Nanometer-scale measurements of Fe³⁺/ Σ Fe by electron energy-loss spectroscopy: A cautionary note

LAURENCE A. J. GARVIE,^{1,*} THOMAS J. ZEGA,^{1,†} PETER REZ,³ AND PETER R. BUSECK^{1,2}

¹Department of Geological Sciences, Arizona State University, Tempe, Arizona 85287-1404, U.S.A. ²Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, U.S.A. ³Department of Physics and Astronomy, Arizona State University, Arizona 85287-1504, U.S.A.

ABSTRACT

The effects of electron-beam damage on the $Fe^{3+}/\Sigma Fe$ (total iron) ratio were measured by electron energy-loss spectroscopy (EELS) with a transmission electron microscope (TEM). Spectra were acquired from crushed and ion-beam-thinned cronstedtite. For fluences below $1 \times 10^4 \text{ e/Å}^2$, the Fe³⁺/ Σ Fe values from crushed grains range between 0.43 and 0.49, consistent with undamaged material. These measurements were acquired from flakes 180 to 1000 Å thick. With increase in fluence, samples <400 Å thick become damaged and exhibit $Fe^{3+}/\Sigma Fe$ values >0.5. The critical fluence for radiation damage by 100 kV electrons as defined by Fe³⁺/ Σ Fe <0.5 for cronstedtite at 300 K, is 1 × 10⁴ e/Å². The absorbed dose to the speciman during acquisition of a typical EELS spectrum is large, with values around 2.2 $\times 10^{10}$ Gy (J/kg), equivalent to the deposition of 620 eV/Å³. Cooling to liquid N₂ temperature did not significantly slow the damage process. Ion-beam thinning produces an amorphous layer on crystal surfaces. Spectra from the thinnest regions, which are amorphous, exhibit $Fe^{3+}/\Sigma Fe > 0.7$. With increase in sample thickness, the Fe³⁺/ Σ Fe values decrease to a minimum, consistent with data from the undamaged material. The increase of $Fe^{3+}/\Sigma Fe$ with respect to electron-beam irradiation is likely caused by loss of H. At low fluences, the loss of H is negligible, thus allowing consistent $Fe^{3+}/\Sigma Fe$ values to be measured. The cronstedtite study illustrates the care required when using EELS to measure $Fe^{3+}/\Sigma Fe$ values. Similar damage effects occur for a range of high-valence and mixed-oxidation state metals in minerals. EELS is the only spectroscopic method that can be used routinely to determine mixed-valence ratios at the nanometer scale, but care is required when measuring these data. Consideration needs to be given to the incident beam current, fluence, fluence rate, and sample thickness.