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RESEARCH ARTICLE
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Abstract

Exposure to ambient air pollution has been associated with white matter damage and neuro-

cognitive decline. However, the mechanisms of this injury are not well understood and

remain largely uncharacterized in experimental models. Prior studies have shown that expo-

sure to particulate matter (PM), a sub-fraction of air pollution, results in neuroinflammation,

specifically the upregulation of inflammatory microglia. This study examines white matter

and axonal injury, and characterizes microglial reactivity in the corpus callosum of mice

exposed to 10 weeks (150 hours) of PM. Nanoscale particulate matter (nPM, aerodynamic

diameter�200 nm) consisting primarily of traffic-related emissions was collected from an

urban area in Los Angeles. Male C57BL/6J mice were exposed to either re-aerosolized

nPM or filtered air for 5 hours/day, 3 days/week, for 10 weeks (150 hours; n = 18/group).

Microglia were characterized by immunohistochemical double staining of ionized calcium-

binding protein-1 (Iba-1) with inducible nitric oxide synthase (iNOS) to identify pro-

inflammatory cells, and Iba-1 with arginase-1 (Arg) to identify anti-inflammatory/ homeo-

static cells. Myelin injury was assessed by degraded myelin basic protein (dMBP). Oligoden-

drocyte cell counts were evaluated by oligodendrocyte transcription factor 2 (Olig2). Axonal

injury was assessed by axonal neurofilament marker SMI-312. iNOS-expressing microglia

were significantly increased in the corpus callosum of mice exposed to nPMwhen compared

to those exposed to filtered air (2.2 fold increase; p<0.05). This was accompanied by an

increase in dMBP (1.4 fold increase; p<0.05) immunofluorescent density, a decrease in oli-

godendrocyte cell counts (1.16 fold decrease; p<0.05), and a decrease in neurofilament

SMI-312 (1.13 fold decrease; p<0.05) immunofluorescent density. Exposure to nPM results

in increased inflammatory microglia, white matter injury, and axonal degradation in the
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corpus callosum of adult male mice. iNOS-expressing microglia release cytokines and reac-

tive oxygen/ nitrogen species which may further contribute to the white matter damage

observed in this model.

Introduction

Exposure to ambient air pollution has deleterious effects on multiple organ systems and is esti-

mated to lead to 3.3 million premature deaths per year [1]. Human studies have demonstrated

that particulate matter exposure is associated with neurodevelopmental and neurodegenerative

diseases, as well as decreased cognitive function [2–12]. Air pollution has been shown to result

in neuroinflammation and oxidative stress in humans and animal models [3, 13–17]. White

matter may be particularly vulnerable to this neurotoxicity [3, 14, 18–21].

Microglia are the resident immune cells of the central nervous system and continuously

surveil the brain microenvironment [22, 23]. Microglia adopt various states of reactivity in

response to a number of stimuli, including ischemia, neuronal death, hemorrhage, toxins,

infections, and particulate matter [13, 14, 24, 25]. In response to environmental stimuli, micro-

glia undergo a rapid change in morphology, gene expression, and function that supports both

injury and repair [25, 26]. Microglia can adopt a wide variety of phenotypes, ranging from

pro-inflammatory to anti-inflammatory and neuroprotective [26]. Microglia adopt a pro-

inflammatory phenotype in response to lipopolysaccharide (LPS), interferon gamma (IFN-γ),
and other inflammatory stimuli. This polarization results in release of cytokines and reactive

oxygen and nitrogen species, leading to neuronal injury, white matter damage, and further

microglial activation [26, 27]. Pro-inflammatory microglia are characterized by an upregula-

tion of inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF), and interleukin-6

(IL-6) [28]. Microglia adopt an anti-inflammatory phenotype in response to IL-4, IL-10, and

transforming growth factor-β (TGF-β). Anti-inflammatory microglia are characterized by the

upregulation of arginase-1 (Arg), CD206, and IL-10. This subtype is typically considered to be

neuroprotective and promotes remyelination, and cellular and vascular regeneration after

injury [28–31]. Pro-inflammatory and anti-inflammatory microglial markers, such as iNOS

and arginase-1, are not specific to microglia and are expressed by multiple cell types in the cen-

tral nervous system [32–34].

Ionized calcium-binding protein-1 (Iba-1) is an actin-cross linking protein that is expressed

in all microglia and upregulated in reactive microglia. Iba-1 functions in membrane ruffing,

which is essential for microglia to undergo morphological changes in response to injury [35,

36]. Iba-1 is utilized as a marker for both surveilling and reactive microglia [36]. Double

immunofluorescent staining of Iba-1 with iNOS and arginase-1 markers can be performed to

identify pro-inflammatory and anti-inflammatory microglia [37].

Our previous murine studies have demonstrated that 150 hours of traffic- derived nPM

exposure results in a specific microglial response (in the absence of an astrocyte response) in

the corpus callosum of mice. This is evidenced by an increased number of Iba-1 positive cells,

as well as morphological changes that suggest microglial reactivity [14]. In the present study,

we aim to assess white matter and axonal injury, as well as characterize the microglial response

in the corpus callosum of mice exposed to nPM for 150 hours. We hypothesize that nPM expo-

sure results in white matter damage and axonal degradation. We propose that the pro-inflam-

matory phenotype is dominant in reactive microglia due to the ongoing neurotoxic insult of

nPM exposure.
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Materials andmethods

All mice were randomized to either filtered air or nPM exposure groups. All animal caretakers

and investigators were blinded to the exposure allocation.

Animals

Male C57BL/6J mice aged 10 weeks were used in this study. Experiments were performed in

accordance with the University of Southern California Institutional Care and Use Committee

(IACUC) and the Guide for the Care and Use of Laboratory Animals (NIH). The protocol was

approved by the University of Southern California IACUC (Protocol Number: 20235). Mice

were purchased from Jackson Laboratories and housed with the University of Southern Cali-

fornia Department of Animal Resources. No previous procedures were performed on the

mice. Mice were group housed with four mice in each cage and kept on a 12-hour light-dark

cycle. Mice were randomized to either nPM (n = 18) or filtered air (n = 18) exposure cohorts.

The study’s primary endpoint was white matter injury and the secondary endpoints were axo-

nal degradation and microglial activation. Sample size was calculated to determine a difference

between exposure cohorts according to the primary endpoint, white matter injury.

Preliminary data on white matter injury in pilot nPM studies (part of a larger study examin-

ing the effects of nPM and chronic cerebral hypoperfusion, manuscript under review) was

used to perform a power analysis. We estimated that nPM exposure effects would be similar to

the injury seen in our pilot data. According to power analysis, each arm of the study (nPM/fil-

tered air) would require 15 animals to demonstrate the expected mean group difference (two-

sided alpha = 0.05, 80% power). To account for variation in sensitivity analysis, 18 mice were

selected per group. In the experimental paradigm, mice were exposed to either nPM or filtered

air for 5 hours per day, 3 days per week, for 10 weeks (150 cumulative hours). Animals had

free access to food and water, except during nPM/filtered air exposure periods.

Within 72 hours of the last exposure, mice were humanely euthanized with an intraperito-

neal injection of ketamine and xylazine. Mice were transcardially perfused with PBS+heparin

saline solution followed by fixative solution (4% paraformaldehyde in 0.01 mol/L PBS buffer).

Brains were dissected, stored in paraformaldehyde for 24 hours at 4˚C, dehydrated in 70% eth-

anol, and sent to pathology for paraffin embedding. Mice that died during the exposure period

were excluded from analysis based on prospectively established criteria. No mice died or were

euthanized during the exposure period. Humane euthanasia was to be given if any animal

appeared to be in distress during the exposure period per protocol guidelines. Mice were mon-

itored daily. No adverse events occurred. All mice were included in analysis and there were no

outliers.

Nanoparticulate matter collection

nPM, a subfraction of ambient air pollution measuring<200nm in diameter, was collected in

an urban area in Los Angeles primarily impacted by traffic-related emissions [38]. A high-vol-

ume ultrafine particle sampler collected particles at 400L/min on pretreated Teflon filters

(8x10”, PTFE, 2μm pore) using a multiple rectangular (slit) geometry jet conventional impac-

tor to remove particles larger than 200nm [39]. Filters were soaked in Milli-Q deionized water

(resistivity 18.2MW, total organic compounds<10ppb, particle free, endotoxin levels

<1units/mL, endotoxin-free glass vials) for 30 minutes to transfer nPM into aqueous suspen-

sion, and then resuspended through vortexing (5 minutes) and sonication (30 minutes). The

suspension was stored as pooled, frozen stock at -20˚C for over 3 months, according to recom-

mended US Environmental Protection Agency procedures. Limulus amoebocyte assay con-

firmed no endotoxin was detected in the suspensions (LPS<0.02EU/mL). The presence of
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endotoxin in nPM suspensions may expose mice to a potent inflammatory agent during nPM

exposure. This may subsequently skew results and result in a false inflammatory response in

mice. Sterile filters were sham extracted and stored as a control.

Nanoparticulate matter exposure

Mice were exposed to either re-aerosolized nPM or filtered air in sealed, temperature con-

trolled, whole-body exposure chambers. nPM was re-aerosolized using a HOPE nebulizer

(B&BMedical Technologies, Carlsbad, CA) with compressed particle-free filtered air. 15 L/

min of aerosol flow was generated, with 10 L/min drawn through the animal exposure cham-

ber, and the remaining 5 L/min diverted for continuous monitoring of particle size and con-

centration. A scanning mobility particle sizer (SMPS model 3080, TSI Inc., Shoreview, MN)

was used to monitor and maintain an average nPMmass concentration at approximately twice

that of a busy roadway (330 ± 25 μg/m3). nPM was concurrently collected on Teflon and

quartz filters, and numerous assays were used to characterize composition of re-aerosolized

nPM. Pre- and post- weighing of Teflon collection filters was used to determine mass concen-

tration of nPM. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to analyze

PM-bound metals and trace elements. GE Sievers 900 TOC analyzer (GE Sievers, Boulder,

CO) was used to assay the water-soluble organic carbon. Further details regarding the proce-

dures employed for the chemical analysis have been elaborated elsewhere [40].

Immunofluorescence

Paraffin embedded samples were sliced into 5 μm-thick coronal sections from a portion of the

brain located from 1 mm anterior to the bregma to 2 mm posterior to the bregma. These sec-

tions were selected for immunofluorescent staining. Sections were deparaffined and rehy-

drated with graded alcohol solutions ranging from 100–70%. Antigen retrieval was achieved

by heating with Dako antigen retrieval solution, or 10mM sodium citrate. Sections were then

blocked with 5% donkey serum and incubated overnight with primary antibody. Reactive

microglia were identified by double staining with Iba-1 (anti-rabbit, 1:200, Wako) and either

iNOS (anti-mouse, 1:200, BD Biosciences 610329) or arginase-1 (anti-goat, 1:250, Novas

NBP1-36936). Antibodies used included degraded myelin basic protein (dMBP) (anti-rabbit,

1:500, EMDMillipore AB5864) for white matter, oligodendrocyte transcription factor 2

(Olig2) for oligodendrocytes (anti-goat, 1:200, R&D Systems AF2418), and SMI-312 neurofila-

ment (anti-mouse, 1:500, BioLegend 837904) for axons. Sections were then incubated with

appropriate Alexa Fluor secondary antibody (1:200, Thermo Fisher Scientific) and counter-

stained with Hoechst 33342 to identify nuclei (1:5000, Life Technologies). Slides were mounted

with Dako fluorescent mounting media and coverslipped.

The corpus callosum is the largest white matter commissure connecting the two cerebral

hemispheres which plays a causal role in maintaining interhemispheric functional connectivity

in humans [41]. Given its size and functional importance in humans, the corpus callosum was

selected as the primary area of interest in these experiments. The medial corpus callosum was

visualized with BZ-9000 fluorescent microscopy (Keyence, NJ) at 400x. For dMBP immunoflu-

orescence, the optic tract and internal capsule were imaged in addition to the medial corpus

callosum. Olig2 positive cells, Iba-1 positive cells, and cells that co-localized Iba-1 and either

iNOS or arginase-1 (Arg) were counted and recorded. Mean fluorescent densities of dMBP

and SMI-312 neurofilament were quantified. For each outcome measure, one section per ani-

mal was used, and values from the right and left medial corpus callosum were averaged. For

assessment of dMBP immunofluorescent density, values from the right and left internal cap-

sule, optic tract, and medial corpus callosum were averaged. Two independent, blinded
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observers performed the analysis, and scores were averaged to calculate one value per animal.

Image analysis was performed using Image J software (NIH), and all protocols adhered to

Image J user guide.

Statistical analysis

All analyses were performed by investigators blinded to the exposure cohort. Tests for normal-

ity and homoscedasticity were performed. All data sets were normally distributed and had

equal variance. Group means of filter and nPM were compared using two-tailed unpaired stu-

dent’s t-tests. Pearson’s correlation coefficients were calculated to evaluate the relationships

between microglia cell counts and white matter immunofluorescent density. The Grubb’s test

(alpha = 0.05) was used to study outliers. No outliers were identified. Statistics were performed

using GraphPad Prism software. Data are presented as mean ± standard deviation. Alpha of

less than 0.05 is used to indicate statistical significance.

Results

nPM composition

nPM composition was analyzed to determine the exposure aerosol size and chemical composi-

tion associated with the present study’s results. During the 150 hours of exposure, the average

mass concentration was 330 ± 25 μg/m3, and the average particle number concentration

(PNC) was 1.6 (±0.3) � 105 particles/cm3. Total organic carbon was the most predominant

chemical species, accounting for 68% of total mass. The mass fractions of each of the trace ele-

ments and metals are listed in Table 1. The size distribution of the exposure aerosol is pre-

sented in Table 2. According to the table, the mode diameter is around 50 nm which is typical

of particulate matter in the urban areas impacted by traffic emissions [42, 43].

Microglial response

Microglial reactivity following nPM exposure was assessed using histological analysis. A

1.3-fold increase in Iba-1 positive cells was demonstrated in the corpus callosum of mice

exposed to nPM (433.13±42.92, n = 17) when compared to those exposed to filtered air

(341.14±44.31, n = 18) (p<0.0001). iNOS-expressing microglia were increased by 2.2-fold in

the corpus callosum of mice exposed to nPM (212.58±51.19, n = 17) when compared to filtered

air (97.85±30.30, n = 18) (p<0.0001) (Fig 1). There was no significant difference in the number

of arginase-expressing microglia in the corpus callosum of mice exposed to nPM and filtered

air (nPM: 86.05±28.69, n = 18; filter: 89.13±24.54, n = 18; p = 0.73) (Fig 1).

Table 1. Mass fraction of the elements and metals (ng/μg PM) during exposures.

Species Mean Standard deviation Species Mean Standard deviation

Na 36.88 0.46 Mg 10.34 0.02

Al 8.85 0.04 S 37.69 0.27

K 6.67 0.07 Ca 33.28 0.35

Ti 0.35 0.04 V 0.04 0.00

Cr 0.16 0.00 Mn 0.33 0.00

Fe 8.65 0.07 Ni 0.26 0.01

Cu 0.58 0.01 Zn 2.98 0.02

Ba 0.75 0.01 Pb 0.11 0.00

https://doi.org/10.1371/journal.pone.0253766.t001
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White matter injury and axonal degradation

nPM-mediated white matter and axonal injury were quantified in the corpus callosum. Immu-

nohistochemistry was performed for the markers dMBP and Olig2 to assess for myelin and oli-

godendrocyte damage, respectively. Olig2 is a transcription factor expressed in all

oligodendrocytes, including oligodendrocyte precursor cells (OPCs) and mature oligodendro-

cytes [44]. Histochemical analysis was performed on the pan-axonal neurofilament marker

SMI-312 to assess for axonal injury.

Mice exposed to nPM had significant white matter injury and axonal degradation in the

corpus callosum. dMBP immunofluorescent density was increased by 1.4-fold in the corpus

callosum of mice exposed to nPM (8.83±2.28, n = 18) compared to filtered air (6.45±1.22,

n = 18) (p<0.001) (Fig 2). Oligodendrocyte cell counts were decreased by 1.16 fold in the cor-

pus callosum of mice exposed to nPM (678.6±88.17, n = 12) compared to filtered air (810.6

±147.7, n = 12) (p<0.05). Axonal neurofilament marker SMI-312 immunofluorescent density

was decreased by 1.13 fold in the corpus callosum of mice exposed to nPM (22.57±2.37,

n = 12) compared to filtered air (25.85±3.39, n = 12) (p<0.05)(Fig 2).

To provide a more comprehensive assessment of white matter injury, nPM-mediated white

matter neurotoxicity was assessed in the internal capsule and optic tract with dMBP histo-

chemical analysis. dMBP immunofluorescence density was increased by 1.5-fold in the inter-

nal capsule of mice exposed to nPM (27.5±2.82, n = 6) compared to filtered air (18.0±5.76,

n = 6) (p<0.01). dMBP immunofluorescence density was not significantly increased in the

optic tract of mice exposed to nPM (32.7±11.86, n = 6) compared to filtered air (30.3±3.97,

n = 6) (p = 0.65) (Fig 2).

Correlation of microglial reactivity and myelin injury

The association between reactive microglia and myelin injury was investigated to determine if

microglia may influence myelin injury. Iba-1 positive cell count in the corpus callosum was

positively correlated with dMBP immunofluorescent density (r(33) = 0.438, p = 0.009)

(Fig 3A). iNOS-expressing microglia cell count was positively correlated with dMBP immuno-

fluorescent density (r(33) = 0.445, p = 0.007)(Fig 3B). Arginase-expressing microglia cell count

was not correlated with dMBP immunofluorescent density. Iba-1 positive cell count was posi-

tively correlated with iNOS-expressing microglia cell count (r(33) = 0.560, p<0.001) (Fig 3C).

Discussion

Our data demonstrates that ten weeks of nPM exposure causes white matter injury, axonal

damage, and a reactive microglial response in the corpus callosum of adult male mice.

Increases in total microglia counts were noted in the nPM-exposed cohort and higher micro-

glial cell counts were associated with greater burden of myelin injury in individual mice.

Higher cell counts of pro-inflammatory iNOS-expressing microglia were observed in the

Table 2. Size distribution of the aerosol during exposures.

Mean Standard deviation

Mode (nm) 53.3 3.9

Median (nm) 55.2 0.6

Mean (nm) 68.0 0.7

Geometric mean (nm) 55.9 0.5

Geometric standard deviation 1.8 -

https://doi.org/10.1371/journal.pone.0253766.t002
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Fig 1. nPM exposure results in an inflammatory microglia response in the corpus callosum. (A) Iba-1+iNOSmicroglia in the
corpus callosum of mice exposed to filtered air and nPM, with representative image of a positive cell at high magnification. (B) Iba-1
+Arg microglia in the corpus callosum of mice exposed to filtered air and nPM, with representative image of a positive cell at high
magnification. (C) Iba-1 positive microglia cell counts were significantly increased in the corpus callosum of mice exposed to nPM
(n = 17) compared to filtered air (n = 18) (p<0.0001). (D) iNOS positive microglia cell counts were significantly increased in the
corpus callosum of mice exposed to nPM (n = 17) compared to filtered air (n = 18) (p<0.0001). (E) Arginase-1 positive microglia cell
counts were not significantly different in the corpus callosum of mice exposed to nPM (n = 18) compared to filtered air (n = 18)
(p = NS). Data presented as mean ± standard deviation. Scale bars represent 10 μm. Error bars represent standard deviation. ����

signifies p<0.0001.

https://doi.org/10.1371/journal.pone.0253766.g001
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corpus callosum of nPM-exposed mice while no differences in anti-inflammatory/ homeo-

static arginase-expressing microglia were detected.

nPM exposure may induce white matter injury

Human studies suggest that white matter may be particularly susceptible to air pollution-

induced neurotoxicity (specifically PM2.5) across age ranges. Prenatal exposure to elevated lev-

els of PM2.5 is associated with decreased corpus callosum volumes in children [45]. Both chil-

dren and dogs exposed to high levels of ambient air pollution in Mexico City demonstrated

Fig 2. nPM exposure results in myelin injury and axonal damage in the corpus callosum. (A) dMBP in the corpus callosum of mice exposed to filtered air and nPM.
Analysis was performed on both right/left sides. Right side location is marked in C. (B) dMBP immunofluorescent density was significantly increased in the corpus
callosum of mice exposed to nPM (n = 18) compared to filtered air (n = 18) (p<0.001). (C) Representative images of regions analyzed (Top: Right side corpus callosum
is marked. Bottom: Right side internal capsule and left side optic tracts are marked). Analysis was performed on both right and left sides. (D) dMBP in the internal
capsule of mice exposed to filtered air and nPM. Analysis was performed on both right/left sides. Right side location is marked in C. (E) dMBP immunofluorescent
density was significantly increased in the internal capsule of mice exposed to nPM (n = 6) compared to filtered air (n = 6) (p<0.01). (F) dMBP in the optic tract of mice
exposed to filtered air and nPM. Analysis was performed on both right/left sides. Left side location is marked in C. (G) dMBP immunofluorescent density was not
significantly different in the optic tract of mice exposed to nPM (n = 6) compared to filtered air (n = 6) (p = 0.65). (H) Oligodendrocytes in the corpus callosum of mice
exposed to filtered air and nPM. (I) Oligodendrocyte cell counts were significantly decreased in the corpus callosum of mice exposed to nPM (n = 12) compared to
filtered air (n = 12) (p<0.05). (J) SMI-312 in the corpus callosum of mice exposed to filtered air and nPM. Analysis was performed on both right/left sides. (K) SMI-
312 immunofluorescent density was significantly decreased in the corpus callosum of mice exposed to nPM (n = 12) compared to filtered air (n = 12) (p<0.05). Data
presented as mean ± standard deviation. Scale bars represent 10 μm. Error bars represent standard deviation. �signifies p<0.05, ��signifies p<0.01, ��� signifies p
<0.001.

https://doi.org/10.1371/journal.pone.0253766.g002
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pre-frontal white matter pathology (and cognitive deficits in the children) when compared to

those who resided in areas with lower levels of pollution [3, 21]. In the Women’s Health Initia-

tive Memory Study (WHIMS), increased estimated exposure to fine particulate matter

(<2.5 μm) was associated with decreased white matter volumes on MRI [20, 46]. Region of

interest analysis specifically demonstrated white matter volumetric changes in the corpus cal-

losum and frontal/ temporal lobes [20].

Experimental studies examining the relationship between toxic exposures and white matter

pathology have noted similar associations [18, 19, 47]. Further, these studies suggest that white

matter damage may be mediated by neuroinflammation [3, 14, 19]. Young female mice

exposed to 150 hours of traffic-related air pollution (TRAP, nanoparticulate matter<0.2 μm

Fig 3. Microglial reactivity is correlated with myelin injury in the corpus callosum. (A) Iba-1 positive cell count was positively correlated with dMBP
immunofluorescent density (r(33) = 0.438, p = 0.009). (B) iNOS-expressing microglia cell count was positively correlated with dMBP immunofluorescent
density (r(33) = 0.445, p = 0.007). (C) Iba-1 positive cell count was positively correlated with iNOS-expressing microglia cell count (r(33) = 0.560, p<0.001).

https://doi.org/10.1371/journal.pone.0253766.g003
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diameter) had increased Iba-1 integrated density, with associated neurite atrophy, increased

TNFα mRNA, and decreased myelin basic protein in the hippocampus [19]. Pathological

changes in myelin sheaths have been observed in the cortex of rats exposed to intratracheal

PM2.5 (<2.5 μm) with greater myelin disorganization after longer exposure periods [18]. Apo-

ptotic and reactive microglia and astrocytic cells were seen in the white matter of dogs in a

highly polluted area of Mexico City [47].

Particulate matter- induced white matter injury is likely dependent on exposure duration.

Our study found that adult male mice exposed to 10 weeks (150 hours) of nPM demonstrated

significant myelin and oligodendrocyte damage in the corpus callosum, as evidenced by

increased dMBP immunofluorescent density and decreased oligodendrocyte cell counts. In

the same experimental model, 45 hours of nPM exposure resulted in inflammatory and oxida-

tive stress responses in the olfactory bulb and olfactory epithelium, while other brain regions,

such as the cortex and cerebellum, were affected later in the time course [15]. Taken together,

this data suggests that an extended exposure may be required to cause injury in post-olfactory

regions of the brain, such as the corpus callosum. Further, the present study suggests that

nPM-mediated white matter injury may vary throughout cerebral white matter tracts. We

demonstrated that chronic nPM exposure induced myelin injury in the corpus callosum and

internal capsule of adult mice. nPM exposure did not induce white matter injury in the optic

tract. However, the sample size was small (n = 6/group), which may have influenced results.

nPM exposure may produce neurite dysfunction

Experimental and in-vitro studies have suggested that nPM exposure may result in neurite

dysfunction. nPM exposure in female EFAD and C57BL/6 mice resulted in selective hippo-

campal CA1 neurite atrophy [8, 19]. Microglia-derived TNF-α may mediate this neurite dys-

function. nPM-exposed microglial cultures exhibited an increase in microglia-derived TNF-α,
which subsequently inhibited neurite outgrowth [48]. Data from the present study suggests

that nPM exposure results in myelin injury and detachment of myelin from axons in the cor-

pus callosum. Subsequently, this separation may contribute to axonal degradation as demon-

strated by decreased neurofilament SMI-312 immunofluorescent density.

Microglial response to nPM exposure

It is well recognized that air pollution exposure induces inflammation and oxidative stress in

the central nervous system [3, 13–17]. Microglia play a critical role in this response, and may

directly contribute to white matter injury [14, 15, 19]. Previous studies demonstrated both

increased numbers of microglia and reactive morphologic alterations in response to particulate

matter exposures [14, 15]. We have demonstrated that this microglial response can occur in

the absence of astrocytic changes [14]. Based on this data, we focused our experiments on the

microglial response to nPM in the current study and examined proinflammatory and homeo-

static phenotypes by double staining.

Microglial response to injury

In response to injury, microglia undergo rapid alterations in gene expression, function, and

morphology [25, 26]. Prior studies have characterized microglia into either pro-inflammatory,

or anti-inflammatory phenotypes [28]. A biphasic microglial response has been described in

experimental models of central nervous system injury. Miron et al. injected lysolecithin into

the corpus callosum of mice to induce focal demyelination, and characterized the microglial

response at post-lesion day 3, 10, and 21 [29]. An initial increase in the inflammatory iNOS-

expressing phenotype was observed. This was followed by a transition to the anti-
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inflammatory arginase-expressing phenotype, concordant with re-myelination at day 10 [29].

A divergent microglial response was similarly noted in mice that had undergone spinal cord

injury [49]. Gene expression studies and histochemical analyses demonstrated that inflamma-

tory iNOS-expressing microglia rapidly increased post-injury and persisted for up to 1 month.

Anti-inflammatory microglial gene expression changes, however, were transient, and returned

to pre-injury levels within one week [49]. Increasing evidence suggests that microglia may

polarize into inflammatory and anti-inflammatory phenotypes after ischemic stroke. This

polarization may contribute to infarct evolution and healing [26]. In an experimental murine

stroke model, microglia demonstrated an anti-inflammatory arginase-expressing phenotype

early in the post-ischemic period followed by an inflammatory iNOS-expressing phenotype

[37].

The polarization to an inflammatory subtype may result from neuronal death, and subse-

quent release of toxic factors, which further contribute to the progression of ischemic damage

[37]. Although this microglial nomenclature is limited to two phenotypes (inflammatory/anti-

inflammatory), it broadly describes a range of cellular response. Research continues to further

characterize nuances of the microglia response and recognizes that there may be multiple sub-

types of surveillance, reactive, pro-inflammatory and anti-inflammatory microglia [28].

In the studies discussed above, the neurotoxic injury was acute. However, nPM exposure

was continuous and persisted across ten weeks in our experimental paradigm. Microglial reac-

tivity was analyzed by histochemical staining at the end of the study period. Increases in total

and pro-inflammatory iNOS-expressing microglia were noted in the corpus callosum of nPM-

exposed mice. There was no difference in anti-inflammatory arginase-expressing microglia

between groups. This is likely due to the sustained nature of the exposure, which does not

allow for a distinct recovery period.

iNOS expression in microglia

Reactive microglia release neurotoxic substrates that contribute to inflammation and oxidative

stress [28, 48, 49]. Studies suggest that iNOS expression is important in the microglial inflam-

matory response to nPM exposure [15]. We therefore selected iNOS as a marker of pro-

inflammatory microglia in our study. iNOS produces large quantities of nitric oxide (NO),

which is neurotoxic in excess [50]. Unlike other forms of nitric oxide synthase (NOS), such as

endothelial NOS (eNOS), iNOS is not constitutively expressed [50, 51]. In response to injury,

microglia can upregulate iNOS expression. NF-kB and STAT1 are transcription factors that

are implicated in the microglial inflammatory response and can induce iNOS expression [52,

53]. In turn, iNOS production may contribute to the synthesis of inflammatory factors, includ-

ing IL-6, TNFα, and CD14 [51, 54, 55].
The iNOS pathway in microglia has been implicated as a potential mechanism by which

inflammatory neurodegeneration occurs [52, 56]. Kigerl et al. demonstrated that conditioned

media from inflammatory iNOS-expressing microglia, but not anti-inflammatory arginase-

expressing microglia, was toxic to neurons due to release of oxidative factors [49]. In our

study, we found that increasing numbers of microglia, and specifically iNOS-expressing

microglia, were associated with the extent of corpus callosum myelin injury.

Arginase-1 expression in microglia

We selected arginase as a marker of anti-inflammatory microglia with potential neuroprotec-

tive capacity [30, 31, 54]. Arginase-1 is an enzyme that converts arginine into ornithine and

urea. The resulting polyamines are necessary for tissue remodeling and cell proliferation [54,

57]. The overexpression of arginase-1 in microglia can decrease iNOS and NO expression,
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thereby reducing iNOS-mediated neuroinflammation [54, 57]. Cherry et al. demonstrated that

arginase-1 positive microglia were involved with Aß plaque clearance during sustained neu-

roinflammation in a murine model [31]. Further, neuronal survival was associated with the

number of arginase-1 positive microglia in a murine model of ischemic stroke [30].

Limitations

There are several potential limitations in this study. Our study was conducted on exclusively

male mice. Estrogen may influence microglial polarization, as well as protect against white

matter injury [58–62]. In in-vitro studies, BV2 cells and primary cerebral cortex microglia

adopted an inflammatory phenotype in the setting of hypoxia. Simultaneous administration of

estrogen partially prevented this shift to an inflammatory phenotype [60–62]. The present

study was unable to investigate the sex differences of nPM exposure due to sample size limita-

tions. The pro-inflammatory/ anti-inflammatory classification may be oversimplified. These

subtypes represent the extremes of a spectrum of intermediate microglia phenotypes. How-

ever, the pro-inflammatory/ anti-inflammatory dichotomy remains useful to understand the

broad response of microglia throughout the stages of central nervous system injury [28]. All

endpoints were assessed at the same time point. While an association between reactive micro-

glia and white matter injury is demonstrated, we cannot describe the time-course of events

and determine the causes of white matter injury. It is possible that nPM-mediated demyelin-

ation may induce an inflammatory microglial response. This microglial response may then

induce neuroinflammation and further contribute to white matter neurotoxicity.

Conclusion

Our results indicate that subacute exposure to nanoscale particulate matter can result in white

matter injury in adult male mice. Microglial response and polarization towards the pro-

inflammatory, iNOS-expressing phenotype may play an important role in this process. These

findings suggest that reactive microglia may be relevant to interactions between air pollution

and neurocognitive disease.
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