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Abstract 
 
Nanoparticles are now more than ever being used to tailor materials function and performance in 
differentiating technologies because of their profound effect on thermo-physical, mechanical and 
optical properties. The most feasible way to disperse particles in a bulk material or control their 
packing at a substrate is through fluidization in a carrier, followed by solidification through 
solvent evaporation/drying/curing/sintering. Unfortunately processing particles as concentrated, 
fluidized suspensions into useful products remains an art largely because the effect of particle 
shape and volume fraction on fluidic properties and suspension stability remains unexplored in a 
regime where particle-particle interaction mechanics is prevalent. To achieve a stronger scientific 
understanding of the factors that control nanoparticle dispersion and rheology we have developed 
a multiscale modeling approach to bridge scales between atomistic and molecular-level forces 
active in dense nanoparticle suspensions. At the largest length scale, two “coarse-grained” 
numerical techniques have been developed and implemented to provide for high-fidelity 
numerical simulations of the rheological response and dispersion characteristics typical in a 
processing flow. The first is a coupled Navier-Stokes/discrete element method in which the 
background solvent is treated by finite element methods. The second is a particle based method 
known as stochastic rotational dynamics. These two methods provide a new capability 
representing a “bridge” between the molecular scale and the engineering scale, allowing the 
study of fluid-nanoparticle systems over a wide range of length and timescales as well as particle 
concentrations. To validate these new methodologies, multi-million atoms simulations explicitly 
including the solvent have been carried out. These simulations have been vital in establishing the 
necessary “subgrid” models for accurate prediction at a larger scale and refining the two coarse-
grained methodologies.
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INTRODUCTION 
 
Growing advancement of nanoparticle fabrication techniques and analytical instrumentation has 
renewed the colloidal chemistry field and its application to nanoparticle composite 
manufacturing.  Nanoparticles are particles on the size of one to hundreds of nanometers, which, 
due to their small size, are mass efficient for modifying bulk and surface properties. They can 
now be made from a wide range of materials with unprecedented control of size and shape.  
There is also a rich set of possible nanoparticle coatings, particularly using the biochemistry of 
peptides and DNA, yielding new surface interactions.  A distinct advantage of nanoparticles is 
that highly efficient and inexpensive polymer processing methods can be used to fabricate 
significant quantities of the composite material.  Composites consisting of dispersed or ordered 
nanoparticle building blocks can be tailored to exhibit materials properties that have been 
unachievable with conventional materials, including increased strength and toughness of films 
and fibers to enhanced optical characteristics of coatings. 
 
The most feasible way to disperse particles in a bulk material or control their packing at a 
substrate is through fluidization in a carrier that can be processed with well-known techniques 
such as spin, drip and spray coating, fiber drawing, casting followed by solidification through 
solvent evaporation/drying/curing/sintering [1]. Unfortunately processing nanoparticles as 
concentrated, fluidized suspensions is a primary challenge and remains an art largely because of 
the extraordinary effect of particle shape and volume fraction on fluidic (rheological) properties. 
A second challenge is to create stable dispersions that can be processed into films, fibers, and 
other bulk structures. If the nanoparticles stick together and flocculate they cannot be processed. 
A schematic of the various interaction forces that are relevant on the nanoscale is shown in 
Figure 1.  Clearly scientific understanding at multiple length scales, from atomistic to continuum, 
is crucial to surmounting these challenges in designing and manufacturing nanocomposite 
materials.  
 

 
 

FIGURE 1: Illustration of the rich physical phenomena that control nanoparticle stability and rheology. 
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To achieve a stronger scientific understanding of the factors that control nanoparticle dispersion 
and rheology we have developed a multiscale modeling approach to bridge scales between 
atomistic and molecular-level forces active in dense nanoparticle suspensions. As the particle 
size decreases to the nanometer scale a number of complications not present in modeling large 
micron sized colloidal particles arise. One is that the natural length scale of the background 
solvent which for colloidal suspensions is much smaller than the colloid is now comparable to 
the size of the nanoparticles. Another is that the form of the effective potential between 
nanoparticles is not known. This is largely due to the fact that short chain surfactants which are 
often added to the particle surface to prevent flocculation are not comparable in size to the 
nanoparticle itself.  To overcome these complications we have developed a multi-prong 
numerical approach. At the largest length scale, two “coarse-grained” numerical techniques have 
been developed and implemented to provide for high-fidelity numerical simulations of the 
rheological response and dispersion characteristics typical in a processing flow. The first is a 
coupled Navier-Stokes/discrete element method (NS/DEM) in which the background solvent is 
treated by finite element methods. The second is a particle based method known as stochastic 
rotational dynamics (SRD) [2-4]. These two methods provide a new capability representing a 
“bridge” between the molecular scale and the engineering scale, allowing the study of fluid-
nanoparticle systems over a wide range of length and timescales as well as particle 
concentrations. To validate these new methodologies, particularly in regard to testing the 
minimum size of a nanoparticle and bulk concentration of particles at which the continuum fluid-
solver approach is valid, multi-million atoms simulations explicitly including the solvent have 
been carried out. These simulations have been vital in establishing the necessary “subgrid” 
models for accurate prediction at a larger scale and refining the NS/DEM and SRD 
methodologies. To determine the forces between the nanoparticles which are required input to 
these approaches, molecular dynamics simulations with full atomistic detail are being used. The 
results of this aspect of the work will be presented in a later report. In this report we present 
high-level descriptions of every aspect of this project, and conclude with a clear statement of 
new capabilities in modeling and simulation, as well as a discussion of future opportunities. 
 

Coarse-grained Solvent Methods 
 
When speaking of nano-colloid suspension rheology what we seek is a relationship between 
stress and strain-rate.  In general we seek transport coefficients and their functional dependence 
upon system parameters such as shear rate or colloid volume fraction.  In particular, we seek to 
be predictive for a range of colloid material, polymer functionalization, charge, and solvents with 
regard to mass transport (diffusion coefficient) and momentum transport (viscosity).  A 
schematic of the possible physical phenomena in the systems to be modeled are pictured in Fig. 
1.  Note that solvent hydrodynamics (colloid-colloid and macroscopically induced flow), solvent 
removal and a plethora of colloid-colloid/colloid-solvent interactions must all be accounted for.  
Resolving these predictively is a challenge for any single method; hence we have approached 
this problem from several directions attempting to develop a set of tools and the understanding of 
the conditions under which each is applicable and the trade-offs inherent in the choice of one 
method vis-à-vis the others.   
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Before the details of the methods investigated are presented it is well to consider the 
computational options and requirements that the model system places on each method.  Consider 
Fig. 1 again.  Let’s say that we are interested in the viscosity of a suspension of spherical nano-
colloids of size 100 nm at volume fraction 50% in some general solvent (perhaps water).  As a 
general rule, it is known that, in order to obtain good statistics and avoid finite size effects, 
several hundred to one thousand spheres are required to determine the viscosity in a numerical 
simulation.  Given this, the simulation domain to be simulated is on the order of μm3.  Suppose 
also that we want to shear the system at 100 sec-1.  Again, in order to obtain good data, a total 
strain of about 10 box units is a good rule-of-thumb.  This requires a simulation of about 0.1 μsec 
of real time.  With these parameters in mind, let us consider the potential numerical methods to 
solve this problem. 
 
First, it should be noted that an explicit, atomistic representation of the problem will be limited 
by the smallest length and timescales in the system (i.e., the individual atoms of the 
solvent/colloid).  Even with the cpu resources available at Sandia these types of calculations are 
limited to system sizes on the order of tens to hundreds of nanometers and total real time on the 
order of 10 to 100 nano-seconds.  Although these types of calculations are vital for discovering 
the effects of the molecular details of a particular system they are by nature prohibitive in most 
cases for the rheological information sought. 
 
The way to get around the severity of this limitation is to “coarse-grain”, i.e., reduce the number 
of degrees of freedom in the problem by averaging over the “fast” ones.  This is possible 
assuming that the timescales are sufficiently separated.  Both the colloids and the solvent are 
potential candidates for coarse-graining in order to make the problem computationally tractable.  
In section III, a model coarse-grained colloid is discussed and simulated in an explicit LJ solvent.  
This is made possible due to advances in LAMMPS [5] numerical algorithm and data structure to 
handle disparate sizes efficiently [6].  In this way, explicit atom solvent simulations are made 
tractable.  What is required is knowledge of the coarse-grained or “effective” potential of the 
colloid-colloid and colloid-solvent interactions.  This information is required for all simulation 
methods and can be obtained through a coupled theoretical/simulation and experimental (e.g., 
laser-tweezers, IFM) program for a particle suspension formulation. 
 
A second issue to note is that the solvent itself is also a candidate for coarse-graining.  
Additionally, further approximations can be made so that the simulation can be made more 
computationally efficient; albeit at a price.  As Irving and Kirkwood [7] have shown, the Navier-
Stokes equations are derivable from ensemble averages of conservation of microscopic 
momentum.  Thus, simply coupling the discrete colloids to a continuum Navier-Stokes solver is 
one approach to relaxing the restrictions of atomistic timescales in the solvent while retaining the 
main effect of hydrodynamic interactions.  The cost is the loss of certain atomistic details that it 
is hoped can be accounted for in effective potentials and boundary conditions.  As noted above, 
additional approximations can be made, which are often times inherent in particle-based coarse-
grained solvent methods for modeling hydrodynamics.  This involves what has been called 
“collapsing” or “telescoping” the timescales [3].  In the actual system there are multiple 
timescales that can be separated by many orders of magnitudes.  Collapsing the timescales 
involves changing the timescales in the problem so that the separation between them is reduced, 
perhaps on one order of magnitude as opposed to three or four.  This results in certain 
computational efficiencies at the cost of a loss of one-to-one correspondence between the model 
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and real systems.  What is hoped for is that the physics of the problem are not too sensitive to 
these changes and dynamic similarity can be achieved.  However, to be predictive with these 
methods requires rigorous validation of the approximations that went into the models.  Hence, 
user control over the “telescoping” is required, which can be accomplished thorough implanting 
a Navier-Stokes solver such as FEM. 
 
In summary, the quest for modeling and simulation tools which meet the needs of this research 
and development project, no single simulation method enables predictive nanoparticle 
suspension dynamics and rheology across the breadth of required features.  The most critical 
requirements are as follows: (1) computational efficiency and scalability, (2) solvent fluid 
mechanics accuracy and generality (e.g., non-Newtonian fluids), (3) ability to couple fluids and 
the discrete particle nature of nanoparticle interactions and associated dynamics, (4) spherical 
and generally aspherical particles, and (5) user-friendly for real-system simulations.  As 
described in Section II.2, Stochastic Rotation Dynamics (SRD) meets requirements (1), (3), and 
(4) as well as any other method.  To meet requirements (2) and (5), we also advanced a 
generalized Navier-Stokes/Discrete-element capability which is the subject of the next section. 
 

Coupled Finite Element – Discrete Element Methods 
 
Recall that our goal is to simulate larger length scales and longer times.  To achieve this, we need 
to relax the dependence on the smallest length and time scales while capturing the dominant 
effects of these.  In many cases it is assumed that the dominant effect of the solvent which can 
not be easily captured by pair-wise, conservative, coarse-grained effective potentials is the effect 
of hydrodynamic interactions between the colloids since they are many-body, long-range, 
dissipative interactions. Thus, the “coarse-graining” suggested here is to simply couple discrete 
colloids to a Navier-Stokes solver.  In this way only the timescales associated with the 
macroscopic properties of the bulk fluid, colloids and flow field are relevant.  Additional 
approximations, such as are inherent in particle-based coarse-graining methods (e.g., dissipative 
particle dynamics (DPD) [8-12], SRD [2-4]), which reduce the separation between various 
timescales can also be applied.  For instance, by increasing the compressibility of the solvent 
(reducing the sound speed) one can reduce the sound travel time, or similarly the momentum 
diffusion time through the solvent can be adjusted through the kinematic viscosity.  
Implementing a Navier-Stokes solve thus gives a way of validating that the relevant physics have 
not been compromised by an assumption of dynamic similarity between the model and real 
systems. 
 
We use a Finite Element Method for solving the Navier-Stokes equations in this work and seek 
to couple it with LAMMPS as a discrete particle dynamics solver.  LAMMPS, therefore, handles 
all the details regarding the coarse-grained colloid-colloid interactions as mediated by the 
solvent.  Using a FEM approach for hydrodynamics will give us an accurate, robust and general 
capability.  However, in this work we make certain simplifying assumptions to allow us to begin 
development of coupled discrete-continuum approach.  Specifically, we assume the solvent is a 
Newtonian, incompressible fluid with constant density.  In this case the Navier-Stokes equations 
take the form 
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where we have introduced an intermediate, non-solenoidal velocity field, u* and an intermediate 
pressure field, φ.  Steps 1-4 also need appropriate boundary and initial conditions, which for the 
most part are standard.  However, the boundary condition on Step 2 does merit further comment.  
First, we note that for our implementation φn+1 should be interpreted as a pressure increment 
(φn+1 = pn+1/2-pn-1/2) so that as Steps 1-4 are iterated, u* converges to un+1, the “correct” 
solenoidal velocity field.  Hence, φn+1 must go to zero as the divergence of u* goes to zero (cf. 
Step 4).  This means that boundary conditions of Step 2 must insure the trivial solution when u* 
is solenoidal. 
 
Previous implementations of fractional stepping-type algorithms have found very weak stability 
for second-order schemes where the pressure field depends on the time step [12] and have been 
hampered by issues surrounding correct numerical boundary conditions have lead to poor 
accuracy in the pressure field [13].  For our implementation we found no dependence of the 
results on the time step for the pressure gradient and velocity profile in a simple Poiseuille flow, 
the drag force on a fixed sphere at moderate Reynolds number, as well as for the drag force on a 
sphere in a simple cubic array of particles at zero Reynolds number.  For the results of the latter 
case see Fig. 2 where we compare both the drag force calculated via FEM by fully-coupled 
pressure-velocity and pressure projection schemes to the very accurate numerical results of Ladd 
[14].  Results of a single particle with periodic boundary conditions as well as 3 by 3 by 3 and 5 
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by 5 by 5 arrays of spheres are shown to compare will with Ladd’s results.  In Fig. 3 results for 
varying the grid size of the 5 x 5 x 5 cubic array of spheres at one packing fraction (27%) are 
shown.  Second order convergence in space can be clearly seen.  These typical results are the 
most relevant for the current application in that LAMMPS only needs to know the total 
hydrodynamic force and torque on a colloid.  These and similar results show that this algorithm 
can provide accurate values for these quantities.  
 

 
 

 

 
 

FIGURE 2: : Comparison of various numerical solutions for the average drag force on spheres of diameter 1.0 
arranged in a square lattice at various volume fractions due to small Reynolds number flow through the lattice.  
Symmetry boundary conditions are employed for systems of 1 sphere, 3x3x3 spheres and 5x5x5 spheres.  Also 
shown are cross-sections of the x-component of the flow field for a single sphere system. 
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FIGURE 3: Error convergence of the average drag force on spheres of diameter 1.0 in a 5x5x5 square lattice at 27% 
volume fraction due to small Reynolds number flow through the lattice. 
 
In Fig. 4 we show the computational efficiency of this scheme as compared with a direct-solve 
fully coupled u-p simulation.  The figure shows the ratio of the cpu time to solve the problem on 
more than two processors to the time required to solve the problem on two processors.  That is, 
we hold the total number of unknowns fixed and increase the number of processors and compare 
the runtime.  These results are for a system with just over 1 million unknowns.  It is estimated 
that we will routinely need to solve for approximately 10 million unknowns in order to simulate 
the systems described in Figure 1.  Such a system would then be 10 times larger than the one 
used for Figure 4.  As can be seen, the pressure projection scheme scales nearly ideally for more 
than about 64,000 unknowns per processor whereas the fully coupled approach can not be run on 
fewer than 16 processors.  Hence, using the algorithm described here we can solve a given 
system on fewer processors while still taking advantage to parallel speed-up.  It remains to be 
seen how the method scales as we increase the number of unknowns while holding the number of 
unknowns per processor constant. 
 

 
 

FIGURE 4: Performance results for system of 1,071,755 unknowns 
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In order to have a fully applicable FEM-based capability for predictive nano-colloid rheology 
modeling and simulation several tasks remain.  Most crucial are having the ability to move 
particles through the domain with out remeshing.  Currently, we are validating a novel one-level 
cut adaptively approach developed at Sandia called CDFEM.  This allows particle to move 
through a uniform background mesh whose elements are cut by the particle surface and adapted 
to conform to their geometry.  This approach has been shown to be accurate and efficient for 
simple systems and we are extending it application to nano-colloid rheology.  In addition, we are 
developing stochastic terms to be added to the traditional Navier-Stokes terms to model thermal 
fluctuations in the fluid which drive Brownian motion.  These are being developed and validated 
in an FEM formulation. 
 

Stochastic Rotation Dynamics and Nano-Colloid Rheology 
 
The SRD method fits into a broad category of “coarse-grained, particle-based solvent” methods 
for modeling hydrodynamics. The main advantage of these approaches is the computational 
expediency of discrete particle mechanics.  These coarse-graining methods are further 
categorized based on interaction-type of the solvent particles.  For instance, the Dissipative 
Particle Dynamics (DPD) method [8-11] combines classical molecular dynamics using 
conservative, soft-potentials for access to longer timescales with dissipative and random forces 
(i.e., a novel pair-wise momentum conserving thermostat) to accomplish full hydrodynamics of 
the solvent.  Because of its similarity to classical molecular dynamics (MD), DPD methods are 
often available in MD codes like LAMMPS.  Other particle-solvent approaches include the 
lattice-Boltzmann method (LB) [15], the vortex method, and direct simulation Monte Carlo 
(DSMC).  Details of these methods and their limitations can be found in [3]. The SRD method is 
similar to LB and DPD methods, but accomplishes several improvements.   Specifically, 
improvements have been realized in establishing a more firm statistical-mechanical basis, more-
easily incorporating large-colloidal particles, and improving computational efficiency, cf. 
references [3] and [16].  
 
In this project we advanced an SRD method in the classical MD code LAMMPS specifically 
aimed at coupled colloid-dynamics and fluid mechanics, viz. nanoparticle suspension dynamics. 
The SRD algorithm accounts for the hydrodynamics of the solvent and participates in the fluid-
nanoparticle coupling, and an extended discrete element method (DEM) solver handles the 
colloid-colloid interactions and colloid dynamics.  The coupled method has been implemented in 
LAMMPS.  We built on previous work by Hecht et al.[2] and Padding and Louis [3] in this 
application area, with specific modifications and improvements in modeling shearing flows, the 
verification and validation of the method with respect to colloid diffusion and colloid-suspension 
rheology,  and the computational data handling to make the method efficient and scalable on 
parallel architectures. With the exception of limited validation of colloid diffusion, these aspects 
were not specifically addressed by other research groups.  
 
The concepts of SRD and associated algorithms are detailed in other papers (cf. Padding and 
Louis [3]).  Those references can be consulted for details.   In this report we will give a broad 
overview of our implementation.   
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SRD involves a large number N of particles (often referred hereafter as “SRDs”, or “SRD-
particles”) endowed with mass but no inherent size. Particle positions are advanced through a 
Forward Euler-type streaming step over which no interactions occur.  Hence for the ith particle 
 

)(v)(x)(x ttttt iii Δ+=Δ+  

 
The fundamental length scale associated with SRD is brought in through so-called lattice bins 
into which the overall domain is tessellated. These bins are taken as uniform in size with primary 
dimension a0.  After the streaming step, the particles are subjected to a collision step, in which 
the velocity of each particle in a bin minus the bin-mass-average-velocity is rotated about a 
randomly-chosen axis over a fixed angle. 
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is the average velocity of the particles in the bin, and Ω is a randomly chosen rotation matrix. 
 
Malevanets and Kapral [4] have shown that this generates an equilibrium Maxwellian srd-
particle velocity distribution and that it yields the correct hydrodynamic equations with an ideal-
gas equation of state.  It is noteworthy that each of the N srd-solvent particles represents much 
more than a solvent molecule and so care must be taken in specifying their mass, number density 
and mean-free path so as to attain the correct thermodynamic/kinematic quantities.  
 
With respect to the colloid dynamics, or “big” particles, there are two modes of srd-collision 
which we have implemented: slip and no-slip.   It remains a matter of research as to which mode 
represents a more accurate description for a given colloid and solvent; we have mainly used a no-
slip stochastic collision process [3,17], in which an SRD-particle can impart linear and angular 
momentum to a nano-colloid.  Note that Brownian forces on the colloids due to solvent thermal 
fluctuations are intrinsic to this method.  Setting the SRD bath temperature is required, and, 
depending on the situation, thermostat or other considerations must be taken to help maintain the 
desired temperature since the SRD method is an NVE-like technique.  
 
A more detailed discussion of the method is beyond the scope of this report.   The other 
aforementioned sources, e.g. [2] and [3], along with references [18-20] provide further details.   
We will focus the discussion on the principles for setting the relevant model parameters.  We 
will then provide some examples. 
 
SRD simulation parameters consist of the lattice spacing a0, the average number of fluid particles 
in a bin (or lattice cell), M, the SRD time step Δtsrd, the mass of the fluid (srd) particles mf, and 
the rotation angle α.  Since we want to resolve hydrodynamics on a scale smaller than a colloid 
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of radius R, we choose the lattice constant, or lattice spacing, as a0 = R/2.  In 3D this means that 
each spherical colloid particle will cover about 34 bins.  Others have shown this to be near the 
upper limit for accurate resolution of the drag force on a sphere [14].  If the unit of length is 
chosen as the colloid diameter d, then a0 = 0.25d.  In this bin, at each SRD time step, the srd-
particle velocities relative to the mean bin velocity are rotated by an angle +α or -α with 
probability 1/2 about randomly chosen axis, and the velocities of each particle are recomputed.  
It has been shown that α = π/2 is optimal for fast relaxation to equilibrium [19]; we set this as a 
constant in our implementation.  The particles are also allowed to collide with the colloids that 
intersect a bin.     
 
For computational efficiency, a number of SRD particles per bin M between 3 and 6 is a good 
choice.  Actually, this is not an explicit input in our implementation, but rather a result of setting 
a0 and the total number of SRD particles at initialization.  A larger number M increases CPU-
time and storage requirements.  A smaller number increases the likelihood of having one or less 
SRD-particles per bin so that no collisions take place; yielding a much larger effective mean free 
path (see below) and poor resolution of the flow field. 
 
At constant time step, temperature and fluid density ρf= Mmf/a0

3, leads to a smaller mf and a 
larger effective mean free path (cf. eqs. below) of the fluid particles, which leads to a bad 
resolution of the flow field around the particle.  We note that the dependence of the transport 
coefficients on this number density is weak, cf. [3].  
 
Perhaps the most critical parameter is the mean-free path.  It is defined as 
 

 
λ =Δtsrd kbT /mf  

 
λ represents the average distance traveled between collisions of srd particles, which is clearly set 
by the SRD time step and the mean-thermal speed (kbT/mf)1/2. Here kb is the Boltzmann constant. 
In order to maintain Galilean invariance λ must be greater than 0.5a0, for our implementation 
[21]. 
 
In summary, if the bin size is set according to the colloid size at a0 = R/2 and the average number 
of srds per bin is in the target range of 3 to 6, LAMMPS needs three quantities for closure: mf, 
Δtsrd, and kbT.  We need to choose these so that λ > 0.5a0, and so that we best reproduce all of 
the key dimensionless quantities, viz. the Peclet number, Pe (ratio of a convective time scale to a 
diffusion time scale) and the particle Reynolds number, Re.  One way to do so is to choose the 
parameters to get as close as possible to the diffusion coefficient given by the Stokes-Einstein 
relation. The Stokes-Einstein relation requires knowledge of the shear viscosity of the solvent.  
Transport coefficients for various SRD implementations have been derived in reference [21].  
The kinematic viscosity as a function of the SRD parameters is: 
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With our choice of a0 and M, and choosing a value for λ > 0.5a0, it is clear that selecting a Δtsrd 
determines the kinematic viscosity of the SRD fluid or visa versa. Note that setting the viscosity 
to the value of, say, water yields a time step that is too small to be of practical use.  This is one 
example of the collapsing of time scales these methods allow accesses to longtime information.  
Alternatively, we could make the time step “large” and set the viscosity to that of the real fluid, 
but this would lead to impractical values of λ.  These are the trade-offs inherent in these types of 
methods.   
 
Following [2], we determine Δtsrd by matching the diffusion coefficient of the model system to 
that of the physical system in order to maintain the same Pe between the two.  Using the Stokes-
Einstein equation, D=kbT/6πνρR, and substituting the equation above for ν, noting kbT = 
mf(λ/Δtsrd)2, setting the density of the model SRD fluid to that of the real fluid (i.e., mf = ρa0

3/M), 
setting λ = 0.6a0, and rearranging we get the following expression for the time step: 
 

col
srd D

Rt
2003125.0=Δ  

 
In this particular approach we have chosen to replicate the actual diffusivity of the colloid.  Now 
it is possible to match the Peclet number of the target system, albeit when the values of λ, Δtsrd, 
and mf are used to calculate the temperature we find again a mismatch between the model system 
value the physical system value.  This has further consequences for the colloid-colloid 
interaction potentials.  We want the keep the ratio of the kinetic energy and the potential energy 
in the model system equivalent to that in the real system so we will need to scale the colloid-
colloid interaction parameters accordingly.  Nonetheless we have achieved dynamic similarity 
with respect to the balance of thermal motion and convection.    
 
Matching conditions and parameters of a real system of nanoparticles in solvent is difficult with 
coarse-grained techniques like SRD.  To reach this goal we first pursued verification of several 
fundamental problems known in the literature followed by validation against a real system of 
nanoparticles in solvent.   Towards this end, we report here sample results in the following cases: 
 

-Couette flow of pure SRD solvent system 
 
-Diffusion of hard sphere-like nano-colloids in SRD solvent, as a function of nano-
colloid concentration  
 
-Shear flow of hard sphere-like nano-colloid suspension (bulk viscosity as a function of 
colloid concentration) 
 
-Shear flow of a suspension of silica particles in solvent (comparing model system to 
physical)  
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FIGURE 5: Total momentum flux vs. shear rate in pure SRD solvent flow.  Flow is Couette (or simple shear) 
generated by the Müller-Plathe [22] algorithm. 
 
In Fig. 5 we show verification results for a pure-solvent system, viz. a system with only SRD 
particles.  Here we simulate a simple Couette flow with a shear stress applied at opposing 
boundaries of a three-dimensional box using the Müller-Plathe algorithm [22].  We should point 
out that the implementation of the Müller-Plathe [22] algorithm for determining the shear 
viscosity of a mixture of colloid and SRD particles is a unique extension of this work and 
convenient way to shear a system. Shear stresses on the system are accomplished by simply 
swapping momentum of particles within thin layers at the top and the middle of the domain in 
such a way as to conserve momentum.  The frequency of swap can be used to adjust the shear 
rate.   The results show that we can achieve a smooth velocity profile statistically.  To be 
accurate, it is desirable that the measured momentum flux be a linear function of shear rate, as 
would be expected from a Newtonian fluid.  Cleary this is the case, as Figure 5 shows.  
 

 
FIGURE 6: Diffusivity versus volume fraction colloid for SRD/colloid simulations (red circles), explicit LJ 
solvent/colloid (green squares), Stokes-Einstein relation (blue triangle), and the theory of Cichocki and Felderhof 
[23]. 
 
If Fig. 6 we show predicted colloid-diffusion, measured through the mean-square-displacement, 
at various colloid concentrations.  Simulations were performed with SRD/Colloid algorithm and 
Lennard-Jones particle solvent with larger colloids, both of which are available in LAMMPS.  In 
all cases we have several hundred colloid particles mixed with millions of SRD or LJ solvent 
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particles.  Simulation parameters in both are chosen to give a reduced density ρ*=0.6, 
dimensionless temperature, or KbT/ε = 1.0, and dimensionless solvent viscosity η*=1.0 (see 
LAMMPS manual for LJ-unit definitions).  In the figure we plot the diffusion predicted with LJ 
solvent (red), SRD solvent (green), and that predicted with the Stokes-Einstein relation in blue.  
The reference line (dotted) is predicted from a simplified theory by Cichocki and Felderhof [23]. 
Clearly all simulations are approaching the limit of Stokes-Einstein theory as the volume fraction 
approaches zero, and to the theoretical, linear limit of D0(1-cφ), with φ being the volume 
fraction. The difference in the LJ and SRD predictions is due to different sized colloids and 
different colloid-colloid interaction parameters in the two simulations.  We are currently 
performing simulation with identical colloid parameters.  
 
While producing these results we characterized the performance of the coupled colloid-SRD 
algorithm in LAMMPS. The simulations at one particular concentration were run with the SRD 
algorithm with the required number of SRD particles per lattice bin (between 4 and 6) and with 
21000 LJ particles per colloid, required to achieve an equivalent density, temperature and 
viscosity.   The SRD simulations took 6.3e-3 CPU seconds per colloid per time step on two 
CPUs on a Linux Desktop workstation. The same simulation using LJ particles for the solvent 
took 4.0e-3 CPU seconds per colloid per time step on 125 processors of roughly equivalent 
processor chip speed.   We concluded about a 400-fold speed-up to perform the simulations with 
the equivalent colloid system size.   Moreover, we found that the SRD algorithm scales 
efficiently in parallel, with a 75% efficiency achieved for this system up to 512 processors.  
 
Satisfied with the results for colloid diffusion in a system that is effectively zero Peclet number, 
we proceeded to verify our implementation under shearing.  The idea is to predict the effective 
shear viscosity of a suspension of nanoparticles at a specified shear rate and volume fraction.    
In Fig. 7 we show the shear viscosity as predicted by the Müller-Plathe algorithm versus volume 
fraction of nanoparticles. 
 

 
FIGURE 7: Predicted reduced shear viscosity as a function of volume fraction for nanoparticles of diameter d=20σ.  
Comparison is shown between SRD and the experimental results of Meeker et al. for hard sphere colloids [43]. 
 
Our ultimate goal is to map the SRD parameters to a real nanoparticle-solvent system.  At the 
time of this writing we had not achieved a quantitative agreement with the rheology of a real 
system.  Our current effort is focused on a polystyrene and water system, as it is a common 
system with numerous data reported in the literature.   Specifically, we are simulating the shear-
induced flow of a suspension of 390 nm diameter polystyrene particles in water at room 
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temperature.  The nanoparticles hold a charge of 33 mV and an electrolyte is added so that the 
effective screening length is 4.4 nm.  Using this data we prescribed a DLVO pair-wise potential 
in LAMMPS by deploying a coupled van der Waals and Yukawa hybrid scheme.   Simulations 
were performed using the Müller-Plathe shearing algorithm with a momentum swap rate 
resulting in shear rates between 10 and 100 s-1.   A representative snap-shot of the flow and the 
resulting average velocity profile are shown in Fig. 8, at a volume fraction of 35% and shear rate 
of 100 s-1.   With this profile, and the accumulated momentum flux in the run we compute an 
effective viscosity of 3.3e-5 Pa-s.  Adjusting this value for the scaling changes needed to match 
the Pe number, we determine the predicted viscosity at this set of parameters is approximately 
0.01 Pa-s, which is of the order of the published experimental data.    
 

 
FIGURE 8: Snapshot of simulation of polystyrene in water.   Surface potential is 33 mV.  Shear rate is 20 s-1. 
 

Nanoparticles in an Explicit Solvent 
 
For weakly interacting colloidal particles, the suspension is well described as a system of hard 
spheres, while increasing the interaction gives rise to colloidal gels and glasses. Since the size of 
the colloidal particle is much larger than the solvent, there is a clear separation of time and length 
scales between the dynamics of the colloidal particles and that of the solvent. This allows one to 
coarse grain the solvent and treat it as a continuum. However as the size of the colloidal particles 
are reduced to the low-end of the range of what is now commonly referred to as nanoparticles, 
e.g. 2-20 nm, treating the background implicitly is not adequate. For example, treating the 
solvent as a continuum does not account for local packing of the solvent around a nanoparticle 
which can increase its effective radius. This can modify the effective interactions between 
nanoparticles, strongly affecting both the structure and dynamics of the suspension. To address 
even such simple questions as to how large should the nanoparticles be to treat the solvent as a 
continuum or how do changes in the relative interactions between nanoparticles and between 
nanoparticles and the solvent affect the suspension rheology, it is important to develop a 
computationally tractable model of nanoparticle suspensions in which the solvent is treated 
explicitly.  
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Most models of colloidal particles treat them as hard spheres. However this approach is not 
suitable for modeling colloids in an explicit solvent since hard spheres strongly phase separate 
even for relatively small differences in size [24]. Most simulations of hard spheres have treated 
the solvent implicitly, usually by Brownian dynamics [25-27]. Stokesian Dynamics [28] and 
related methods [29] are approaches to include hydrodynamic interactions for the case of implicit 
solvent.  The particle based methods, such as those discussed in Sec. II, introduce an effective 
coarse-graining length scale that is smaller than the colloids but much larger than the natural 
length scales of a microscopic solvent.  
 
To solvate the nanoparticles in an explicit solvent, it is critical to include an attractive component 
of the interaction between the nanoparticle and the solvent. The simplest effective potential is a 
Lennard-Jones (LJ) interaction shifted to the surface of the nanoparticle [30-33]. However this 
potential does not capture the true interaction between nanoparticles as the range for which the 
interactions are important becomes increasingly small with increasing particle size. A more 
realistic approach is to treat each nanoparticle as being made of a uniform distribution of atoms, 
similar to treating them as a collection of atoms. For a uniform distribution of atoms, the 
effective potential can usually be determined analytically [34, 35]. Integrated potentials are 
computational efficient, although the ability to freely choose shapes is traded for use of 
symmetrical shapes such as ellipsoids or spheres.  
 
Here nanoparticles are assumed to consist of a uniform distribution of particles interacting with a 
Lennard-Jones interaction  

 
where r is the distance between two atoms. εnn is the interaction energy and σn is the diameter of 
the LJ atoms which make up each nanoparticle. For spherical nanoparticles, the total interaction 
between nanoparticles can then be determined analytically by integrating over all the interacting 
LJ atoms within the two particles [34]. The total interaction between spherical nanoparticles 
Unn(r)= UA

nn(r)+ UR
nn(r). UA

nn(r) is the standard attractive interaction between colloidal particles, 
first derived by Hamaker [36]. For particles of equal radii a, 

 
The Hamaker constant Ann =4π2εnnρ1ρ2σn

6, where ρ1 and ρ2 are the number density of LJ atoms 
within each sphere. The repulsive component of the interaction UR

nn(r) is [34]  
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These last two equations reduce to the standard LJ potential in the limit a → 0 and 4πa3ρi/3 = 1. 
The total interaction potential between nanoparticles is shown in Fig. 9 for several values of the 
nanoparticle radii a. 
 

 
FIGURE 9: Integrated nanoparticle/nanoparticle potential for Lennard-Jones potential (dashed) and nanoparticles of 
radii a = 2.5, 5.0, 10.0 and 20.0σ. 
 
The interaction Uns(r) between the LJ solvent atoms and the nanoparticle is determined by 
integrating the interaction between a LJ solvent atom and the LJ atoms within the particle,  

 
where Ans = 24πεnsρ1σns

3. Here εns is the interaction between a solvent atom and an atom in the 
nanoparticle and σns =(σn + σs)/2, where σs is the size of a LJ solvent atom. The interaction 
between solvent atoms is the same Lennard-Jones interaction given above with εss = ε and σs = 
σ. Note that, unlike most interaction potentials, Unn(r) and Uns(r) depend on both the size of the 
atoms making up the nanoparticle σn and the radii of the nanoparticle a.  
 
Depending on the values of the Hamaker constant, the nanoparticles can either be dispersed in 
the solvent or aggregate. For nanoparticles made of the same Lennard-Jones atoms as the solvent 
(εnn = εns = ε and σn = σ), the nanoparticles and solvent phase separate for any value of the 
density ρ1 which make up the nanoparticles. To solvate the nanoparticles, the interaction strength 
εns has to be increased relative to εnn. For εnn = ε,  simulations were run for several values of εns. 
We found that increasing  εns=3ε was not sufficient to avoid phase separation, while εns=6ε was. 
Since increasing the interactions between nanoparticles and solvent further gave an unphysical 
situation in which a layer or two of solvent atoms were attached to each nanoparticle, we chose 
to run all the simulations with εns=6ε. 
 
In this study we chose three values for the nanoparticle/nanoparticle interaction strength. For the 
first, we considered that each nanoparticle was made of a LJ solid which has a density ρ1σ3 =1.0. 
This gives Ann = 4π2ε. This corresponds to a very strong interaction between the nanoparticles, 
resulting in a colloidal gel [37]. For nanoparticles of the same density as the solvent, ρ1σ3 =0.57, 
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the Hamaker constant is reduced significantly, Ann = 12.9ε. However in most nanoparticle 
suspensions, the nanoparticles are coated with short surfactants to avoid flocculation. Using the 
present form of the potential, this can be modeled by reducing Ann further. In fact by varying the 
Hamaker constants it is possible to control the relative strength of the nanoparticle/nanoparticle 
and nanoparticle/solvent interaction. Ann = ε as we show below, describes a hard sphere-like 
nanoparticle suspension for a = 5σ. In this report, we study how the structure and viscosity of the 
nanoparticle suspensions depend on the Hamaker constants Ann and Ans for a = 5σ. Results for 
a=10σ can be found in ref. 37. 
 
All molecular dynamics simulations were performed using the LAMMPS simulation package 
[5]. As part of this project a number of improvements to the algorithm were made to improve the 
speed for particles of disparate size. These are described in a recently published paper by in 't 
Veld et al. [6] and include multi-region neighbor lists and enhanced communications, have made 
the simulations presented here possible. For example the speed up over previous versions of the 
code for nanoparticles of radii a = 10σ in an explicit solvent of LJ atoms is 200-400 times 
depending on nanoparticle concentration. These enhancements are available at 
http://lammps.sandia.gov. 
 
Each configuration is prepared by combining a nanoparticle suspension in an implicit solvent 
with an equilibrated pure solvent of Lennard-Jones particles. The pure solvent and nanoparticle 
suspension are merged by removing any solvent monomers that overlap a nanoparticle. This 
configuration is then equilibrated in an NPT ensemble at a temperature T = ε/kB and P =0.1ε/σ3 
to ensure a homogenous suspension. All results presented here are for an NVT ensemble. To 
reduce the number of parameters we set σn = σs = σ and mass mp = 4/3 π a3ρ1m with ρ1σ3 =1.0 
throughout. Here m is the mass of the solvent monomer.  
 

 
 

FIGURE 10: Sample simulation cell for N nanoparticles of radii a = 5σ for φv = 0.25 in an explicit solvent for (a) 
monomers and (b) dimers. Solvent is shown as points. 
 
For equilibrium simulations Newton's equations of motion were integrated using a velocity-
Verlet algorithm coupled weakly to a heat bath [26] with a damping constant Γ = 0.01τ−1. The 
integration time step δt = 0.005τ, where τ = σ(m/ε)1/2. The interactions between LJ atoms were 
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cutoff at rc =3.0σ, between nanoparticles at 5a and between LJ solvent atoms and nanoparticles 
at a = 4.0σ. The number of nanoparticles varied from Nn = 10 to 750 and LJ solvent atoms from 
a few thousand to six hundred thousand depending on the volume fraction φv = 4Nn/3 πa3/V of 
nanoparticles. Note this definition of φv slightly underestimates the volume fraction since Unn(r) 
=0 for r = 10.44σ > 2a for a=5σ unlike the case of two LJ monomers where ULJ(r) = 0 for r = σ. 
However since the separation r where Unn(r) = 0 depends on the nanoparticle radii a, this is a 
convenient definition. For the dimer system, pairs of nanoparticles are constrained to have a 
fixed bond length bn = σ using the SHAKE algorithm. Sample configurations for a monomer and 
dimer system for a = 5σ and φv =0.25 are shown in Fig. 10. To determine the shear viscosity, the 
nanoparticle suspensions were sheared with the SLLOD equations of motion [39-42].  
 

  
(a) (b) 

FIGURE 11: (a) Nanoparticle-nanoparticle pair correlation functions gnn(r) and (b) nanoparticle/solvent pair 
correlation function gns(r) for nanoparticles of radii a = 5σ for volume fractions φv =0.12 (dot-dashed), 0.25 (dashed) 
and 0.39 (solid) for Ann = ε, Ans = 72ε with explicit solvent (black) and implicit solvent (red). 
 
The effect of including the solvent on the nanoparticle/nanoparticle pair correlations function 
gnn(r) is shown in Fig. 11a for the hard sphere-like nanoparticles for an explicit and implicit 
solvent. The simulations for the latter are the same as in the case of the explicit solvent except 
that the solvent is removed. Note that the first peak in g(r) is higher for the explicit solvent and 
shifted to larger separations than for an implicit solvent. The solvent forms a layer near the 
nanoparticles, so that two nanoparticles cannot approach as closely as in the case of an implicit 
solvent, resulting in an effective nanoparticle radius which is greater than a. In Fig. 11b the 
nanoparticle/solvent pair correlation function is shown. Increasing Hamaker constants increases 
the correlations between nanoparticles and with the solvent. For the strongest interaction case 
Ann = 4π2ε, a layer of solvent particles are essentially bound to each nanoparticle resulting in an 
almost zero probably that two nanoparticles are ever closer than ~ 12.2σ. From visual 
observation of the configurations, these systems form a colloid gel with a non-uniform 
distribution of nanoparticles.  
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FIGURE 12: Diffusion constant D versus volume fractions φv for radii a =5ε for Ann = ε, Ans = 72ε (circles) and Ann 
= 12.9ε, Ans = 258ε (squares).  
 

 
FIGURE 13: Viscosity as a function of shear rate for volume fractions φv =0.25 for radii a =5σ for Ann = ε, Ans = 
72ε (circles), Ann = 12.9ε, Ans = 258ε (squares) and Ann =4π2ε, Ans = 450ε (triangles).  
 
The effect of varying the Hamaker constant on the diffusion constant D of the nanoparticles is 
shown in Fig. 12. The result for D at low concentrations is in agreement with the no slip Stokes-
Einstein result D = kBT/(6πηsa) = 0.0105σ2/τ, where ηs = 1.01±0.02m/τσ is the viscosity of the 
pure solvent. The effect of varying the Hamaker constants on the shear rheology is shown in Fig. 
13. Clearly increasing the interactions between nanoparticles results in enhanced viscosity as 
expected. For the strongest interacting case the suspension is in the shear thinning regime for all 
accessible shear rates. For Ann = 4π2ε , at least in the shear thinning regime which we can 
presently explore, the viscosity is only weakly dependent on the size of the nanoparticles even 
for nanoparticles of radii a = 2.5, 5.0 and 10.0σ.  
 
In Fig. 14 we present results for a range of concentrations for hard sphere-like monomers and 
dimers. Above φv ~ 0.39 the monomer nanoparticle suspension crystallizes while the dimers do 
not over the entire concentration range studied. The liquid/solid transition point is slightly lower 
than for hard spheres (φv = 0.494). This is partially due to the fact that there is a weak interaction 
between the nanoparticles and underestimation of the volume fraction (radius). For the highest 
concentrations for the dimers there is some evidence for a shear thickening regime. For φv ~ 
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0.34, the viscosity reaches a plateau at low shear rates and we can extract the zero shear rate 
viscosity, which is shown in Fig. 15 along with experimental results for hard sphere colloids 
[43]. These results were fit by the expressions of Krieger and Dougherty [44], η/ηs = (1 - φv/φc)-

2.5φc and Quemada [45], η/ηs =(1 -φv/φc)-2. For hard sphere colloids, φc is typically taken to be 
between 0.57 and 0.63, the hard sphere glass transition and dense random packing fraction 
respectively. Fitting the zero shear rate data to the Krieger Dougherty expression gives φc =0.39, 
whereas the Quemada expression yields φc =0.43. Clearly the fits severely underestimate φc. As 
mentioned above, since the nanoparticle-nanoparticle potential is nonzero at the defined 
nanoparticle radius, φv slightly underestimates the volume fraction. Also as seen in Fig. 11 there 
is a weak solvation shell around the nanoparticles limiting the how close the nanoparticles 
approach each other, increasing the effective volume fraction especially for low φv. Adjusting the 
effective radii of the nanoparticle using the onset of the first peak in the nanoparticle pair 
correlation function, the best fit for φc =0.49 and 0.53 for the Krieger-Dougherty and Quemada 
expressions respectively.  
 

 
 

FIGURE 14: Viscosity as a function of shear rate for monomers (φv ≤ 0.39) (closed) and dimers (open) for Ann = ε, 
Ans = 72ε for φv =0.12 (circle), 0.25 (square), 0.31 (triangle), 0.39 (diamond), 0.49 (inverted triangle), 0.54 (cross), 
and 0.56 (plus). 
 

 
 

FIGURE 15: Viscosity as a function of φv for dimers. The circles represent points assuming radii of a = 5σ in 
determining φv, whereas the squares denote the effective volume fraction for radii adjusted to the peak onset in the 
nanoparticle pair distribution function. The lines represent the best fit for the Quemada (solid) and Krieger-
Dougherty (dashed) expressions for each data set. Also shown are the experimental results for hard sphere colloids 
[43] (half filled circles). 
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The effective interaction between spherical nanoparticles given above have been generalized by 
Everaers and Ejtehadi [34] to model ellipsoidal particles.  This potential has been included into 
LAMMPS. A snapshot of an ellipsoidal nanoparticles in an explicit solvent at φv =0.20 is shown 
in Fig. 16. Simulations of the shear rheology for ellipsoids are underway.  
 

 
FIGURE 16: Snapshot of ellipsoidal nanoparticles (red) at 20% volume fraction in solvent (blue).   
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Conclusions 
 
To improve our understanding of the rheology of nanoparticle suspensions we have developed 
and implemented two “coarse-grained” numerical techniques to provide for high-fidelity 
numerical simulations of the response and dispersion characteristics typical in a processing flow. 
The first is a coupled Navier-Stokes/discrete element method in which the background solvent is 
treated by finite element methods. The second is a particle based method known as stochastic 
rotational dynamics. Together these two methods provide a new capability representing a 
“bridge” between the molecular scale and the engineering scale, allowing the study of fluid-
nanoparticle systems over a wide range of length and timescales as well as particle 
concentrations.  
 
To establish the necessary “subgrid” physics for accurate prediction at a larger scale and refining 
the Navier-Stokes/discrete element and stochastic rotational dynamics methodologies, large scale 
molecular dynamics simulations have been carried out in which the solvent is included explicitly. 
Two levels of simulations have been performed. The first is explicit atom simulations to 
determine the force between nanoparticles as a function of separation. These effective forces are 
critical input for both of the continuum approaches. The second addresses the question of what is 
the minimum size of a nanoparticle and bulk concentration of particles at which the continuum 
fluid-solver approach is valid. From the results shown in Sec. III there are clear effects on the 
packing and rheology of nanoparticles of size ten times that of the solvent. Using the 
improvements in the LAMMPS code funded by this project, these studies are presently being 
extended to nanoparticles of size 20-30 times that of the solvent. 
 
The new capability developed under this LDRD can be used as a technical basis for designing 
manufacturing processes of nanocomposite materials.  Fully-exposed particle/solvent/wall 
dynamic models can now be interrogated for many of the mechanisms that prevent/allow 
successful processing. This modeling/simulation capability should be able to support process 
design within 2-5 years. This work has led to an industrial partnership (CRADA) to develop 
production-level computational capability aimed at designing nanoparticle flow processing 
strategies. It is also synergistic  with the National Institute for NanoEngineering (NINE) and 
Center for Integrated Nanotechnology (CINT) in modeling suspensions of aspherical 
nanoparticles and self-assembly. 
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