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Abstract

At nanoscale, man-made materials may show unique properties that differ from bulk and dissolved
counterparts. The unique properties of engineered nanomaterials not only impart critical
advantages but also confer toxicity because of their unwanted interactions with different biological
compartments and cellular processes. In this review, we discuss various entry routes of
nanomaterials in the human body, their applications in daily life, and the mechanisms underlying
their toxicity. We further explore the passage of nanomaterials into air, water, and soil ecosystems,
resulting in diverse environmental impacts. Briefly, we probe the available strategies for risk
assessment and risk management to assist in reducing the occupational risks of potentially
hazardous engineered nanomaterials including the control banding (CB) approach. Moreover, we
substantiate the need for uniform guidelines for systematic analysis of nanomaterial toxicity, /n
silicotoxicological investigations, and obligation to ensure the safe disposal of nanowaste to
reduce or eliminate untoward environmental and health impacts. At the end, we scrutinize global
regulatory trends, hurdles, and efforts to develop better regulatory sciences in the field of
nanomedicines.

Keywords

engineered nanoparticles; entry routes; environmental impact; nanowaste; disposal; control
banding

l. INTRODUCTION

Nano is an umbrella term encompassing several technical and scientific fields, processes,
and properties at the nanoscale or microscale.! The International Organization for
Standardization (ISO) defines a nanoparticle as a nano-object with all three external
dimensions in the nanoscale, which is approximately 1 to 100 nm.2 Although nanoparticles
have existed in the environment throughout the history of the earth (e.g., as minerals, clays,
and products of bacteria) and have been intentionally used for centuries (e.g., as finely
divided metal colorants), the systematically designed nanoscale materials, also called
engineered nanoparticles, have only appeared in the last few decades. The unique size-
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dependent physicochemical properties of nanoparticles often promote their application in
many products; however, these same unique properties also lead to unique physiological
responses in living systems by interaction with these materials. Engineered nanoparticles can
be more toxic than larger particles because they can move more freely than bulkier
molecules.

A continuously increasing number of commercial products containing nanoparticles are
available; however, only a few materials are currently used in large amounts. Therefore, they
slip into our daily lives without our awareness, primarily in the form of personal care
commercial products3 (Fig. 1). Altered new properties of these nanoparticles including
color, transparency, solubility, and chemical reactivity, which make them attractive
candidates in the cosmetics and personal care industries.* They may facilitate skin
absorption by promoting diffusion from the cosmetic vehicles into the surface layer of skin.?
However, insoluble and stable nanoparticles, such as titanium dioxide, gold nanoparticles,
silver nanoparticles, and polymers may enter the body and cause safety issues directly.

To address occupational safety and health concerns associated with engineered
nanomaterials, the National Institute for Occupational Safety and Health (NIOSH)
established the Nanotechnology Research Center (NTRC) in 2004.7 Once in the
environment, nanomaterials may potentially interact with metabolic networks and cellular
constituents. Considering the complexities of natural ecosystems, proper precautions must
be taken while exploring the effects of these nanoparticles on terrestrial and aquatic
ecosystems and establishing their environmental relevance.8 Generally, nanomaterial waste
products are disposed in a similar manner to conventional wastes, without any special
precautions or treatment. These nanowastes could be extraordinarily hazardous and/or
chemically reactive, so they should be neutralized before disposal. Governments should act
proactively and develop robust nanowaste management strategies to prevent longterm
unintended consequences, and, where possible, recycle these materials.? In this review, we
discuss various exogenous and endogenous entry routes of engineered nanoparticles, the
most frequently encountered nanomaterials in our daily life and their toxicities. We also
discuss their environmental impacts, risk assessments, and control banding. We are herein
calling for more careful handling and manipulation of engineered nanoparticles, as well as
more validation and standardization of nanoparticle toxicity tests, since strict regulation can
promote safe applications of nanoparticles in daily life.

II. VARIOUS EXOGENOUS AND ENDOGENOUS ENTRY ROUTES

The exogenous ingestion of engineered nanoparticles primarily results from hand-to-mouth
contact in the workplace, among factory workers, engineers, and scientists working on
cutting-edge products in laboratories. Alternatively, these nanoparticles can be ingested
directly via food, drinking water, drugs, or drug delivery systems. In addition, nanoparticles
cleared from the respiratory tract via the mucociliary escalator can subsequently travel into
the gastrointestinal (GI) tract.10 Inhalation of airborne nanoparticles is another important
entry route into the human body.1! Larger particles usually are deposited in the
nasopharyngeal region (5-30 um) by the inertial impaction mechanism, whereas smaller
particles (1-5 pm) that fail to be captured in the nasopharyngeal region are deposited in the
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tracheobronchial region, mainly through sedimentation. The particles may be further
absorbed or removed by mucociliary clearance. Finally, the remaining submicron particles
(< 1 pm) and nanoparticles (< 100 nm) with the smallest size distribution penetrate deeply
into the alveolar region, where removal mechanisms may be insufficient. The deeper the
particles are deposited, the longer it takes to remove them from the lung and the higher the
probability of adverse health effects due to particle tissue and particle—cell interactions.12:13
Nanosized particles are able to effectively access the alveolar region of the lungs and come
into close contact with the alveolar epithelium. Once deposited, these very small particles
are able to cross the blood-air-tissue barrier and enter the bloodstream, where they may
readily reach other target organs.1!

In addition, insoluble particles may remain in the lung indefinitely.141> Prolonged residence
of particles in the lung may lead to injury and biological responses.1® It is also possible that
inhaled ultrafine particles (UFPs), by virtue of their extremely small size, may deposit in the
olfactory mucosa and then translocate in the central nervous system (CNS), which in turn
might cause neurotoxicity. Recent studies demonstrate that the CNS may be a crucial target
for nanoparticle inhalation or intranasal instillation exposure.1”-18 Exposure to nanoparticles
is associated with a range of acute and chronic effects ranging from inflammation,
exacerbation of asthma, and metal fume fever to fibrosis, chronic inflammatory lung
diseases, and carcinogenesis.19-21 Various studies have demonstrated that inhaled or injected

nanoparticles could enter systemic circulation and migrate to different organs and tissues.
22,23

[ll. NANOMATERIALS IN DAILY LIFE AND THEIR TOXICITY

The most frequently encountered nanomaterials in our daily life include zinc oxide
nanoparticles (ZnONPs), titanium dioxide nanoparticles (TiO,NPs), silica nanoparticles
(SiOoNPs), silver nanoparticles (Ag-NPs), gold NPs (AuNPs), and polymeric nanoparticles
(PNPs). At the target sites, different mechanisms may be responsible for the biological
effects of nanoparticles. The various mechanisms responsible for nanoparticle toxicity are
summarized in Table 1. Table 2 includes some detailed toxicological studies on various
nanomaterials.

A. ZnO Nanoparticles

Zinc oxide nanoparticles (ZnONPs) are prevalent in sunscreens, food additives, pigments,
and biosensors. Several researchers have studied the toxic effects of these engineered
ZnONPs in different cell lines and animal models. The cytotoxicity and genotoxicity
potential of ZNONPs has been shown both 77 vitroand in vivo.2423 In further studies,
ZnONPs have reduced cell viability in dose-dependent and time-dependent manner.28
ZnONPs are suspected of increasing the expression of the metallothionein gene, which is
considered a biomarker in metal-induced toxicity.2” Studies have confirmed the dose-
dependent hepatotoxicity and significant increase in oxidative stress through an increase in
malondial- dehyde (MDA) content and decrease in superoxide dismutase (SOD) and
glutathione peroxidase (GPx) enzymes activity in the liver. ZnONPs also elevate plasma

J Environ Pathol Toxicol Oncol. Author manuscript; available in PMC 2018 October 17.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gupta and Xie Page 4

aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase
(ALP) levels.

B. TiO, Nanoparticles

TiO, is extensively used as a pigment, a thickener, and a UV absorber in cosmetic and skin
care products. TiO, allows osseointegration of artificial medical implants and bone. Several
attempts have been made to understand the toxicity of TiO,NPs. Some research showed skin
penetration and toxicity of TiO,NPs in hairless mice and porcine skin after subchronic
dermal exposure.28 However, most researchers believe that TiO,NPs from sunscreens did
not pose a significant health threat because they do not appear to significantly penetrate the
skin.2%:30 Some studies have demonstrated 7 vitro cytotoxicity and genotoxicity of TiO,NPs
in various cell lines, plants, and brains of mice after oral administration.31-33
Bioaccumulation, subacute toxicity, and tissue distribution of TiO,NPs was exhibited in
goldfish (Carassius auratus) and C57BL/6 mice.34:35

C. Silica Nanoparticles

Synthetic amorphous silica has been used as a common food additive for several decades. It
is widely applied to processed foods and registered by the European Union as a food
additive with the code E551,3¢ The main purpose of SiO,NP in the food industry is to
prevent poor flow or “caking/” particularly in powdered products. SiO,NPs are additionally
employed as a thickener in pastes or as a carrier of flavors, and also to clarify beverages and
control foaming.3739 Scientists have evaluated the toxicity of SiO,NP as a food additive on
gastrointestinal cells, indicating their safety as food additive, but suggested the necessity of
long-term Jn vivo studies to confirm their safety profile.4% Recently, researchers have
reported that interactions between food additive SiO,NPs and food matrices were highly
dependent on the type of food component.! Moreover, the experimenters have suggested
that toxicity of SiO,NPs depends on size, dose, and cell type.#2 Researchers have also
demonstrated that the shape affected biodistribution, excretion, and toxicity of mesoporous
SiO,NPs after oral and intravenous administration.4344

D. Silver Nanoparticles

AgNPs are good antibacterial and antiviral agents and have been used to treat infection in
bums, open wounds, chronic ulcers, trophic sores, eczema, and acne.*® Likewise, the use of
AgNPs as an antimicrobial agent in toothpastes, shampoos, air sanitizer sprays, detergents,
and soaps has been also been reported. AgNPs have also been extensively used for
packaging and storage of food products to increase their shelf life. Silver-based resin
composites have been used to fill and coat dental and medical devices. Experiments have
suggested that AgNP could be used as a safe preservative in cosmetics; however, when the
barrier function of human skin is disrupted, they may penetrate the skin.#® Investigators have
affirmed the noncytotoxicity of ammonia and PVPs stabilized AgNPs at lower
concentrations in mice.#” Nonetheless, AgNPs damaged DNA and caused 7 vitro toxicity
and functional impairment in human cell lines in other studies.*8:49 Some researchers
studied the short- and long-term effects of AgNPs on human microvascular endothelial cells
and suggested that their cytotoxicity and genotoxicity makes them a useful tool to control
excessive angiogenesis.?0
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E. Gold Nanoparticles

The biological application of AUNPs is based on capping with biofunctional moieties
possessing some significant biological activity (peptides, carbohydrates) to control cellular
processes. The drug delivery applications and photothermal therapy of AuNPs are being
widely explored.51:52 Furthermore, coadministration of drugs and AuNPs can enhance
therapeutic efficacy.>3 The diagnostic application of AuNPs is justified by their light
reflecting ability and surface plasmon resonance phenomenon.>* Surface functionalization
of AuNPs and their ability to bind with thiols and amine groups have been used for
developing AuNPs as a vector for various drugs and biological molecules.>® Because of their
enormous therapeutic and diagnostic potentials, AUNP are extensively being investigated to
understand their toxicity profiles. Researchers have documented the toxicity of AUNPs on
immune dendritic cells extracted from bone marrow of mice.%8 Further studies have showed
that the genotoxicity of citrate-coated AuNPs in human HepG2 cells.5” While analyzing the
effect of surface coating on the biodistribution profile, up to 86% peptide-capped AuNPs
were found in the rat liver.58 Investigations to deduce the shape effect in cellular uptake of
PE-Gylated AuNPs revealed that the endocytosis rate was highest for spherical AuNPs. The
fastest internalization rate of spherical AUNP was followed by cubic, rodlike, and then
disklike particles.5® In addition, PEG-coated AuNPs have shown size-dependent
accumulation in different organs, but their in vivotoxicity was not size-dependent.59 Studies
also revealed that positively charged AuNPs exerted greater influence on cellular toxicity
because they were more easily transported through a negatively charged cell membrane.!

F. Polymeric Nanoparticles In Drug Delivery

Biodegradable polymers are the prevailing carriers for targeted and controlled drug delivery
systems. However, a clear understanding of the interactions between biological systems and
those PNPs is still unexplored. PNPs with a size ranging from 10 to 200 nm not only escape
renal filtration and biliary excretion but also accumulate in tumors, using enhanced
permeability and retention (EPR) effects. Particles larger than 200 nm undergo rapid hepatic
clearance and reticuloendothelial system (RES) recognition.2 PEGylation is a popular
method to prevent PNP clearance so it remains in systemic circulation for a longer period.
After in vivoadministration of cationic PNPs, nonspecific interactions may occur with
nonspecific cells or opsonizing proteins in the blood compartment because of electrostatic
binding, which may cause unexpected cytotoxicity. These nonspecific surface reactivity or
interactions could be minimized by employing small and relatively less negatively charged
anionic (almost neutral) PNPs for a broad-spectrum biological effect. Different
biodegradable polymers have been investigated for their safety when used as nanoparticles.
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were found to be safe on the bronchial
epithelium, independent of their surface charge.53 However, some researchers demonstrated
surface coating (chitosan [CS]; poloxamer 188 [PF68]; poly(vinyl alcohol) [PVVA]) mediated
toxicity of polymeric PLGA-NP towards humanlike macrophages.5* Zebrafish embryos
treated with CS NP exhibited decreased hatching rate and concentration-dependent
mortality.55 Double emulsion technique using polymer eudragit®RS+ (DE/RS+) and double
emulsion technique using polymer poly(e-caprolactone)+ (DE/PCL+) were considered a
satisfactory nano-sized delivery system for low molecular weight heparin (LMWH) because
of their high encapsulation efficiency and low toxicity.%6 Poly(e-caprolactone) (PCL)
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nanoparticles loaded with oxorubicin (DOX) were biocompatible, and they enhanced the
antitumor effect of DOX while reducing its toxicity in breast and lung cancer cell lines from
both humans and mice.%” The detailed toxicological studies about engineered nanoparticles
are summarized in Table 2.

IV. ENVIRONMENTAL IMPACT OF NANOPARTICLES

The nanoparticles could be released into the environment as industrial waste, directly into
the air, water, and soil systems, or through remediation of contaminated lands. The journey
and fate of nanoparticles in water, air, and soil is depicted in Fig. 2.

A. Nanoparticles in Aquatic Systems

Nanoparticles may invade aquatic systems directly, in industrial discharges or wastewater
treatment effluents, or indirectly, through surface runoff from soils. The dissolution of
nanoparticles may release potentially toxic components into the environment. Sometimes
these nanoparticles can conglomerate with coexisting nanoparticles (homoaggregates) or
combine with other organic colloids/natural minerals (heteroaggregation) to significantly
alter their interactions with biota and potential toxicity in environment. Aquatic
nanomaterials accumulate in bottom sediments, mainly by heteroaggregation because
homoaggregates tend to sediment more slowly.58-70 Natural organic matters can modify the
toxicity of metallic nanoparticles (MNPs) by remodeling several of their properties, such as
suspension stabilization, bioavailability of metal ions from MNPs, electrostatic interactions
and steric repulsion between MNPs and organisms, and MNP-induced generation of reactive
oxygen species. The toxicity of nanomaterials to aquatic biota involves adsorption to cell
surfaces and disruption to membrane transport.’!

B. Nanoparticles in Air

Nanoparticles suspended in the air can spread over long distances from the point of their
release, resulting in uncontrollable human exposure as well as ecotoxicological effects on
aquatic or terrestrial biota. The nanoparticles released into terrestrial environments are less
likely to spread because of their immobility, but they can enter the human body through
swallowing or direct skin contact. While dispersed in the environment, nanoparticles can
undergo several potential transformations, such as dissolution, aggregation, or other
reactions with biomacromolecules, depending on the properties of both the nanoparticles
and the receiving medium.”2.73

C. Nanoparticles in Soil Systems

Nanoparticles can penetrate soils directly through fertilizers or plant protection products, or
indirectly through application to land or wastewater treatment products, such as sludges or
biosolids. These nanoparticles can bioaccumulate, trophically transfer, and even biomagnify
in some systems, causing numerous toxic effects on soil organisms. Moreover, their
untoward effects on plant-fungi and plant-bacteria have already been reported; further
research on other possible interactions (e.g., competition, predation) is needed to assess
potential risks. Negative effects of nanoparticles on nitrogen and other biogeochemical
cycles have been shown in numerous studies.”*-77
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V. RISK ASSESSMENT AND CONTROL BANDING

The European Center for Ecotoxicology and Toxicology of Chemicals (ECETOC) Task
Force on Nanomaterials has put forward a comprehensive functionality-driven concept for
the grouping of nanomaterials.’® This decision-making framework for the grouping and
testing of nanomaterials (DF4nanoGrouping) consists of three tiers to assign nanomaterials
to four main groups (MGs), encompassing soluble nanomaterials (MG1s), biopersistent high
aspect ratio nanomaterials (MG2s), passive nanomaterials (MG3s), and active nanomaterials
(MG#4s). Focusing on all relevant aspects of a nanomaterial’s life cycle and biological
pathway, the essential grouping criteria include intrinsic material properties in Tier 1 (water
solubility, particle morphology, and chemical composition) and system-dependent properties
in Tier 2 (dissolution in biological media, surface reactivity, particle dispersibility, and /in
vitro effects). In Tier 3, the Tier 1 and Tier 2 MG assignment that is based on nonanimal
testing alone is confirmed or corrected using data from short-term /n vivo studies. The “rat
short-term inhalation study” should be done for the inhalation route of entry, the
predominant exposure route for most nanomaterials.”®:81 The DF4nanoGrouping ensures
that sufficient data are available to assess the risk of a nanomaterial, and it fosters the use of
nonanimal methods to save both animals and resources.82

Control banding (CB) can be described as a qualitative or semiquantitative approach for risk
assessment and risk management to assist in reducing worker exposure to potentially
hazardous engineered nanomaterials. Some CB strategies focus on assigning a specific
control band based on the possible hazard severity of nanomaterials (e.g., toxicity indicators)
or exposure potential (e.g., quantity used, volatility, dustiness), whereas other strategies may
directly assign exposure control options based on the task performed without prior
assessment of potential exposure. CB strategies include a hierarchy of risk management
approaches for controlling exposures to hazardous nanomaterials that typically encompass
regulation of the potential hazard, engineering controls (e.g., local exhaust ventilation, high-
efficiency particulate air [HEPA] filters), good occupational hygiene practices (e.g., personal
protective equipment), and the need to seek specialist advice depending on a particular CB
strategy.83.84

A. Toxicological Assays

Before being considered for human application, all engineered nanomaterials must be
subjected to toxicological studies. However, the toxicological data derived up to now are
conflicting and inconsistent. Umair® stressed the need to follow uniform guidelines for test
procedures used to systematically analyze toxicity of different nanomaterials. For
toxicological investigations of nanoparticles, a number of parameters must be considered,
including particle size, size distribution, surface area, surface reactivity, particle morphology,
particle agglomeration, solubility, chemical composition, particle number, and mass
concentrations.13.19.86 Currently, the toxicity of engineered nanoparticles is assessed with a
number of approaches. Among them, cell viability is determined by tetrazolium reduction
assays; cell membrane integrity is appraised by LDH (lactate dehydrogenase) assay;
apoptosis is characterized with immunohistochemistry biomarkers; the comet assay is used
to analyze genotoxicity; and electron microscopy is used to visualize intracellular
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localization of nanoparticles.87:88 Furthermore, compounds such as MTT [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]; MTS [3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium]; XTT[2,3-bis(2-
methoxy-4-nitro-5-sulphophenyl)-5-carboxanilide-2H-tetrazolium, monosodium salt]; WST-
1,2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4- disulfophenyl)-2H-tetrazolium; and
monosodium salt are used to detect viable cells. Among all of these, the MTT tetrazolium
assay has been widely adopted in laboratories for evaluation of cell toxicity.89:9 The
enzyme-linked immunosorbent assay (ELISA) is used to detect inflammatory biomarkers in
cell culture. To estimate cell inflammation, chemokines IL-8, TNF-a, and IL-6 are used as
biomarkers.91:92

B. In Silico Toxicology

The field of /n silicotoxicology has been evolving rapidly, as demonstrated by the
introduction of new methods and improvement of the existing ones. In silico toxicology
refers to the use of computational methods to analyze, simulate, visualize, or predict the
toxicity of chemicals and nanomaterials. These methods complement existing toxicity tests
and minimize late-stage failures in drug design. There are various methods for generating
models to predict toxicity endpoints, including structural alerts (SAs) and rule-based
models; read-across (RA), dose-response (DR), and time-response (TR) models;
pharmacokinetic (PK) and pharmacodynamic (PD) models; uncertainty factors (UFs)
models; and the quantitative structure—activity relationship (QSAR) model.93-95

C. Nanowaste Management

The burgeoning applications of nanotechnology result in the generation of waste containing
synthetic (or engineered) nanomaterials. This so-called nanowaste is hard to monitor due to
its nanoscale dimensions. It is crucial to ensure that the disposal of such waste does not stir
up inimical effects on health or environment.

D. Disposal Pathways

Concentrated industrial nano waste should be diluted and deactivated before disposal.
Depending on the type of the material, thermal, chemical, physical, or biochemical
processing of nanotechnology-containing waste is possible to deactivate them. At present
three pathways exist for disposal of this nanowaste: landfill, incineration (thermal
treatment), and recycling (material recovery). The recycling process depends on the material
type, and hence the conditions are different to which the product matrices containing
nanomaterials are exposed. Further, recycling could impose three types of detrimental
effects: (1) occupational health effects of recycling processes themselves; (2) environmental
impacts related to the treatment of residue from the recycling processes, which will end up
either in incineration, landfill, or sewage treatment; and (3) introduction of residual
nanomaterials into recycled products.® Figure 3 displays various nanoparticle disposal
pathways.
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F. Global Regulatory Trends

In general, the strategies used for conventional drug products have been adapted to evaluate
the safety/toxicity and biocompatibility of nanomedicines.96:97 But the main difficulty
underlying the regulation of nanomedicines is the evolution of sensitive assays that not only
detect the low concentrations of nanomaterials but also distinguish them from metabolized
forms or formed aggregates.9® At nanoscale, aggregation is not so easy to discern, especially
in biological milieu, but it could significantly affect nanospecific material properties, such as
homogeneity and colloidal stability, optical and electronic behavior, and cell uptake/
targeting properties. As a result, commonly used particle sizing methods are often not
conclusive when applied to nanomaterials in complex systems. Additionally, each method
possesses its own inherent uncertainties, requiring corroboration of results with one or more
additional methods.%® Alternative strategies such as fluorescence/cellular imaging
techniques are being explored to overcome these limitations.199-102 Therefore, new robust
methods must be developed not only to characterize physicochemical properties such as
morphology, particle size, polydispersity, and surface charge, but also to assess their /n vivo

performance, such as drug release, metabolism, protein binding, and specific cellular uptake.
96-103

An additional critical issue in the current regulatory discussions is the increased focus on
“nanosimsi- lars.” which combine generic drugs and nanocarriers as innovative excipients.
Because of the technological complexity of nanoparticulate products, mere bio equivalence
studies might not be enough to prove the statistical identity/similarity for nanosimilars, as is
the case with generic/biosimilar products.104105 The pharmaceutical companies have
increased their interest in proof of concept and proof of superiority in clinical efficacy from
innovative approaches,106-108

Further, the properties of nanomaterials are altered not only by minor changes in raw
materials, but also by slight modifications in manufacturing processes. Though limited
alterations occur in the structure, the biological properties and the biodistribution patterns
might change significantly.109110 Thus, another hurdle in the development and clinical
translation of nanomaterials has been adaptation of manufacturing processes and scale-up
challenges, mainly due to extensive diversity of properties of new materials.111:112 |t js
fundamental to identify and control the critical points during each manufacturing process.
Applying concepts of quality by design, such as process analytical technologies (PAT), will
ensure an on line/at line quality assessment approach.113.114

Despite the absence of specific general protocols for preclinical development and
characterization for nanomedicines, the regulatory entities from the EU (EMA), USA
(FDA), and Japan (PDMA/ MHLW) endeavor to bring about comprehensive and harmonized
regulatory propositions in the field of nanomedicines.11® The Innovative Medicines Initiative
(IMI) in Europe and the National Center for Advancing Translational Sciences (NCATS/
NIH) in the United States are both major platforms whose goals include better regulatory
sciences in the field of nanomedicines. The Nanotechnology Characterization Laboratory
(NCL) at the National Cancer Institute (NCI) in the United States is a major contributor in
the development of nanomedicines in oncology.116
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For Marketing Authorization Applications (MAA) in Europe, the regulatory system allows
the opportunity of “scientific counselling” from regulators to applicants, from the early
stages of research and development.117 This can contribute to an increasingly harmonized
development of advanced pharmaceuticals and to reduce the impact of major obstacles
during their development process. Furthermore, important indicators such as increment in
quality-adjusted life years (QALYS) or costs associated to future consecutive hospitalizations
must be considered for better pharmacoeconomic evaluation of nanomaterials.118

VI. CONCLUSION

To envision the health hazards coupled with engineered nanoparticles, their complete life
cycle should be scrutinized from their manufacturing to storage, and from distribution to
intended industrial and commercial uses/potential abuse and ultimate disposal. Furthermore,
to find ways to manage and confine nanomaterials, we must continue to explore the causes
and mechanisms of nanotoxicity to gain better and deeper understanding. Ultimately, a more
cautious manipulation of engineered nanomaterials as well as the development of laws and
policies for safely managing all aspects of nanomaterial manufacturing, use, and recycling
portends the unforeseen opportunities in this blooming field of nanotechnology.
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FIG. 1:

Examples of engineered nanomaterials in daily life
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TABLE 1:

Mechanisms of engineered nanoparticle toxicity
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Mechanisms of toxicity

Reference number

Cellular uptake

Direct intracellular entry

119

Cell membrane binding

120

Uptake through reticuloendothelial system

121

Catalytic activity

Release of more reactive ionic fonn from nanoparticle surface

60

ROS generation, oxidative stress

24,122

Lipid peroxidation

32,34

Protein denaturation

123

Inflammation

35,124

Endothelial dysfunction

125

Mitochondrial perturbation

126

Genotoxicity

DNA damage, mutations

33, 48, 127

Cellular dysfunction

Phagocytic function impairment

128

Altered cell cycle regulation

36
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