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The approach developed for the microindentation of layered elastic solids was adapted
to analyze atomic force microscopy probing of ultrathin (1-100 nm-thick) polymer
films on a solid substrate. The model for analyzing microindentation of layered solids
was extended to construct two- and tri-step graded functions with the transition zones
accounting for a variable gradient between layers. This “graded” approach offered a
transparent consideration of the gradient of the mechanical properties between layers.
Several examples of recent applications of this model to nanoscale polymer layers
were presented. We considered polymer layers with elastic moduli ranging from 0.05
to 3000 MPa with different architecture in a dry state and in a solvated state. The most
sophisticated case of a tri-layered polymer film with thickness of 20-50 nm was also
successfully treated within this approach. In all cases, a complex shape of
corresponding loading curves and elastic modulus depth profiles obtained from
experimental data were fitted by the graded functions with nanomechanical parameters
(elastic moduli and transition zone widths) close to independently determined
microstructural parameters (thickness and composition of layers) of the layered

materials.

. INTRODUCTION

The ability to probe surface mechanical properties
with nanometer-scale lateral and vertical resolutions is
critical for many emerging applications involving nanos-
cale (1-100 nm) compliant coatings for microelectrome-
chanical and microfluidic devices where nanoscale de-
tails of surface deformations and shearing play a critical
role in overall performance.'~® Usually, a nanomechani-
cal probing experiment exploits either atomic force
microscopy (AFM) or microindentation techniques.”-®
The utilization of conventional microindentation tech-
niques for systems consisting of highly compliant (elastic
modulus ranging below 3000 MPa) and ultrathin (thick-
ness below 100 nm) polymer coatings faces critical chal-
lenges associated with uncontrolled initial indentation,
which can easily span the entire thickness of compliant
nanoscale coatings and limits lateral resolution to hundreds
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of nanometers. Despite numerous technical issues asso-
ciated with the AFM nanoprobing (e.g., nonaxial load-
ing, jump-into contact, high local pressure, and topo-
graphical contributions), a number of successful applica-
tions have recently been demonstrated including
nanomechanical probing of spin-coated and cast polymer
films, organic lubricants, self-assembled monolayers,
polymer brushes, biological tissues, and individual teth-
ered macromolecules.””"” Absolute values of the elastic
modulus have been measured for polymer surfaces in the
range from 0.01 MPa to 30,000 MPa. These measure-
ments were conducted in a wide range of temperatures
and probing frequencies, for compliant films with thick-
ness down to 2 nm, and with vertical and lateral resolu-
tion as low as 1-2 and 5-10 nm, respectively. Elastic
moduli (loss and storage), surface glass transition tem-
peratures, and relaxation times all have been obtained
with reasonable confidence by applying direct dc or ac
force—distance measurements and/or cantilever modu-
lated (vertically as well as laterally) modes.'®2°
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Spatial (concurrent vertical and lateral) resolution on a
nanometer scale unachievable by any other probing tech-
nique makes AFM nanomechancial probing a unique ex-
perimental tool. We believe that a further expansion of
the AFM-based probing of ultrathin (below 10 nm) poly-
mer films in a contact mode regime will rely on solving
several fundamental issues including the evaluation of
substrate effect and the elastic response for multilayered
coatings. In this communication, we present our work to
adapt known approaches developed for the analysis of
microindentation experiments of the elastic layered sol-
ids to AFM experiments. The results of corresponding
AFM probing of several types of nanoscale polymeric
coatings on solid substrates representing two- and tri-
layered structures are reported and discussed.

A. General contact mechanics background

General relationships between the normal load and the
elastic indentation are suggested in classical Hertzian and
Sneddon theories, with more complex cases analyzed
with the Johnson—Kendal-Roberts approach as described
in original papers and books.>' > As considered, inden-
tation depth is a function of the applied force (normal
load) P, tip geometry (radius R or parabolic focus dis-
tance c), as well as the mechanical and the adhesion
properties of the contacting bodies. The normal load for
AFM nanomechanical probing experiments conducted
as depicted in Fig. 1 is calculated as P = k,, - z4., Where
k, is the vertical spring constant of the cantilever de-
flected in vertical direction by z,4.4. A nonaxial displace-
ment of the AFM cantilevers caused by their tilted
orientation does not usually exceed 5-10% and, thus,
will be neglected here. The above mentioned R (or ¢)
and k, are initial system parameters, which must be
measured and calibrated before the nanomechanical
analysis. The Poisson ratio, v, is used as well as a ma-
terial parameter and is usually assumed to be known and
taken as a bulk value with possible deviations playing a
minor role as was already demonstrated for microinden-
tation experiments.'’

As suggested in recent contact mechanics studies, the
most general relationship between indentation depth, 4,
and normal load, P, in the course of indentation experi-

ment can be presented in the very general form as:*'~

P = ah® , (H

where a and b are specific, model-dependent geometrical
parameters (e.g., b = 3/2 for both Hertzian and parabolic
Sneddon’s contacts).?*

On the other hand, the Sneddon model suggests a spe-
cific and practical analytical relationship between the
surface stiffness, dP/dh and Young’s modulus, E’, in the
form
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FIG. 1. (a) A two-spring model for the analysis of the loading curve
for the parabolic tip—plane surface contact. (b) AFM cantilever deflec-
tion and indentation in the course of force—distance measurements.

P 2\/A
dh ~ N/

where E’ is the composite modulus, and E, and E, are the
elastic moduli of a surface and an indentor (tip). As
known, the composite elastic modulus is defined as
follows™’

E 2)

11—
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E-E T E
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From dP/dh dependence obtained from microindenta-
tion experiment and the calculated/measured contact area
variation for a specific shape of the indentor (specific
analytical expressions are suggested for circular, pyrami-
dal, and parabolic shapes), one can evaluate an absolute
value of the elastic modulus. For a routine estimation of
the elastic modulus value for small indentation depths,
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the Hertzian model of a sphere-plane contact type is ap-
plied. For larger indentations, the Sneddon model with a
parabolic tip is usually exploited. The tip shape in the
Sneddon model is described with equation z = ¢ - x7,
where c is a parabolic focus. This equation is very similar
to the Hertzian equation but does not contain maximum
indentation depth limitation.

B. Contact mechanics of layered elastic solids

There are several methods for the evaluation of the
elastic modulus of thin films on solid substrates which
include microindentation and bending experiments.®~>®
As suggested in these approaches, the compression of the
layered elastic solids (e.g., a compliant film on a stiff
substrate) results in concurrent deformations of two or
more interfaces with local deformation depending on the
mechanical properties of layers and a load transfer be-
tween adjacent layers (Fig. 2). Several different ap-
proaches have recently been developed to describe this
phenomenon as will briefly be discussed below.

A double-layer model was proposed to describe defor-
mational behavior within a modified Hertzian approxi-
mation.>® The relation between a “modified” contact ra-
dius and Hertzian contact radius was suggested in the
form

4 174

a J3+0.87

Ahertz

, 4)
\/1+ (o.zsf/ahm)2

where ay.., 1S the contact radius calculated from the
Hertzian theory and J is the ratio of elastic moduli of two
layers. Limitations of this theory included the consider-
ation of only a compliant layer on a stiff surface and the
absence of the criteria for the selection of any interlayer
interaction. Our previous use of this approach demon-
strated that some improvement of the fitting procedure

Ahertz

FIG. 2. Simultaneous deformation of several elastic layers for the
layered solid and corresponding parameters of the tri-layered model as
discussed in the text.

can be obtained for polymer films on solid substrates.>®
However, for very thin films, this model usually overes-
timates indentation depth (see one representative ex-
ample in Fig. 3).

A more sophisticated model, which considered the
elastic deformation of the layered solids with a certain
transfer of the mechanical load between adjacent layers,
was proposed for the analysis of the microindentation
data and was refined by several independent research-
ers.>’*> A general key point of this approach was the
suggestion to represent the composite compliance of
two-layered solids (e.g., a film—substrate system) as a
superposition of individual compliances in the form

11 _ o
E=Ef'(1—67“m’)+g'(e My, )

)

where E; and E| are elastic moduli of the film and the
substrate, ¢ is the total thickness of the film, A is the
indentation depth, and « is a parameter defining contri-
butions of different layers.

This representation is reminiscent of Eq. (3) for the
composite modulus of two deformed solids in the me-
chanical contact. However, this approach introduces a
new measure of a level of the transfer of the mechanical
deformation between layers represented by a specially
selected function: the transfer function, e, This trans-
fer function depends on total thickness of the layer, in-
dentation depth, and the properties of the interlayer in-
teractions as reflected by the parameter a. The transfer
function for the elastic layered solid has an initial small
value for very small, initial deformations (2 << f) and
increases for larger deformations (h < f).

The parameter o was initially suggested as an empiri-
cally determined parameter to be selected for each spe-
cific layered system. However, a clear physical meaning
of this parameter was missing from the description pro-
posed. Specific values of this parameter were experimen-
tally determined and discussed for different pairs of
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FIG. 3. An example of fitting of the loading curve for thin rubber
layer on a solid substrate with Hertzian and double-layer models.*°
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solids, but clear interpretation and understanding of dif-
ferences observed was not suggested.’> Some modifi-
cations of this transfer function for different layered
systems were suggested to improve experimental data
fitting.**>*?

Another approach starts from the representation of
the nonuniform depth profile such as the one shown in
Fig. 4 in an analytical form as a function of indentation
depth »**

E'=E] + (Ef - E)®(h) (6)

where ®(h) is the transition function describing a spe-
cific shape (gradient) of the depth profile of the elastic
modulus (Fig. 4). In the framework of this approach, an
indentor displacement and a stress propagation in a lay-
ered medium were analyzed by using the modified Sned-
don solution for homogeneous solids. Careful contact
mechanics analysis led to a complex expression for the
transition function in the form™*

2 1
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FIG. 4. (a) Examples of exponential functions used to describe gra-
dient of the elastic properties. (b) The visualization of the depth profile
for a hypothetical stiff-compliant film with two different levels of the
elastic moduli (E, = 160,000 MPa and E, = 30,000 MPa). The in-
terfacial zone, 7, is defined for this profile as discussed in the text.

Considering that such a complex function is cumber-
some in routine data analysis, alternative simpler models
were suggested and used for the analysis of experimental
data. For instance, a simple linear transition function was
proposed:>>

®=E—(E,—Eph , (8)

along with a more complex but still solvable exponential
form?*3%:

d=e" | 9)

These approaches provided a good analysis tool for a
variety of specific cases of the layered solids as has re-
cently been discussed in detail.>® The comprehensive
analysis conducted in this study demonstrated a reason-
ably good agreement of different approaches with the
best fits obtained by using Eq. (7) and suggested some
practical routines in implementing both experimental
procedures and data treatment.

Below, we will show that a generalized approach that
starts with a simple definition of the depth profile as a
smooth function with gradual localized changes provides
a means for the “visualization” of the transfer function
and its concise interpretation for complex layered solids
with two- and tri-layer architectures.

Il. MODEL WITH VARIABLE ELASTIC MODULUS
A. Model description

Any variation of the elastic modulus along the vertical
coordinate £ (indentation depth) can be represented as a
constant level superimposed with a combination of posi-
tive and negative local deviations

E'(h + Ah) = E'(h) + m * E'(h)Ah — nE'(h)Ah
(10)

This equation represents a change in the current value
of the elastic modulus in the Ak range as the previous
value, E'(h), plus a combination of increasing mE’(h)Ah
and decreasing nE'(h)Ah contributions, thus giving an
expression for a local gradient as:

Vi (m — n)E'(h) (11a)

In differential form and with kK = m — n representing a
continuous balance of local deviations of the elastic
modulus, this equation can be represented as:

!

dE
— = kE'(h)

& (11b)

For a smooth monotonic function without singulari-
ties, it is natural to suggest that coefficient k depends on
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the overall difference between moduli of two layers be-
cause larger local changes are generally required to ac-
commodate larger overall difference in properties be-
tween adjacent layers. For the sake of simplicity, let’s
assume that coefficient k linearly depends on difference
between a current modulus value and overall difference
in elastic moduli of adjacent layers and o is a propor-
tionality coefficient

k= ol(E) - Ep) — E'(h)] , 12)

where E; and E, are two levels of the elastic modulus for
a two-layered system (Fig. 4). The proportionality coef-
ficient a can be either positive or negative depending on
overall gradient of the elastic properties (compliant on
stiff or stiff on compliant).

With this assumption, Eq. (11b) can be rewritten as:

!

G =B —E)-ETE . (3

If we set a new variable, M = E, — E_, Eq. (13) is
transformed to:
1 (dE’ dE’ ah dE’ dE’
E M) "\ E Tu_F
=oMdh . (14)

M

After integration we obtain:
In(E') —In(M — E')=aMh + C , (15)

where C is the integration constant defined by the initial
conditions.

If we define the “reference” depth &, as a point where
the modulus equals half of the difference between the
two layers, E;, = M/2, then Eq. (15) is transformed to

C =In(E}) — In(M — E}) — aMh, . (16)
After substitution, we obtain a new equation
E'(M - E{)
n{m] =aM (h—hy) (17)

that can be converted to the final form after proper sub-
stitutions

. E, - E,
1+ exp[~a(E; — Eg)(h — hy)]

(18)

A selection of a sign for o depends on a gradient sign
as was mentioned above. Let’s introduce a new variable
o' =aEyh. In this case we can rewrite Eq. (18) as

I E, - E,
1+ exp[—a'(E, — Eg)(h — hy)/(Egho)]

19)

Overall, the depth profile of the elastic modulus for a
two-layered system can be described as a superposition

of the initial level and variable contribution for the two-
layered system (19) as:

E(h)=E, + E'(h) . (20)

Modulus profile in this form can directly be used in
Eq. (2) for fitting experimental data for the elastic re-
sponse at a variable indentation depth.

The description proposed here is based on simple ini-
tial assumptions on the gradient properties of the layered
systems and very basic arguments. It combines all major
features suggested separately in several approaches dis-
cussed above and leads to a relatively simple Eq. (19) for
the description of the elastic modulus gradient for two-
layered systems. For the important case of a compliant
film on a stiff substrate, only two unknown variables
can be varied to fit experimental data (the elastic modu-
lus of the top layer and parameter «’) assuming that
the elastic properties of the substrate are known. Usage
of the proposed approach allows for the analysis of
different layered structures. General profile of elastic
modulus distribution as described by Eq. (19) is pre-
sented in Fig. 4. Two different levels of the elastic modu-
lus are separated by a transition zone with a gradient of
the elastic properties.

Equation (19) derived here independently from any
previous approaches has, in fact, a form quite similar to
Eq. (5) suggested before for microindentation experi-
ments.”' However, the shape of the transfer function sug-
gested here is different and can be represented in the
form exp[—a'E'A/(Eyh,)]. This redefined transfer func-
tion takes into account not only overall indentation depth
in correspondence to the overall thickness in the form
Ah = h — h,, where h, is the midpoint between two
layers, but also the overall difference of the elastic
moduli between layers (Fig. 4). Equation (19) in the cur-
rent form allows for more detailed analysis of possible
scenarios of intrafilm structures, contains transparent un-
derstanding of physical meaning of different parameters,
and allows for the consideration of more complex cases
of multilayered solids beyond two-layered systems. The
developments will be discussed below along with limi-
tations imposed by experimental routines.

B. Different layered systems

The variation of the elastic modulus in a wide range
creates very different profiles including a virtually uni-
form distribution for a layered system with a small dif-
ference in elastic moduli (Fig. 5). It is worth noting that
here and below in Figs. 6-8, the absolute values of the
elastic modulus and the indentation depth were selected
only for illustrative purposes, can be very different for
different layered models, and are not to be used for the
comparison between different layered models. The width
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FIG. 5. (a) Influence of the transition parameter o on the overall
shape of a hypothetical two-level depth profile of the selected elas-
tic moduli (E, = 10,000 MPa and E, = 170,000 MPa). (b) Influence
of the elastic modulus of the topmost layer on the total depth distri-
bution of the elastic modulus of the two-layered solid (E, =
160,000 MPa).

of this transition zone between two layers is determined
by the parameter o through the transition function. A
high value of this parameter corresponds to a very sharp
interfacial zone resulting in a step-like shape of E'(h)
(Fig. 5). Decreasing a-value results in a gradual broad-
ening of the step-function with the formation of a vir-
tually continuous gradient for a very low value of «
(Fig. 5).

For practical purposes, instead of “nontransparent” pa-
rameters o, we introduce the thickness of the transition
zone as the major fitting parameter as illustrated in
Fig. 4. We calculate the “effective” thickness of the tran-
sition zone, 7, as a distance between two points repre-
senting the intersections between two levels of elastic
moduli and the slope to the fitting curve in the point
where the value equals the average of the above-
mentioned moduli. This parameter has direct physical
meaning as a measure of the sharpness of the transition
zone between layers (see Fig. 4 for the definition of the
thickness of the transition zone). A reasonable physi-
cal value of this parameter and its correlation with
expected or known structural gradients (e.g., controlled

by processing, deposition, or synthetic routine) are im-
portant verifications of the concept and the fitting pro-
cedure as will be discussed below.

The advantages of the approach proposed is that it can
be extended to more complicated cases of tri- (and more)
layers by modifying Eq. (18) to include a recursive ex-
tension toward complex graded functions. For example,
for the tri-layer structure, the model includes two inde-
pendent values of the elastic modulus and the transition
zone as fitting parameters assuming that the substrate
properties are fixed (see Fig. 6). The corresponding com-
plex but still analytically solvable expression can be de-
rived from (18) as follows:

E =E,
E,-E,
4 {El i 1+ explay(E, — Ey)(h — ho)]} ~Fo
1 +exp[ocz({E1 + iz Ik }—E )
1+ exploy(E, — E)(h —ho)])  °
(h— hl)] ; @21

with E,, E,, and E, representing three levels of the elastic
modulus for the tri-layered system (Fig. 6).

Using this expression, a tri-step graded function can be
simulated to analyze the surface structure with a complex
profile of stiff on compliant on stiff type (Fig. 6). By the
variation of the transition zone gradient, this step-
function can be converted from a sharp step-function to
a smooth function with a minor depletion in the middle
(Fig. 6). On the other hand, by changing the level of the
elastic modulus for the intermediate layer, this function
can be converted to the tri-layer function with ascending
or descending elasticity (Figs. 6 and 7). Increasing of the
thickness of the transition zone results in gradual trans-
formation of the graded function to a smooth continuous
gradient with virtually any shape (Fig. 7). And, unlike
analytical functions with poorly defined boundary con-
ditions used previously for the representation of the tran-
sition function, ®(h), these graded functions contain
clearly defined and separated physical parameters for
controlling the level of the elastic modulus and gradient
properties.

In the same way, it is possible to build even more
complex layered systems such as the four-layer profile
presented in Fig. 8. To show the depth behavior of the
elastic response in this system, a set of the tri-layer film
with decreasing elastic modulus located on a stiffer sub-
strate was selected. The theoretical loading curve showed
a non-monotonous behavior, which adequately reflected
the complex elastic response of this system (Fig. 8). It is
worth noting that in all these examples, both depth and
elastic modulus values were selected for illustrative
purposes only to reflect relative variations without any
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FIG. 6. (a) The variation of the transition parameter o in a hypotheti-
cal tri-layered system with selected values of elastic moduli (E, =
50,000 MPa, E, = 20,000 MPa, and E, = 100,000 MPa). Decreasing
a results in the broadening of the transition zone and disappearance of
the sharp steps. (b) Influence of the elastic modulus of the interlayer on

the depth distribution of the elastic modulus of the tri-layer system
presented above (E, = 50,000 MPa and E, = 100,000 MPa).

intention to compare absolute values for different pro-
files.

Here, it is important to mention several other critical
contributions that could affect force—distance data and
are not accounted for in the model discussed here. First,
strong adhesion between the AFM tip and surface can
disturb the initial portion of loading curves and result in
significant overestimation of the elastic modulus level at
small indentation depth. We analyzed this contribution in
our previous publication*® and demonstrated significance
of the adhesion hysteresis and initial non-zero contact
area for very compliant polymeric materials with high
adhesion (e.g., polar rubbery layers with the elastic
modulus below 2 MPa and surface energy much higher
than 20 mJ/m?) in air. For these materials, an application
of the Hertzian model resulted in manifold overestima-
tion of the elastic modulus for small indentations. A
complete Johnson—Roberts—Kendall model should be
applied, which makes consideration significantly more
complex and requires additional nontrivial measure-
ments. However, for compliant materials with modest

adhesion and higher stiffness, this overestimation is lim-
ited to a few initial data points and, thus, the approach
discussed here can be applied. Second, a viscous contri-
bution (time-dependent mechanical properties) can be
critical in defining an overall shape of loading curves for
viscoelastic polymeric materials. As we discussed ear-
lier, this phenomenon would result in a concave shape of
the force—distance curves, which, in fact, is sometimes
observed.’**' This contribution can be treated by apply-
ing Johnson’s recent development** as was discussed in
separate publications.>>** For the analysis discussed
here, we selected materials without significant viscous
contributions (far from the glass-transition temperature
where a contribution of the loss modulus does not exceed
10-20% of the elastic modulus value**) and probing fre-
quencies in the range of minimal time-dependencies as
was discussed earlier.** Third, the surface roughness of
the layers studied here is extremely low, thus virtually
eliminating any significant scattering in the first few data
points observed for rough surfaces.* In fact, the surface
microroughness does not exceed 0.2—-0.5 nm for the lay-
ers studied here.

Finally, in all instances discussed here, we used a load-
ing portion of the experimental force—distance data for
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FIG. 7. Variable profiles of a hypothetical multilayered system with
compliant-stiff-more stiff and stiff-compliant-more compliant layers
and different transition parameters o sharp steps, steps with interfacial
zone, and continuous gradient (E, < E, < E, and E, > E, > E,).
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(b) The depth distribution of the elastic moduli with smooth transition
zones for the same loading curve.

modulus estimation. This is justified by the fact that for
purely elastic deformation, loading and unloading por-
tions should be identical, which was indeed demonstrated
for a number of compliant polymer surfaces.*> The use of
the unloading portion of force—distance curves is more
complicated because some data points are affected
by adhesive properties and the pull-off point cannot
easily be defined. Below we will show several examples
of unloading portions of the experimental data. In
addition, in our evaluation of the elastic modulus for
the topmost layer, as initial parameter for the input in
fitting procedure, we used apparent value of the elastic
modulus extrapolated to zero indentation depth. In many
cases, the final value for the best fit was fairly close to
this value.

lll. ANALYSIS OF SELECTED EXPERIMENTAL
DATA FOR LAYERED POLYMER FILMS

Experimental data for ultrathin, layered surface poly-
mer coatings with different microstructures were ob-
tained on Dimension 3000 and Multimode Nanoscope 111
(Digital Instruments, Santa Barbara, CA) atomic force

microscopes. Experiments were done in a dry environ-
ment and in a fluid according to the experimental proce-
dures described elsewhere.*'*® Spring constants were se-
lected in the range from 0.06 to 10 N/m depending on
sample elasticity and were measured according to de-
scribed technique.*’ Tip radius was measured with a gold
nanoparticle reference standard.*® Experimental force—
distance data (cantilever deflection versus piezoelement
displacement) collected in the force—volume mode were
processed by MManalysis software package developed in
our laboratory with an added option for the multilayered
analysis.*’

A. Two-layered system: Polymer brushes in air

Polymer brush layers are composed of macromol-
ecules chemically grafted to a solid silicon substrate
through a mediating functionalized self-assembled
monolayer (Fig. 9).°° In the case considered here, a bi-
nary polymer brush layer was prepared from rubbery
poly(methyl acrylate) (PMA) and glassy poly(styrene-
co-2,3,4,5,6-pentafluorostyrene) (PSF), both with high
molecular weight, and was grafted to a silicon wafer by
the “grafting from” approach as described elsewhere.”!
Independent measurements of these layers with ellipsom-
etry and AFM scratch test gave a total thickness of the
dry polymer layer of 50 nm with the rubbery phase hav-
ing an overall thickness of about 5 nm.”" An array of
force—distance curves was collected for the surface areas
of 2 x 2 wm. Surface topographical images were obtained
before and after the experiments to confirm that defor-
mations were elastic.

As an example, the average loading run of the force—
distance curves obtained by averaging over 20 individual
measurements over rubbery PMA phase within binary
brush layer is presented in Fig. 9. Averaging was done to
reduce the effect of noise that usually creates deviations
of about 0.2-0.5 nm. All individual force—distance
curves were similar to each other as demonstrated in
Fig. 9. The averaging procedure produced a consistent
shape but with much lower noise level and much better
defined minimum point. The unloading portion of the
force—distance curve closely followed the loading run for
the large range of displacements except some data points
affected by the presence of adhesive forces.

Due to the fact that the compliant polymer brush layer
was deposited on a stiff silicon substrate, the force—
distance curve displayed different slopes for small and
large indentations. Accordingly, the shape of the loading
curve deviates from the usual Hertzian behavior. Fitting
with standard Sneddon model gives much larger inden-
tations then observed in actual experiment due to the
limitations imposed by the underlying stiff substrate
(Fig. 9). However, an excellent fit was obtained with our
approach using a high elastic modulus value, such as one
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FIG. 9. (a) A general sketch of polymer brush layer with polymer
chains tethered to the solid substrate via self-assembled monolayer.!
(b) Experimental individual force—distance curves obtained for the dry
PMA (compliant) phase on stiffer surface in binary brush layer>>
(loading runs are offset for clarity), the average loading run, and the
average unloading run. (c) Fitting experimental loading curve (circles)
by Hertzian model (dotted line) and the two-layered model (solid line)
for the same value of the elastic modulus.

for the silicon substrate Eg ., = 160,000 MPa (Fig. 9).
Fitting parameters corresponded to the interfacial zone
of 5-nm thickness and with the average value of com-
pliant polymer layer of E.. = 15 MPa. The latter
value was close to that determined from depth profile and
extrapolated to zero indentation depth. The values
obtained here were close to ones known for the PMA
polymer in the rubbery state deducted from measure-
ments of homobrush layers and for interfacial zones of
polymer brush layers grafted to organic self-assembled

monolayer.>'-3

However, significant variation (increase) of the elastic
modulus of the polymer layers caused by the underlying
stiff substrate was observed across the layer. Calculation
of the depth profile from the loading run of force—
distance curves proved that only initial, minor deforma-
tion not exceeding 2 nm was free from substrate influ-
ence or the presence of the glassy polymer component
beneath (Fig. 10). For larger indentation, the apparent
value of the elastic modulus increased gradually fol-
lowed by dramatic increase for indentation depth larger
than 4 nm. Overall fitting suggested that the elastic
modulus profile could be represented by a two-step func-
tion with the intermediate thickness of the transition zone
as presented in Fig. 10.

B. Tri-layered compliant system: Polymer brush
layer in fluid

An example of the force—distance curve for the same
binary polymer brush (PSF/PMA) placed in a good
solvent for PMA (acetone) is presented in Fig. 11. Un-
der this solvent, polymer chains were highly swollen
and possessed very low elastic modulus as expected for
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FIG. 10. (a) Fitting the experimental data on the depth distribution of
the elastic moduli of dry polymer layer (circles) with the two-layered
model (solid line). (b) Corresponding full-scale, two-layered depth
distribution of the elastic modulus with clearly observed transition
zone and suggested distribution of different polymer components.

-
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FIG. 11. (a) Experimental individual force—distance curves for the
swollen polymer brush in solvent (loading runs, curves are offset
for clarity), the average loading run, and the average unloading
run (the average unloading curve is offset to avoid complete over-
lapping with the loading portion). (b) The experimental loading
curve (circles), fitting with the tri-layered model (solid line, almost
completely buried by experimental data points) and Hertzian model
(dotted line). (c) Experimental depth distribution of the elastic modu-
lus for the polymer brush layer (circles) and the best fitting with the
tri-layered model (solid line) showing slight increase in the elastic
modulus near the surface and sharp increase in proximity to a stiff
substrate.

polymers in a good solvent.>®> Under these conditions,
force—volume probing with very low normal forces (a
spring constant of the cantilever was about 0.06 N/m)

generated an array of force—distance curves with a com-
plex shape showing three regions with different slopes.
Accordingly, the loading curve with the indentation
depth reaching 250 nm (the total thickness of the layer
was about 300 nm as observed for scratched areas) dis-
played a complex shape, which deviated significantly
from normal Hertzian behavior expected for a uniform
elastic material (Fig. 11). Individual force—distance
curves had similar shapes with higher level of noise re-
moved by the averaging of a significant number of ex-
perimental curves.

Loading and unloading runs of the force—distance
curves were virtually identical, and significant off-set
was required to clearly show them on a plot (Fig. 11).
The best fitting of the loading curve and the depth profile
can be obtained by using a very low elastic modulus
value of 0.07 MPa for initial deformations not exceeding
200 nm. This very compliant region is replaced with
rising elastic resistance for larger indentation depth
caused by the presence of the underlying solid substrate
(Fig. 11). Slightly increased elastic modulus near the
surface related to minor brush layering could be de-
scribed by a tri-layered model reflecting the segregation
of the tougher polymer near the surface. This higher elas-
tic resistance for initial indentations was consistently ob-
served for the majority of surface locations. Low values
of the elastic modulus and the large thickness of the
swollen polymer layer obtained from nanomechanical
testing were close to that known for these systems from
independent measurements with ellipsometry and for ho-
mobrush layers without second component.”>

C. Tri-layered system: Grafted sandwich coating

Polymer “sandwich” system was prepared by grafting
the rubber polymer interlayer of 10-nm thickness to func-
tionalized self-assembled monolayer on a silicon wafer
and capping this interlayer with a photopolymerized stiff
polymer topmost layer with the thickness between 10-30
nm (Fig. 12).>*** This model represents a complex
tri-layer system with elastic modulus changing from
2000 MPa for the topmost layer to 5-10 MPa for the
rubbery interlayer and to 1000 MPa for underlying or-
ganic layer on 160,000 MPa silicon substrate as was
independently measured for these materials. The elastic
character of deformation was tested by zooming-out the
surface area probed and observing absence of the inden-
tation marks.

In fact, the force—distance curves collected on different
surface locations demonstrated clearly a non-monotonic
character with three different local slopes as is better
visible in the average curve (Fig. 12). This non-
monotonic character became more visible on the loading
curve, which showed pronounced S-shaped behavior
(Fig. 13). Attempts to fit the experimental data with
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tri-layer film. (b) Sketch of the sandwich coating with stiff-compliant-
stiff sequence of layers fabricated from grafted polymer layers of
different types.>>

Hertzian model failed: significant deviations were ob-
served in the range of either low or high deformations
depending on the selection of the elastic modulus value
(Fig. 13). However, the experimental data could be fitted
with a tri-layer model with modest gradient in the tran-
sition zones as demonstrated in Fig. 13. The best fit has
been achieved with the tri-layer model composed of the
topmost stiff layer 5-nm thick with the elastic modulus of
2000 MPa, a central interlayer 20-nm thick and the ap-
parent elastic modulus of 800 MPa, and the solid sub-
strate with the elastic modulus of 160,000 MPa (Fig. 13).
The ultimate indentation of the tri-layer film was about
35 nm, which was close to the total thickness of the
tri-layer film and indicated virtually complete compres-
sion under very high mechanical load. The thickness
of the transition zone does not exceed 10 nm, which
indicates modest gradient distribution between layers
within the layered coatings.

Here, it is worth noting that the layer thickness ob-
tained from the fitting procedure cannot be directly re-
lated to the known thickness of the independent layers
but only to the corresponding deformation of these lay-
ers. It is also clear that the apparent elastic moduli for the
elastic layers beneath the topmost layer are, in fact, not
actual moduli of the layers but rather composite moduli
presented by a linear combination of (3) or (5) types.
This is also very true for the topmost layer, especially in
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FIG. 13. (a) The depth distribution of the elastic modulus for the
tri-layered polymer system from Fig. 12 (circles) and fitting with the
tri-layer model (solid line). (b) Fitting of the experimental loading
curve (circles) by the tri-layer model (solid black line, almost com-
pletely screened by experimental data points) and the best fit with
Hertzian curve (dotted line).

the case of large deformations and relatively thin layers.
Thus, for modest indentation depth when intermediate
layers are accepting the mechanical load, one cannot ex-
pect the mechanical behavior associated with the elastic
response of this layer but rather a more complex response
involving weighted contributions from all deformed
layers.

IV. CONCLUSIONS

In conclusion, the model proposed for analyzing mi-
croindentation of the layered solids was considered to
construct two and tri-step graded functions with the tran-
sition zones reflecting variable gradient between layers.
We modified this approach to include a transparent con-
sideration of the gradient of the mechanical properties
between layers with the transition zone concept. Several
examples of a recent application of this model for the
polymer brush surface layers in a dry state and in a
swollen state (from 2- to 300-nm thick) and tri-layered
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polymer films (15-50-nm thick) tethered to the solid sub-
strate were presented to illustrate the fitting procedure.
The range of tested thickness of the polymer layers was
within typical molecular dimensions of the individual
polymer chains which covered 2-100 nm for molecular
weights of polymers within 5000-500,000, thus making
this approach a truly nanoscale approach for probing of
the nanomechanical properties on a molecular dimension
scale. In both cases, complex shapes of the loading
curves and the elastic modulus depth profiles obtained
from experimental data were successfully fitted by the
graded model with nanomechanical parameters (elastic
moduli and transition zones) closely matching micro-
structural parameters of layered elastic materials known
independently.

The approach proposed has limitations related to its
eligibility only for purely elastic, completely reversible
deformations without any contribution from plastic de-
formation, viscoelastic phenomenon, strong adhesion,
and high friction. These contributions should be studied
independently, and experimental probing conditions
should properly be selected. The graded function
approach also produces questionable results for
extremely high difference in elastic moduli of the stiff
substrate and the compliant layer generating too large
thicknesses of the transition zone. The application of
the routine discussed here to even simple two-layered
materials is a subject of a number of “unwanted” contri-
butions mentioned above, which can distort the results.
The application to a tri-layer system is even more chal-
lenging and can produce unambiguous results only for
proper combination of layer parameters. However, we
believe that we clearly demonstrated that the approach
proposed, if applied carefully and properly, can be used
for the analysis of multilayered elastomeric materials
with an appropriate thickness of different layers and an
efficient load transfer between layers and substrates un-
der conditions of purely elastic deformation.
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