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Nanoparticles in the environment: 
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Abstract 

Nanoparticles serve various industrial and domestic purposes which is reflected in their steadily increasing produc-

tion volume. This economic success comes along with their presence in the environment and the risk of potentially 

adverse effects in natural systems. Over the last decade, substantial progress regarding the understanding of sources, 

fate, and effects of nanoparticles has been made. Predictions of environmental concentrations based on modelling 

approaches could recently be confirmed by measured concentrations in the field. Nonetheless, analytical techniques 

are, as covered elsewhere, still under development to more efficiently and reliably characterize and quantify nanopar-

ticles, as well as to detect them in complex environmental matrixes. Simultaneously, the effects of nanoparticles on 

aquatic and terrestrial systems have received increasing attention. While the debate on the relevance of nanoparticle-

released metal ions for their toxicity is still ongoing, it is a re-occurring phenomenon that inert nanoparticles are able 

to interact with biota through physical pathways such as biological surface coating. This among others interferes with 

the growth and behaviour of exposed organisms. Moreover, co-occurring contaminants interact with nanoparticles. 

There is multiple evidence suggesting nanoparticles as a sink for organic and inorganic co-contaminants. On the 

other hand, in the presence of nanoparticles, repeatedly an elevated effect on the test species induced by the co-

contaminants has been reported. In this paper, we highlight recent achievements in the field of nano-ecotoxicology 

in both aquatic and terrestrial systems but also refer to substantial gaps that require further attention in the future.
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Introduction
Nano-based technology has made enormous progress 

over the last decades, which is underpinned by a 25-fold 

increase between 2005 and 2010 in the numbers of prod-

ucts that either contain or require nanoparticles (NP) for 

their production [1]. �is development is likely facilitated 

by their unique general properties (in particular particle 

size, surface area, surface reactivity, charge, and shape) 

relative to their bulk or dissolved counterparts. �is ena-

bles a broad range of possible applications, including 

cosmetic, pharmaceutical, and medical utilization [2, 3]. 

Engineered NP consist of carbon-based and inorganic 

forms, partly with functionalized surfaces [4].

Along with their unique general properties, the high 

diversity of NPs’ elemental and structural composition 

has, however, challenged environmental scientists in 

multiple ways, ranging from NP characterization and fate 

in complex matrixes [e.g. 5] to individual and combined 

NP effects in aquatic and terrestrial (eco)systems [e.g. 6]. 

�e crystalline composition of titanium dioxide NP  (TiO2 

NP), for instance, influences their toxicity for the water 

flea Daphnia magna when based on the mass concentra-

tion—a pattern independent of the initial particle size [7]. 

Such observations suggest that other or additional dose 

measures, such as particle number, surface area, or body 

burden, are needed to adequately reflect the exposure 

situation [8]. In fact, NPs’ surface area explained a large 

share of variability in the resulting toxicity among crys-

talline structures [7].

In this paper, we give a brief overview of recent sci-

entific advances enhancing the understanding of the (i) 
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sources and (ii) fate of NP, (iii) the effects of NP in sim-

plified studies, and (iv) how NP interact with biota in a 

more complex environment. We consider both aquatic 

and terrestrial systems but mainly focus on metal-based 

NP as carbon-based NP are covered elsewhere [9, 10]. 

We will, however, not specifically cover the methodo-

logical developments in the context of NP quantification 

and properties as this has also  been covered elsewhere 

(see for instance, [11–13]). On this basis, we develop 

recommendations for future research directions in 

nano-ecotoxicology.

Pathways of nanoparticles into natural ecosystems
It has been anticipated that the increasing application 

of NP both quantitatively but also in terms of product 

diversity will lead to a diversification in emission sources 

into the environment [4]. Key products containing NP 

are coatings, paints and pigments, catalytic additives, 

and cosmetics [14]. �is chapter will discuss NP emis-

sions from such products, whereas the release process is 

beyond our scope.

NP can enter the environment a long their life cycle 

and three emission scenarios are generally considered: 

(i) release during production of raw material and nano-

enabled products; (ii) release during use; and (iii) release 

after disposal of NP-containing products (waste han-

dling) [15–17]. NP emissions can be either directly to the 

environment or indirectly via a technical system such as 

wastewater treatment plants (WWTPs) or landfills. Indi-

rect emissions are likely occurring either via the effluent 

of WWTPs, application of biosolids to soil, or leachates 

from landfills. It has also been pointed out that NP fate in 

technical systems such as WWTPs determines whether 

bare, coated, chemically or physically transformed parti-

cles are released, and via which pathway (as effluent or 

biosolid) [18–21].

So far, emission and environmental concentration lev-

els have been estimated using material flow models fol-

lowing the NP life cycle [22]. Calculation models assume 

that produced NP will be released either to waste streams 

or directly to environmental compartments, and more 

realistic approaches account for the delayed release dur-

ing use due to in-use NP stocks. NP emissions are also 

controlled by (i) ageing or weathering [19, 23–26], (ii) 

the fate of the NP during use [20, 27, 28], and (iii) the 

waste management system [29, 30]. Production volumes, 

however, may give a good indication of the emission of 

specific NP. Available data on production volumes differ 

greatly depending on the way of data collection.  TiO2 NP 

and  SiO2 NP are certainly the most relevant materials in 

terms of worldwide productions volumes (>  10,000 t/a 

in 2010), followed by  CeO2 NP,  FeOx NP,  AlOx NP, and 

ZnO NP, and carbon nanotubes (CNT) (100–1000 t/a in 

2010). �e production volume of Ag NP was estimated 

with approximately 55 t/a worldwide in 2010 [31].

First attempts to estimate NP emissions during the 

life cycle indicated that most NP are emitted during 

use phase and after disposal, e.g. on landfills [30], while 

during production not more than 2% of the production 

volume is released [32]. Depending on the type and appli-

cation of NP, they are either directly released into the 

environment, or indirectly via technical compartments 

and waste streams or enter in-use stock causing a delayed 

release [22, 30, 33–35]. �e release pattern and masses 

depend on the NP type and its application. For instance, 

Sun et  al. [22] studied emission patterns in the EU in 

2014 of  TiO2 NP, ZnO NP, Ag NP, and CNTs considering 

landfills, sediments, and soil as sink for NP. �ey found 

that  TiO2 NP accumulate in sludge-treated soils followed 

by sediments and landfills (approx. 8400 t/a and 7600 t/a 

and 7000 t/a). �e dominating emission pathway of  TiO2 

NP occurs via wastewater (85% of total  TiO2 NP emis-

sions) [30, 47]. For example,  TiO2 NP are accumulated 

in sewage sludge during wastewater treatment, which is 

in many countries ultimately deployed onto soils. It was 

estimated that approximately 36% of  TiO2 NP emissions 

occur via this pathway. A lower portion of the sewage 

sludge is deposited onto landfills directly or after incin-

eration which equals approximately 30% of total emit-

ted  TiO2 NP.  TiO2 NP emissions via wastewater effluent 

account for approximately 33% [22]. ZnO NP, which 

are mostly used in cosmetics, electronics, and medicine 

accumulate in sediments (1300 t/a), in natural and urban 

soil (300 t/a), as well as at landfills (200 t/a). �e domi-

nating emission pathway occurs, just as for  TiO2 NP, via 

wastewater since both are used in cosmetics [47]. CNTs 

and Ag NP show different emission patterns. CNTs are 

predominantly emitted via production and  use, and are 

directly  deposited at landfills. Hence, approximately 

90% of the CNT production is accumulated in landfills, 

approximately 10% in soils and < 1% in sediments and air 

[22]. Ag NP are emitted from production and use to both 

landfills and wastewater.

Global estimation of NP emissions indicates that land-

fills (approximately 63–91%) and soils (approximately 

8–28%) receive the largest share followed by emissions 

into the aquatic environment and air (7 and 1.5%, respec-

tively, of the production volumes) [30]. Such estimations 

allow to identify applications with potentially high envi-

ronmental implication. A potential increase in outdoor 

applications of NP may elevate their mass flows directly 

into the aquatic and terrestrial  environment [36]. For 

example, NP emission from façade paints, such as photo-

catalytic active compounds, e.g.  TiO2 NP, has been dem-

onstrated previously [19, 37, 38].
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Besides emission of engineered NP, there are par-

ticulate emissions of anthropogenic NP which are not 

intentionally produced as NP. For instance, particulate 

emissions from traffic, such as palladium, were identi-

fied to be in nanoscale [39, 40]. NP release might also be 

intended due to their direct application in environmen-

tal compartments, for instance, for groundwater reme-

diation such as iron-based NP [41–43] or when applying 

nano-pesticides directly to agricultural fields [44, 45]. 

Although some information on NP emission is available, 

it is of high importance to quantify their amounts and 

concentrations in the environment. Quantification of NP 

emissions into the aquatic environment has by now, how-

ever, been hampered by the lack of appropriate analytical 

techniques [5].

Predicting and measuring nanoparticles in natural 
ecosystems
Computational modelling was suggested as a way for-

ward estimating environmental concentrations because 

straight forward analytical methods were not available 

for detection of NP in the environment [46, 47]. Material 

flow models rely on life cycle information and produc-

tion volumes, which were not necessarily available in suf-

ficient detail, limiting their accuracy [48]. Very recently, 

more advanced models use probabilistic approaches 

[49] that consider dynamic input rates, in-use stocks as 

well as the continuous rise in production volumes [22]. 

�ese models allow predicting the time-dependent 

material flow of specific NP (e.g.  TiO2 NP) in technical 

systems and environmental compartments. �ese mod-

els estimate NP concentrations in surface waters to be 

in the lower ng/L or µg/L range depending on the type 

of NP. For instance, mean NP concentrations in sur-

face water were estimated for  TiO2 with approximately 

2.2  µg/L  (Q0.15 0.19  µg/L to  Q0.85 4.4  µg/L) and for Ag 

NP with 1.5  ng/L  (Q0.15 0.4  µg/L to  Q0.85 2.8  ng/L) for 

the EU in 2014 [22]. Although these models hardly con-

sider NP-specific fate mechanisms (e.g. sedimentation 

[50]), first studies assessing the actual presence of NP in 

the aquatic environment [35, 36, 51, 52] are in consen-

sus with modelling results [16]. For instance, analytical 

studies revealed  TiO2 NP surface water concentrations 

between 3 ng/L and 1.6 µg/L, confirming the high vari-

ation of modelling results in a comparable concentra-

tion range. However, analytical limitations, namely the 

lack of specific and sensitive analytical methods in com-

plex matrixes, did not yet allow to formally assess for the 

assumption that the increasing production and market 

volume of NP will ultimately lead to an increase in envi-

ronmental concentrations.

Complementary analytical techniques have been 

used to determine and characterize metal-based NP in 

different environmental compartments [51, 53]. Con-

centration and size of metal-based NP such Au, Ag, Cu, 

 TiO2, in surface water and soils have been, for example, 

determined by single particle inductively coupled plasma 

mass spectrometry (sp-ICP-MS) [53, 54] or fractiona-

tion techniques in combination with light scattering 

and elemental detection [55]. Structural information 

and information on particle size have been derived from 

electron microscopy as a complementary technique [51]. 

Among others, the NP surface chemistry including sur-

face charge or functionalization controls NP fate. �ere-

fore, surface characterization methods are important to 

understand NP fate processes [56].

For complex types of NP such as core shell structures 

a multi-element technique, e.g. sp-ICP-Time of Flight 

(ToF)-MS was developed [57] and has recently been suc-

cessfully applied to determine engineered  CeO2 NP in 

soil [58]. �is technique is of high importance to differen-

tiate between engineered NP and natural NP by detecting 

impurities in natural NP which are not present in engi-

neered NP. Such analyses will help to validate model out-

puts on environmental NP concentrations.

In comparison to the analysis of inorganic NP in envi-

ronmental compartments, organic NP analysis is still in 

its infancy. In fact, analytical techniques for organic NP 

have been developed, for example, for fullerenes and 

CNTs [52, 59] but they are hampered by insufficient 

selectivity with regard to the high environmental back-

ground concentrations of carbon. To improve the analy-

sis of organic NP in complex media such surface water or 

soil, more efficient extraction methods are needed [60].

Recently, considerable progress has been made over-

coming some of the analytical problems (natural particle 

counterparts, low concentrations, matrix interferences) 

[58, 61, 62], opening new possibilities that foster our 

understanding on both sources and fate of NP in the 

environment. However, future work should focus on the 

differentiation between engineered and natural NP, the 

detection of organic NP, and the characterization of the 

NP surfaces.

Fate of nanoparticles in the environment
NP in the environment undergo ageing processes such as 

chemical transformation, aggregation, and disaggrega-

tion. �e interplay between these processes and the NP 

transport determines the fate and ultimately the ecotoxi-

cological potential of NP [63–65]. Since particle proper-

ties and environmental conditions control these ageing 

and transport processes [45, 65, 66], a direct transfer of 

data to even slightly deviating conditions is difficult and 

can even be misleading. Here, we analyse the current 

state of the art regarding NP fate and conclude if this 

knowledge is sufficient to allow for extrapolations from 
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well-defined and controlled laboratory conditions to 

complex, real-world scenarios.

Alterations in chemical speciation, dissolution, deg-

radation, as well as alteration of the surface properties 

by precipitation and ad- or desorption are important 

chemical transformation processes of NP, which have 

frequently been investigated both in aquatic and soil eco-

systems (Fig. 1). A general remark in this context: func-

tionalization of NP surfaces, which makes the particles’ 

properties more beneficial for industrial purposes [67, 

68], will strongly control transformation processes in the 

environment [66, 69, 70]. A thorough characterization of 

NP surface chemistry (i.e. the formation or loss of coating 

[71]) over time seems therefore mandatory to understand 

NP fate [72, 73], but is still highly challenging. �e pre-

sent paper, however, specifically focuses on dissolution, 

passivation, aggregation, adsorption, sedimentation, and 

deposition as a selection of the most relevant processes 

under field conditions (see Fig. 2).

Chemical transformation

Dissolution of NP (Fig. 2a) is driven directly by the parti-

cle chemistry. Dissolution of Ag NP, for instance, requires 

aerobic conditions. In such environments, an oxide layer 

 (Ag2O) can be formed around the particle, which releases 

 Ag+ [74]. In a range of studies, it was uncovered that Ag 

NP dissolution rates are triggered by particle-inherent 

factors including surface coating, size, shape, and state 

of aggregation, as well as environmental parameters such 

as pH, dissolved organic carbon, and temperature (see 

for a more detailed assessment of the mechanisms [11, 

75–80]). Koser et  al. [81] used equilibrium speciation 

calculations, based on a broad basis of literature data, 

to successfully predict Ag dissolution in several artificial 

media. �is suggests that the scientific community was 

indeed capable of advancing the knowledge to a state that 

allows for reasonably accurate predictions and modelling.

A passivation process frequently occurring under vari-

ous environmental conditions is the sulfidation of NP 

(Fig. 2b) that includes Ag NP, ZnO NP, and CuO NP [e.g. 

79, 82, 83]. Sulfidation of Ag NP, for instance, can lead 

to the formation of core–shell  Ag0–Ag2S structures or 

hollow  Ag2S NP [84]. �e mechanisms of sulfidation are 

given elsewhere [66, 84–86]. Sulfidation leads to nearly 

inert NP surfaces with consequence for their reactivity 

Fig. 1 Relative number of publications compared to total number of publications found between 2007 and 2017 in soil and aquatic environments 

(search criteria: nano* & environ* & system, NOT effect* & NOT *tox*; process search criteria: transp*, agg*, homoagg*, heteroagg*, dissol*, redox*, 

surface* transfo*, reacti*, deposition*; system search criteria: soil*, aqua*; only web-of-science category environmental science considered)



Page 5 of 17Bundschuh et al. Environ Sci Eur  (2018) 30:6 

(Fig. 2) [84, 87] and thus toxicity [66], while sulfidized NP 

can still be toxic to microorganisms [88].

Colloidal stability

Colloidal stability of NP is one of the key factors control-

ling their fate and effects [12, 89]. When released into the 

environment, NP interact with the variety of dissolved or 

particulate, inorganic or organic compounds influencing 

NP aggregation dynamics and thus colloidal stability [90]. 

Ultimately, exposure conditions are controlled by NP 

aggregation. By focusing on factors controlling homo-

aggregation (interaction between the same NP) and 

hetero-aggregation (interaction between different NP or 

between NP and natural colloids such as montmorillon-

ite, maghemite, kaolinite but also microorganisms, algae, 

and proteins [91, 92]), as well as disaggregation, we also 

discuss the processes determining NP fate.

Homo-aggregation of NP (Fig.  2c) is positively cor-

related with their concentration in the media. Since 

predicted environmental concentrations are rather low 

(in the pg/L to the low µg/L range for surface waters 

[16]), homo-aggregation is less likely due to the low 

probability for collisions. Nonetheless, this factor is 

relevant—but largely ignored—for laboratory-based 

ecotoxicological investigations that often use high NP 

concentrations compared to predicted environmental 

concentrations [76]. Under field conditions, the ionic 

strength of the surrounding medium seems more rel-

evant as aggregation rates increase with ionic strength 

[e.g. 93, 94]. �e aggregation dynamics are in most cases 

characterized by classical Derjaguin-Landau-Verwey-

Overbeek (DLVO) theory [95, 96]. Furthermore, multiva-

lent cations are more efficient than monovalent cations 

[97], whereas the efficiency within both groups of cations 

depends on their respective identity as judged by criti-

cal coagulation concentrations (CCCs): the aggregation 

of citrate-coated Ag NP was, for instance, more efficient 

for  Ca2+ than  Mg2+ [76], which may be explained by the 

higher ability of  Ca2+ to form citrate complexes [98]. At 

the same time, the impact of cations and anions can be 

concentration dependent. Whereas high concentrations 

of  Cl− ions enhance the aggregation of Ag NP due to the 

bridging by AgCl [99], low concentrations may stabilize 

NP via the formation of negatively charged surface pre-

cipitates [76]. Similarly, soils and soil extracts modulate 

NP aggregation [100].

In addition to ionic strength, homo-aggregation is also 

influenced by a range of environmental variables. �e 

a

b

c

d

e

f

g

h

Fig. 2 Interactions and fate of NP in the environment considering (a) dissolution, (b) sulfidation, (c) homo-aggregation, (d) hetero-aggregation, (e) 

coating with NOM, (f ) NP adsorption on biological surfaces, (g) sedimentation/deposition, and (h) persistence
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surface charge of NP changes with pH, which is reflected 

by the isoelectric point (IEP; i.e. the pH at which NP 

do not carry a net charge). �e IEP varies substantially 

among commercially available NP [101, 102], suggest-

ing that even at the same pH the fate and thus the inter-

action of NP with organisms might vary substantially 

[103]. Furthermore, natural organic matter (NOM) can 

increase or reduce colloidal stability of NP as a function 

of its quality and quantity as well as the ionic strength of 

the medium [e.g. 104]: at low ionic strength, NOM sta-

bilizes negatively charged NP through electrostatic and/

or steric forces [76, 100]. Due to the formation of cation-

NOM bridges among NP, NOM can enhance aggrega-

tion at high ionic strength [e.g. 97]. Positively charged NP 

may also increase aggregation in the presence of NOM as 

shown for the combination of negatively charged NOM 

and  TiO2 NP due to charge screening [105]. Until now, 

the effects of several individual factors like surface coat-

ing of NP, ionic strength, and valence and type of cations 

on the fate of NP are characterized to reasonable degree. 

However, less is known on how the interplay between 

these individual factors affects the fate of NP under real-

istic environmental conditions.

In contrast to homo-aggregation, hetero-aggregation 

(Fig.  2d) is considered to be of higher environmental 

relevance given the several orders of magnitude higher 

concentration of natural colloids [106] relative to NP 

[16]. Quik et al. [107], for example, indicated that hetero-

aggregation is the main mechanism removing  CeO2 NP 

from the water phase through sedimentation. �e aggre-

gation kinetics of NP and natural colloids or other NP are 

particularly fast if they are differently charged [92, 108]. 

�e presence of NOM, in contrast, reduces hetero-aggre-

gation due to electrostatic and steric stabilization [109]. 

Besides electrostatic forces, bridging by polymers, hydro-

gen as well as chemical bonding were reported as mecha-

nisms inducing hetero-aggregation. �is process is, thus, 

highly complex and among others triggered by NP sur-

face properties, their ageing status, interacting particu-

late phases, chemical composition of the surrounding 

environment, and the properties of natural inorganic, 

organic and biological colloids. However, only a few pub-

lications assessed aggregation in complex field-relevant 

media [e.g. 93, 100, 110], complicating any conclusion 

about the general relevance of the processes detailed 

above. Even less is known about the reversibility of NP 

aggregation in natural systems [93]. As disaggregation is 

mainly triggered by changing environmental conditions, 

experiments in simplified artificial systems are falling too 

short to properly address the dynamics of aggregation 

and disaggregation in real aquatic systems. �is calls for 

experimental designs capable of simulating such fluctu-

ating conditions. Furthermore, low and environmentally 

relevant NP concentrations should be used in future 

studies to avoid potentially confounding implications of 

NP homo-aggregation, which is, as outlined above, less 

likely under currently predicted environmental concen-

trations of NP compared to hetero-aggregation.

Transport in porous media

Most of the published data on NP mobility in porous 

media was generated using water saturated artificial col-

umns frequently made of quartz sand [e.g. 111] while only 

a few involved natural soil [e.g. 92]. Similar to aquatic 

ecosystems, ionic strength triggers NP’ fate: NP reten-

tion and deposition in porous media (Fig. 2) is positively 

related to the ionic strength of the pore water [112], likely 

driven by quick NP aggregation [e.g. 111]. At high levels 

of ionic strength, retention rates can further increase due 

to the “ripening effect” (i.e., increasing attraction forces 

between NP in the liquid phase and NP already deposited 

onto soil [113]). Hetero-aggregation of Ag NP with soil 

colloids, in contrast, can even enhance NP mobility by 

the size-exclusion effect [92, 112]. Furthermore, electro-

static and steric repulsion forces induced by NOM often 

lead to higher mobility [e.g. 112, 114], while a decreasing 

pH has the opposite effect [e.g. 111].

In contrast to water saturated systems, unsatu-

rated porous media are less frequently but increasingly 

assessed (see for instance, [115]). Relative to water satu-

rated porous media, unsaturated systems have often a 

higher retention potential [e.g. 116], while Fang et  al. 

[117] found only marginal differences regarding the 

retention of  TiO2 NP between saturated and unsaturated 

porous media. �is pattern may be explained by the non-

equilibrium sorption to solid–water interface and equi-

librium sorption to air-water interface [118]. Moreover, 

the water film straining during drying could increase 

NP retention [116] and is thus of potentially high rel-

evance in unsaturated porous media. �e impact of ionic 

strength, type of cations, NOM but also pH on NP fate 

is comparable among aquatic systems and porous media 

irrespective of whether the latter is saturated or unsatu-

rated. �erefore, we refer to the subchapters above for a 

more detailed description.

Driven by the few number of studies [e.g. 100] and the 

partly contradictory outcomes particularly for unsatu-

rated porous media, a reliable prediction of NP fate in 

soil ecosystems seems difficult. �us, a more systematic 

approach is urgently needed uncovering the role of soil 

properties on NP fate. One important step would be to 

assess NP fate in natural soils instead of porous media 

made of artificial substrate such as quartz sand. Although 

there are certainly challenges from the analytical side, i.e. 

inorganic NP might occur at high levels in natural soils 

and form a substantial background contamination, which 
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can be overcome with the help of modelling, those data 

are likely of higher field relevance. In natural soils, for 

instance, microorganisms, inorganic and organic par-

ticles might form complex bio-geochemical interfaces 

that interact with NP and as a consequence will influence 

their fate [119] and toxicity. �ose insights can, however, 

barely be inferred from experiments using highly artifi-

cial substrates. On the way to indeed using natural soils, 

it may however, be feasible to employ more complex arti-

ficial soils containing among others also natural organic 

matter.

In summary, predominantly qualitative information on 

particle fate in aquatic and porous media is available and 

key factors which control fate processes have been identi-

fied. Particle surface properties and NP concentration are 

most relevant and need to be characterized carefully—

also throughout the experiments. Environmental key fac-

tors controlling NP fate processes are ionic strength, type 

and charge of ions, pH, type and concentration of NOM 

in all environmental compartments, while the degree of 

water saturation is an additional factor for porous media. 

Quantitative systematic data are rare [12, 45, 50, 64] but 

fundamental for process understanding and ultimately 

for the development of reliable and predictive fate mod-

els. Future studies should, thus, qualitatively and quan-

titatively assess NP fate under environmentally relevant 

conditions, reflecting amongst others not only realistic 

NP concentrations, environmental conditions but also 

reaction and residence times. �ese data will certainly 

support the recent developments in NP fate modelling, 

namely simulations of individual fate processes and fate 

predictions in rivers and porous media [64, 120–123]. As 

their validation is largely lacking, this aspect should be 

addressed in future work.

Effects of nanoparticles and their mechanisms 
of toxicity
Roughly a decade ago and thus with the initiation of 

the research field “nano-ecotoxicology”, Moore [124] 

as well as Hund-Rinke and Simon [125] suggested that 

NP have the potential to cause harmful effects in biota 

by the formation of reactive oxygen species (ROS) that 

could affect biological structures (Fig.  3a). Moore [124] 

also pointed to the potential of NP to function as carri-

ers for other pollutants (Fig. 2d)—an assumption that will 

be addressed in more detail in the next chapter. While 

it is evident from the literature that oxidative stress can 

indeed be a driver for many NP-induced effects [126], the 

last decade of research showed that NP have the ability to 

act via multiple pathways of which the induction of oxi-

dative stress is one. In the following, we briefly highlight 

the current state of the art with regard to central aspects 

supposedly driving the ecotoxicity of NP.

No mechanism of toxicity can be considered as generic 

for all NP [126]. Oxidative stress is, however, a frequently 

reported phenomenon [127, 128]. Just to name a few 

other relevant mechanisms, physiological implications 

that can go as far as reproductive failure by modify-

ing hormones or hatching enzymes were reported [129, 

130]. �ose effects indicate implications in population 

a

b

d

c b
a

c

Fig. 3 Potential ecotoxicity of NP in aquatic and terrestrial regimes, illustrating locally acting mechanisms as a formation of ROS, b ion release, c 

internalisation, and d biological surface coating
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development and suggest the potential for transgen-

erational effects [131, 132]. In addition, algae [133] and 

aquatic plants [134] were altered in their photosynthetic 

pigment composition and showed effects in photosystem 

II, while we refer to �wala et al. [135] for a more detailed 

review. Similarly, several recent reviews have covered 

NP accumulation in terrestrial plants which can cause 

biochemical and physiological changes [136–138]: Cao 

et  al. for instance, documented impacts on carbon fixa-

tion as well as water use efficiency during photosynthesis 

in response to  CeO2 NP exposure [139]. �e latter may 

have indirect effects on soil organisms via implications 

in soil moisture. Besides this massive diversity regarding 

the mechanisms of toxicity among NP, species and eco-

systems, some more general questions attracted attention 

among researchers, namely the relevance of ions released 

(dissolved) from NP for NP-induced effects.

Effects of nanoparticles on individuals 
and populations
Effects of ion-releasing NP

Certain NP are prone to dissolution, i.e. the release of 

ions from the NP surface, during their entire (aquatic) 

life cycle (Figs. 2, 3) [140]. In such cases, researchers were 

interested in uncovering the relevance but also the mech-

anism of toxicity induced by those ions released from NP. 

Against this background, Ag NP have frequently been 

assessed, suggesting that Ag ions released from these 

NP explained a large proportion of the observed toxicity 

for various test organisms [e.g. 141–143] and soil micro-

bial communities [144]. Additionally, the mechanisms 

of toxicity, for example, for snails [143] and periphyton 

[141], were largely comparable between Ag ions and Ag 

NP. �ese observations contradict other findings, high-

lighting more severe implications by Ag NP than what 

could be explained exclusively by the Ag ions measured 

[145]. Differences in gene expression and transcriptomic 

profile point towards distinct mechanisms of toxicity in 

aquatic [146, 147] and terrestrial organisms [148]. None-

theless and in line with the extensive literature review by 

Völker et al. [149] it may be suggested that Ag NP and Ag 

ions share common mechanisms of action. �is conclu-

sion also implies that the Ag NP-induced toxicity, which 

largely depends on the particle surface properties, diam-

eter, and exposure time [150], can mainly be explained by 

the quantity of released ions [sensu 151, 152]. Ag NP are, 

moreover, sulfidized (see above, Fig.  2b) in wastewater 

treatment plants and trapped in sewage sludge. As a con-

sequence of the usage of sewage sludge as fertilizer for 

crop production in various countries, soil organisms are 

directly exposed to  Ag2S NP, Ag NP, and  Ag+ ions. �e 

form of Ag directly influences the location and speciation 

(metallic, ionic, thiol, NP) in which Ag is stored in wheat 

roots [153]. In cucumber and wheat,  Ag2S NP remained 

in their NP form and were translocated from the roots 

to leaf tissue, reducing plant growth and activating plant 

defence mechanisms [154]. Internalization (Fig.  3c) or 

physical adherence, such as biological surface coating 

(inhibiting, e.g. photosynthesis, nutrient uptake or move-

ment) are also considered as possible mechanisms of 

toxicity for “inert” NP, i.e. those not releasing toxic ions 

(Fig. 3d) [155, 156].

CuO NP exposure resulted in a different pattern rela-

tive to Cu ions. �is was shown for protein regula-

tion and gene expression in marine mussels [157] and 

zebrafish gills [146]. Similarly, Mortimer et al. [158] indi-

cated CuO particle-related effects in the membranes’ 

fatty acid composition of protozoa pointing towards 

distinct mechanisms of toxicity induced by Cu ions rela-

tive to CuO NP. Also in wheat grown on sand, CuO NP 

reduced root length and simultaneously increased root 

hair length with no effect on shoot growth, while Cu 

ions reduced both root and shoot growth [159]. A recent 

study by Pradhan et  al. [160], however, suggests that 

aquatic fungi from metal contaminated ecosystems have 

a higher tolerance towards CuO NP driven by elevated 

enzymatic activity. �is observation may indicate a spe-

cific adaptation of fungi towards Cu ions, supporting 

fungi to withstand CuO NP stress, which might indicate 

a common mechanism of toxicity. On the other hand, 

a more generic defence mechanism might have been 

strengthened by the long-term adaptation towards metal 

stress in general, which resulted in an evolution of co-tol-

erance towards CuO NP.

Similar to CuO NP, the mechanism of toxicity induced 

by ZnO NP seems to deviate from its ionic counterpart. 

Fernandez-Cruz et  al. [161], for instance, suggested 

that cytotoxic effects in fish cells are mainly particle-

related, which is supported by studies uncovering dif-

ference in gene expression [162, 163] and thus different 

mechanisms of toxicity [164]. Recent evidence with soil 

nematodes (Caenorhabditis elegans) indicates a higher 

ecotoxicological potential of ZnO NP relative to  Zn2+ 

ions [165].

It is hence not possible to draw a generic conclusion 

regarding the relevance of toxic metal ions released from 

NP relative to the effects induced by the NP themselves. 

�is relationship is rather driven by the NP identity and 

coating, the biological system, and the environmental 

conditions (e.g. complexation with NOM) under which 

the studies are performed. For instance, gene expres-

sion profiling in enchytraeids (Enchytraeus crypticus) 

suggested deviating mechanisms of toxicity for different 

Ag NP products [166]. Also the uptake and toxicity of 

Ag NP in earthworms are triggered by the particle coat-

ing. Makama et al. [167] reported size-dependent effects 
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only for PVP-coated Ag NP. �e uptake of Ti through the 

roots into basil was highest when exposed to  TiO2 NP 

with hydrophobic relative to hydrophilic coatings, caus-

ing alterations in the content of several essential elements 

and sugar [168]. A long-term study with two agricultural 

soils and different plant species looked at the effects of 

ZnO NP [169]. In this study, acidic soils stimulated Zn 

accumulation, ROS production, and photosynthetic pig-

ments of beans relative to calcareous systems, while the 

opposite pattern was observed in tomatoes [169].

Effects of NP not releasing toxic ions

For NP that are only marginally or not releasing toxic 

metal ions during the aquatic life cycle, “biological sur-

face coating” (i.e. the attachment or adsorption of NP 

to the organisms’ outer surface, Fig.  3d) is suggested as 

potential toxicity trigger [170]. �e acute toxicity of  TiO2 

NP and  Fe3O4 NP in daphnids, for instance, was attrib-

uted to a physical inhibition of moulting, ultimately 

inducing death [155, 156]. At the same time, biological 

surface coating could alter daphnids’ swimming behav-

iour with potential chronic effects [171]. �ese effects are 

usually more pronounced at smaller initial particle sizes, 

while evidence suggest that the surface area is the driving 

force for toxicity [7, 172, 173].

Nanoparticle-induced effects over multiple 
generations
As highlighted earlier, aquatic invertebrates have shown 

an increase in sensitivity in filial generations as a conse-

quence of the exposure of the parental [131] or subse-

quent generations [132] towards  TiO2 NP. Similarly, at 

Au NP concentrations inducing only negligible mortality 

in the parental generation of the soil organism C. elegans, 

the reproduction of subsequent generations (F1–F4) was 

substantially impaired [174]. In a full lifespan test, CuO 

NP caused more severe effects compared to  a standard 

test duration [175]. Also, plants exposed to  CeO2 NP 

in their parental generation showed response in the fil-

ial generation with implications in the grains’ nutrient 

composition, growth, and physiology [176]. Despite the 

current lack of mechanistic understanding regarding the 

underlying processes, these insights support the idea of 

long-term effects in natural populations of aquatic and 

terrestrial organisms. Importantly, such effects are not 

covered by most standardized test systems. More system-

atic research is needed addressing the mechanistic basis 

of these phenomena as well the evolutionary potential of 

populations and communities to adapt to these emerging 

stressors.

Interactions of nanoparticles in a complex 
environment
Impact of natural organic material on NP-induced effects

In the environment, NP will interact with their abiotic 

surrounding, which influences their fate and ecotoxi-

cological potential [81, 177]. �e relevance of natural 

organic molecules attaching to NP (Fig. 2e) has recently 

been reviewed elsewhere [178], which is why we give only 

a few examples here. Dissolved organic matter (DOM) 

coats NP and thereby stabilizes particle size [179] due to 

steric or electrostatic repulsion [180]. �ese processes 

are more effective with increasing hydrophobicity or aro-

maticity of the DOM, ultimately reducing their ecotoxi-

cological potential—likely by reducing the availability of 

reactive surfaces [181]. In situations where artificial (e.g. 

polyvinylpyrrolidone, gum arabic or citrate) or natural 

OM coats Ag NP, the release of potentially toxic ions into 

the surrounding environment [66, 182] or the NP bio-

availability [183] is reduced. On the contrary, humic acid 

elevated the release of ions from Pb NP [184]. Bicho et al. 

[185] reported that soil and soil–water extracts could 

elevate effects of NP (here Europium polyoxometalates 

encapsulated in  SiO2 NP) relative to their absence.

�us, it becomes apparent that soil properties influ-

ence the toxicity of NP to soil organisms. Especially the 

organic matter content, soil texture, ionic composition, 

and pH affect the fate and bioavailability of NP [112, 

186, 187], which leads to differences in toxicity. With 

a decrease in organic carbon in standard Lufa soils, 

the toxic effects of PVP-coated Ag  NP to E. crypticus 

increased [188]. Less toxicity of AgNP was also observed 

for an entire test battery of dicotyledonous and mono-

cotyledonous plants, Collembola and earthworms in soil 

with higher silt than sand content [189]. With a rise in 

soil pH, ZnO NP effects on Folsomia candida reproduc-

tion decreased [190].

When considering time as a factor, ageing of NP in 

presence of DOM for 48 h reduced or did not influence 

the toxicity of Ag and ZnO NP, respectively [191]. In 

contrast, the ageing of  TiO2 NP in the presence of DOM 

for 1 and 3 days slightly increased toxicity for daphnids, 

while ageing for longer time periods (e.g. 6 days) reduced 

NP-induced effects substantially as NP agglomerates 

exceeded the size range retained by daphnids’ filter appa-

ratus [192]. Similarly, Collembola (F. candida) showed 

more severe effects in their reproductive output with 

increasing ageing duration of Ag NP in spiked sewage 

sludge [193]. It is suspected that this is due to the con-

tinuous release of Ag ions from Ag NP.

Algal cells fed to invertebrates may enhance the uptake 

and toxicity of NP [194]. �e adsorption of NP to algal 

cell surfaces (Fig.  2f ) could accelerate their sedimenta-

tion (Fig.  2g), which forces pelagic consumers to invest 
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more energy in collecting their food near the sediment 

[195]. Bundschuh et al. [196], in contrast, uncovered an 

increase in Daphnia growth and partly reproduction 

after allowing an interaction between algae and  TiO2 NP 

for 1–3  days. Moreover, NP ingested together with the 

food could negatively influence digestion by clogging the 

gut with negative consequences on life history strategies 

of primary consumers in autotrophic food webs [195]. 

Similar patterns have been observed for detritus-based 

food webs [197]. Altogether, these observations suggest 

highly complex interactions between organic material 

(irrespective whether of particulate or dissolved nature), 

NP and biota, but are also pointing to a lack of mechanis-

tic understanding.

NP-triggered alterations in the ecotoxicity of co-occurring 

contaminants

Aquatic and terrestrial ecosystems are also commonly 

exposed to mixtures of chemical stressors, which raised 

concerns about the potential of NP to act as carriers 

for organic and inorganic chemical stressors of anthro-

pogenic origin [198]. Schwab et  al. [199] reported, for 

instance, an elevated herbicide (diuron)-induced toxicity 

applied at environmentally relevant concentrations in the 

presence of carbon-based NP. Similarly, the acute toxic-

ity of the insecticide bifenthrin was increased in the pres-

ence of fullerene NP, while its chronic effects were not 

affected [200]. In line with these observations, a recent 

review suggested that carbon-based NP could also act 

as Trojan horse for metal ions. �e potential of carbon-

based NP to act as “Trojan horse” for other contaminants 

strongly depends on the characteristics of the surround-

ing environment (see for a more detailed discussion 

[201]). �is conclusion is challenged by Sanchis et  al. 

[202], reporting for most combinations of carbon-based 

NP and organic co-contaminants antagonistic effects for 

daphnids and bacteria.

Also, the combined exposure of metallic NP with 

other chemical stressors delivered contradictory results. 

�e presence of  TiO2 NP reduced the uptake of phenols 

[203] and polycyclic aromatic hydrocarbons [204], which, 

however, did not necessarily reduce the combined toxic 

effects of those organic chemicals and TiO2 NP, suggest-

ing a significant contribution of the NP to the biological 

responses. On the contrary, the accumulation of perfluo-

rooctanesulfonate in fish was facilitated in the presence 

of  TiO2 NP. �is pattern was particularly pronounced at 

the bottom of the experimental systems as a consequence 

of the adsorption of perfluorooctanesulfonate onto  TiO2 

NP surfaces and the subsequent aggregation and deposi-

tion of perfluorooctanesulfonate-loaded NP [205]. Simi-

larly,  TiO2 NP increase the uptake of metal ions [206] 

from the water phase and at high concentrations of OM 

also from sediments [207], in biota ultimately elevating 

biological responses.

Other publications indicate the opposite pattern, 

namely a reduction in metal ion-induced effects in the 

presence of  nTiO2 or  Al2O3 NP in algae [208, 209] or 

mussels [210], with an even more pronounced reduction 

in the presence of DOM [211]. Follow-up studies sug-

gested that the direction and magnitude of effects caused 

by a combined exposure of  TiO2 NP and metal ions are 

triggered by the charge of the most toxic metal ion [212]. 

Although the underlying mechanisms are not well under-

stood yet [213] and the NP concentrations used in those 

experiments often exceed environmentally relevant con-

centrations by at least one order of magnitude, interac-

tions of NP with co-contaminants will occur most likely 

under field conditions. �e relevance of such interactions 

in both direction and magnitude for effects caused by co-

contaminants in wildlife remains to be resolved.

NP effects in communities and consequences 
for trophic interaction
McKee and Filser [214] reviewed interactions of metal-

based NP in soils and pointed out the relevance of species 

interactions for fate and bioavailability of these NP, next 

to abiotic parameters. �ey stated that particularly biotic 

interactions might explain the negative consequences of 

NP on ecosystem processes such as carbon dioxide emis-

sion, nitrogen or phosphorous fluxes [215] that could not 

be detected from short-term, single species tests [214]. 

Button et al. [216], for instance, did not detect any nega-

tive effects on microbial community structure and func-

tion in wetland systems when exposed for 28 days to ionic 

Ag, citrate- and PVP-coated Ag NP (at 100 µg/L). �ese 

microbial communities, however, developed an Ag resist-

ance, indicating an existing potential to adapt to such 

emerging stressors by elevating the production of extra-

cellular polymers [217], while the costs of this adapta-

tion remain unclear. Evidence is increasing that nitrifiers 

are among the most sensitive microorganisms towards 

Ag NP [218–220], even when the NP are sulfidized [88]. 

Nitrite production rate was also reduced by about 30% 

in the presence of 200 mg magnetite  (Fe3O4) NP/L [219], 

a concentration considered as rather low in soils reme-

diated from organic contamination [41]. �is relatively 

low-effect threshold (given that iron oxides are mostly 

being considered harmless to beneficial) is supported by 

a range of further studies reporting sometimes surpris-

ingly strong negative effects on microorganisms exposed 

to iron oxide NP [214, 221, 222].

When actively spraying Ag NP as growth promoter on 

several plant species, root and shoot mass of cowpea and 

Brassica increased, while only for the latter in a dose-

dependent manner [218]. For wheat, in turn, shoot mass 
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remained stable and root mass decreased with increas-

ing Ag NP exposure [218]. �ese authors also reported 

increased bacterial counts and higher abundances of 

P-solubilizing bacteria in pure soil (without plants) fol-

lowing Ag NP exposure while at higher Ag NP concentra-

tion the abundance of N-fixing bacteria decreased. In the 

rhizosphere of plants treated with Ag NP, however, the 

microbial responses varied with plant species and thus 

deferred from the pure soil [218]. An experiment with 

 Fe3O4 NP and Zea mays documented a reduction in the 

diversity of arbuscular mycorrhizal fungi accompanied 

by a decreased catalase activity, plant biomass, phospho-

rous content, carbon transfer to the fungi, and impaired 

root colonization and phosphatase activity [221]. �ese 

examples emphasize that the interactions between soil 

microorganisms, plants, and NP are highly complex, war-

ranting further research. Addressing the underlying pro-

cesses will ultimately support a well-informed decision 

making about potential environmental risks of NP when 

applied to agricultural fields.

Recent studies highlight the potential for indirect 

effects of NP on invertebrate species via microorgan-

isms. Antisari et al. [223] reported for Co NP a reduction 

in soil microbial biomass and changes in its community 

composition, which may partly explain alterations in 

earthworms’ fatty acid composition. �e uptake of  TiO2 

NP via contaminated food seems to be of high relevance 

for terrestrial [224, 225] and aquatic invertebrates [226]. 

�is direct uptake pathway increases NP exposure and 

might influence the food quality through impacts on 

food-associated microorganisms.

In aquatic systems, structural [227, 228] and functional 

[141, 229] changes, such as photosynthetic efficiency 

and leaf decomposition were reported, although often at 

rather high concentrations. �ese examples suggest that 

NP can indeed affect species but also species interactions 

[230] at various trophic levels. At the same time, neither 

the mechanisms driving these changes nor the conse-

quences for the wider food web or whole ecosystems 

have yet even been addressed.

Conclusion
Over the past decade, our understanding of sources, fate, 

and effects of NP in the environment has made signifi-

cant progress. Besides the call to consider environmental 

relevant concentrations of NP as well as to monitor the 

fate of NP during biological testing, there are multiple 

open questions that need further consideration. A more 

systematic approach is urgently needed uncovering the 

role of soil properties (including saturated and unsatu-

rated systems) for NP fate and thus the risk of groundwa-

ter contamination by NP. We have, for instance, learned 

that ions released from NP can in some situations fully 

explain the effects observed in organisms. It is currently, 

however, not possible to properly describe under which 

conditions this simplified assumption should be rejected 

and other mechanisms need to be considered. �e 

impact of coating—either as intended functionalization 

or based on natural processes—on the fate and effects 

of NP is currently underrepresented in literature (but 

see, [231]). As those coatings are likely of high field rel-

evance, we strongly recommend their inclusion in future 

projects. Although most studies highlight effects at rela-

tively high NP concentrations, more recent approaches 

document sublethal implications at field-relevant levels 

particularly over multiple generations (as reviewed in 

[177]). �us, the impact of NP under current and future 

exposure scenarios (including co-exposure to other 

stressors) on communities, ecosystems, ecosystem func-

tions as well as interactions across ecosystem bounda-

ries deserves special attention. Particularly for sparingly 

soluble or insoluble NP that may accumulate in certain 

environmental compartments (e.g. sediments) over time, 

investigations covering multiple years of (repeated) expo-

sure and assessment are suggested to properly assess 

their potential long-term implications in aquatic and 

terrestrial ecosystems. �is aspect directly links to the 

acknowledgement of NP-induced alterations in horizon-

tal and vertical trophic interactions with food webs.
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