhc

τpλ0
(9)

where h is Planck’s constant, and η the coupling efficiency.

For simplicity, both injection and coupling efficiencies

were kept constant, and set equal to ηi � η � 1.We note this

represents the best case scenario of unity efficiency. Lastly,

in our analysis we do not take into account temperature

heating effects, which can further reduce the output power,

particularly at high injection levels.

Assuming the parameter values described previously,

Figure 2 displays the calculated P-I curve for the nanoLED

device. For current injection levels∼75μA it displays a power

level ∼1 μW. In typical electrically current modulated LED

sources this corresponds to an optical energy per bit close to

1 fJ at 1 Gb/s.Wewill use this value as a reference to compare

the performance of our LED sources considering that in a

practical application the detection of the emission from

nanoLED sources requires thermal noise-limited receivers

which typically require at least 1 fJ/bit.

Figure 3 displays the calculated P-V characteristics

showing the optical power versus the injected voltage for

the neuromorphic:AmicroLED andB nanoLED. The curves

were simulated assuming a large value of surface recom-

bination of υs � 105 cm s−1, typical of the GaAs material at

room-temperature (solid line), and a low surface value of

surface recombination of υs � 104 cm s−1, for the case of

improved passivation [73]. In both microLED and nanoLED

cases, as the voltage increases from zero, light is emitted as

expected after the turn-on of the diode. For a voltage in-

crease up to the Vpeak ∼ 1.7 V, a clear increase of the optical

power output is observed as a direct result of the increase

of current until a maximum is reached. This current

(Ipeak = 104 μA) is themaximum current in the active region

in this voltage range as a result of the tunneling injection of

carriers allowed by the QRT nanostructure. In the case of a

further increase of the voltage until the valley voltage

(Vvalley), the light output decreases and a pronounced

decrease of the emitted power is observed in the region of

NDC until the valley current (Ivalley) is reached. Clearly the

optical power follows an N-shape profile which changes

nonlinearly with voltage. For the case of themicroLED the

peak-to-valley-optical-power (PVOP) ratio is 14 at υs �
105 cm s−1 and 5.3 at υs � 104 cm s−1, i.e. larger than the

PVCR∼4 of the I-V characteristic, Figure 2. Similar PVOP

ratios are obtained in the case of the neuromorphic

nanoLED, Figure 3B. The key difference lies in the output

power levels achieved. While microLEDs in the current

and voltage range analyzed here are limited to power

levels well below 1 μW, nanoLEDs show potential to

operate >1 μW, specifically when surface recombination

can be strongly suppressed. The increased efficiency is

directly related to the increase of the spontaneous emis-

sion rate in the mode in the case of ultrasmall cavities,

and has been extensively analyzed in [34] for the case of

InGaAs micro- and nanoLEDs. We note however that

reaching power outputs of ∼10 μW at RT in practical de-

vices, as shown in Figure 3B, remains an experimental

challenge due to Auger recombination and large current

density levels which may result in strong heating effects.

In summary, sub-λ neuromorphic LED devices taking

advantage of the radiative Purcell enhancement, combined

with low surface passivation, can potentially operate at

room-temperature with on-chip optical power levels >1 μW

(corresponding to ∼5000 photons assuming gigahertz per

second at the target wavelength), while showing large

peak-to-valley-optical-power ratios of advantage for the

neuromorphic optical spiking functionality.

3.2 Gigahertz-speed modulation
bandwidth

Here, we analyze the modulation bandwidth results for the

neuromorphic microLED and nanoLED devices as a func-

tion of the voltage-controlled current levels. We analyze

the same voltage range as described previously for the case

of the static nonlinear characteristics. To obtain the mod-

ulation bandwidth, we perform a small-signal analysis of

Eqs. (7), (8) with a similar procedure as presented in [69],

assuming as input the nonlinear voltage-controlled current

curve given by Eq. (3). This allows us to calculate the 3-dB

modulation frequency as a function of the voltage,

Figure 4. As previously considered, here we investigate the

effect of the surface recombination in the modulation

speed of the devices. We have excluded from the small-

signal analysis the region of NDC since it lies outside the

steady-state DC points where other dynamical regimes can

occur, namely oscillatory behavior.
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The simulated curves of the small-signal 3-dB band-

width versus voltage are shown in Figure 4. In the case of

large surface recombination velocity values (solid lines) a

maximum modulation bandwidth ∼0.34 GHz is achieved

for the microLED when operating at the peak voltage

∼1.7 V, Figure 4A. In the voltage range analyzed here the

modulation bandwidth does not change substantially

from its maximum value, even at lower voltage (current)

levels. In this case the effect of the surface recombina-

tion dominates over the radiative recombination rate.

Effectively, this enables to operate the devices faster,

even at low current injection levels. In the case of a low

surface velocity of 104 cm s−1 a highly nonlinear 3-dB

frequency plot (dashed curves) is obtained. This is as a

result of the nonlinear I-V input which substantially

modifies the current as a function of the applied voltage.

In this case, the modulation bandwidth between the

peak and valley is reduced from 150 to 70 MHz. This is a

result of the reduction of the current injection and

consequent lower radiative rate in the case of low sur-

face recombination.

We now analyze the case of the nanoLED, Figure 4B.

Assuming a large surface recombination (solid line) a 3-dB

frequency of 3.75 GHz can be achieved at the peak voltage

∼1.7 V. Assuming the modulation bit rate is 1.3 the 3-dB

small signal bandwidth, this corresponds to a modulation

bandwidth close to 5 GHz. As described for the microLED,

in the case of a low surface recombination (dashed curve)

we obtain a highly nonlinear 3-dB frequency plot (dashed

curves) due to the nonlinear I-V input. In this case, the

modulation bandwidth at the peak voltage is ∼5 GHz while
in the valley region the modulation bandwidth is ∼1.7 GHz.
Effectively, neuromorphic nanoLEDs benefit from the

Purcell enhancement of the radiative emission with po-

tential to support multi-gigahertz speeds for optical spike

Figure 3: Simulated P-I nonlinear characteristics of the

neuromorphic AmicroLED, and B nanoLED devices. In all curves, the

solid lines correspond to a value of surface recombination 105 cm s−1

and the dashed lines to 104 cm s−1. The vertical shadow represents

the NDC corresponding to the voltage region where the DC current

decreases which leads to a pronounced N-shape characteristic of

the emitted optical power.

Figure 4: Simulated 3-dB bandwidth versus voltage for the

neuromorphic AmicroLED, and B nanoLED devices. In all curves, the

solid lines correspond to a surface recombination of 105 cm s−1 and

the dashed lines to 104 cm s−1. The vertical shadow region represents

the NDC corresponding to the voltage region where the DC current

decreases.
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modulation. For the nanoLED cases analyzed here, we note

that in the peak region the 3-dB variation is not substantial

for both low and high-surface recombination cases, while

the emitted optical output is well above 1 µW in both sce-

narios, Figure 3B. Therefore, operating the neuromorphic

nanoLEDs in the peak current (where nonradiative chan-

nels are already saturated) seems to provide a good

compromise between emitted power and speed for both

low and large surface recombination values, although as

analyzed next the fired spikes would correspond to optical

downward spikes.

3.3 Optical spiking dynamic properties

In what follows, departing from the dynamical equations of

the circuit, (1), (2), the rate-equation model of the nanoLED,

(7), (8), and the nonlinear voltage-controlled current source,

(3), we examine the dynamic spike response of the nanoLED

via high-speed nonlinear electrical activation. Here we focus

our analysison the activation response for theneuromorphic

nanoLED case considering its potential to operate >1 GHz.

For this purpose, we assume for the electrical circuit pa-

rameters of the nanoLED, lower panel of Figure 1B, an RC

time constant of τRC � 310 ps, assuming R � 100 Ω in the

best scenario of a low resistance device [74]. The sub-ns RC

time constant is within the typical modulation bandwidth of

the nanoLED analyzed here, see Figure 4B. We note this RC

time can be realistic achieved in a practical device since it is

well above 100 ps, as typically found in state-of-the-art high-

speed optoelectronic circuits. Notably, the total dissipated

energy of our nanocircuit diode, E � CV2, can be extremely

low. As an example, for the case of a 2 μm2 device resonant

tunneling-basedmicroLEDdevice (assuming a 2.8 fF/μm2 for

QRT devices [75] and a 2 V operation), the estimated dissi-

pated energy is ∼22 fJ. Lastly, we assume a 3-dB cutoff

frequency, f 3dB, approximately set by the refractory time,

τref � f −13dB � 2π




LC

√
� 440 ps, so that τRC < τref , i.e. the

neuromorphic nanoLED can receive electrically modulated

signals at speeds faster than the frequency set by the re-

fractory time. In our circuit, the 3-dB cutoff frequency,

f 3dB � 1/2π




LC

√
, is adjusted by the design of the on-chip

circuit transmission line, L.

For numerical analysis, we assume the best case

scenario of a nanoLED with a low surface recombination

and consider operation in a stationary quiescent point

for the following DC bias: (a) vicinity of the valley vol-

tage (V = 1.735 V), and (b) vicinity of the peak voltage

(V = 1.722 V). In both situations, we assume a synaptic-

like weak (sub-10mV) external electrical stimulus, which

forces the bias point out of stable equilibrium. Figure 5A

shows the traces of the negative voltage pulses that

activate optical upward spikes – excitatory-like signals –

and Figure 5C shows the positive voltage pulses that

activate optical downward spikes – the inhibitory-like

signals. In both scenarios, the shortest incoming stim-

ulus consists of a pulse width of 450 ps (panel (i)), i. e.,

larger than τRC. This corresponds to a sub-fJ electrical

pulse activation with a value close to the typical shot-

noise receivers (∼0.13 fJ/bit) [68]. Remarkably, this en-

ables activation of the spiking response using sub-10 mV

pulses, Figure 5, which is lower than the amplitude of

50–120 mV in biological counterparts and even much

smaller than the typical switching voltages (0.2–2 V) of

memristive devices which are promising candidates to

emulate biological computing [42]. We note the energy of

the incoming stimulus for triggering the all-or-nothing

(excitable) spiking response depends on the selected bias

quiescent voltage. When the bias approaches the NDC

region, the energy required to deterministically fire a

spike reduces accordingly, as analyzed in [61, 76].

In the scenario in the valley at V = 1.735 V, panel (i) of

Figure 5AandB,when the input remains belowa threshold

value, here at −5mV (dashed red line), the output results in

a weak linear response in current that is transformed into a

similar quasi-linear optical output, see panel (i) of

Figure 5B – this is similar to the standard case of an in-

tensity modulated LED driven by current. When the nega-

tive voltage goes above the threshold value of −5 mV, the

neuromorphic nanoLEDfires a strongly nonlinear response

consisting of an optical upward spike – the excitatory-like

signal. This is a result of a valley-to-peak current switching

induced by the voltage input. An opposite output is ach-

ieved in the scenario in the peak at V = 1.735 V, panel (i) of

Figure 5C, D. Here the voltage input induces a peak-to-

valley current switching resulting in an intensity modu-

lated optical downward spike – the inhibitory-like signal.

We now analyze the remaining properties of the fired

upward and downward optical spikes. Provided that the

voltage is above the threshold value, the duration in time of

the input pulse is less relevant for the characteristics of the

output spike. This case is exemplified in panels ii) of

Figure 5B, D for three incoming pulses (Figure 5A, C) of

8 mV with a duration of 450 ps, 650 ps and 800 ps. Here,

one can appreciate that a longer stimulation leads to an

optical spike featuring similar amplitude and full width

half maximum (FWHM) of ∼320 ps. Lastly, when the

duration of the input pulse is larger than the so-called re-

fractory time, multiple optical spikes can be fired. This

scenario is displayed in panel iii) of Figure 5B, D showing

two optical spikes firedwith a time period corresponding to

the lethargic time, here ∼650 ps.We notice that for realistic
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operation, the nanoLED excitable spiking response pre-

sented here uses incoming pulses of similar duration as the

lethargic time of the neuromorphic nanoLED system. A

more rigorous definition of all-or-nothing excitable

response calls for employing triggering events that are

typically much shorter than the lethargic time [77]. In this

regard, it is important to mention that our system presents

a type II scenario with Fitzhugh-Nagumo-like canard so-

lutions, different from other optical systems, like for

example an injected laser, which is a type I via a saddle-

node on invariant circle scenario. Independently of the

different dynamics involved, an obvious advantage of our

neuromorphic nanoLEDs is that lasing is not needed to

operate with such spiking responses.

In what follows, we summarize the operation of the

neuromorphic nanoLED analyzed in Figure 5D in terms of

electrical and optical energy per spike and compare with

conventional current modulated (non-spiking) micro- and

nanoLED sources. Figure 6 plots the electrical energy as a

function of the optical energy per bit for received time

duration of the bits ranging from 100 ns to 100 ps. The

diagonal lines represent the operation of the LEDs in a non-

spiking regime, that is, in a standard current modulation

LED scenario operating in the vicinity of the valley voltage,

here V = 1.735 V. The optical energy is calculated as P ⋅ T,
where T is the bit duration, while for the electrical energy

we assume I ⋅ V ⋅ T. In all cases the diagonal curves were

only plotted in the regions where the modulation band-

widths are larger than the corresponding bit rate, Figure 4.

The dashed lines represent the case of a large surface

recombination while the solid lines represent the best case

scenario of a low surface recombination. Clearly, the

analyzed microLEDs (blue traces) are limited to modula-

tion bandwidths well below 1 GHz and require >100 fJ/bit.

Remarkably, nanoLEDs (red traces) are suited for operation

in the range 10–100 fJ/bit atmulti-gigahertz speed. There is

however a compromise between electrical energy and op-

tical energy per bit produced. This is seen in the case of a

low surface recombination (red dashed line) where energy

consumption close to 10 fJ/bit can be achieved but the

optical energies produced are below 1 fJ/bit.

We now analyze the operation of the neuromorphic

nanoLED, also operating in the vicinity of the valley voltage.

Assuming a scenario of continuous firing of optical spikes so

that P is the average optical power output between the peak

Figure 5: Optical spiking dynamic response of the neuromorphic

nanoLED via high-speed nonlinear electrical (sub-10 mV) activation

assuming a low surface recombination value. All-or-nothing

excitatory (B) and inhibitory (D) optical spiking responses to

incoming synaptic-like negative (A) and positive (B) voltage

activation signals, respectively. The dashed red lines in A and C

indicate the threshold level above which all-or-nothing spiking

response is triggered.

Figure 6: Electrical energy as a function of the optical energy per bit

mapped for received time duration of the bits ranging from 100 ns to

100 ps. The diagonal lines are the values for themicro- and nanoLEDs

in a non-spiking regime, that is, in a standard current modulation

scenario assuming operation in the vicinity of the valley voltage at

1.735 V. The dashed lines represent the case of a large surface

recombination of 105 cm s−1 while the solid lines represent the best

case of a low surface recombination, 104 cm s−1. The dashed-dot

horizontal line is the refractory time of the neuromorphic nanoLED,

τref = 650 ps. The dashed-dot horizontal orange line intersecting

the diagonal traces indicates the refractory time and gives the

electrical/optical energy per spike (indicated by the vertical orange

arrows) of the neuromorphic nanoLED assuming continuous firing of

spikes and operation in the vicinity of the valley voltage.
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and valley points of the fired optical spikes, the performance

of neuromorphic nanoLED in terms of electrical and optical

energy per emitted spike operating in the spiking regime

(indicated by the vertical orange arrows in Figure 6), is

now set by the intersection between the dashed-dot hori-

zontal orange line (corresponding to the refractory time,

τref � 650 ps, of the optical nanosource) and the diagonal

traces. In this case, the electrical energy per emitted spike is

constant ∼28 fJ and almost independent of the incoming

modulating frequency signal. In the cases of incoming pul-

ses with a time duration larger than the refractory time the

energy consumption will increase similarly as already

described for a standard nanoLED (diagonal lines in

Figure 6). Noteworthy, the optical energy is also almost

constant for a given surface recombination value, ∼5 fJ for

104 cm s−1 and∼0.8 fJ for 105 cms−1. Effectively, this allowus to

operate the nanoLEDs in the neuromorphic scenario for a

large surface recombination at a fixed optical energy close to

1 fJ/spike, and larger than 1 fJ/spike for a lower surface ve-

locity value, and therefore within the range for detection by

thermal shot noise-limited receivers. Lastly, we note that in

case the device operates in the vicinity of the peak voltage

(not shown here), the nanoLED current increases and the

corresponding electrical energy per emitted spike increases

to ∼100 fJ.

In summary, we have analyzed the spiking response of

our neuromorphic nanoLEDs via high-speed (sub-ns)

nonlinear electrical modulation and have shown low en-

ergy consumption in the range of 10–100 fJ upon receiving

small amplitude electrical synaptic signals of comparable

voltages of biosystems. Although in this work we do not

consider the case of incoming optical signals, our approach

can potentially provide optically activated neuromorphic

nanoLEDs using the photosensitive properties of resonant

tunneling structures. Indeed, QRT-based photodetectors

have been demonstrated [57, 78] exploiting that the

tunneling current is extremely sensitive to changes in the

local electrostatic potential, which enables highly-sensi-

tive detection (104 A/W) of photogenerated minority char-

ge carriers. Notably, the detection of low-level photons

or even of single photons with enhanced quantum-

efficiencies above η > 90% can be potentially achieved by

integration into photonic cavity structures [79], and this

could be explored in future work using our nanocavity LED

for fully optically interconnected artificial neurons.

4 Conclusion

In this work, we have analyzed a novel sub-λ nano-

photonic spiking neuron circuit suited for spike-based

neural computation. The proposed neuromorphic opti-

cal nanosource is formed by a quantum resonant

tunneling (QRT) nanostructure monolithic integrated

into a sub-λ metal-cavity nanoLED. The QRT is a key

part of the device enabling control of the injection of

electrons into the active region of the LED. This pro-

vides an intensity modulated nanoLED with a voltage-

controlled negative differential conductance, well

suited for all-or-nothing optical spiking modulation. We

have examined the various scenarios of operation of two

representative neuromorphic micro- and nanoLEDs with

realistic operation at room-temperature in terms of ef-

ficiency, speed limits and optical spiking dynamic

properties, and compared their performance with con-

ventional current modulation schemes of LED sources.

We demonstrated inhibitory- and excitatory-like optical

spikes at multi-gigahertz speeds can be achieved upon

receiving exceptionally low (sub-10 mV) synaptic-like

electrical activation signals, lower than the amplitude of

100 mV in biological counterparts and much lower than

the typical switching voltages of memristive devices,

while providing remarkable low energy consumption, in

the range of 10–100 fJ per emitted spike. Importantly,

the energy per spike is roughly constant and almost

independent of the incoming modulating frequency

signal, which is noticeably different from conventional

current modulation schemes of LED sources [37, 43].

Although our focus here has been in the analysis of the

efficient activation of the optical spiking response via

high-speed nonlinear electrical modulation of the

nanoLED, this optical nanosource has the potential to

enable optical activation of the all-or-nothing spiking

response by taking advantage of the highly-sensitive

photoresponse of the quantum resonant tunneling

nanostructures [48, 57, 60]. Since our nanoLED cavities

can be made much smaller than convention optical

sources, in a practical application, the electrodes can be

as small as the technology for electrical interconnecting

to the CMOS chip or even more compact solutions using

metal bonding directly to the metal-cavity nanoLEDs.

This architecture and method of spike generation in

neuromorphic nanoLED devices combined with tech-

niques for more complex interconnectivity (e. g. nano-

waveguides [37], or 3D interconnects [80]), paves the

way for sub-λ incoherent spiking neural elements for

optically interconnected photonic spiking neural net-

works and asynchronous neural computation.
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