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Nanoparticles in the diagnosis and treatment of vascular aging
and related diseases
Hui Xu1,2, Shuang Li1,2 and You-Shuo Liu 1,2✉

Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of
vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular
inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances
in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better
prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related
diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between
vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic
and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as
well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
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INTRODUCTION
Age is the most important risk factor for vascular aging and
related disorders.1 Aging-induced alterations of vasculature
functions, structure, and phenotypes play a pivotal role in the
initiation and progression of various vascular aging-related
diseases, such as cardiovascular, cerebrovascular, and kidney
diseases.2 Age-related pathological alterations of the vasculature
are tightly associated with vascular disorders.3 Multiple molecular
and cellular events, such as inflammation, cell proliferation,
migration, angiogenesis, thrombosis, and apoptosis contribute to
vascular cell senescence.4 Vascular aging is predominantly
characterized by endothelial cells (ECs) senescence and vascular
smooth muscle cells (VSMCs) senescence. In line with the United
Nations (2017) report on World Population Prospects, approxi-
mately 962 million people are aged 60 years and above,
accounting for 13 percent of the global population.5 Currently,
cardiovascular and cerebrovascular diseases are the leading
causes of disability and mortality among older adults.6 Globally,
vascular aging-related diseases have led to a significant social and
economic burden.7 However, a lack of efficient diagnostic and
curative strategies is a major challenge in the clinical management
of vascular aging and related diseases. The diagnosis of vascular
diseases is primarily determined by detecting biomarker levels
and angiography, which are costly with low sensitivity.8 Several
therapeutic options, such as genes, antisense drugs, peptides, and
proteins, have been produced to treat vascular aging-related
disease, however, many of them have limited efficacies or adverse
side effects, which are attributed to poor stability, low bioavail-
ability, rapid enzyme degradation, and off-targets.9 Healthy
lifestyle behaviors, including regular exercise and dietary patterns,
are effective strategies for preventing vascular aging. However,
the majority of older adults do not meet the required healthy

exercise or recommended diet thresholds.10 Therefore, the
development of effective and reliable diagnostic and therapeutic
modalities for vascular aging and related diseases is of utmost
significance.
Nanoparticles are microscopic particles that measure 1–100 nm

in size, with various applications in the biomedical field.11

Nanoparticles integrating diagnostic and therapeutic agents into
nanoparticle formulations have exerted comprehensive applica-
tions in various disorders, such as cancers,12 neurological
diseases,13 cardiovascular diseases,14 liver diseases,15 and even
kidney diseases.16 Diagnostic and therapeutic nanoparticles have
been used to enhance the diagnostic as well as therapeutic
efficacies and to reduce the incidences and intensities of side
effects by increasing drug accumulations at pathological sites
while decreasing drug accumulation in healthy tissues.17,18

Elucidation of the advances in nanoparticle research will inform
the multifaceted clinical effects of nanoparticles (Fig. 1). Research
on nanoemulsion has a long scientific history, beginning in 1943
when Hoar and Schulman first discovered and reported this
dispersion system.19 Richard Feynman's 1959 lecture entitled
"Plenty of Room at the Bottom" is a seminal event in the history of
nanoscience and nanotechnology.20 In 1963, Uyeda et al. pre-
pared gold nanoparticles (AuNPs) by evaporation in argon gas at
low pressure.21 Liposomes, which were first proposed by
Bangham et al. in 1965, have unique permeability and retention
effects that make them novel drug delivery systems. Dendrimers
were first identified and successfully synthesized by Tomalia in
1985.22 In the middle 1980s, Gleiter et al. successfully synthesized
iron nanoparticles through inert gas condensation, marking a new
era of research in nanoscience and technology.23 Magnetic
nanoparticles were developed as vascular contrast agents for
molecule imaging in 1990s.24 Carbon-based nanoparticles such as
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fullerene and carbon nanotubes (CNTs) were developed in 1985
and 1991, respectively.25,26 In 1993, Murray et al. synthesized
homogenous quantum dots (QDs) in an organic solution.27 In
tandem with advances in nanoscience, as fluorescent probes in
biological staining and diagnostics, QDs were first reported in
1998.28 Doxil, doxorubicin encapsulated in lipid-based nanoparti-
cles, was the first nanoparticle formulation to be approved by the
Food and Drug Administration (FDA) in 1995 to treat Kaposi’s
sarcoma.12 Solid lipid nanoparticles (SLNs) and polymeric micelles,
which were first developed in 1990s, have been proposed as new
generations of drug delivery systems.29,30 Since 2000, studies have
investigated the potential applications of nanoparticles in
diagnostics, imaging, gene, and drug delivery. Certain drugs such
as dalargin, loperamide, or tubocurarine loaded onto polymeric
nanoparticles exhibited various effects on the central nervous
system.31 Graphene has been theoretically investigated since the
1940s and its existence has been known since the 1960s, however,
it was not until 2004 when Geim and Novoselov completed its
isolation that it attracted great scientific interest and became one
of the most studied materials.32,33 The origins of cell-membrane
biomimetic nanoparticles date back to 2011, when Hu et al. first
reported erythrocyte membrane-camouflaged polymeric nano-
particles as biomimetic delivery platforms for achieving long-term
circulation and targeted delivery.34 The significance of nanopar-
ticles in the diagnosis and treatment of diseases has been widely
investigated, with promising outcomes in drug delivery and
diagnostic imaging.35,36 Critical effects of nanoparticles in vascular
physiology and pathology have been reported, which supports
their promise as advanced strategies for the management of
vascular aging-related diseases. However, a comprehensive review
of the applications of nanoparticles in vascular aging and related
diseases has not been reported. Therefore, the principal purpose
of this review is to explore the potential of nanoparticles in the
diagnosis and treatment of vascular aging and related diseases,
including cardiovascular diseases, cerebrovascular diseases, and
chronic kidney diseases. Moreover, we discuss the advantages,
limitations, several technical issues, and future work of
nanoparticles.

CLASSIFICATION OF NANOPARTICLES
In the past couple of decades, advances in nanotechnology have
witnessed massive developments. Nanoparticles, which are less
than 100 nm in size, have excellent functions, such as reactivity,
roughness, and high surface energy through their physical and
optical privileges.37 Nanoparticles such as AuNPs,38 CNTs,39

liposomes,40 dendrimers,41 micelles,42 and poly lactic-co-glycolic
acid (PLGA)43 are promising in the field of diagnosis and treatment
of vascular diseases (Table 1). During the coronavirus disease 2019
(COVID-19) pandemic, functionalized nanoparticles were used as
nanoprobes to test nucleic acids.44 Different types of nanoparti-
cles are emerged as drug delivery vehicles and diagnosis tools in
vascular aging and related disorders. In this section, we provide an
overview of current knowledge on the classification of nanopar-
ticles, including inorganic-based, carbon-based, lipid-based, poly-
meric, and biomimetic nanoparticles.

Inorganic-based nanoparticles
Given their unique physical, electrical, optical, and magnetic
properties, inorganic-based nanoparticles have attracted consid-
erable interest in biomedical applications.45 These inorganic
nanoparticles are precisely formulated and can be designed in
various sizes, structures, and geometry.46 Inorganic-based nano-
particles, such as AuNPs, iron oxide nanoparticles (IONs),
mesoporous silica nanoparticles (MSNs), and QDs are ideal
candidates for drug delivery and molecular imaging applica-
tions47–49 (Fig. 2).
AuNPs, which are among the well-studied nanoparticles, are

synthesized in diverse sizes and shapes, such as spheres, cubes,
rods, polygons, cages, prisms, bipyramids, and stars.50 AuNPs
exhibit excellent properties, including biocompatibility, optical
and plasmon characteristics, tunable physicochemical stability,
low toxicity, controlled drug release, and easy functionalization
and fabrication.51 Besides, as metallic nanoparticles, AuNPs have a
variety of catalytic activities, such as esterase,52 nuclease,53

oxidase,54 peroxidase,55 superoxide dismutase,56 reductase,57

and catalase activities.58 Functionalized AuNPs are highly attrac-
tive and promising candidates in biological and biomedical

Fig. 1 Timeline of the discovery and research history of nanoparticles. Key discoveries are highlighted. Research on nanoparticles began in
the 1960s. Over the last two decades, an increasing number of scientists have devoted themselves to the study of nanoparticles, yielding
impressive results in the biomedical field. AuNPs gold nanoparticles, IONs iron oxide nanoparticles, NPs nanoparticles, SLNs solid lipid
nanoparticles, CNTs carbon nanotubes, and QDs quantum dots
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applications, where they can be used as biosensors, in bioimaging,
and as drug vehicles.59

IONs are a type of inorganic nanoparticles that have been
extensively researched. Magnetic IONs, including maghemite
(Fe2O3) or magnetite (Fe3O4) exhibit superparamagnetic proper-
ties with important applications in bioengineering and biomedical
fields, where they can be used as contrast agents and drug
carriers.60 The properties of IONs are highly correlated with their
compositions, sizes, and shapes. Due to their unique magnetic
properties, biocompatibility, stability, and eco-friendliness, IONs
are excellent platforms for biomedical applications.61 In addition
to acting as drug delivery systems, IONs are commonly fabricated
to be bioimaging systems for use as contrast agents in magnetic
resonance imaging (MRI) and magnetic particle imaging (MPI).62

MSNs are a group of nanoparticles with pore diameters of 2–50
nm.63 Their sizes, shapes, pore sizes, and pore volumes can be
highly controlled. High surface areas and large pore volumes of
MSNs provide ample biomolecule binding sites.64 In addition, their
physicochemical and mechanical properties allow them to be
promising carriers of various cargo, such as proteins and nucleic
acids.65 Importantly, MSNs have abundant silanol groups on their
surfaces, which can be modified to achieve controlled drug
delivery, absorption, and release.66 Moreover, MSNs can be
developed as biosensors and used for optical imaging and MRI.67

QDs, which are fluorescent semiconductor nanoparticles, are
made up of hundreds to a few thousand atoms.49 Cores of QDs are
only 2–10 nm in sizes, which can be replaced with AuNP or ION to
mitigate long-term toxicities of QDs. Besides, QDs can be
incorporated within larger carriers, such as liposomes and
polymeric nanoparticles to serve as tracers.68 QDs released from
larger carriers can mimic redistribution and eventual clearance of
free drugs.69 Thus, QDs are a versatile platform for the design and
development of nanoparticle-based drug vehicles.70

Carbon-based nanoparticles
Carbon-based nanoparticles, such as CNTs, fullerene, graphene,
and carbon quantum dots (CQDs) have been widely explored for
various applications including bioimaging, biosensing, and drug
delivery. These applications are attributed to their mechanical,
electrical, thermal, and physicochemical properties as well as
biological abilities.71–73

CNTs consist of carbon atoms arranged in condensed
benzene rings. Based on their unique mechanical, electronic,
optical, high elastic moduli, light weight, and stability properties,
CNTs are of great clinical significance.74 CNTs can be grouped
into single-walled CNTs (SWCNTs) and multi-walled CNTs
(MWCNTs). SWCNTs, which consist of single graphene cylinders,
are seamless cylindrical tubes with diameters of 0.4–2 nm, while
MWCNTs are concentric tubes comprising multiple graphene
sheet layers with inner diameters of 1–3 nm and outer diameters
of about 2–100 nm.75,76 CNTs, with diameters of about 1 nm and
lengths of several micrometers, have high aspect ratios and
large surface areas.77 Thus, they provide multiple binding sites
and improved cellular uptake. Hollow interiors of CNTs can be
loaded with drugs and can maintain sustained drug release
while avoiding degradation.75

Fullerene, also known as Buckyball or Buckminsterfullerene, is a
closed hollow cage carbon molecule consisting of pentagonal and
hexagonal rings of carbon atoms in which carbon atoms are sp2

hybridized.78 Fullerene, with specific geometry, sizes, and surfaces,
exhibit unique spherical structures and physicochemical proper-
ties.79 Investigation of the significance of fullerene in biomedical
applications is inhibited by its insolubility in water and organic
solvents. Functionalization of fullerene is a constructive strategy to
promote its water solubility and hydrophilicity.80 Fullerenes have
been described as “radical sponges”.81 For instance, poly(l-
glutamic acid) (PLE)-attached fullerenes can dose-dependently
scavenge for free radicals.82Ta
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Graphene, the thinnest and strongest material, is a carbon-
based two dimensional atomic crystal comprising a single-layer
array of sp2 hybridized carbon arranged in a honeycomb lattice
and exhibits satisfactory effects, stable quality, metallic, and high
stiffness.83 The large surface area of graphene provides abundant
binding sites for biomolecules while interactive functional groups
(–COOH, –OH, and –COC) promotes its functionalization with
other molecules.84 Given its thermal, mechanical, and electrical
properties, large surface area, and versatile surface functionaliza-
tion, graphene has gained substantial interest in drug delivery,
bioimaging, and biosensing of vascular aging and related
diseases.85

CQDs, with a carbon-based skeleton and many oxygen-
containing groups, were accidentally discovered via a top-down
technique in 2004.86 The average size of CQD is 3 nm.78 Due to
their unique structures, CQDs can be dispersed in water and
possess superior emission properties and chemical stability.
Besides, CQDs have excellent biocompatibility and low cytotoxi-
city properties. CQDs have various biomedical applications,
including biosensing, bioimaging, and biomedicine.87 Further-
more, due to their advanced optical characteristics, they are
promising candidates for future optoelectronic applications,
compared to other carbon-based nanoparticles.88

Lipid-based nanoparticles
Lipid-based nanoparticles have been successfully used in the field
of nanomedicine with a great deal of attention in vascular aging
and related disorders.89 These nanoparticles, such as liposomes,

SLNs, nanostructured lipid carriers (NLCs), and nanoemulsion have
been recognized as outstanding drug carriers.90,91

Liposomes, which are spherical nanoparticles, are composed of
phospholipids.46 Since their discovery in 1965, liposomes have
developed tremendous investigations.92 Given the hydrophilic
and lipophilic properties of phospholipids, liposomes can carry
and deliver hydrophilic, hydrophobic, and lipophilic compounds.93

Besides, the ability of liposomes to encapsulate solutes and their
selective release makes them attractive drug delivery systems.94

The stability of liposomes is highly associated with nanoparticle
sizes, surface charge, and lipid composition.46

SLNs, with average sizes of 10 to 500 nm, are mainly composed
of physiological lipids.95 They have large surface areas and tiny
sizes, making them suitable candidates as drug carriers.95 SLNs
can load both hydrophobic and hydrophilic drugs.96 They are
characterized by good biocompatibility, biodegradability, physical
stability, controlled drug release, protection of labile drugs,
prolonged release of drug molecules, specific targeting, low
toxicity, easy availability, and the possibility of large-scale
manufacture.97,98 However, SLNs present some obstructions,
including low drug loading capacities and drug expulsions in
storage conditions.99

NLCs are second-generation lipid-based nanoparticle formula-
tions that were first developed in 1999.100 They are composed of
solid and liquid lipids, dispersed in aqueous phases containing
surfactants.101 Their average sizes are between 10 and 1000 nm.
Drugs can be encapsulated in lipid-based nanoparticles, such as
SLNs and NLCs for multiple administration routes, including oral,

Fig. 2 Schematic illustration of various inorganic-based nanoparticles, carbon-based nanoparticles, lipid-based nanoparticles, and polymeric
nanoparticles. QD quantum dot, AuNP gold nanoparticle, ION iron oxide nanoparticle, MSN mesoporous silica nanoparticle, CQD carbon
quantum dot

Nanoparticles in the diagnosis and treatment of vascular aging and. . .
Xu et al.

5

Signal Transduction and Targeted Therapy           (2022) 7:231 



intravenous, topical, transdermal, ocular, pulmonary, and parent-
eral.96,102 Compared to SLNs, NLCs possess higher drug entrap-
ment efficiencies, higher drug loading capacities, higher drug
stabilities, lower drug expulsion during storage, and better
solubility,103 thus, they are promising drug carriers in vascular
aging-related diseases.104–106

Nanoemulsion, also referred to as ultrafine emulsion, submicron
emulsion, and miniemulsion, is a class of thermodynamically
stable and transparent dispersions of oil and water.107 Nanoemul-
sions are heterogeneous systems composed of two immiscible
liquids, in which one (dispersed phase) is dispersed in form of
nanoscale droplets in the other liquid (continuous phase) and
stabilized by an emulsifier or surfactant.108 Droplet sizes range
between 20 and 500 nm.109 Notably, stability, appearance, and
rheology of nanoemulsion are determined by size, composition,
concentration, and surface properties of dispersed droplets.108

Besides, small particle sizes, large surface areas, and low surface
tension of nanoemulsion allow its excellent reactivity to surround-
ings. Due to higher solubilization, long-term stability, longer shelf
life, and ease of preparation, nanoemulsions are widely used as
hydrophobic molecule carriers.110

Polymeric nanoparticles
Polymeric nanoparticles are ideal drug delivery platforms with the
ability to optimize therapeutic strategies of vascular aging-related
disorders.111 Based on their different morphologies and composi-
tions, polymeric nanoparticles are divided into nanocapsules and
nanospheres.46 Nanocapsules are reservoir systems with vesicular
structures surrounded by a polymeric membrane or shell while
nanospheres are solid matrix systems.112 Given the presence of oil
core in nanocapsules, drugs are commonly dissolved. In contrast,
the absence of oil in nanospheres leads to a continuous polymeric
network in which the drugs can be entrapped inside or surface-
absorbed.113 Nanocapsules and nanospheres can further be
classified into polymersomes, micelles, and dendrimers.
Polymersomes, also known as engineered polymer vesicles, are

composed of amphiphilic block copolymers.114 Self-assembly of
amphiphilic copolymers forms hollow spheres with an aqueous
core surrounded by a bilayer membrane. Similar to liposomes,
polymersomes exhibit amphiphilicity, but, they have larger
molecular weights and structures, higher stability, and greater
cargo-retention efficiencies.115 Multitudinous polymers, such as
poly(ethylene glycol) (PEG) and poly(ethylene oxide) (PEO) are
commonly used in polymersome formation. Sizes, physicochem-
ical properties, morphologies, surface activities, and stimuli-
responsiveness of polymersomes can be customized by adjusting
the ratio of amphiphilic copolymers.115 Therefore, polymersomes
are ideal carriers for the delivery of diagnostic and therapeutic
molecules.116

Polymeric micelles are formed by self-assembly of amphiphilic
block copolymers in aqueous environments.117 These nanoparti-
cles are nanospheres with a hydrophilic core and a hydrophobic
shell. The core of micelles exhibits the ability to stabilize and
solubilize poorly soluble compounds, while the coating can be
loaded with hydrophilic drugs.118 Some polymers that are
commonly copolymerized for micelles include PEG and polylac-
tides (PLA). Polymeric micelles, whose average diameters range
from 10 to 100 nm, possess several advantages, such as high
structural stability, high water solubility, low toxicity, and
separated functionality.119,120 Besides, these micelles can carry
diverse compounds and provide longer circulation time as well as
better accumulation.121

Dendrimers are highly branched nanoparticles with complex
three-dimensional structures. They are composed of multiple
internal repeating units covalently linked to the nucleus (called
generations) and usually possess multiple functional groups on
the exterior. Monodispersity, nanosize, bioavailability, solubility,
biocompatibility, permeability, interactions with membranes, and

interior cavities of dendrimers make them very attractive in
biomedical applications, specifically as drug vesicles.122–125 They
can carry various cargos, such as nucleic acids and small
molecules.126 Active functional groups on the periphery of
dendrimers can conjugate bioactive molecules and imaging
agents to the surface, while drugs can be loaded on the inside.127

Biomimetic nanoparticles
Biomimetic nanoparticles are formed by integrating different
biomaterials onto surfaces of nanoparticles, which enables them
to mimic the biological characteristics and roles of native cells.128

Compared to traditional nanoparticles, biomimetic nanoparticles
are characterized by low immune responses, long-term blood
circulation, high target specificity, and excellent biocompatibility,
which can improve the specificity and biocompatibility of drugs in
ideal lesions.129 Three principal types of biomimetic nanoparticles,
including cell-membrane coated nanoparticles, nanoparticles with
targeting ligands, and natural protein-based biomimetic nano-
particles have been extensively studied, especially in vascular
aging and related diseases (Fig. 3).
Cell membrane-coated nanoparticles have received tremendous

attention. A variety of cell membranes, such as those from red blood
cells (RBCs),34 platelets,130 immune cells,131,132 and extracellular
vesicles (EVs)133 have been utilized for encapsulating nanoparticles.
It has been reported that RBCs membrane-coated nanoparticles
could evade immune clearance and maintained a long circulation
time.34 Human platelet membrane-cloaked polymeric nanoparticles
exhibit platelet-associated immunomodulatory and antigen adhe-
sion functions. Compared to uncoated nanoparticles, platelet
membrane-enclosed nanoparticles showed decreased uptake by
macrophage-like cells and increased therapeutic efficacies.130 Cheng
et al. prepared macrophage membrane-coated biomimetic reactive
oxygen species (ROS)-responsive nanoparticles for atherosclerosis
treatment. Macrophage membranes avoid the clearance of nano-
particles by the reticuloendothelial system and inhibit local
inflammation by sequestering pro-inflammatory cytokines.131 EVs
are secreted by almost all cell types and contain various cargos, such
as proteins, nucleic acids, and lipids.134 Expressions of CD47 on EV
membranes offer immune evasion abilities. EVs play vital roles in
vascular aging and related diseases.135

Nanoparticles with targeting ligands have been developed to
enhance their accumulation in specific disease lesions and to
improve their therapeutic efficacies. Ligands such as antibodies,136

antibody fragments,137 peptides,138 and other small molecules
have been used to develop targeted functionalized nanoparticles.
Expressions of intercellular adhesion molecule-1 (ICAM-1) by ECs
and VSMCs are upregulated in vascular aging-related diseases,
such as atherosclerosis, myocardial infarction (MI), and stroke.
Anti-ICAM-1 antibody-conjugated nanoparticles have the poten-
tial for non-invasive molecular imaging of inflammation and
targeted drug delivery.136,139 Nanoparticles functionalized with
human single-chain variable fragment (scFv) antibodies have been
assessed for multimodal molecular imaging in ApoE−/− mouse
models.137 Xu et al. constructed VHPKQHR peptide-modified MSNs
as magnetic resonance (MR) contrast agents for monitoring
atherosclerosis lesions.138

Proteins are primary components in the human body and are
implicated in a broad range of cellular processes. Their superb
structural integrity and multifaceted functions enable them to be
easily reprogrammed and modified. Due to their outstanding
versatility and biocompatibility, the ability of protein-based
biomimetic nanoparticles, such as reconstituted high-density
lipoprotein (rHDL) nanoparticles,140 ferritin protein cages,141 and
albumin-fabricated nanoparticles142 as targeted drug delivery
vehicles have been widely researched. Sequential administration
of apoA-I-rHDL nanoparticles promoted the targeting of athero-
sclerotic lesions and improved prognosis in triple-cell 2D-
atheroma plaque models.143
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VASCULAR AGING AND RELATED DISEASES
Vascular aging, defined as the functional and structural alterations
of the vasculature, is characterized by enlarged lumens, increased
vascular stiffness, and decreased vascular elasticity.144 Aging is a
risk factor for vascular diseases. Vascular aging can lead to
progressive deterioration of organ functions.145

Mechanisms of vascular aging
To develop effective therapeutic approaches for improving
vascular aging and preventing age-related vascular pathologies,
it is necessary to establish the molecular and cellular alterations
during vascular aging (Fig. 4). A broad range of molecular and
cellular events, including oxidative stress, mitochondrial dys-
function, vascular inflammation, cellular senescence, epigenetic
alterations, genomic instability, impaired resistance to mole-
cular stressors, deregulated nutrient sensing, loss of protein
homeostasis, and stem cell dysfunctions are involved in the
pathology of vascular aging.2

Oxidative stress. Oxidative stress refers to excess production of
free radicals and reactive metabolites in response to various
harmful stimuli, resulting in imbalances between pro-oxidation
and anti-oxidation systems, leading to cell and tissue
damage.146,147 Oxidative stress is key in vascular aging and is
also a central consequence of vascular aging.2 The production
of ROS and reactive nitrogen species (RNS) increases with
vasculature aging.148,149 ROS production in vascular walls is
predominantly due to the actions of NADPH oxidase (NOX),
xanthine oxidase, and uncoupled endothelial synthase
(eNOS).150 Elevated oxidative stress levels lead to endothelial
dysfunction by decreasing the bioavailability of nitric oxide
(NO), impairing vasodilation, and altering endothelial pheno-
types.151 NO has anti-thrombotic, anti-inflammatory, anti-
leukocyte adhesion, and anti-intima proliferation roles, which
are essential for regulating blood flow and vasodilation.152 Age-
related endothelium-dependent dilation downregulation is
tightly associated with endothelial oxidative stress. Elevated

NOX and nuclear factor-kappa B (NF-κB) levels are vital sources
of oxidative stress in ECs.153 Multiple vascular risk factors, such
as hypercholesterolemia, hypoxia, diabetes mellitus, hyperten-
sion, obesity, and smoking can increase ROS levels and
decrease the generation of endothelial NO.3,150,154 Elevated
ROS levels reduce NO bioavailability through the formation of
toxic peroxynitrite. Besides, peroxynitrite uncouples eNOS,
leading to increased oxidative stress and decreased eNOS-
derived NO.155 ROS and RNS have also been shown to promote
the proliferation and migration of VSMCs, leading to vascular
stiffness and cell senescence.156 Excess ROS and oxidative stress
triggers vascular remodeling through inducing vascular inflam-
mation, vascular cell impairment, matrix metalloproteinases
(MMPs) activation, lipid peroxidation, and extracellular matrix
(ECM) deposition.157 Numerous lines of evidence suggested
that oxidative stress and ROS are involved in the initiation and
progression of vascular aging and related diseases, such as
atherosclerosis, hypertension, vascular restenosis, ischemic
stroke, and cerebral hemorrhages.9,158–160

Mitochondrial dysfunction. Mitochondrial dysfunction is a hall-
mark of aging and a vital mechanism of vascular aging.161 Aged
vasculature is associated with elevated mitophagy protein Parkin
levels, causing mitochondrial dysfunction and enhanced mito-
phagy. Additionally, the aged vascular system induces increased
expressions of inflammatory cytokines, including interleukin (IL)-6,
leading to mitochondrial damage. In turn, mitochondrial damage
promotes IL-6 generation by activating the toll-like receptor 9
(TLR9)-MyD88 signaling pathway.162 Arterial mitochondrial respira-
tion significantly decreases with age. Suppression of mitochon-
drial functions and dysregulated mitochondrial DNA integrity is
directly correlated with vascular aging.163 Excess ROS generation
by the mitochondria is another critical mechanism of vascular
aging.164 Mitochondrial ROS can be generated via the inhibition of
manganese superoxide dismutase (MnSOD), peroxynitrite-
mediated nitration, downregulation of p66, and reduction of
cellular glutathione.2 Mitochondrial-derived ROS contributes to

Fig. 3 Schematic illustration of biomimetic nanoparticles. It mainly includes cell-membrane-coated nanoparticles, nanoparticles with
targeting ligands, and natural protein-based biomimetic nanoparticles. rHDL reconstituted high-density lipoprotein
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pro-inflammatory phenotypic alterations in the aged vascular
systems via NF-κB activation.165 Mitochondria-related oxidative
stress aggravated ECs and VSMCs senescence by activating the
Akt signaling pathway and the NF-κB/NOX1 axis, respec-
tively.166,167 Besides, mitochondrial-related ROS induces vascular
cell apoptosis in a Bcl-2-dependent manner.168 Thus,
mitochondrial-derived ROS accelerates vascular aging by promot-
ing vascular inflammation, enhancing cell senescence, and
inducing apoptosis.

Vascular inflammation. Vascular aging is a chronic, sterile, low-
grade inflammation process that is tightly associated with
endothelial dysfunction and arterial stiffness. Converging evi-
dence has implicated that the gene expression profiles of ECs and
VSMCs have been associated with pro-inflammatory alterations in
aged animal models.169 Vascular aging-related inflammation is
characterized by overexpressed inflammatory cytokines, including
C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM-
1), adhesion molecules, and pro-inflammatory cytokines.170

Vascular inflammation mechanisms are multifaceted. Oxidative
stress induces chronic vascular inflammation by activating several
transcription factors, such as NF-κB, AP-1, and peroxisome
proliferator-activated receptor-γ (PPAR-γ).171 The ROS-sensitive
NF-κB signaling pathway is critical in aging-related vascular
inflammation.153 In aged vasculatures, oxidative stress and
vascular inflammation act in a vicious cycle.170 Sirtuin 1, an anti-

aging molecule, is downregulated in aged vascular tissues.
Suppressed sirtuin1 levels in ECs and VSMCs promote vascular
aging through multiple mechanisms, including oxidative stress,
vascular inflammation, cellular senescence, reduced NO expres-
sions, and impaired autophagy.172 ECs senescence is positively
correlated with levels of various inflammatory cytokines and
chemokines, including IL-6, IL-1α, and monocyte chemotactic
protein (MCP-1).173 In addition, elevated oxidative stress and
inflammation levels and reduced NO bioavailability can alter
transforming growth factor-β (TGF-β) and MMPs expressions,
thereby promoting vascular aging. The vascular inflammation
microenvironment stimulates vascular aging-related disease
development by inducing endothelial dysfunctions, cellular
metabolism impairments, and cell apoptosis.2

Cellular senescence. Cell senescence, a cell aging process that is
initiated by responses to various endogenous and exogenous
stressors, involves various unique phenotypic alterations in cells.166

ECs and VSMCs, predominant cell types in the vasculature, are
involved in the formation of vascular endothelium and vascular
media layer, respectively. ECs are crucial in controlling vascular
constriction and relaxation, blood fluidity, angiogenesis, inflamma-
tion, and immune responses.174 The shift of ECs towards pro-
inflammatory states, pro-thrombotic phenotypes, and decreased
vascular tones is collectively termed endothelial dysfunction.151,175

VSMCs play important roles in the regulation of blood flow and

Fig. 4 Mechanisms of vascular aging. A broad range of molecular and cellular events, including oxidative stress, mitochondrial dysfunction,
vascular inflammation, cellular senescence, epigenetic alterations, genomic instability, impaired resistance to molecular stressors, deregulated
nutrient sensing, loss of protein homeostasis, and stem cell dysfunction are involved in the pathology of vascular aging. This figure was
created with the aid of Servier Medical Art (https://smart.servier.com/). ROS reactive oxygen species, RNS reactive nitrogen species,
SIRT1 sirtuin 1, NO nitric oxide, NF-κB nuclear factor-kappaB, IL-6 interleukin-6, mtDNA mitochondrial DNA, iNOS inducible nitric oxide
synthase, MCP-1 monocyte chemotactic protein-1, TNF-α tumor necrosis factor alpha, EC endothelial cell, VSMC vascular smooth muscle cell,
mTOR mechanistic/mammalian target of rapamycin, AMPK adenosine monophosphate protein kinase, miRNA microRNA, lncRNA long non-
coding RNA, UPS ubiquitin-proteasome system, LAS lysosome-autophagy system, Nrf2 nuclear factor erythroid 2-related factor 2
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vascular tension. Under the pathological conditions, VSMCs
phenotypes transform from quiescent to proliferative and migra-
tory.176 VSMCs aging-induced calcification and stiffening are
closely correlated with diverse vascular disorders.177 Functional
and structural alterations of ECs and VSMCs are critical features of
vascular aging. ECs and VSMCs have a great untapped potential as
therapeutic targets in vascular aging.

Epigenetic alterations. Epigenetic alterations are involved in the
development of vascular aging by modulating the function and
phenotype of ECs and VSMCs.178 Epigenetics, including DNA/RNA
methylation, histone modifications, microRNAs (miRNAs), and long
non-coding RNAs (lncRNAs) exhibited a broad range of roles in
vascular aging progression.135,179,180 In mammals, DNA methyla-
tion involves the transfer of a methyl group to the C5 position of
cytosine. DNA methylation recruited gene repression proteins or
suppressed transcription factors bind DNA, thereby modulating
gene expressions.181 During vascular aging, DNA methylation
patterns within vascular cells are altered.179 RNA methylation
occurs in all stages of the RNA lifecycle, including RNA processing,
nuclear export, translation regulation to RNA degradation,
implying that it is an essential internal modification of RNA
metabolism. It has been recognized that RNA methylation,
especially N6-methyladenosine, shows a regulatory impact on
DNA damage, immunity, cell growth, apoptosis, and aging.182

Histone acetylation is regulated by histone deacetylases and
histone acetyltransferases.183 Suppressed expressions or activities
of class III histone deacetylases have a role in vascular aging.184

MiRNAs, with approximately 22 nucleotides, negatively regulate
gene expressions by preventing translation or by promoting gene
degradation at the post-transcriptional level.185 LncRNAs, over 200
nucleotides in length, are mainly transcribed by RNA polymerase
II. LncRNAs regulate gene expressions by introducing chromatin-
modifying enzymes at specific genomic sites, separating transcrip-
tion factors from genomic targets, or acting as miRNA
sponges.185,186 MiRNAs and lncRNAs have significant effects on
vascular aging and related disorders.180,187

Vascular aging-related diseases
Vascular aging is a strong predictor of mortality from multiple
vascular disorders, including cardiovascular diseases, cerebrovas-
cular diseases, and chronic kidney diseases. Vascular aging-related
diseases affect health span and potential life span in mammals.170

Cardiovascular diseases. According to the World Heart Federa-
tion, annually, cardiovascular diseases cause 17.3 million
deaths.188 Diagnostic, treatment, and nursing costs are rapidly
increasing. With an expanding elderly population, cardiovascular
diseases are projected to become the leading global cause of
morbidity and mortality.189 It is estimated that annual deaths from
cardiovascular diseases, especially heart disease and stroke will
account for more than 23.3 million people by 2030.190 Hyperten-
sion, which is a key player in various cardiovascular diseases, such
as atherosclerosis, heart failure, and ischemia, is highly attributed
to the increasing mortality rates from cardiovascular diseases. In
line with a report disclosed in 2015, it was documented that
globally, about 1.13 billion people suffer from hypertension,191

which is projected to rise to 1.60 billion people by 2025.192

Atherosclerosis is a chronic inflammatory condition that is highly
involved in the development of cardiovascular diseases. Patholo-
gical mechanisms of atherosclerosis are intricacy, including
vascular cell dysfunction, chronic inflammatory responses, and
elevated lipoprotein cholesterol concentrations. Of all the triggers,
vascular aging remains the strongest connection with the
prevalence of atherosclerosis. A plausible explanation is that
vascular aging-associated mechanisms play crucial roles in the
pathophysiology of atherosclerosis.193 Restenosis, predominantly
caused by intimal hyperplasia, is directly correlated with vascular

remodeling and ECM deposition. It occurs as a serious complica-
tion after angioplasty.194 Coronary arterial disease (CAD) refers to
the formation of atherosclerotic plaques in the vessels that supply
nutrients and oxygen to the heart.195 Epidemiological studies of
CAD support that age, obesity, hyperlipidaemia, diabetes,
hypertension, and smoking increase the risk of MI. Every
34 seconds, an American experiences a MI or cardiac death.196

MI, refers to ischemic necrosis of cardiomyocytes, is one of the
main causes of heart failure, resulting in irreversible loss of
cardiomyocytes and cardiac function deterioration.197 The current
therapeutic options for MI are generally ineffective as they
principally aim at ameliorating progression and relieving symp-
toms, rather than repairing the damaged myocardium. Heart
failure is a systemic, multifactorial disease, affecting around 1% to
2% of the adult population.198 Notably, heart failure is highly
prevalent among the elderly, with its prevalence among 65- to 70-
year old increasing steadily from 4.3% in 2012 to 8.5% in 2030. It is
a major clinical and public health problem.199

Cerebrovascular diseases. After cardiovascular diseases, cerebro-
vascular diseases are the second leading cause of death world-
wide. Vascular aging-related cerebrovascular diseases, including
ischemic stroke, intracerebral hemorrhage (ICH), and vascular
dementia, represent a massive burden on economic and social
health.200 Therefore, there is an urgent need to develop effective
prevention and treatment options for these conditions. Ischemic
stroke, with over 795,000 annual cases, accounts for more than
80% of cerebrovascular diseases. It is the main cause of long-term
disability.201 After ischemic stroke, ICH is the second most
common subtype of stroke, accounting for 10% to 20% of all
strokes. With increasing life expectancy, the health and economic
burden of ICH is also increasing.202 Vascular dementia, a cognitive
decline arising from vascular lesions, is a common cause of
dementia after Alzheimer's disease, accounting for 15% of cases.
However, there are no licensed therapeutic strategies for vascular
dementia.203

Chronic kidney disease. Chronic kidney disease is defined as a
structural or functional abnormality of the kidney that lasts for
more than three months.204 Globally, it is an irreversible and
progressive disease with a high prevalence of 13.4% (11.7–15.1%).
It has been identified as a major public health problem that is
associated with high cardiovascular risks.205,206

NANOPARTICLE-BASED DIAGNOSTIC STRATEGIES FOR
VASCULAR AGING-RELATED DISEASES
Global life expectancy is increasing, with about one-fifth of the
world's population estimated to be above 65 years by 2030.207 Age
is a vital risk factor affecting vascular homeostasis.208 With the
aging population, the prevalence of vascular diseases is exponen-
tially increasing, becoming a social and economic burden. Due to
the high mortality and disability of vascular aging-related
disorders, early diagnosis shows beneficial effects in delaying the
progression and improving the prognosis of vascular disorders.209

Currently, vascular disease diagnosis is based on the detection of
biomarker levels and angiography.8 Most diagnostic techniques
are costly, with low sensitivity. Therefore, the development of
cheaper, faster, and more efficient methods for early diagnosis is of
great necessity. Applications of nanoparticles in the diagnosis of
vascular aging and related diseases have been under exploration
with striking outcomes (Fig. 5).

Biosensors
Biomarkers are defined as characteristic indices that can objectively
reflect and evaluate normal physiological processes, pathophysio-
logical processes, or drug treatment responses.210 Detection of
specific biomarkers for vascular aging-related diseases, including
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nucleic acids (DNA and RNA), proteins, and antibodies, is essential
for understanding their role in early diagnosis, treatment, and
prognosis of disease. However, due to various technical difficulties
existing in the current detection of biomarkers, their full potential
has not been realized. Primarily, biomarkers are typically present at
extremely low concentrations and are always mixed with other
substances, which inhibits their detection. Secondly, assaying for
biomarkers at very low concentrations is challenging and time-
consuming in many cases.211 In addition, for clinical diagnostic
applications, multiple biomarker detection methods, including
radioimmunoassay,212 gel electrophoresis,213 enzyme-linked
immunosorbent assay (ELISA),214 meso-scale discovery (MSD),215

high-performance liquid chromatography (HPLC),216 protein micro-
arrays,217 and quantitative reverse transcription PCR (RT-PCR),218

are suffer from the same drawbacks such as low sensitivity, poor
accuracy, and weak specificity. Compared to traditional detection
techniques, nanoparticle-based biosensors have desirable advan-
tages of easy operation, high sensitivity, excellent stability, good
specificity, fast response, and cost-effective analysis.219 Therefore,
nanoparticle-based biosensors have potential applications for
selective, ultra-sensitive, and robust detection of these low-
abundance biomarkers in body fluids (plasma, serum, and
urinary).209 In the past two decades, due to their optical,
electrochemical, and intrinsic magnetic properties, magnetic
nanoparticles, especially AuNPs, have been identified as ideal
nanomaterials in biosensing (Table 2).

Cardiac biomarkers detection. It has been reported that biomar-
kers in body fluids are potentially effective and sensitive signals
for early diagnosis of vascular aging-related diseases. Early
detection of cardiac biomarkers for individuals at a high risk of
vascular aging-related cardiovascular diseases, including athero-
sclerosis, hypertension, and MI can reduce the risk of death. To
date, the detection of cardiac biomarkers is predominantly based
on the traditional ELISA technique, which is a time-consuming and

labor-intensive work. Thus, the development of a uniform, rapid,
and convenient detection strategy for cardiovascular events is of
great significance. As biosensors, nanoparticles have attracted
tremendous attention in detecting cardiac biomarkers.
Oxidized low-density lipoproteins (ox-LDLs), such as oxidized

phospholipids (oxPLs),220 oxidized phosphatidylcholines
(oxPCs),221 and malondialdehyde-modified low-density lipopro-
tein (MDA-LDL),222 play an important role in the initiation and
progression of atherosclerosis, and are risk biomarkers for
oxidative stress. However, their abundance in plasma is low.
AuNPs-based bioanalysis offers a sensitive and fast detection of
oxidative stress lipid biomarker screening. Additionally, the
inflammatory biomarker, ICAM-1, is also an effective signal for
atherosclerosis screening. Surface-enhanced Raman scattering
(SERS) probe gold nanorods (GNRs) are sensitive options for early
detection of ICAM-1 in macrophages.223 In addition, compelling
evidence indicates in-negligible roles of AuNPs in the field of
hypertension identification. Overexpressed epithelial sodium
channel (ENaC) in membrane platelets is strongly associated with
arterial hypertension.224 García-Rubio et al. proposed a new
diagnostic tool for distinguishing normal blood pressure from
hypertension by conjugating AuNP with an anti-ENaC. The indirect
immunofluorescence detection assay revealed a tendency of
fluorescence signals and increased fluorescence intensity in
platelets treated with anti-ENaC-conjugated AuNPs.225 In view of
the relationship between systemic arterial hypertension (SAH) and
hypertension, early SAH diagnosis is of great significance. Geno-
sensors, which are based on nanoparticles, are applied to
diagnose genetic disorders by detecting specific DNA sequences.
Rolim et al. developed an AuNPs-containing geno-sensor for the
detection of SAH polymorphisms in intron 16 of the ACE gene.226

Cortisol and renin are hypertension biomarkers.227,228 A portable
chemiluminescence-based lateral flow assay platform was synthe-
sized by conjugating AuNPs with the anti-cortisol and anti-
horseradish peroxidase antibodies, which can be used for serum

Fig. 5 Historical timeline of nanoparticles used in the diagnosis of vascular aging-related diseases. This timeline scheme was made using the
Web of Science database. Key discoveries are highlighted. USPIO ultrasmall superparamagnetic iron oxide particles, MR magnetic resonance,
MPI magnetic particle imaging, SPIONs superparamagnetic iron oxide nanoparticles, NPs nanoparticles, VCAM-1 vascular cell adhesion
molecule-1, CT computed tomography, PET positron emission tomography, Myo myoglobin, CKD chronic kidney disease, AuNPs gold
nanoparticles, cTnI cardiac troponin I, CK-MB creatine kinase-muscle/brain test, LFA lateral flow assay, SERS surface-enhanced Raman
scattering, M-HFn magnetoferritin nanoparticles, ICH intracerebral hemorrhage, HSA human serum albumin, CLIA chemiluminescent
immunoassay, ESM exceptionally small-sized superparamagnetic magnetite
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cortisol detection.229 Besides, Long et al. employed a Cy5-labeled
and streptavidin-coated QD probes to detect plasma renin
activities, which are tightly associated with hypertension and
congestive heart failure.228

Myoglobin, cardiac troponin I (cTnI), cardiac troponin T (cTnT),
heart-type fatty acid-binding protein (H-FABP), and creatine
kinase-muscle/brain test (CK-MB) are potential MI biomarkers.
Early detection of these biomarkers can reduce the risk of death. A
label-free electrochemical biosensor can be used for the effective
and sensitive detection of myoglobin levels and the assessment of
MI phases.230 Monoclonal anti-myoglobin antibody-coated poly-
ethylenimine (PEI)-AuNPs have the ability for quantitative detec-
tion of myoglobin, with a detection range from 9.96 ng/mL to 72.8
ng/mL and a detection limit of 6.29 ng/mL.231 Anodiamonds and
hydrogen-substituted graphdiyne mixture (HsGDY@NDs) have
excellent sensing performance for myoglobin and cTnI detection,
with low detection limits of 9.04 fg/mL and 6.29 fg/mL,
respectively.232 As amplified capture probes and amplified signal
probes, functionalized AuNPs have been employed for simulta-
neous detection of cTnI, copeptin, and H-FABP. This method

exhibited an ultra-wide detection range for cTnI (0.5 pg/mL to
1 μg/mL), copeptin (1 pg/mL to 1 mg/mL), and H-FABP (0.1 pg/mL
to 1 μg/mL). Besides, detection limits of the present method for
cTnI, copeptini, and H-FABP were established to be 0.3 pg/mL, 0.4
pg/mL, and 0.06 pg/mL, respectively.233 The enzyme-free immu-
nosorbent assay (EFISA) of three-dimensional gold nanovesicles
integrated with three allochroic agents could be applied for the
detection of cTnT, CK-MB, and N-terminal prohormone brain
natriuretic peptide (NT-proBNP).234

Brain natriuretic peptide (BNP),235 NT-proBNP,236 CRP,237 anti-
gen galectin-3 (GL-3),238 and miRNA-21,239 have been recognized
as critical cardiac biomarkers for the diagnosis and prognosis of
heart failure. Lei et al. developed a platinum nanoparticles-
modified reduced graphene oxide biosensor for label-free and
high sensitive detection of BNP in whole blood. It allows a low
detection limit of 100 fM.240 Silver nanoparticle-based microfluidic
biosensors have the potential for sensitive quantification of NT-
proBNP, with a limit of detection of 0.57 ng/mL.236 As sensor
platforms, AuNPs-decorated graphitic carbon nitride nanosheets
were used for antigen GL-3 detection in plasma samples. They

Table 2. Nanoparticles-based biosensors in vascular aging-related diseases

Diseases Nanoparticles Biomarkers Detection Limit Technique Ref(s)

Atherosclerosis AuNPs POVPC
PONPC

0.17 nM,
0.44 nM

LC-ESI-MS/MS 220

Hypertension AuNPs ACE gene 1nM EIS 226

AuNPs Cortisol 0.342 μg/dL CL-LFA 229

QD Renin 25 pM TIRF microscopy 228

MI TiO2 NPs Myoglobin 0.22 ng/mL Electrochemical detection 230

PEI-AuNPs Myoglobin 6.29 ng/mL Electrochemical detection 231

HsGDY@NDs cTnI, Myoglobin 9.04 fg/mL,
6.29 fg/mL

Impedimetric aptasensing 232

GNRs cTnI 10 ng/mL Surface plasmon resonance 572

AuNPs cTnI, copeptin,
H-FABP

0.3 pg/mL, 0.4 pg/mL, 0.06 pg/mL Chemiluminescence 233

GNVs cTnT,
CK-MB,
NT-proBNP,

7.8 pg/mL,
910 pg/mL,
70 pg/mL

EFISA 234

AuNPs cTnI 5.7 ng/L Digital immunoassay 573

GQDs-AuNPs cTnI 0.5 pg/mL Enzyme-free electrochemical detection 574

GO-AuNPs cTnI 0.05 ng/mL Electrochemical immunoassay 575

AuNPs cTnI 16 pg/mL Electrochemical detection 576

ABEI-AuNPs cTnI 2 pg/mL Electrochemiluminescence immunoassay 577

AuNPs cTnT 5 ng/mL Surface plasmon resonance 578

AuNPs Hs-cTnT 6.2 ng/L Digital immunoassay 579

GNSs Exosomal HIF-1α 0.2 ng/L Colorimetric determination 580

Ag/Au nanosphere MiRNA-133a 0.306 fM Surface plasmon resonance 581

Ischemic Stroke Graphene MMP-2 17 ng/mL Tracking spectral shift 245

AuNPs CRP 4.6 pg/mL ECL-LFI 244

Sandwich NPs NSE 0.86 ng/mL Immunoassay 246

ICH Gold nanostars GFAP 0.54 fg/mL Immunoassay 252

CKD AuNPs Creatinine 13.7 mg/L Surface plasmon resonance 262

AuNPs gold nanoparticles, POVPC 1-palmitoyl-2-(5′-oxovaleroyl)-sn-glycero-3-phosphocholine, PONPC 1-palmitoyl-2-(9′-oxononanoyl)-sn-glycero-3-phospho-
choline, LC-ESI-MS/MS liquid chromatography-electrospray ionization-tandem mass spectrometry, ACE Angiotensin-converter enzyme, EIS electrochemical
impedance spectroscopy, CL-LFA chemiluminescence-based lateral flow assay, QD quantum dot, TIRF total internal reflection fluorescence, MI myocardial
infarction, TiO2 NPs titanium oxide nanoparticles, PEI polyethylenimine, cTnI cardiac troponin I, HsGDY@NDs heteronanostructure of nanodiamonds and
hydrogen-substituted graphdiyne, GNRs gold nanorods, GNVs gold nano-vesicles, H-FABP heart-type fatty acid-binding protein, NT-proBNP N-terminal
prohormone of brain natriuretic peptide, CK-MB kinase-muscle/brain test, cTnT cardiac muscle troponin, EFISA enzyme-free immunosorbent assay, GQDs
graphene quantum dots, GO graphene oxide, IONs iron oxide nanoparticles, hs-cTnT high-sensitivity cardiac troponin T, GNSs Gold nanospheres, HIF-1α
hypoxia-inducible factor-1 alpha, MMP-2 matrix metalloproteinase 2, CRP C-reactive protein, NSE neuron-specific enolase, ICH intracerebral hemorrhage, GFAP
glial fibrillary acidic protein, CKD chronic kidney disease
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exhibited a wide linearity range of 0.0001 ng/mL to 20.0 ng/mL
and a low detection limit of 0.025 pg/mL.238 A carbon nanodot-
based electronic chemiluminescence biosensor was developed for
selective and sensitive detection of miRNA-21 in serum samples,
with a linear response concentration of up to 100.0 pM and a
detection limit of 0.721 fM.239

Nanoparticles such as AuNPs, graphene, and carbon dots are
critical protagonists in different types of biosensors to enable
ultra-sensitive and multiple detection of cardiac biomarkers,
including myoglobin, cTnI, cTnT, CK-MB, H-FABP, exosomes, and
miRNAs.241–243

Brain biomarkers detection. Screening of cerebrovascular disease-
related biomarkers is indispensable to improving individualized
treatment and reducing mortality. Nevertheless, there is still a lack
of safe, sensitive, and rapid diagnostic strategies for vascular
aging-related cerebrovascular diseases. Nanoparticles-based opti-
cal and electrochemical biosensors have been extensively
investigated in the field of brain biomarkers detection.219

Ischemic stroke accounts for more than 80% of cerebrovascular
diseases. However, the diagnosis of acute-phase stroke is
challenging. Biologically, CRP,244 MMPs,245 neuron-specific enolase
(NSE),246 and S-100B247 are associated with ischemic stroke. A full-
range CRP test is critical for identifying patients who require
intensive treatment or close follow-up after ischemic stroke or MI.
Ru(bpy)3

2+-labeled AuNPs exhibited rapid and high sensitivity in
detecting CRP levels in spiked serum, with a wide detection range
of 0.01–1000 ng/mL and a detection limit of 4.6 pg/mL within
15 min. They have a great potential for detecting CRP levels at
point-of-care diagnostics.244 In addition, MMPs, especially MMP-
2,248 MMP-7,249 and MMP-9,250 are highly associated with stroke.
Thus, their effective and sensitive screening is pivotal for stroke
diagnosis. A class of optical interference-free SERS nanotags was
employed for convenient and multiple detection of relevant
biomarkers.251 For instance, Lin et al. prepared a monolayer
graphene-ruthenium carbonyl cluster-based biosensor for the
quantitative detection of MMP-2, with a detection limit of 17 ng/
mL.245 Additionally, NSE and S-100B proteins have been found to
be elevated in patients with ischemic brain injury.247 Paper-based
lateral flow strip (PLFS) based on SERS was successfully used for
NSE detection, with a detection limit of 0.86 ng/mL.246

Early detection of ICH biomarkers, such as glial fibrillary acidic
protein (GFAP), has a high beneficial effect in early diagnosis and
informing clinical decisions. Based on gold nanostars, Zhao et al.
developed a SERS-based immunoassay for detecting GFAP, with a
broad range of 1 pg/mL to 1 μg/mL and a detection limit of 0.54
fg/mL.252 Additionally, there are particularly strong data indicating
that plasma tau protein levels in patients with vascular dementia
are significantly higher than those in healthy subjects. Antibody-
functionalized magnetic nanoparticles can be employed for the
detection of total tau proteins in human plasma via an
immunomagnetic reduction method.253

Clinically, urine analysis has long been used for monitoring
health and disease during medical examinations.254–256 Synthetic
biomarkers may be developed to remotely sense vascular
disorders using urine samples, with potential applications in
point-of-care diagnostics. Thrombin is essential for the formation
of thrombosis, a life-threatening condition related to athero-
sclerosis and stroke. To overcome the low specificity of traditional
detection techniques and the inability to detect thrombin activity,
Lin et al. designed and combined a thrombin-sensitive peptide
substrate to the surface of iron oxide nanoworms. After
intravenous infusion, these synthetic biomarkers were able to
monitor coagulation and thrombin activities in the vasculature,
and release ligand encoded reporters into urine.254

Kidney biomarkers detection. Numerous lines of evidence demon-
strated that nanoparticles can be applied for the detection of

kidney biomarkers, such as creatinine,257 cystatin C (CysC),258 uric
acid (UA),259 human serum albumin (HSA),260 and neutrophil
gelatinase-associated lipocalin (NGAL).261 Serum or urinary crea-
tinine concentrations are essential and indispensable clinical
analyses for renal function assessment. Ortiz-Gómez et al. used
luminescence spectroscopy-based europium-doped amorphous
calcium phosphate nanoparticles to assess creatinine levels in a
sensitive, selective, and stable manner.257 Label-free AuNPs have
the potential for detecting human urinary creatinine. This
approach is suitable for creatinine concentration ranges of 15
mg/L to 40 mg/L, with a low detection limit of 13.7 mg/L.262

Bioimaging
To date, another commonplace diagnostic technique applied in
clinical settings is angiography, including invasive imaging
approaches, such as intravascular ultrasound (IVUS), optical coher-
ence tomography (OCT), near-infrared spectroscopy (NIRS) and non-
invasive imaging methods such as computed tomography (CT),
computed tomographic coronary angiography (CTCA), MRI, positron
emission tomography (PET), and single-photon emission computed
tomography (SPECT). Grayscale IVUS can be used for evaluating
vessel wall dimensions, phenotypic characteristics, and severity of
atherosclerotic lesions.263 A prospective study (NCT00180466)
reported that IVUS failed to visualize the entire coronary tree and
assessed only 53% of the lesions that caused adverse cardiovascular
events during a median follow-up time of 3.4 years.264 Besides, IVUS-
based modalities may suffer several technical limitations, such as
spatial resolution and operator-dependent parameters.265 Com-
pared to IVUS, OCT offers small inexpensive designs, faster data
acquisition rates, a higher resolution (10–20 μm), and the
visualization of smaller vessels.266 Principal constraints of OCT
include the attenuation of OCT optical beams and the low
penetration depths of 2–3 mm, resulting in unclear visualization of
vessel walls and preventing plaque burden assessment, respec-
tively.267 It is a suitable approach for quantitative and reliable
estimation of lipid compositions of core plaque, however, NIRS is not
capable of detailed and complete plaque morphological assessment
as well as visualization and evaluation of lumen, vessel wall
dimensions, and plaque burden.268 Additionally, the advantages of
PET are its superior sensitivity and excellent quantitative efficiency,
however, its limitations include exposure to radiation, high costs,
and limited availability.269 CTCA is established as a molecular
imaging model with a high specificity and outstanding predictive
value, but low sensitivity.270 MRI allows detailed assessment of
arterial wall morphological parameters, but is limited by long
scanning time and is unsuitable for patients with metal instru-
ments.265 Furthermore, contrast agents are essential for imaging.
However, clinically frequently-used contrast agents are incapable of
targeting specific organs or tissues and have some shortcomings
such as weak signals, short retention time, and toxic side effects.271

Nanoparticles, whose sizes range from 1 to 100 nm, have the
capacity to cross cell membrane and tissue barriers. During the
controlled processes, nanoparticles are able to stimulate, react,
and interact with target cells or tissues to produce the desired
physiological responses while minimizing adverse effects. By
targeting specific molecules, contrast agent distributions can
accurately track vascular lesions and improve the signal intensities
of different imaging modalities.272 As contrast agents, nanopar-
ticles can be designed and manipulated for the visualization of
typical pathological alterations in vascular aging and related
diseases, such as inflammation, thrombosis, angiogenesis, and
apoptosis, with a great potential to improve diagnostic efficiency
and accuracy.8 Besides, given their high biocompatibility, mag-
netic nanoparticles have attracted increasing attention for
molecule imaging.273

Inflammation. Macrophage infiltration is a promising biomarker
for multiple pathological conditions, providing information on the
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stage and progression of vascular disorders, such as athero-
sclerosis, MI, and stroke.274 Researchers seeking to identify and
monitor inflammatory stage alternations have targeted macro-
phages using nanoparticles and visualized the results via
MRI.60,275,276 Fluorescent probes can accurately detect athero-
sclerosis during early developmental stages, thus have been used
to rapidly evaluate the effects of anti-atherosclerosis drugs. For
instance, Wang et al. developed a high brightness aggregation-
induced emission nanoprobe that enables early detection of
atherosclerotic plaques and screening anti-atherosclerosis drugs
in a sensitive, precise, and rapid manner.277 Another study
reported that VCAM-1-targeted nanoparticles, as MR contrast
agents, were a promising strategy for the diagnosis of
inflammation-related disorders.278 Experimental results have
shown that scavenger receptors AI (SR-AI) and osteopontin
(OPN) were highly expressed in intraplaque macrophages.279,280

SR-AI-targeted ultrasmall superparamagnetic iron oxide particles
(USPIO)-based MR contrast agents accumulated in intraplaque
macrophages and VSMCs, indicating that this could be a
promising non-invasive molecular imaging tool for in situ detec-
tion of inflammatory plaques in atherosclerosis.281 Besides, OPN-
specific MR and optical dual-modality probe were utilized for the
non-invasive detection of vulnerable atherosclerotic plaque by
targeting foamy macrophages in the cytoplasm.282 Besides, apoA-I
mimetic peptide-modified rHDL nanoparticles represent versatile
delivery platforms for Gd-based contrast agents (GBCA). Numer-
ous studies have demonstrated that GBCA-rHDL nanoparticles not
only substantially accumulated in macrophages in vitro but were
also taken up by intraplaque macrophages in vivo.283–287 Another
study found that GBCA-rHDL nanoparticles functionalized with
collagen-specific EP3533 peptides improved the specific target
imaging efficiency of intraplaque macrophages.288 IONs, especially
superparamagnetic iron oxide nanoparticles (SPIONs) and USPIO,
have emerged as novel cell-specific MR contrast agents and have
been utilized to evaluate cellular inflammation in tissues.289–291

Yilmaz et al. demonstrated that a USPIO-based contrast agent
achieved efficient characterization of MI predominantly through
detecting infiltrating macrophages. Ischemia/reperfusion (I/R)
injury is correlated to vascular inflammation.292 SPIONs-based
imaging not only exhibited superior temporal resolution but also
had an excellent capability to detect perfusion deficits in the
ischemic murine brain.293 Additionally, ECs are critical to post-
stroke inflammation, where they modulate diapedesis of leuko-
cytes from the blood to the brain by expressing adhesion
molecules, such as VCAM-1, ICAM-1, and P-selectin. Notably, these
adhesion molecules act as specific targets during inflammation
imaging.294–296

Thrombosis. Thrombosis plays a key role in vascular aging-
related disorders and related to hypoxia and tissue infarction.297

Therefore, direct thrombus imaging is highly beneficial in the
diagnosis and treatment of thrombosis-related diseases. For
instance, researchers employed thrombin-activatable fluorescent
peptide (TAP)-incorporated silica-coated AuNPs (TAP-
SiO2@AuNPs) for the direct imaging of thrombus via dual micro-
CT and near-infrared fluorescence (NIRF) imaging.298 In another
study, cRGD peptide-functionalized Fe3O4-PLGA nanoparticles
were found to selectively and readily accumulated on the surface
of thrombosis and under ECs in an abdominal aorta thrombosis rat
model.299 Besides, Poon et al. prepared a hybrid metal oxide-
peptide amphiphile micelles called HMO-Ms that comprised either
manganese oxide or iron oxide inner core and fibrin-targeting
peptide amphiphiles.300 Results from transmission electron
microscopy and dynamic light scattering indicated that HMO-
Ms-based MR agents were not only highly biocompatible to
human aortic ECs but were also 3- to 5-fold more efficient at
binding to human thrombus compared to untargeted nanopar-
ticles.301 In addition, α2-antiplasmin peptide (α2AP)-targeted

perfluorocarbon nanoemulsions were sensitive for monitoring
thrombosis via MRI.302 Furthermore, glycol chitosan AuNPs have
shown promise in the diagnosis of hyperacute direct thrombus
through CT imaging.303 Platelet activation and aggregation are the
initial stages of thrombosis. EWVDV-based platelet-targeting
nanoparticles exhibited high binding affinity to activated platelets
and were used for ultrasonography (US) of thrombi at diverse
blood flow velocities.304 Polydopamine-based nanoparticles sig-
nificantly improved targeting efficiency for thrombus by simulta-
neously binding to integrin αIIbβ3 and P-selectin on activated
platelets. These are beneficial for early diagnosis of thrombosis-
related disorders through MR and photoacoustic (PA) dual-
modality imaging.305

Angiogenesis. Angiogenesis plays an important role in the
development and progression of vascular disorders, and is crucial
to the formation of atherosclerotic plaque, resulting in plaque
hemorrhage and vulnerability.306,307 Therefore, urgent develop-
ment of more effective targeted molecular imaging approaches
for angiogenesis is imperative to the management of these
disorders. Previous studies have shown that ανβ3-integrin, a
heterodimer transmembrane glycoprotein, is differentially
expressed in proliferating versus quiescent ECs, while during
atherosclerosis, it is expressed by multiple cell types, including
ECs, VSMCs, macrophages, lymphocytes, and platelets.308 Increas-
ing pieces of evidence have demonstrated that integrin ανβ3-
integrin-targeted paramagnetic nanoparticles as MR contrast
agents play a crucial role in the detection and quantification of
angiogenesis.309,310 Moreover, E-selectin-based nanoparticles
were also found to promote the development of MR agents for
monitoring angiogenesis.311 In another study, vascular endothelial
growth factor receptor 2 (VEGFR‑2)-targeted perfluorocarbon
magnetic nanocapsules served as a US/MR dual-modality probe
for visualizing atherosclerotic neovasculature.312 Immunohisto-
chemical staining results revealed that natriuretic peptide
clearance receptor (NPR-C) was not only upregulated in angio-
genic lesions, but also colocalized in both ECs and VSMCs.
Moreover, Liu et al. used a 64Cu-labeled C-type atrial natriuretic
factor (CANF) fragment to develop a novel angiogenic high-
specific-activity nanoprobe for PET imaging for the detection of
NPR-C.313 Notably, GEBP11 peptide holds specificity and high
affinity for angiogenesis, thus has emerged as a specific imaging
target for the visualization of vulnerable plaques by monitoring
angiogenesis. As MR and PET dual-modality imaging probes, 68Ga-
GEBP11-IONs were applied for the visualizing angiogenesis and
vulnerable plaque.314

Proliferation. Abnormal proliferation and migration of VSMCs
have been implicated in the development of vascular aging-
related disorders. Consequently, this phenomenon not only offers
a specific target for the detection of vascular disorders but also
provides a potential opportunity for generating information
regarding the developmental stages and progression. Previous
studies have shown that profilin-1 was upregulated in cardiovas-
cular disorders, thus played a crucial role in modulating
proliferation and migration of VSMCs.315–317 Researchers have
used profilin-1-targeted MR and fluorescence dual-modality
contrast agent (PC-IONs) for non-invasive visualization of athero-
sclerotic plaque development.318 Elastin, an ECM protein, is
expressed mainly by fibroblasts and VSMCs. Notably, an elastin-
specific MR contrast agent (BMS-753951) was investigated for
visualization and quantification vascular remodeling.319

Apoptosis. Cell apoptosis is associated with the instability of
atherosclerotic plaques. In order to precisely locate and assess
atherosclerotic plaque vulnerability, Li et al. conjugated targeting
molecules Annexin V and radionuclide Tc-99m with thin amino-
PEGs-covered-AuNPs.320 With the guidance of targeting
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molecules, SPECT/CT imaging showed an elevated accumulation
of the nanoparticles in apoptotic macrophages. Intriguingly,
another study revealed a promising technique for the detection
of vulnerable atherosclerotic plaques by targeting apoptotic
macrophages via a USPIO-based SPECT/MRI multimodal probe.321

Annexin A5 has been identified as a ligand to target necrotic and
apoptotic cells. Therefore, Annexin A5-functionalzied micelles
offer great potential for the non-invasive assessment of cell types
and provided a visualization for the vulnerable atherosclerotic
plaque by MRI and fluorescence imaging.322

Overall, the exigent demand for effective approaches for early
detection and early diagnosis of vascular disorders has led to the
development of several imaging techniques and contrasting
agents. The challenge remains the identification of nontoxic
contrast agents with longer circulation times that will allow
researchers to achieve rapid and detailed imaging of tissue
microstructure and lesion features. These observations open up
new vistas for the clinical application of nanoparticles.

NANOPARTICLE-BASED THERAPEUTIC METHODS FOR
VASCULAR AGING-RELATED DISEASES
Efforts for effective prevention of vascular aging-related disease start
by encouraging people to adhere to a healthy lifestyle, such as
exercising regularly, eating a healthy diet, avoiding obesity, and not
smoking, among others. However, previous studies have shown that
most people do not meet the requirements for healthy exercise or
diet.10 At present, clinical management of vascular diseases chiefly
includes surgical treatments and pharmacological interventions.
Surgery is performed in case of acute and deteriorated situations.
Notably, surgical treatments, such as endarterectomy, hematoma
removal surgery, angioplasty, stenting, and coronary artery bypass
grafting, are frequently conducted to ensure proper blood flow.323

Pharmacotherapy remains an essential approach for the treatment
and prevention of vascular aging-related disorders. To this end,
small molecule drugs that can regulate blood pressure, blood
glucose, blood lipids, thrombus, and other pathological factors, have

been developed and are currently under use. Drugs extensively used
in clinical settings mainly include anti-hypertensive drugs (e.g.,
angiotensin-converting enzyme inhibitors), glucose-lowering drugs
(e.g., metformin), lipid-lowering drugs (e.g., statins), anti-platelet
drugs (e.g., clopidogrel and aspirin), anti-coagulant drugs (e.g.,
heparin), etc. Nevertheless, numerous pharmacological interventions
have achieved limited efficacy due to poor stability, low aqueous
solubility, and extensive first-pass effect. Additionally, these medica-
tions have been associated with the occurrence of severe adverse
drug effects.8 Additionally, researchers have developed stem cell
transplantation as a new attractive strategy for the treatment of
vascular aging-related diseases, such as MI, ischemic stroke, and ICH.
However, its clinical application has been limited by low survival
rates and safety concerns.324 EVs have potential as a therapeutic
strategy for the treatment of vascular aging-related diseases due to
their excellent angiogenesis, anti-inflammation, and anti-apoptosis
abilities. However, poor targeting efficiency coupled with low
productivity have limited their clinical application.325,326

Therefore, prospecting for novel efficacious therapies for the
treatment of vascular aging-related disorders remains an attractive
research area.327 Consequently, numerous studies have identified
nanoparticles-based therapeutics as significant candidates for the
treatment of vascular aging-related diseases328–330 (Fig. 6). For
instance, AuNPs which mediate efficient delivery of vasoprotec-
tive, antiproliferative, and antioxidant molecules have emerged as
an attractive tool for restenosis prevention, owing to its
remarkable advantages over current strategies such as antiplatelet
therapy and drug-eluting stents.331

Nanoparticle-mediated anti-oxidative therapy
Excessive ROS accumulation and oxidative stress represent key
mechanisms underlying the occurrence and development of
vascular aging. Therefore, antioxidant therapy may be a promising
strategy for the management of vascular aging and related
diseases.332 Previous studies have shown that introduction of
exogenous antioxidants into the biological system to scavenge
excessive ROS is an effective approach to alleviate and prevent

Fig. 6 Historical timeline of nanoparticles-based therapies in vascular aging-related diseases. This timeline scheme was made using the Web
of Science database. Key discoveries are highlighted. NPs nanoparticles, VSMCs vascular smooth muscle cells, AuNPs gold nanoparticles, rHDL
reconstituted high-density lipoprotein, AS atherosclerosis, AgNPs silver nanoparticles, HDL high-density lipoprotein, LNPs lipid nanoparticles,
CeO2 NPs cerium oxide nanoparticles, MSCs mesenchymal stem cells, SPIONs superparamagnetic iron oxide nanoparticles, ECs endothelial
cells, SAH subarachnoid hemorrhage, I/R ischemia reperfusion, MM/RAPNPs macrophage membrane coating on the surface of rapamycin-
loaded poly (lactic-co-glycolic acid) copolymer nanoparticles
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vascular diseases.333 Additional research evidence has shown that
nano-antioxidants have the excellent antioxidant capacity and
superior tolerance to harsh microenvironments in comparison to
their natural counterparts.334 Besides, the role of mitochondrial
dysfunction in vascular aging encourages the exploration of
mitochondrial-targeted therapeutic modalities for the prevention
and intervention of vascular aging-related diseases. Moreover,
mitochondria-targeting nanoparticles for the treatment of vascular
aging-related diseases have attracted considerable research
attention.335 Nanoparticle-mediated anti-oxidative therapy has
emerged as a promising strategy for the treatment of vascular
aging-related diseases (Table 3).

Vascular aging-related cardiovascular diseases. Atherosclerosis is
strongly associated with multiple vascular disorders, such as
ischemic stroke, ischemic heart disease, and peripheral arterial
disease.336 Given the crucial effect of oxidative stress in
atherogenesis, antioxidant therapy has emerged as a promising
strategy for the prevention of atherosclerosis.150 However, the
currently available antioxidants have exhibited limited efficacy in
managing the condition.9 Accumulating evidence suggested that
nanoparticle-based therapeutic modalities, targeting or scaven-
ging excessive ROS, are potential anti-atherosclerotic therapies.
Notably, nanoenzymes, such as CeO2 and MnO2 nanoparticles,
have shown promise for the treatment of atherosclerosis due to

Table 3. Nanoparticles-mediate anti-oxidative therapies for vascular aging-related diseases

Diseases Nanoparticles Therapeutic Agent Effects Ref(s)

Atherosclerosis Fe3O4-CeO2 NPs None Effectively scavenge ROS 337

MnO2 NPs TOC Reduce the levels of ROS and ox-LDL 338

Platinum NPs AMP Scavenge ROS and recover compromised cell-cell junctions 328

TPCD SOD Inhibit atherosclerosis development through eliminating excessive ROS
production

339

Polymeric NPs FA Reduce ROS production in macrophages and suppress ox-LDL up-taken 341

Micelles Simvastatin Inhibit atherogenesis by scavenging excessive ROS, inhibiting inflammation,
and decreasing cholesterol content

582

Hypertension NanoSOD None Significantly alleviate oxidative stress through enhancing the accumulation
of SOD1 protein and improving the expression of metallothionein 2

344

CeO2 NPs None Ameliorate endothelium-dependent dilation and oxidative stress 345

Liposomes SOD Reduce the blood pressure by 50 mmHg 346

Vascular restenosis AuNPs GA Reduce the level of superoxide anion and inhibit proliferation and migration
of mouse VSMCs

330

Ac-bCD,
Ox-bCD

Rapamycin Serve as a pH-responsive and ROS-responsive nanoparticle and attenuate
vascular restenosis

354

MI PVAX None Significantly attenuate ROS production by decreasing the expression of
NOX2 and NOX4

356

PEGylated liposomes NM-aFGF Improve the myocardial structural by inhibiting myocardial oxidative stress 359

Fullerene None Regulate Nrf2/ARE-antioxidant signaling pathway 357

Polymeric NPs CoQ10 Substantially improve ejection fraction 358

Ischemic stroke CeO2 NPs None Inhibit ischemic stroke development by suppressing apoptosis and
scavenging excessive ROS

368

CeO2 NPs None Effectively cross BBB and access brain tissues via a receptor-mediated
transcytosis pathway

370

PEGylated CeO2 NPs None Protect against ROS-induced cell death 368

CeO2@ZIF-8 NPs None Significantly reduce oxidative stress-induced apoptosis and tissue injury 329

Platinum NPs None Pronouncedly inhibit the production of superoxide anion and reduce
oxidative stress-induced MMP-9 activation

372

PEG-modified
Fe3O4 NPs

None Promote BBB reconstruction 369

ICH CeO2 NPs None Effective scavenge ROS and inhibit NF-κB signal pathway 375

CeO2 NPs None Significantly reduce neuronal death, and macrophage infiltration by
enhancing antioxidative effect

376

PEG-CeO2 NPs None Suppress ROS-related NF-κB activation 377

t-PA@iRNPs None Inhibit subarachnoid hemorrhage via the elimination of excessive ROS 378

PLGA NPs Curcumin Remarkably suppress subarachnoid hemorrhage-induced oxidative stress 379

Vascular dementia SLNs Resveratrol Reduce the production of ROS and lipid peroxidation 380

CKD C-Mn3O4 NPs None Alleviate intracellular ROS production and maintain cellular redox balance 383

NPs nanoparticles, ROS reactive oxygen species, TOC D-α-tocopherol, ox-LDL oxidized low-density lipoprotein, AMP 2-amino-6-mercaptopurine, SOD superoxide
dismutase, FA ferulic acid, NanoSOD copper/zinc SOD nanoformulation, AuNPs gold nanoparticles, GA ginkgolide A, VSMCs vascular smooth muscle cells, Ac-
bCD acetalated β-cyclodextrin material, Ox-bCD β-cyclodextrin material, MI myocardial infarction, NOX2 NADPH oxidase 2, NM-aFGF non-mitogenic acidic
fibroblast growth factor, Nrf2 nuclear factor erythroid 2-related factor 2, ARE antioxidant response element, CoQ10 Coenzyme Q10, BBB blood-brain barrier,
MMP-9 matrix metalloproteinase-9, NF-κB nuclear factor-kappaB, ICH Intracerebral hemorrhage, PEG poly(ethylene glycol), t-PA@iRNPs tissue plasminogen
activator-installed, nitroxide radical-containing, self-assembled polyion complex nanoparticles, PLGA poly lactic-co-glycolic acid, SLNs solid lipid nanoparticles,
CKD chronic kidney disease
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their excellent biocompatibility, high stability, and anti-oxidative
properties. Additionally, novel Fe3O4-CeO2 core-shell nanoparticles
were found to be promising platforms for the diagnosis and
treatment of ROS-related vascular disorders due to their excellent
MRI ability and ROS scavenging performance.337 Bizeau et al.
constructed hyaluronic acid (HA)-coated spherical MnO2 micro-
particles for controlling drug release and scavenging excessive
ROS.338 Moreover, platinum nanoparticles were also shown to
serve as ROS scavengers and play a role in reversing cell junctions
damage under hyperlipidemic and hyperglycemic conditions.328

In another study, Wang et al. generated a broad-spectrum ROS-
eliminating material called TPCD nanoparticles.339 After intrave-
nous injection, TPCD nanoparticles predominantly localized in
atherosclerotic plaques in vivo and markedly suppressed athero-
sclerosis progression. Mechanistically, TPCD nanoparticles can be
efficaciously and promptly internalized by both VSMCs and
macrophages. Notably, TPCD nanoparticles not only alleviated
macrophage inflammation and cell apoptosis by eliminating
excessive intracellular ROS production, but also repressed the
formation of foam cells by attenuating the internalization of ox-
LDL.339 Moreover, researchers have encapsulated several ther-
apeutic agents in nanoparticles with the aim of enhancing their
abilities to decrease LDL uptake and ROS production. Moreover,
nanoformulations synthesized by loading D-α-tocopherol (TOC)
with MnO2 microparticles were found to effectively suppress levels
of ROS and LDL oxidation.338 Ferulic acid (FA), a free radical
scavenger, has been approved as a food additive for the
prevention of lipid peroxidation.340 Additionally, FA-based poly(-
anhydride-ester) nanoparticles can overcome the deficiencies of
FA in dose, stability, and targeted delivery, thus have potential as a
valuable platform for the management of atherosclerosis.341

Prevalence of hypertension is on the rise, owing to an increase
in the aging population.342 Notably, oxidative stress promotes
hypertension progression through regulation of vascular func-
tions, inflammation, and aldosterone/mineralocorticoid actions.
Previous studies have shown that increased activation and
upregulation of NOXs in hypertension are critical mechanisms
underlying the occurrence of oxidative stress in vascular aging-
related cardiovascular disease.158,343 For example, copper/zinc
SOD nanoformulation was shown to significantly mediate a
decrease in the level of oxidative stress by increasing the
accumulation of SOD1 protein and improving the expression of
metallothionein 2 in ECs.344 Another study showed that intrave-
nous injection of CeO2 nanoparticles ameliorated endothelium-
dependent dilation and oxidative stress in spontaneously
hypertensive rats (SHRs) relative to saline alone.345 Besides, SOD-
loaded liposomes mediated a decrease in blood pressure by 50
mmHg in angiotensin II-induced hypertension rat models.346

Heart failure is a severe public health problem worldwide. A
previous study demonstrated that inhalation-based delivery of
TPCD nanoparticles suppressed doxorubicin-induced heart failure
in mice due to internalization in cardiomyocytes and scavenging
excessive ROS.347 Moreover, Vanillyl alcohol (PVAX)-polymer
nanoparticles treatment alleviated doxorubicin-induced cardio-
myopathy by inhibiting activation of poly (ADP ribose) polymerase
1 (PARP-1) and caspase-3.348 Experimental results from a rodent
diabetic cardiomyopathy model revealed that inhalation of
calcium phosphate nanoparticles loaded with a therapeutic
mimetic peptide markedly improved myocardial contraction and
cardiac function via rapid translocation of calcium phosphate
nanoparticles from pulmonary to myocardium, where the
therapeutic mimetic peptide is quickly released.349

Vascular restenosis is associated with proliferation and migra-
tion of VSMCs, as well as synthesis and remodeling of the ECM.350

ROS is a critical regulator for enhancing VSMCs proliferation and
migration.351 Emerging studies have indicated that antioxidant
therapies have potential efficacy against vascular restenosis after
angioplasty.352,353 Moreover, Acetalated β-cyclodextrin material

(Ac-bCD) serves as a PH-responsive drug carrier, whereas
hydrophobic functionalization of β-cyclodextrin material (Ox-
bCD) functions as a ROS-responsive drug delivery system.
Experimental results revealed that intravenous administration of
pH-responsive or ROS-responsive nanoparticles effectively alle-
viated neointimal hyperplasia in comparison to non-responsive
PLGA nanoparticles-based therapy.354

MI is the most harmful type of ischemic heart diseases, resulting
in loss of tissue and impaired heart function.355 Notably,
overproduction of ROS represents the primary cause of myocardial
I/R-mediated tissue damage. Previous studies have reported the
application of nanoparticles for scavenging excessive ROS in MI.
For instance, Bae et al. prepared hydrogen peroxide (H2O2)-
responsive antioxidant polymeric nanoparticles and named them
HPOX and PVAX.356 The authors found that a single injection of
PVAX remarkably ameliorated fraction shortening and cardiac
output, reduced infarction size, and downregulated NOX2 and
NOX4 expression compared to PLGA nanoparticles. Besides, PVAX
also effectively inhibited the activation of caspase-3, reduced the
number of TUNEL-positive cells, and downregulated the levels of
tumor necrosis factor alpha (TNF-α) and MCP-1 mRNA.356 Under
oxidative stress conditions, C(60) fullerene enhanced antioxidant
capacity of rat heart tissue and attenuated lipid peroxidation by
inhibiting ROS production and suppressing the release of O2·

− and
H2O2.

357 Coenzyme Q10 (CoQ10) plays a critical role in the
mitochondrial electron transport chain. Polymeric nanoparticles
encapsulated CoQ10 for the management of MI, with oral
administration of CoQ10-loaded nanoparticles found to substan-
tially improve ejection fraction in female Sprague-Dawley rats with
myocardial ischemia.358 Additionally, PEGylated liposomes encap-
sulated non-mitogenic acidic fibroblast growth factor (aFGF) has
the ability to protect against diabetic cardiomyopathy-induced
oxidative stress by activating the Akt/glycogen synthase kinase
(GSK)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling
pathway.359 Additional studies have shown that Cyclosporin A is a
therapeutic drug for the treatment of myocardial I/R injury by
suppressing the opening of mitochondrial permeability transition
pore (mPTP).360 However, the clinical application of cyclosporin A
is limited by its immunosuppressive effect on other normal organs
and tissues. SS31 is a novel mitochondrial targeting peptide that
can guide drug accumulation in the mitochondria.361 Experi-
mental results revealed that cyclosporin A-loaded PLGA-PEG-SS31
conferred excellent cardioprotective effects against MI/RI in rat
hearts by directly delivering cyclosporin A to the mitochondria
and protecting mitochondrial integrity.362

Several natural polyphenols, such as resveratrol, quercetin, and
curcumin, play a role in suppressing ROS production. Notably,
nanoparticles have emerged as promising vehicles for the delivery
of polyphenols to targeted tissues.363 A previous study demon-
strated that resveratrol-SLNs showed stable under storage and
sustained release profile. Moreover, resveratrol-SLNs exerted a
therapeutic effect on doxorubicin-induced cardiotoxicity in
mice,364 while resveratrol-loaded liposomes promoted mitochon-
drial respiratory capacity in myocardial cells.365 On the other hand,
Quercetin-MSNs promoted the cardioprotective effects on myo-
cardial I/R injury rats by significantly enhancing the activity of the
Janus kinase 2 (JAK2)/signal transducer and activator of transcrip-
tion 3 (STAT3) signaling pathway.366 Additional studies have
shown that curcumin nanoparticles can protect against
doxorubicin-induced cardiotoxicity by inhibiting doxorubicin-
induced significant increase in lipid peroxidation (MDA), NO,
acetycholinesterase (AchE), and lactate dehydrogenase (LDH), as
well as modulating a doxorubicin-induced decrease in glutathione
(GSH), norepinephrine (NE) and serotonin (5-HT), and ATPase.367

Vascular aging-related cerebrovascular diseases. Ischemic stroke is
a severe vascular aging-related cerebrovascular disease that
causes disability and death. Previous studies have implicated
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oxidative stress in the activation of apoptosis, necrosis, and
autophagy pathways, as well as induction of cerebral vasculature
damage, ischemic injury, and disruption of the blood-brain barrier
(BBB).160 Additionally, studies have revealed that metallic nano-
particles, such as CeO2, platinum, and Fe3O4 nanoparticles, serve
as ROS scavengers. For example, Kim et al. found that CeO2

nanoparticles with a size of 3 nm could effectively prevent
ischemic stroke by suppressing apoptosis and scavenging
excessive ROS.368 In addition, PEGylated CeO2 nanoparticles
exerted a significant protective effect against ROS-induced cell
death, whereas PEG-modified Fe3O4 nanoparticles beneficial for
BBB reconstruction.368,369 However, the accumulation of thera-
peutic nanoparticles at the brain injury site is limited by BBB’s
integrity.
The development of therapeutic nanoparticles that can cross

the BBB has attracted numerous research attention. For instance,
Bao et al. prepared PEG and Angiopep-2-modified CeO2 nano-
particles and found that they effectively crossed BBB and accessed
brain tissues via a receptor-mediated transcytosis pathway.370

Another study found that CeO2 nanoparticles coated with zeolitic
imidazolate framework-8 (CeO2@ZIF-8 NPs) exhibited the
enhancement of BBB penetration ability, the extension of blood
circulation, and the reduction of clearance rate. Results from an
in vivo study demonstrated that CeO2@ZIF-8 NPs administration
significantly suppressed oxidative stress-induced apoptosis and
tissue injury in middle cerebral artery occlusion mice.329 Addi-
tionally, platinum nanoparticles exhibited excellent neuroprotec-
tive effects against ischemic stroke, with their administration
markedly inhibiting the production of superoxide anion and
reducing oxidative stress-induced MMP-9 activation in transient
middle cerebral artery occlusion mice.371,372

ICH, a disorder characterized by high morbidity and mortality,
currently has no effective treatment therapies.373,374 Previous
studies have shown that CeO2 nanoparticles play a role in altering
microglial from pro-inflammatory M1 to anti-inflammatory M2
phenotype, through effective scavenging for ROS and inhibition of
the NF-κB signal pathway.375 Experimental results revealed that
intravenous injection of CeO2 nanoparticles exhibited potent anti-
oxidative, cytoprotective, and anti-inflammatory activities in vitro
and remarkably alleviated neuronal death, macrophage infiltra-
tion, and brain edema in vivo.376 Treatment of collagenase VII-
induced intracerebral hemorrhage mice with PEG-CeO2 nanopar-
ticles resulted in marked inhibition of ROS-related NF-κB activation
and suppression of expression of A1 astrocytes and M1 microglia,
ultimately promoting remyelination.377 Besides, tissue plasmino-
gen activator (t-PA)-installed, nitroxide radical-containing, self-
assembled polyion complex nanoparticles (t-PA@iRNPs) sup-
pressed t-PA-induced subarachnoid hemorrhage by eliminating
excessive ROS production.378 On the other hand, curcumin-PLGA
nanoparticles remarkably inhibited subarachnoid hemorrhage-
induced oxidative stress and ameliorated neurological function
compared to curcumin.379

Vascular dementia, the leading cause of cognitive decline
resulting from vascular lesions, causes about 15% of all dementia
cases.203,380 It has been reported that oxidative stress and
mitochondrial dysfunction play a role in cognitive decline. Yadav
et al. demonstrated that resveratrol-loaded SLNs were highly
protective against vascular dementia.380 In addition, resveratrol-
loaded SLNs treatment resulted in a strong reduction of ROS
production, lipid peroxidation, and protein carbonyls as well as
potent enhancement of redox ratio and MnSOD activity. Besides,
the level of hypoxia-inducible factor 1α (HIF-1α) was decreased,
whereas the expression of Nrf2 and heme oxygenase 1 (HO-1)
were increased.380

Vascular aging-related chronic kidney disease. Chronic kidney
disease is defined as a glomerular filtration rate of less than 60 ml/
min per 1.73 m2 or a urinary albumin-to-creatinine ratio exceed 30

mg/g.381 The prevalence of chronic kidney disease is on the rise,
owing to an increase in the aging population coupled with the
rapid increase in obesity, diabetes, and hypertension.382 At
present, only a handful of therapies exist for the treatment of
chronic kidney disease. In fact, these therapies can only delay
disease progression, a phenomenon that necessitates urgent
development of new effective therapeutic modalities to either
stop or reverse disease progression. Nanoparticles have been
implicated in the intervention and prevention of chronic kidney
disease, while ROS imbalance and associated mitochondrial
dysfunction have been strongly associated with the development
and progression of chronic kidney disease. For example, citrate-
functionalized Mn3O4 nanoparticles (C-Mn3O4 NPs) were found to
play a role in reducing intracellular ROS and maintaining cellular
redox balance in the oxidative injury-mice model. Notably, four
weeks of C-Mn3O4 NPs treatment effectively restored renal
function, mediated recovery of kidney architecture, improved
expression of pro-inflammatory factors, and suppressed glomer-
ulosclerosis and interstitial fibrosis in cisplatin-induced chronic
kidney disease mice model.383

Nanoparticle-mediated anti-inflammatory therapy
Vascular inflammation is strongly associated with vascular aging
and related disorders, thus immune-modulatory strategies have
potential as therapeutic modalities for the treatment of
inflammation-related vascular diseases.384,385 Nevertheless, the
application of many anti-inflammatory drugs is largely limited by
pharmacokinetics and route of administration, such as short half-
life, low stability, low bioavailability, and occurrence of side effects.
Previous studies have shown that nanoparticles loaded with anti-
inflammatory drugs, such as rapamycin, methotrexate, celecoxib,
curcumin, colchicine, resveratrol, and wogonin, conferred effective
protection against vascular diseases by suppressing inflammatory
responses.386–392 In addition, several lipid- and glucose-lowering
drugs, such as statins, pioglitazone, rosiglitazone, liraglutide, and
exenatide, exerted beneficial effects on cardiovascular disor-
ders.393–395 On the basis of traditional medicine, targeted anti-
inflammatory therapy has emerged as a promising approach for
reducing residual cardiovascular risk.396 Numerous studies have
revealed that nanoparticles are ideal platforms for the delivery of
anti-inflammatory reagents, which can improve the anti-
inflammatory effects of drugs. Nanoparticle-mediated anti-inflam-
matory therapy has been implicated in the treatment of vascular
aging-related diseases (Table 4).

Vascular aging-related cardiovascular diseases. Atherosclerosis has
been recognized as a low-grade chronic inflammatory disease.
Nanoparticles combined with anti-inflammatory compounds may
be an effective approach to target pro-inflammatory mediators
within atherosclerotic plaques, thus aid in regulating inflammation
and vascular cell function.131 Profilin-1 antibody-functionalized
IONs served not only as multifunctional imaging probes but also as
carriers for the delivery of rapamycin.397 Subcutaneous injection of
rapamycin-acetalated β-cyclodextrin remarkably increased plaques
stability and significantly suppressed the formation of athero-
sclerotic lesions by selectively repressing the mechanistic target of
rapamycin complex 1 (mTORC1), whereas its oral administration
simultaneously suppressed both mTORC1 and mTORC2. Additional
evidence revealed a significant reduction in rupture-prone pro-
inflammatory factors in serum and aorta following treatment.398

Moreover, pioglitazone loaded into PLGA nanoparticles regulate
the expression of inflammatory cytokines and inhibits the
activation of MMPs and cathepsins.399 Spherical polymeric nano-
constructs (SPNs) enveloping methotrexate were accumulated in
atherosclerotic plaques and engulfed by macrophages. Next,
methotrexate-SPNs released their anti-inflammatory substances
in macrophages, thereby dramatically inhibiting the production of
pro-inflammatory molecules, including IL-6 and TNF-α.400 Besides,
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Table 4. Nanoparticles-mediated anti-inflammatory therapies for vascular aging-related diseases

Diseases Nanoparticles Therapeutic Agent Effects Ref(s)

Atherosclerosis PFN1-CD-IONs Rapamycin Inhibit atherosclerosis progression 397

Liposomes Methotrexate Reduce the expression of IL-1β, IL-6, and TNF-α 401

LDEs Methotrexate,
paclitaxel

Increase the anti-atherosclerosis effects through strongly reducing the
number of macrophages and the expression of MMP-9 and TNF-α

402

LDEs Docetaxel Dramatically alleviate the production of pro-inflammatory cytokines, such
as IL-1β, IL-6, and TNF-α

403

LDEs Carmustine Reduce pro-inflammatory molecules expression 404

LDEs Methotrexate Decrease the generation of pro-inflammatory factors, including IL-1β, IL-18,
TNF-α, MCP-1, MMP-9, MMP-12 and increase anti-inflammatory IL-10
expression

583

rHDL NPs TRAF-STOP Effectively inhibit macrophages migration and activation through the
downregulation of intermediates phosphorylation of the canonical NF-κB
pathway

405

Ac-bCD Rapamycin Remarkably enhance plaques stability and reduce atherosclerotic lesions 398

Polymeric NPs Pioglitazone Inhibit MMPs and cathepsins activation 399

SPNs Methotrexate Dramatically inhibit pro-inflammatory molecules production, including IL-6
and TNF-α

400

Hypertension CeO2 NPs None Enhance the expression of IL-10 and TNF-α 345

Vascular restenosis CuBiS2 NPs None Suppress inflammation through eliminating macrophages 410

Liposomes Alendronate Attenuate restenosis by eliminating circulating monocytes/macrophages 584

Polypyrrole NPs None Remarkably suppress vascular inflammation and stenosis through
eliminating infiltrating macrophages

411

MI ApoA-I NPs None Attenuate myocardial infarction by decreasing the systemic and cardiac
inflammatory response

421

AuNPs None Ameliorate cardiac systolic function by alleviating the accumulation of
TNF-α

414,415,417

Liposomes Rapamycin Inhibit macrophages polarization and attenuate excessive inflammation
following MI

418

LDEs Methotrexate Improve left ventricular systolic function through enhancing antioxidant
enzymes and reducing the number of inflammatory cells

390

NPs Curcumin Inhibit the expression of inflammatory cytokines, such as IL-1α, IL-1β, IL-6,
TNF-α, MCP-1, and RANTES

419,420,585

PLGA NPs Pitavastatin Significantly reduce the accumulation of monocytes/macrophages 393

PLGA NPs pioglitazone Protect against cardiac remodeling by suppressing monocyte-mediated
acute inflammation

394

PLGA NPs Celecoxib Hamper the development of heart failure 391

Ischemic stroke Selenium NPs OX26 Inhibit excessive inflammation and oxidative metabolism 423

CeO2@ZIF-8 NPs None Induce suppression of astrocytes activation and pro-inflammatory factors
secretion

329

MnO2 NPs Fingolimod Inhibit ischemic stroke by reducing oxidative stress and modulating
inflammatory microenvironment

424

PEG NPs Melanin Reduce oxidative stress and inflammatory factors production 425

NLCs Resveratrol Ameliorate oxidative stress and reduce the activation of IL-1β, IL-1, and
TNF-α in ischemic stroke animal models

105

NPs Rapamycin Inhibit the proliferation of inflammatory cells 426

Membrane-derived nanovesicle Resolvins Significantly enhance therapeutic efficacy in treating ischemic stroke 427

PEG NPs Tanshinone IIA Possess remarkable neuroprotective effects on ischemic stroke by
regulating inflammatory cascades and neuronal signal pathways

429

ICH PLGA NPs Curcumin Significantly inhibit inflammatory responses and microglia activation in
subarachnoid hemorrhage-induced BBB disruption

379

Vascular dementia Liposomes GM1 Reverse medin-induced ECs immune activation 432

Chronic
kidney
disease

AuNPs Artificial kidney Reduce inflammatory responses 433

LNPs Rapamycin Effectively inhibit podocytes-induced inflammatory responses 106

PLGA NPs Resveratrol Potential be a promising approach for preventing chronic kidney disease
by reducing the secretion of NLRP3 inflammasome and IL-1β

434

PLGA NPs EB Protect against renal fibrosis via Smad3-dependent mechanism 437

PFN1 profilin-1 antibody, IONs iron oxide nanoparticles, LDEs lipid core nanoparticles, IL-1β interleukin-1β, TNF-α tumor necrosis factor alpha, MMP-9 matrix
metalloproteinase-9, MCP-1 monocyte chemotactic protein, rHDL recombinant high-density lipoprotein, NPs nanoparticles, NF-κB nuclear factor-kappaB, Ac-bCD
acetalated β-cyclodextrin material, SPNs spherical polymeric nano-constructs, AuNPs gold nanoparticles,MImyocardial infarction, PLGA poly lactic-co-glycolic acid, OX26
anti-transferrin receptor monoclonal antibody, PEG poly(ethylene glycol), NLCs nanostructured lipid carriers, ICH Intracerebral hemorrhage, LNPs lipid nanoparticles, BBB
blood-brain barrier, ECs endothelial cells, GM1 monosialoganglioside, EB Eleutheroside B, NLRP3 NOD-like receptor family pyrin domain containing 3
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liposomes-mediated methotrexate delivery mediated upregulation
of ATP binding cassette transporter A1 (ABCA1) and exhibited a
significant anti-inflammatory effect by downregulating the expres-
sion of IL-1β, IL-6, and TNF-α.401 In another study, Gomes et al.
found that combining methotrexate-lipid core nanoparticles (LDEs)
with paclitaxel-LDEs could effectively enhance the anti-
atherosclerosis effects by strongly reducing the number of
macrophages, the area of atherosclerotic lesions, and down-
regulating the expression of MMP-9 and TNF-α.402

Docetaxel carried in LDE dramatically alleviated vascular
inflammation by downregulating the expression of TGF-β, MMP-
2, MMP-9, collagen 1 and 3 and mitigating the production of pro-
inflammatory cytokines, including NF-κB, IL-1β, IL-6, TNF-α, and von
Willebrand factor. Besides, the number of macrophages also
decreased after docetaxel-LDE treatment. Further evidence indi-
cated that intravenous injection of docetaxel-LDE resulted in an
80% reduction of atheroma area compared to LDE administration
alone. Notably, docetaxel-LDE treatment was not associated with
any hematological, renal, or hepatic toxicity in rabbit models.403

Additionally, carmustine loaded into LDE mediated downregula-
tion of pro-inflammatory molecules, the number of VSMCs and
macrophages, and the area of the atherosclerotic lesions.404 On the
other hand, TRAF-STOP carried in rHDL nanoparticles overcame
immune suppression of long-term CD40 treatment in athero-
sclerosis, and effectively attenuated migration and activation of
macrophages by downregulating intermediates phosphorylation
of the canonical signaling NF-κB pathway.405 The development of
ROS-responsive anti-inflammatory nanoparticles can be applied for
targeted treatment of oxidative stress- and inflammation-related
disorders.406 Additionally, Sun et al. formed ROS-responsive
nanoplatforms for drug delivery via covalently self-assembled
polymer nanocapsules. ROS-responsive payload release from
luminol-loaded polymer nanocapsules reportedly exhibited excel-
lent anti-inflammatory effects both in vitro and in vivo.407

Additional evidence has shown that macrophage membrane-
coated rapamycin-loaded PLGA nanoparticles delay atherosclerosis
progression by effectively suppressing phagocytosis by macro-
phages and targeted activated ECs.408

Hypertension and vascular restenosis are closely related to
vascular inflammation.409 To date, however, only a handful of
studies have evaluated the potential for nanoparticles for the
delivery of anti-inflammatory drugs for hypertension and vascular
restenosis management. Minarchick et al. found that injection of
CeO2 nanoparticles regulated inflammation by upregulating IL-10
and TNF-α expression in Wistar-Kyoto rats (WKYs) and suppressing
leukocyte flux in SHRs.345 Additionally, Wu et al. developed a novel
multifunctional CuBiS2 nanoparticle for CT imaging-guided photo-
thermal therapy for the prevention of artery restenosis, and found
that these nanoparticles inhibited inflammation by eliminating
macrophages.410 Local injection of polypyrrole nanoparticles,
combined with 915 nm near-infrared laser irradiation, remarkably
attenuated both vascular inflammation and stenosis through
eliminating infiltrating macrophages.411

In infarcted hearts, necrotic cells trigger myocardial and systemic
inflammatory responses. Excessive, long-term, and dysregulated
inflammation contributes to heart failure following infarction.412

Notably, AuNPs have emerged as ideal drug delivery systems for
the intervention and prevention of cardiovascular diseases, due to
their cardioprotective effects and unique properties, such as safety
and prolonged drug action.413–415 For instance, the accumulation
of AuNPs in infarcted heart tissues reportedly decreased the size of
infarction, suppressed levels of TNF-α and cardiac fibrosis, and
ameliorated cardiac systolic function.416,417 MI antigens and
rapamycin-loaded liposomes induced antigen-specific regulatory
T cells and suppressed macrophage polarization, thereby blocking
excessive inflammation following MI.418 Methotrexate carried in
LDEs improved left ventricular systolic function, by enhancing
antioxidant enzymes and suppressing the number of inflammatory

cells. Additionally, Methotrexate-LDEs also alleviated infarction size,
myocyte hypertrophy and necrosis, and myocardial fibrosis in left
coronary artery ligation-treated Wistar rats.390 Margulis et al.
demonstrated that celecoxib-nanoparticles effectively antagonized
heart failure post-MI by promoting angiogenesis of ischemic
myocardium.391 Experimental results, from isoproterenol-induced
rat MI models, revealed that the gavage of curcumin nanoparticles
effectively improved oxidative stress and inhibited the expression
of inflammatory cytokines, such as IL-1α, IL-1β, IL-6, TNF-α, MCP-1,
and RANTES, compared to conventional curcumin. Additionally, the
authors noted a marked reduction in the levels of MMP-2 and
MMP-9. Histopathological results further demonstrated that
curcumin nanoparticles efficiently prevented myocardial necrosis
and attenuated neutrophil infiltration and interstitial edema
compared to curcumin.419 Another study also showed that
curcumin nanoparticles exhibited a protective effect on
isoproterenol-induced MI by suppressing oxidative stress, electro-
cardiogram, and biological changes in the myocardial tissue.420

Besides, pitavastatin-loaded nanoparticles significantly attenuated
the accumulation of monocytes/macrophages and suppressed
cardiac post-infarct remodeling.393 Experimental results from
mouse MI models revealed that polymeric nanoparticles contain-
ing pioglitazone targeted inflammatory monocytes thereby
protecting the heart from cardiac remodeling through suppressing
monocyte-mediated acute inflammation and improving cardiac
healing.394 Moreover, a single intravenous injection of ApoA-I
nanoparticles after reperfusion instantly mitigated the systemic
and cardiac inflammatory responses in a preclinical MI mouse
model. Mechanistically, the administration of ApoA-I nanoparticles
significantly reduced the number of circulating leukocytes and
leukocytes recruited to the ischemic heart, mainly due to the
reduction of plasma cardiac troponin-I. Besides, ApoA-I nanopar-
ticles reduced the recruitment of neutrophils and monocytes to
the ischemic heart by suppressing the cardiac expression of
chemokines. Another study found that ApoA-I nanoparticles were
preferentially bound to pro-inflammatory monocytes via scavenger
receptor BI (SR-BI).421

Vascular aging-related cerebrovascular diseases. Post-stroke
immune responses are novel breakthrough targets for treating
ischemic stroke.422 Amani et al. showed that selenium nanopar-
ticles exerted a therapeutic effect on ischemic stroke by regulating
inflammatory and metabolic signaling pathways, such as the
JAK2/STAT3 and mTOR-related signaling pathways.423 Addition-
ally, CeO2@ZIF-8 NPs were efficacious in treating stroke by
inhibiting astrocyte activation and pro-inflammatory factors
secretion.329 Researchers have also combined several anti-
inflammatory agents, such as melanin, resveratrol, rapamycin,
and curcumin, with nanoparticles to improve their efficacy and
bioavailability. Fingolimod-macrophage-disguised honeycomb
MnO2 nanoparticles reversed the brain pro-inflammatory micro-
environment through consuming excessive H2O2 and promoting
M1 microglia switch to M2 phenotype.424 Results from an ischemic
stroke rat model and in vitro studies revealed that bioinspired
melanin nanoparticles had excellent antioxidant effects. Apart
from reducing oxidative stress, melanin nanoparticles reportedly
play a role in alleviating the production of inflammatory factors.425

Particularly, resveratrol-loaded nanoparticles ameliorated oxida-
tive stress and reduced the activation of IL-1β, IL-1, and TNF-α in
ischemic stroke animal models.105 Monocyte membrane-coated
rapamycin nanoparticles (McM/RNPs) can be applied for stroke
treatment, owing to their efficacy in suppressing microglia
proliferation and blocking monocyte infiltration. Besides, McM/
RNPs can actively target and bind to inflammatory ECs, thus can
serve as a shield between monocytes and ECs.426 It has been
revealed that resolvin D2 exhibited a critical role in the
modulation of inflammation and tissue repair. Membrane-
derived nanovesicles-encapsulated resolvin D2 pronouncedly
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enhanced its therapeutic efficacy in treating murine ischemic
stroke.427 In acerebral I/R injury in stroke animal model, curcumin-
loaded triblock copolymer nanomicelles effectively downregu-
lated the expression of NF-κB-p65 protein and inflammatory
cytokines, including IL-1β, IL-6, and TNF-α.428 In addition, cationic
bovine serum albumin-conjugated tanshinone IIA PEGylated
nanoparticles exhibited a conspicuous neuroprotective effect on
ischemic stroke by participating in the regulation of inflammatory
and neuronal signaling pathways.429

Growing evidence has revealed that inflammation plays an
important role in ICH and vascular dementia development.430,431

Curcumin-PLGA nanoparticles significantly inhibited inflammatory
responses and microglia activation relative to curcumin alone.
Besides, protection of tight junction proteins, including occludin,
claudin-5, and ZO-1 by curcumin-PLGA nanoparticles reportedly
alleviated BBB dysfunction after subarachnoid hemorrhage.379

Additionally, patients with vascular dementia exhibited higher
medin in their cerebral artery compared to their cognitively
normal counterparts. Notably, medin is involved in ECs immune
activation and astrocyte activation, which can be reversed by
liposomes-encapsulated monosialoganglioside.432

Vascular aging-related chronic kidney disease. Chronic kidney
disease is an inflammation-associated disorder. Chen et al. prepared
a resonantly illuminated AuNPs-modified artificial kidney (AuNP-
s@AK) for treating chronic kidney disease. This therapy not only
achieved anti-inflammatory, anti-thrombotic, and anti-oxidative
effects in patients with chronic kidney disease complicated with
hemodialysis, but was also accompanied by multiple advantages,
evidenced by shorter treatment times and low risk of adverse
reactions.433 Other studies have shown that resveratrol-loaded
nanoparticles have the potential to prevent chronic kidney disease
through the suppression of secretion of NOD-like receptor family
pyrin domain containing 3 (NLRP3) inflammasome and IL-1β.434

VCAM-1, a surface-expressed receptor, plays a major role in
promoting receptor-mediated endocytosis of nanoparticles-based
drugs. VCAM-1-decorated lipid-based nanocarriers loaded with
rapamycin effectively suppressed podocytes-induced inflammatory
responses.106 Additionally, intravenous infusion of SPIONs has been
applied to diagnose and treat iron deficiency anemia in adults with
chronic renal failure.435 Hemodialysis is crucial for kidney diseases.
Notably, plasmon-induced dialysate comprising AuNPs reduced the
time required for elimination of 70% creatinine and blood urine
nitrogen by 59% and 47%, respectively, compared to conventional
deionized water. Concurrently, NO release from lipopolysaccharide-
treated inflammatory cells was inhibited.436 Although renal fibrosis is
a common complication of chronic kidney disease, no effective
treatment for this condition has exists at present. Researchers have
employed PLGA nanoparticles for eleutheroside B delivery and
enhanced eleutheroside B bioavailability, with small animal imaging
revealing that eleutheroside B-PLGA nanoparticles can selectively
accumulate in mice kidneys for up to 7 days.437

Nanoparticle-mediated anti- and pro- proliferation and anti-
apoptotic therapy
Endothelial dysfunction and VSMCs proliferation are major
contributors to vascular aging and are strongly correlated with
diverse vascular aging-related diseases.438 Numerous studies have
shown that nanoparticles can be exploited to target and regulate
vascular endothelial and VSMCs functions, including cell prolifera-
tion, migration, inflammation, senescence, and apopto-
sis.36,339,439–441 There are particularly strong data indicating that
proliferation and migration of endothelial dysfunction and VSMCs
are vital to vascular aging-related diseases, such as atherosclerosis,
hypertension, vascular stenosis and restenosis, and MI.175,176

Therefore, nanoparticle-mediated anti-proliferation and anti-
apoptotic therapies hold great promise in preventing vascular
aging-related disorders.

Nanoparticle-targeted cellular lifecycle provides novel insights
to guide the development of therapies for atherosclerosis.
Previous studies have demonstrated that physically synthesized
AuNPs (pAuNPs) play a critical role in regulating the proliferation
and migration of VSMCs in balloon-injured rat carotid arteries.
Mechanistically, naked pAuNPs exert an inhibitory effect on focal
adhesion kinase (FAK) phosphorylation and collagen-induced
tyrosine-protein activation. Additionally, they also suppressed
platelet-derived growth factor (PDGF)-induced VSMCs prolifera-
tion and migration in vivo.440 Additional evidence showed that
naked pAuNPs stimulated a redox-related reaction and promote
p38 mitogen-activated protein kinase (MAPK) activation, thereby
inducing activation of Nrf2. Notably, the elevated HO-1 levels in
VSMCs were mediated by naked pAuNPs-inducing Nrf2 phosphor-
ylation, expression, and translocation into the nucleus.442 Another
study showed that novel nanoparticles-cationic lipid microbubble
complex-mediated aFGF, combined with ultrasound targeted
microbubble destruction, inhibited doxorubicin-induced heart
failure by attenuating apoptosis and promoting angiogenesis.443

H2O2-responsive MSNs, loaded with captopril, were highly
efficacious in zebrafish with KillerRed-induced heart failure.444

Numerous nanoparticle-carried anti-proliferation drugs, such as
heparin, polyphenolic, liver X receptor (LXR) agonist, docetaxel,
and paclitaxel, have shown increased therapeutic efficiency. For
example, low doses of heparin-coated IONs significantly increased
the proliferation of ECs and inhibited that of VSMCs.445

Additionally, polyphenolic and AuNPs-conjugated graphene
nanosheets (Polyp-Au-GO) inhibited proliferation and growth of
VSMCs through blocking the G1 cell cycle, downregulating cyclin,
downregulating extracellular signal-regulated kinase 1/2 (ERK1/2)
phosphorylation, and alleviating TNF-R-evoked inflammatory
responses. Besides, Polyp-Au-GO also suppressed coronary ECs
proliferation.446 Previous studies have indicated that the activated
LXR signaling pathway has an inhibitory effect on the proliferation
of PDGF-BB-induced VSMCs.447 Notably, PDGF-BB stimulation was
found to significantly upregulate ICAM-1 by VSMCs. Researchers
prepared anti-ICAM-1 antibody-combined liposomes, for the
delivery of a water-insoluble LXR agonist, and found that LXR
agonist-liposomes inhibited VSMCs proliferation during athero-
genesis by downregulating minichromosome maintenance com-
plex component 6 (MCM6) expression and repressing
phosphorylation of retinoblastoma.136 Additionally, docetaxel-
LDEs treatment markedly downregulated anti-apoptotic Bcl-2,
pro-apoptotic caspase 3, caspase 9, and Bax. In addition, the cell
proliferation marker proliferating cell nuclear antigen (PCNA) was
reduced by 40%.403 LDEs combined with paclitaxel significantly
suppressed atherosclerotic plaques in rabbits with high-fat
feeding.448 Besides, ginkgolide A (GA)-loaded AuNPs remarkably
alleviated proliferation and migration of mouse VSMCs and
sustained a long-term effect compared to AuNPs treatment alone.
Furthermore, GA-AuNPs inhibited VSMC proliferation through
alleviating the activation of ERK1/2 and downregulating the levels
of superoxide anion.330

Proliferation and migration of VSMCs result in intimal hyper-
plasia that ultimately leads to vascular restenosis. Notably,
antiproliferative agents targeting VSMCs have become promising
therapies for preventing vascular restenosis,449 while nanoparti-
cles have emerged as significant tools for sustained drug release.
To date, several anti-proliferative drugs, such as rapamycin,
paclitaxel, doxorubicin, honokiol, heparin, low molecular weight
heparin (LMWH), curcumin, and 1α,25(OH)2D3 have been devel-
oped and applied for the treatment of vascular restenosis.450,451

However, their clinical application is seriously limited by poor
solubility and side effects. To circumvent these problems,
researchers have applied nanoparticles to deliver anti-
proliferative drugs and achieved excellent results. For instance,
rapamycin-loaded nanoparticles treatment securely and pro-
nouncedly attenuated vascular stenosis in comparison to saline
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injection in a vascular restenosis porcine model.452 Notably,
rapamycin was released rapidly within 3 days when dispersed in
pluronic gel, while rapamycin-loaded PLGA NPs embedded in
pluronic gel released rapamycin more slowly for over 4 weeks.
Additionally, rapamycin-PLGA nanoparticles exhibited a longer
anti-proliferative effect than free rapamycin in rat VSMCs and rat
balloon injury models,453 while administration of rapamycin gel-
like nanoparticles also alleviated apoptosis in VSMCs by inhibiting
caspase-3/7 activity.454 Besides, rapamycin carried in polylactic
acid, PLGA, or Eudragit RS nanoparticles significantly alleviated
intimal hyperplasia in swine percutaneous transluminal coronary
angioplasty (PTCA) models.455 Another study showed that
paclitaxel or doxorubicin carried in paramagnetic nanoparticles
targeted VSMCs and remarkably alleviated VSMCs proliferation
in vitro.350 Paclitaxel-loaded polymeric nanoparticles achieved
potentiation of anti-proliferative effect on rabbit VSMCs and
reduced the neointimal area by 50% in balloon-injured rabbit iliac
arteries compared to free paclitaxel.456 Wei et al. packaged
honokiol in MSNs and assembled them into honokiol-MSNs, and
found that they effectively inhibited VSMCs proliferation and
migration through alleviating Smad3 phosphorylation.441 In
another study, researchers employed layered double hydroxide
(LDH) nanoparticles to deliver LMWH for the prevention of
vascular restenosis, and found that LMWH-LDH nanoparticles
were rapidly internalized by VSMCs and dramatically attenuated
VSMCs proliferation and migration.457 Notably, the application of
17β-estradiol (17-βE), ω-3-polyunsaturated fatty acids (PUFAs), and
C6-ceramide (CER) in the treatment of vascular restenosis is
limited by their extensive protein binding and lipophilicity.
Deshpande et al. developed a nanoemulsion rich in ω-3-PUFA
which effectively delivers CER and 17-βE to VSMCs and ECs.
Nanoemulsion containing 17-βE and CER inhibited ECs and VSMCs
proliferation through regulating the MAPK signaling pathway and
increasing pro-apoptotic caspase 3/7 activity, respectively. In
addition, ω-3-PUFA significantly decreased growth factor-
stimulated cellular proliferation,458 while 1α,25(OH)2D3-loaded
PLGA nanoparticles inhibited inflammation or apoptosis-
associated vascular stenosis by inhibiting the expression of IER-
3, CD68, MCP-1, and HIF-1α.459 Another study showed that PLGA
nanoparticles encapsulated α-elastin loaded with dexamethasone
dipropionate extend drug release and potentiated elastase
sensibility, thereby resulting in differentiation of VSMCs towards
contractile phenotype.460

Additionally, retinoic acid (RA)-loaded nanoparticles were
shown to effectively and safely promote angiogenesis and
proliferation and alleviate apoptosis in ischemic stroke models.461

The carbon nanomaterial was generated by conjugating PEG with
hydrophilic carbon clusters and covalently bonding deferoxamine
(DEF-HCC-PEG). Treatment of intracerebral hemorrhage models
with DEF-HCC-PEG reportedly improved their nuclear and
mitochondrial genome integrity through protecting cells against
both senescence and ferroptosis.462 On the other hand,
thapsigargin-loaded nanoparticles protected HK-2 human kidney
tubular epithelial cells against oxidative stress-induced cell death
by activating Nrf2 and forkhead box O 1 (FOXO1).463

Nanoparticle-mediated cell transplantation and EVs delivery
Among the various cell types, endothelial progenitor cells (EPCs),
embryonic cardiomyocytes (eCMs), and embryonic stem cell-
derived cardiomyocytes (ESC-CMs) have been identified as
significant candidates for treating heart failure post-infarction.
Notably, low retention of EPCs in the infarct area contributes to
the poor curative effect of EPCs treatment. Nanoparticles are
being developed for precise transplantation of stem cells, long-
term tracking, and maintenance of therapeutic effects.
Researchers have used magnetic nanoparticles to enhance

long-term engraftment of cells,464 whereas EPCs labeled with
silica-coated IONs were found to dramatically suppress the

infarction size and myocardial apoptosis under the guidance of
an external magnet.465 Besides, eCMs and ESC-CMs-loaded
SOMag5 magnetic nanoparticles generated 7- and 4.4-fold
enhancement in cell engraftment rate at 2 and 8 weeks of
treatment, respectively. In addition, grafted eCMs showed higher
proliferation and lesser apoptosis under the guidance of 1.3 T
magnet.464 Intriguingly, a previous meta-analysis highlighted the
critical therapeutic role played by stem cell transplantation in
stroke development, and revealed that SPIONs are critical tools for
tracking stem cells migration.466 Previous studies have also shown
that cell transplantation plays anti-inflammatory, anti-apoptosis,
and angiogenesis roles in the prevention of ICH.467–469 On the
other hand, embryonic stem cells (ESCs), neural precursors, and
neural stem cells (NSCs) hold great potential for treating ICH.
Human ESCs-derived spherical neural masses combined with IONs
(IONs-ESCs-SNMs) dramatically improved ICH-induced brain injury
by ameliorating the transportation of stem cells to the brain.
Results from an in vivo study demonstrated that treatment of ICH
rats with IONs-ESCs-SNMs mediated a significant downregulation
of pro-inflammatory factors and alleviated accumulation of
neutrophils and macrophages.470

The effects of nanoparticles, in combination with stem cell-
derived EVs, have been extensively investigated in MI. Intriguingly,
results from a previous study demonstrated that polymeric
nanoparticles-mediated melatonin delivery potent the protective
effect on adipose-derived mesenchymal stem cells (ADSCs)
compared with melatonin alone.325 Moreover, melatonin-
polymeric nanoparticles improved the survival rate of ADSCs
and generated a more obvious therapeutic effect in the rat MI area
compared to free melatonin. These results suggest that combining
stem cell transplantation and melatonin-nanoparticles is a
potential approach for MI treatment. Additionally, the introduction
of magnetic nanoparticles has been associated with improved
therapeutic efficiency of EVs, thus significantly reducing concerns
related to low EVs production. For example, Lee et al. incorporated
IONs with mesenchymal stem cells (MSCs) and prepared a novel
exosome mimic extracellular nanovesicles (IONs-MSCs-EVs). The
authors found that magnetic navigation induced IONs-MSCs-EVs
localization to the infarcted heart and stimulated infarcted heart
switch from inflammation phase to reparative phase, and also
suppressed both fibrosis and apoptosis.324 In addition, magnetic
nanoparticle composed of a Fe3O4 core and a PEG-coated silica
shell collected circulating EVs via anti-CD63 and anti-myosin-light-
chain on their surface. Under a local magnetic field and an acidic
pH of an injured heart, the magnetic nanoparticles locally released
EVs, thereby causing a reduction in the infarct area and improving
angiogenesis and left-ventricle function.471 EVs secreted by
pluripotent stem cells and their differentiated cardiomyocytes
were also found to improve post-MI cardiac function. Additional
evidence has indicated that injection of EVs markedly regulated
hypoxic cardiomyocytes autophagy.472 On day 28 after MI,
administration of cardiovascular progenitor cells-derived EVs
promoted ECs migration and tube formation and ameliorated
murine cardiac function.473

In transient middle cerebral artery occlusion (MCAO) mice
models, engineered c(RGDyK) peptide-combined EVs were
employed for curcumin delivery, where they strongly inhibited
both inflammation and apoptosis.474 Neural progenitor cell-
derived EVs showed intrinsic anti-inflammatory activity, whereas
intravenous injection of RGD-combined EVs strongly inhibited
inflammatory responses by suppressing the expression of the
MAPK signaling pathway.475 In addition, Kim et al. demonstrated
that IONs-MSCs-EVs significantly ameliorated ischemic-lesion
targeting and the therapeutic outcome by promoting the
production of therapeutic growth molecules. Notably, injection
of IONs-MSCs-EVs and magnetic navigation mediated a 5.1-fold
improvement in localization of nanomaterials to the ischemic
lesion and further alleviated infarction size.326
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Although glucocorticoids represent the main agents for kidney
disease treatment, their clinical application is restricted by the
occurrence of dose-dependent side effects, such as hyperglycemia
and hypothalamic-pituitary-adrenal (HPA) axis suppression. A
previous study showed that dexamethasone carried in
macrophages-derived microvesicles (MVs) substantially sup-
pressed renal injury by inhibiting renal inflammation and fibrosis,
although low incidences of glucocorticoid-related side effects
were observed after treatment.476 In another study, researchers
used a MMP-2 sensitive self-assembling peptide (KMP2) hydrogel
for the delivery of MSCs-derived EVs, and found that treatment
with MSCs-EVs-KMP2 ameliorated renal function by downregulat-
ing the expression of pro-inflammatory cytokines, alleviating
tubular cell apoptosis, and suppressing macrophage infiltration.
Besides, MSCs-EVs-KMP2 administration was highly beneficial to
proliferation and angiogenesis of ECs in mice with renal I/R
injury.477

Nanoparticle-mediated gene therapy
Epigenetic alterations are reversible. Therefore, prospecting for
epigenome-affecting modalities represents an attractive research
area to guide the development of interventions for the treatment
of vascular aging-related diseases. Previous studies have described
the role of small interfering RNAs (siRNAs) and short hairpin RNAs
(shRNAs) in the management of disease progression via sequence-
specific gene silencing.478–480 Notably, approximately 60% of
human protein-coding gene expression is controlled by miRNAs.
DNA fragments, siRNAs, miRNAs, and anti-miRNAs function as
genetic drugs for the treatment of vascular aging-related diseases.
However, their application is limited by enormous obstructions,
such as rapid degradation in body fluids and potential off-target
effects.481 Therefore, the development of effective drug delivery
systems is imperative to efficient selective delivery to pathological
tissues or cells. Currently available nucleic acid delivery systems
are mainly classified into viral and non-viral categories.482 To date,
however, their application has been limited by the potentially
uncontrollable mutagenesis of virus-based vectors. Nanoparticles
represent a novel type of non-viral carrier and a promising
strategy that can be transfected in a sustained, targeted, and
stable manner. Notably, nanoparticle-mediated delivery of gene
drugs has been extensively investigated for the prevention and
intervention of vascular aging-related disorders (Table 5).

Vascular aging-related cardiovascular diseases. Growing evidence
suggested that nanoparticles encapsulated siRNAs, shRNAs,
miRNAs, anti-miRNAs, and DNA fragments have effective, rapid,
and durable therapeutic benefits for vascular aging-related
cardiovascular diseases.42,483,484 The distribution of siRNAs such
as ApoB siRNA, PCSK9 siRNA, LOX-1 siRNA, CCR2 siRNA, LPA siRNA,
ORC1 siRNA, CaMKIIγ siRNA, p5RHH-JNK2 siRNA, SA-A siRNA, and
CCR2 shRNAs via nanoparticles has been widely investigated in
the prevention and intervention of atherosclerosis.484–493 For
instance, intravenous administration of ApoB siRNAs-nanoparticles
significantly downregulated serum cholesterol, LDL, and ApoB
protein levels.485,494 These anti-atherosclerotic effects were
observed 24-h after injection and sustained for 11 days at the
highest dose.485 Additionally, nanoparticles-delivered miRNAs and
anti-miRNAs, such as anti-miRNA-712, miRNA-206, miRNA-223,
miRNA-155, miRNA-146a, miRNA-181b, and miRNA-145, are
promising therapeutic approaches for atherosclerosis preven-
tion.42,43,495–500 For instance, Chin et al. demonstrated in vitro that
miRNA-145-combining micelles boosted the expression of ather-
oprotective contractile markers such as calponin, α-SMA, and
myocardin. Moreover, miRNA-145 micelles alleviated 49% plaque
growth and sustained an increased level of miRNA-145 after
2 weeks of treatment in the early atherosclerosis stage, whereas in
the mid-atherosclerosis stage, miRNA-145 micelles ameliorated
43% and 35% lesion growth in comparison to free PBS and

miRNA-145, respectively.42 Chitosan nanoparticle-encapsulated
miRNA-33 specifically targeted macrophages and reduced ABCA1
expression, whereas chitosan nanoparticles cholesterol efflux-
promoting miRNAs such as miRNA-206 and miRNA-223 increased
ABCA1 expression and reversed cholesterol transport.496

The silencing of receptor genes that modulate blood pressure is
referred to as gene therapy for hypertension. Numerous pieces of
evidence suggest that siRNA-based therapeutic modalities are
promising treatments for hypertension.478,501 Nanoparticles-based
siRNA delivery systems can prevent siRNA from being degraded by
endonuclease and exonuclease enzymes present in blood and
cells.502 Olearczyk et al. developed a novel nanoformulation by
conjugating angiotensinogen-specific siRNA with lipid nanoparticles.
Angiotensinogen siRNA incorporated into lipid nanoparticles sub-
stantially decreased the levels of hepatic angiotensinogen mRNA of
plasma angiotensinogen. In SHRs and Sprague-Dawley rats,
intravenous injection of the conjugates significantly and consistently
reduced blood pressure. Besides, the anti-hypertensive effect was
maintained by weekly siRNA dosing.503 The PEG-PEI-Bu was
employed in the delivery of angiotensinogen shRNA to normal rat
liver cells to inhibit angiotensinogen expression in the treatment of
hypertension.504 Additionally, biscarbamate‑crosslinked Gal‑PEG-PEI
encapsulated angiotensinogen shRNA significantly inhibited hyper-
tension by reducing angiotensinogen mRNA and protein expression,
as well as plasma angiotensinogen levels.505

The siRNAs, such as NOX2 siRNA, Akt1 siRNA, MMP-2 siRNA,
Smad3 shRNA, and PDGF-B siRNA have therapeutic effects in the
treatment of vascular restenosis.506–510 After two weeks of
treatment, the NOX2 siRNA-loaded amino-acid-based nanoparticle
HB-OLD7 decreased NOX2 expression by over 87%. Furthermore,
the neointima-to-media-area ratio and the lumen-to-whole-artery
area ratio were reduced by over 83% and 89%, respectively.506 The
MMP-2 siRNA functionalized with deoxycholic acid (DA) and
encapsulated in PEI is an effective anti-restenotic treatment for
atherosclerosis and vascular restenosis.508 In the rabbit iliac artery
injury model, siRNA against PDGF-B loaded into chitosan nanopar-
ticles significantly reduced the expression of PCNA and PDGF-B
mRNA, reducing the proliferation of VSMCs.510 Additionally, vascular
endothelial growth factor (VEGF) carried in nanoparticles signifi-
cantly reduced neointima area and cell proliferation. The immunor-
eactivity of α-actin and PCNA were significantly lower after VEGF-
nanoparticles administration.511,512 To create dual-targeting nano-
particles, grafted anionic polymers were surface functionalized with
ECs-targeting REDV peptide and VSMCs-targeting VAPG peptide.
The dual nanoparticles were used in the delivery of VEGF plasmids
and ERK2 siRNA to promote ECs proliferation/migration and
decrease VSMCs proliferation/migration, respectively.513 Besides,
PLGA nanoparticles encapsulating miRNA-126-double strand RNA
(dsRNA) pronouncedly potentiated human umbilical vascular
endothelial cells (HUVECs) proliferation and migration by down-
regulating SPRED1 expression and attenuating VSMCs proliferation
and migration through upregulating the IRS-1 levels.514

Nanoparticle-mediated gene therapies have also shown consider-
able potential for treating MI and heart failure. The administration of
CRMP2 siRNA or IFR5 siRNA to infarcted hearts induced the M1
macrophage phenotype to switch to M2, remarkably reducing the
inflammation and fibrosis in post-MI mice.515,516 The CCR2 siRNA
carried by photoluminescent MSNs (PMSNs) reduced the inflamma-
tory monocyte accumulation in infarcted lesions. Intriguingly,
nanoparticles encapsulated with either CCR2 siRNA or PHD2 siRNA
could be applied for enhancing the therapeutic efficiency of post-MI
MSCs transplantation.517,518 Additionally, nanoparticles have been
successfully transferred to a wide range of miRNAs in the infarcted
heart, including miRNA-21, miRNA-21-5p, miRNA-31, miRNA-133,
miRNA-155-5p, miRNA-199a-3p, and miRNA-499.519–525 Intravenous
administration of miRNA-21 mimic-loaded nanoparticles induced
cardiac macrophages to switch from pro-inflammatory phenotype
to reparative phenotype and facilitated angiogenesis, and
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Table 5. Nanoparticle-mediated gene therapies for vascular aging-related diseases

Diseases Nanoparticles Payload Therapeutic effects Ref(s)

Atherosclerosis SNALPs ApoB siRNA Downregulate serum cholesterol, LDL, and ApoB protein levels 485

Liposomes ApoB siRNA Decrease the expression of ApoB mRNA and protein, and serum
LDL level

494

Liposomes ORC1 siRNA Induce VSMCs enter to a reversible G(0) quiescent 489

LNPs PCSK9 siRNA Reduce plasma cholesterol 486

LNPs CCR2 siRNA Attenuate atherosclerosis by targeting inflammatory monocytes 487

LNPs LPA siRNA Pronouncedly reduce the expression of LPA mRNA and lipoprotein(a) 488

PLGA NPs CaMKIIγ siRNA Alleviate fibrous cap thickness and enhanced plaque stability by
regulating the expression of CaMKIIγ and MerTK

490

PLGA NPs CCR2 shRNA Effectively silence CCR2 gene in atherosclerotic macrophages 493

HA NPs LOX-1 siRNA Decrease plaque area and lipid accumulation through inhibiting
macrophage infiltration and MCP-1 expression

483,484

p5RHH NPs JNK2 siRNA Rescue endothelial barrier integrity in atherosclerotic plaques by
suppressing STAT3 and NF-κB

491

mDNPs SR-A siRNA Significantly decrease the uptaken of ox-LDL 492

Polymer-lipid
hybrid NPs

Anti-miRNA-155 Inhibit atherosclerosis 498

VHPK-CCLs Anti-miRNA-712 Pronouncedly inhibited the activity of metalloproteinase 495

Micelles MiRNA-145 Enhance the expression of calponin, α-SMA, and myocardin 42

PLGA NPs MiRNA-145 Significantly inhibited VSMCs proliferation and prevented intimal
hyperplasia

43

Chitosan NPs MiRNA-206,
MiRNA-223

Enhance the expression of ABCA1 and reverse cholesterol transport 496

GQDs MiRNA-223 Regulate inflammation and attenuate plaque burden 497

Hypertension LNPs Angiotensinogen siRNA Significantly and consistently reduced blood pressure 503

PEG-PEI-Bu Angiotensinogen shRNA Inhibit hypertension by alleviating angiotensinogen expression 504

Gal‑PEG-PEI Angiotensinogen shRNA Significantly inhibit hypertension through reducing the expression of
angiotensinogen mRNA and protein, and the level of plasma
angiotensinogen

505

Vascular restenosis HB-OLD7 NOX2 siRNA Inhibit neointima 506

DA-PEI NPs MMP-2 siRNA Inhibit vascular restenosis 508

PEG-Et 1:1 Smad3 shRNA Inhibit intimal hyperplasia through suppressing the expression of
collagen, MMP-1, MMP-2, and MMP-9 and enhancing the expression
of TIMP1

509

PLGA NPs ICAM-1 siRNA Accelerate ECs regeneration 586

Chitosan NPs PDGF-B siRNA Inhibit the proliferation of VSMCs by reducing the expression of PCNA 510

PEI NPs Akt1 siRNA Suppress VSMCs proliferation 507

Magnetic
nanospheres

VEGF plasmids Inhibit intimal hyperplasia by enhancing the expression of
exogenous VEGF

587

PLGA NPs VEGF gene Remarkably decrease neointima area and cell proliferation 511

PLGA NPs VEGF plasmids Promote reendothelialization and alleviate VSMCs proliferation 512

PLGA NPs Anti-MCP-1 gene Significantly alleviate intimal hyperplasia 588

Polymeric NPs VEGF plasmids,
ERK2 siRNA

Promote ECs proliferation/migration and attenuate VSMCs
proliferation/migration

513

PLGA NPs MiRNA-145 Attenuate intimal hyperplasia through maintaining VSMCs in a
contractile state

43

Polymeric NPs MiRNA-126 Pronouncedly potentiate HUVECs proliferation through
downregulating the expression of SPRED1 and inhibit VSMCs
proliferation by upregulating the level of IRS-1

514

MI lipidoid NPs CRMP2 siRNA Improve infarct healing in experimental MI mice by reducing
inflammation and fibrosis

515

lipidoid NPs IFR5 siRNA Augment resolution of inflammation in healing infarcts by
macrophage phenotype manipulation

516

PMSNs CCR2 siRNA Improve the effectiveness of MSCs transplantation and selectively
ameliorate myocardial remodeling after MI

517

PAMAM NPs PHD2 siRNA Enhance the efficiency of stem cell transplantation for infarcted
myocardium repair

518
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attenuated myocardium hypertrophy, fibrosis, and apoptosis.519 The
MSNs were able to transfer miRNA-21-5p to the infarcted heart,
which suppressed M1 macrophage polarization and promoted
angiogenesis.520 Turnbull et al. reported that lipidoid nanoparticles
containing modRNA enhanced cardiac regeneration and function in
pig and rat myocardium.526

Vascular aging-related cerebrovascular diseases. Gene therapies in
the treatment of ischemic stroke have attracted a lot of attention. It
has been shown that siRNAs encapsulated in nanoparticles, such as
PHD2 siRNA, ICAM-1 siRNA, caspase-3 siRNA, and HGMB-1 siRNA
have effective therapeutic effects on ischemic stroke.527–530 Wang
et al. found that nanoparticle-mediated PHD2 siRNA administration
promoted EPCs survival and migration by increasing HIF-1α and C-X-
C chemokine receptor type 4 (CXCR4) expressions. It provided an
effective strategy for improving EPCs-based cell transplantation
therapy for ischemic stroke.527 Furthermore, nanoparticle-mediated

miRNAs administration, including miRNA-195, and anti-miRNA-141-
3p, was successful in regulating ischemic stroke.531,532 MiRNA-195
carried in nanoparticles exhibited excellent anti-apoptotic, anti-
inflammatory, pro-proliferation, and pro-migration capabilities in
stroke mice models. The delivery of miRNA-195 improved brain
function damage.531 Besides, there are particularly strong data that
the HO-1 plasmid has a great anti-apoptotic and anti-inflammatory
effect on stroke.533,534 Given its low cytotoxicity and high gene
delivery efficiency, polyamidoamine generation 2 dendrimer was
employed for HO-1 plasmid delivery and attenuated apoptosis in
MCAO-reperfusion stroke animal models.535,536 Additionally, Lin et al.
prepared a theranostic nanomedicine by combining SPIONs with
siRNA-against Pnky lncRNA. This nanoformulation induced neuronal
differentiation of neural stem cells and facilitated tracking of neural
stem cells through Pnky lncRNA silencing and MRI, respectively.537

Notably, nanoparticles provide a promising approach for the safe
and effective delivery of therapeutic genes in ICH. in a subarachnoid

Table 5. continued

Diseases Nanoparticles Payload Therapeutic effects Ref(s)

NPs MiRNA-21 Possess protective effects on remote myocardium by alleviating
inflammation, fibrosis, and cell apoptosis

519

Gel@MSNs MiRNA-21-5p Effectively reduce infarct size through reducing inflammation and
enhancing angiogenesis

520

ADSC-exosome MiRNA-31 Promote angiogenesis via miRNA-31/FIH1/HIF-1α pathway 521

RGD-PEG-PLGA NPs MiRNA-133 Inhibit cardiomyocyte apoptosis, inflammation, and oxidative stress by
the regulation of the SIRT3/AMPK pathway

522

Polymerics NPs MiRNA-155-5p Potentially increase an endogenous cytoprotective response and
decrease damage within infarcted hearts

523

Hep@PGEA NPs MiRNA-499 Successfully explore for effective miRNA-pDNA staged gene therapy of
MI

525

Lipidoid NPs ModRNA Improve cardiac regeneration and function 526

Chitosan-alginate NPs PIGF Enhance the positive effects of the growth factor in the setting of MI 589

Ischemic stoke Alkyl-PEI/SPIO NPs PHD2 siRNA Improve EPC-based therapy efficacy for ischemic stroke 527

FRS-NPs ICAM-1 siRNA Potentially applied for inhibition of inflammation in ischemic stroke 528

CNTs Caspase-3 siRNA Recovery from brain ischemic insult 529

PAMAM NPs HGMB-1 siRNA Exhibit neuroprotective effects on the postischemic brain 530

NPs MiRNA-195 Reduce the size of brain damage and improve functional recovery in
stroke rats

531

Ischemic stoke PLGA NPs Anti-miRNA-141-3p Significantly improve the effectiveness of anti-miRNA-141-3p 532

Polymeric NPs HO-1 plasmid Significantly decrease cell death and infarct volume in the
stroke models

533

Dendrimer HO-1 plasmid Reduce apoptosis levels and infarct sizes in ischemic brains 535

SPIONs LncRNA Pnky siRNA Enhance stem cell-based therapies for a stroke 537

Polymeric NPs HO1-mRNA,
HO1-pDNA

Efficiently reduce infarct size 534

ICH Tat-GS NPs CGRP gene Effectively attenuate vasospasm and improve neurological outcomes
in an experimental rat model of subarachnoid hemorrhage

538

PBCA NPs Neurotrophin-3 plasmid Inhibit the expression of apoptosis-inducing factor and reduce the cell
death rate after ICH in vivo

539

CKD PEI NPs MiRNA-146a Inhibit renal fibrosis in vivo 540

SNALPs stable nucleic acid lipid particles, LDL low-density lipoprotein, VSMCs vascular smooth muscle cells, LNPs lipid nanoparticles, PLGA poly lactic-co-glycolic
acid, HA hyaluronic acid, MCP-1 monocyte chemotactic protein, STAT3 signal transducer and activator of transcription 3, NF-κB nuclear factor-kappaB, mDNPs
mannose-functionalized dendrimeric nanoparticles, ox-LDL oxidized low-density lipoprotein, CCLs coated, cationic lipoparticles, ABCA1 ATP binding cassette
transporter A1, GQDs graphene quantum dots, LNPs lipid nanoparticles, PEG poly(ethylene glycol), PEI polyethylenimine, HB-OLD7 amino-acid-based
nanoparticle, MMP-1 matrix metalloproteinase 1, PEG-Et 1:1 polyethylene glycol-graft-polyethylenimine derivative, TIMP-1 tissue inhibitor of metalloproteinase
1, PLGA poly lactic-co-glycolic acid, PCNA proliferating cell nuclear antigen, VEGF vascular endothelial growth factor, ECs endothelial cells, HUVECs human
umbilical vascular endothelial cells, MI myocardial infarction, PMSNs photoluminescent mesoporous silicon nanoparticles, MSCs mesenchymal stem cells,
PAMAM poly(amidoamine), NPs nanoparticles, ADSCs adipose-derived stem cells, FIH1 Factor inhibiting HIF-1, HIF-1α hypoxia-inducible factor 1α, SIRT3 sirtuin 3,
AMPK adenosine monophosphate protein kinase, PIGF placental growth factor, SPIONs superparamagnetic iron oxide nanoparticles, EPC endothelial progenitor
cell, CNTs carbon nanotubes, HO1 heme oxygenase 1, Tat-GS Tat peptide-decorated gelatin-siloxane, CGRP calcitonin gene-related peptide, PBCA
polybutylcyanoacrylate, ICH Intracerebral hemorrhage, CKD chronic kidney disease
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hemorrhage rat model, the Calcitonin Gene-Related Peptide (CGRP)
gene carried in Tat peptide-modified gelatin-siloxane (CGRP-Tat-GS)
significantly alleviated cerebral vasospasm and improved neurologi-
cal function compared to single CGRP gene administration.538

Furthermore, after neurotrophin-3 plasmid-polybutylcyanoacrylate
(PBCA) nanoparticles, ICH rats had increased expressions of
neurotrophin-3 and reduced production of apoptosis-inducing
factors.539

Vascular aging-related chronic kidney disease. Renal fibrosis is an
end-stage renal disorder. Renal fibrosis suppression is crucial in
improving the prognosis of patients with chronic kidney disease.
However, no treatment for renal fibrosis has been established.
Therefore, effective approaches for the intervention and preven-
tion of renal fibrosis are necessary. Nanoparticle-mediated gene
therapies provide a broad prospect for renal fibrosis treatment.
The PEI nanoparticles containing miRNA-146a significantly sup-
pressed TNF-β1/Smad and tumor necrosis factor receptor-
associated factor 6 (TRAF-6)/NF-κB signaling pathways. Moreover,
miRNA-146a administration suppressed α-smooth muscle actin
expression, macrophage infiltration, and renal fibrosis area.540

CLINICAL TRIALS OF NANOPARTICLE
In view of the tremendous benefits and potential of nanoparticles,
diagnostic and therapeutic methods based on nanoparticles have
been developed for clinical use as contrast agents or drug vehicles.
Many clinical trials have demonstrated the improved therapeutic
efficacy of nanoparticles in vascular aging-related diseases (Table 6).
However, many of them are still in their initial phases. Kharlamov
et al. examined 180 patients with CAD in a multi-center, open-label,
observational, and three arms study and revealed that plasmonic
photothermal therapy using silica-AuNPs correlated to significant
regression of coronary atherosclerosis.541 The total atheroma volume
decreased by an average of 60.3 mm in the group with 12 months
silica-AuNPs treatment. Compared to other groups, the risk of
cardiovascular death in the nanoparticles group was much lower.
Another randomized controlled trial demonstrated that prednisolone
carried in liposomes had a better pharmacokinetic profile in humans,
with the plasma half-life being enhanced to 63 hours.542 In a human
trial involving 14 patients with acute ST-elevation MI (STEMI), USPIO-
based contrast agents showed the potential for more precise
characterization of infarcted lesions by identifying macrophage
infiltration. In addition, USPIO-based contrast agents are more
versatile and safer than gadolinium-based compounds.292 As per
the observations from the PROTECT-TIMI 30 Trial (NCT00250471),
using the nanoparticle cTnI test to identify myocardial injury in
patients with unstable angina provides above 10 folds increase in
analytical sensitivity compared with traditional generation cTnI
tests.543 The incidence of major adverse cardiac events was lower
in the prostaglandin E1-encapsulated liposomes treatment group
than in the control group among 68 STEMI patients.544 Within 24-h of
symptom onset, multimodal stroke imaging was performed in 12
patients with typical clinical symptoms, and USPIO-dependent signal
changes were found to be spatially heterogeneous, reflecting
different patterns of macrophage infiltration in different types of
lesions. In stroke patients, USPIO-enhanced MRI may offer a specific
target for anti-inflammatory treatments.290 These compelling obser-
vations open up new avenues for the clinical application of
nanoparticles.

CONCLUSION AND FUTURE PERSPECTIVES
This study aims to investigate and improve the understanding of
the functions of various nanoparticle-based strategies in the
diagnosis and treatment of vascular aging-related diseases, as well
as spark some new ideas for researchers who are interested in
nanoparticle-based clinical diagnosis and therapy techniques in

multiple vascular disorders, even in other fields. Nanoparticles play
crucial roles in the diagnosis and treatment of vascular diseases
due to their unique optical and electrochemical properties. Herein,
we discuss the classifications of nanoparticles and the mechan-
isms of vascular aging. Importantly, we have extensively reviewed
nanoparticle-based strategies in vascular aging-related diseases.
As a diagnostic tool, nanoparticles have the potential to improve
diagnostic efficiency and accuracy. On the one hand, nanoparti-
cles as biosensors can detect specific biomarkers in plasma, serum,
and urine in a sensitive and stable manner. On the other hand,
nanoparticles as contrast agents can be designed and manipu-
lated to visualize typical pathological changes in diseases such as
inflammation, thrombosis, angiogenesis, proliferation, and apop-
tosis. In terms of clinical therapy, nanoparticles as antioxidant and
anti-proliferative agents, as well as drug delivery vesicles are being
studied extensively for the treatment of vascular aging-related
diseases such as cardiovascular diseases (e.g., atherosclerosis,
hypertension, vascular restenosis, MI, and heart failure), cerebro-
vascular diseases (e.g., ischemic stroke, ICH, and vascular
dementia), and chronic kidney disease.
The advancement of nanoparticle diagnostic and therapeutic

applications has potentially transformed the diagnosis and treatment
paradigm of vascular aging and related diseases (Fig. 7). However,
development in the applications of nanoparticles in vascular diseases
is predominantly limited to basic research. Over the past two
decades, numerous nanomedicines have been approved by FDA or
have shown promise for future clinical transformation. In this case,
the safety and toxicity issues of nanoparticles are critical concerns in
clinical use.545 Notably, several approved nanomedicines such as
Doxil and Abraxane show fewer side effects than their small-
molecule counterparts, while magnetic and carbon-based nanopar-
ticles tend to display toxicity.546–549 Many mesotheliomas and lung
cancers have been linked to asbestos exposure, raising concerns
about the potential carcinogenicity of high aspect ratio nanoparticles
such as CNTs.550 It has been reported that silica nanoparticle
exposure is associated with adverse cardiovascular effects. For
example, Wang et al. demonstrated that silica nanoparticles induced
pyroptosis and cardiac hypertrophy via the ROS/NLRP3/Caspase-
1 signaling pathway.551 The AuNPs have been extensively studied in
the biomedical field, however, AuNPs with diameters less than 2 nm
exhibit cytotoxic profile.552 Moreover, the size of nanoparticles
affected their distribution, ultrasmall AuNPs have significantly longer
circulation duration and distinct biodistributions in comparison to
larger AuNPs.553 Enea et al. examined the cytotoxicity induced by
AuNPs with various shapes (nanostars and nanospheres) and sizes
(15 nm and 60 nm). Despite the low toxicity of AuNPs, the smaller 15
nm AuNPs spheres sized have the highest toxicity among all tested
AuNPs.554 The toxicity of nanoparticles is directly related to the
depletion of the intracellular antioxidant pool, the generation of
endogenous ROS, oxidative stress, and the disruption of immuno-
logical responses and cellular components.555 Additionally, diverse
administration routes also show varying toxicity. According to
research, the oral and inhalation routes have higher toxicity than
injection. Indeed, organ systems that include the nervous system,
thyroid, heart, lungs, mononuclear phagocytic system, and even the
reproductive system exhibited potential toxic effects after being
injected with IONs-formulations.547 Assessing the toxicity of nano-
particles remains a challenge, especially in vivo evaluation and long-
term toxicity studies.556 Another barrier to clinical applications of
nanoparticles is their sophisticated constructions, which include
diverse surface modifications and multiple payloads, resulting in
elaborate manufacturing and quality control processes, storage
instability, enhanced costs, and poor batch-to-batch reproducibility.
All of these problems impede large-scale production. Furthermore,
the sector of nanomedicines entering the market is progressing at a
snail's pace due to the long period it takes to conduct preclinical and
clinical studies.557 Despite all the positive outcomes achieved in cell
and animal model studies, several limitations need to be solved
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before nanoparticles can be used in clinical applications. Further
research on biosensors for diagnosis should focus on improving the
poor reproducibility and complicated procedures.8 Similarly, future
research on nanoparticle-based drug administration should include
more specific targeting and delivery, superior safety and biocompat-
ibility, reduced toxicity while maintaining therapeutic efficacy, and
the development of novel safety compounds. Special attention
should be given to experimenting on animals with diseases
representing human socially serious illnesses. Researchers should
strive to elucidate the mechanisms of action, biodistribution, and
bioaccumulation, as well as possible short-term and long-term
adverse effects of these nanoparticles.
Therefore, substantial investigations remain to be completed

before nanoparticles can be used in the clinical diagnosis and
treatment of vascular aging-related diseases. Despite the existing
limitations, a lot of research suggests that nanoparticles have the
potential for treating vascular aging-related diseases. Comprehensive
knowledge of the pathogenesis of vascular aging may lead to the
identification of new biomarkers and therapeutic targets, providing
new insights toward future vascular aging treatment. The advance-
ment in nanotechnology has resulted in an amazing revolution in the
diagnosis and treatment of vascular aging-related diseases.
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