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Abstract—High-index-contrast, wavelength-scale structures are
key to ultracompact integration of photonic integrated circuits.
The fabrication of these nanophotonic structures in silicon-on-in-
sulator using complementary metal–oxide–seminconductor
processing techniques, including deep ultraviolet lithography, was
studied. It is concluded that this technology is capable of com-
mercially manufacturing nanophotonic integrated circuits. The
possibilities of photonic wires and photonic-crystal waveguides
for photonic integration are compared. It is shown that, with
similar fabrication techniques, photonic wires perform at least an
order of magnitude better than photonic-crystal waveguides with
respect to propagation losses. Measurements indicate propagation
losses as low as 0.24 dB/mm for photonic wires but 7.5 dB/mm for
photonic-crystal waveguides.

Index Terms—Nanophotonics, photonic crystal, waveguides, sil-
icon-on-insulator (SOI).

I. INTRODUCTION

I
NTEGRATION of a multitude of photonic functions onto

a single chip can bring the same advantages to photonics

as what integration has done for microelectronics: a serious

reduction of costs through high-yield wafer-scale processes,

increased performance, compact components with complex

functionality, etc. In photonic integrated circuits (PICs) on-chip

integration has the added benefit of automatically meeting

the critical alignment tolerances of subcomponents through

the lithographic processes. This reduces the need for active

alignment methods, which are notorious for dominating the

cost of discrete optoelectronic components. Today’s photonic

components, however, are typically too large to allow much

integration. Many components have a length scale of several
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hundred micrometers to several millimeters and, in some

cases, even several centimeters, and this is not only true for

active functions, but also for simple passive components such

as filters, (de)multiplexers, and even simple interconnecting

waveguides with bends, couplers, and splitters.

In many cases, these large dimensions are needed because

one uses waveguides with a low refractive index contrast. By

increasing this index contrast, the confinement can be improved,

but this also means that the waveguide core should be reduced

in size to keep the waveguide single mode. Then, however, the

geometrical features not only become very small but have to be

very accurately fabricated, with an accuracy in the range of 1 to

10 nm. Therefore, we can call these waveguides nanophotonic

waveguides. To confine light in a nanophotonic waveguide, one

can use total internal reflection, as in conventional waveguides,

creating so-called photonic wires. However, it is also possible

to use a high-contrast periodic structure, a photonic crystal, to

confine light by the photonic bandgap (PBG) effect [1], [2].

A consequence of the higher lateral index contrast is that

the waveguides become more sensitive to scattering at rough-

ness on the core–cladding interface [3]. Therefore, high-quality,

high-resolution fabrication tools are required for these nanopho-

tonic waveguides. For research purposes, nanophotonic com-

ponents are traditionally fabricated using e-beam lithography.

While this is a very accurate technique, it is a serial writing

process, making it slow and unsuitable for mass fabrication. Al-

ternatively, conventional optical lithography, with illumination

wavelengths down to 300 nm, is used for the fabrication of cur-

rent photonic integrated circuits (ICs) but lacks the resolution

to define dense nanophotonic structures like photonic crystals

and photonic wires. Deep ultraviolet (UV) lithography, the tech-

nology used for advanced complementary metal–oxide–sem-

inconductor (CMOS) fabrication, offers both the required res-

olution and the throughput needed for commercial applications.

However, technology development for 248, 193, and recently

157 nm is driven by the CMOS industry, and processes are there-

fore not always suited for nanophotonic structures.

In this paper, nanophotonic waveguides will be demonstrated

in silicon-on-insulator (SOI) fabricated with deep UV lithog-

raphy. For this purpose, standard CMOS fabrication processes

were adopted to improve their capability for fabricating photonic

nanostructures, like photonic crystals and photonic wires. This

fabrication process is described in detail in Sections II–V. A

number of nontrivial obstacles that had to be overcome in order

to migrate the process from CMOS to nanophotonics are also

0733-8724/$20.00 © 2005 IEEE
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discussed. Then, a number of fabricated waveguide components

and measurements of the propagation losses are discussed in Sec-

tion VI and VII. Finally, Section VIII will offer some examples

of other nanophotonic structures fabricated with this technique.

II. SOI NANOPHOTONIC WAVEGUIDES

In nanophotonic integrated circuits, waveguides are an ex-

tremely crucial component. Not only are they necessary for in-

terconnects, but many functional elements are also based on

waveguides. Therefore, good waveguides are a prerequisite for

further integration.

A. General Properties

For waveguides that guide light through total internal re-

flection, the confinement is largely determined by the contrast

in the refractive index between the waveguide core and the

surrounding cladding. A high refractive index contrast in the

lateral direction (2:1 or higher) makes it possible to confine

the light tightly to the waveguide core. In semiconductor ma-

terial systems, this can be achieved by etching the waveguides

deeper into the semiconductor substrate. However, as the index

contrast increases, the waveguide will support more guided

modes, which is an unwanted effect in most PICs. To obtain a

single-mode waveguide with a high refractive index contrast,

the waveguide’s cross section must be reduced, to the order of

, with the wavelength of the light in vacuum, and

the refractive index of the waveguide core. For very high

contrasts, like semiconductor to air or

semiconductor to silica , waveguides have widths

smaller than 500 nm, with features that can be as small as 100

nm when operating at telecom wavelengths between 1.3 and 1.6

m. The use of the high refractive index contrast implies that

the geometrical features not only become very small (100–500

nm) but also have to be very accurately fabricated, sometimes

down to 1 nm.

There are two techniques to confine light in nanophotonic

waveguides, which are commonly known as photonic wires and

photonic crystals. A photonic wire is basically a conventional

waveguide with a high index contrast and a small cross section,

typically with a width of 300–500 nm. The light is guided by

total internal reflection. The tight confinement allows for com-

pact elements, like sharp bends, corner mirrors [4], and ring res-

onators [5]. However, the performance is limited by the scat-

tering at sidewall roughness, so these waveguides require very

good processing. Alternatively, light can be guided in a pho-

tonic-crystal slab. Photonic crystals are periodic structures with

a high refractive index contrast and a period of the order of the

wavelength of the light in the material [1], [6]. Because of this

strong contrast and the periodicity, photonic crystals have pe-

culiar optical properties, including a PBG [2]. A line defect in

a photonic crystal then effectively creates a waveguide, as the

light cannot leak away into the crystal.

B. Material Choice: SOI

We can use a variety of materials for photonic-crystal slabs,

as long as the refractive index contrast is sufficiently high. Semi-

conductors, with refractive indexes typically larger than 3, are

ideally suited. For the majority of this work, we chose SOI. The

main reasons for this choice are its very good optical properties

at optical fiber communications wavelengths and its compati-

bility with CMOS fabrication processes, which is discussed in

Section III.

SOI consists of a thin silicon layer on top of an oxide cladding

layercarriedonabaresiliconwafer.Withitssiliconcore

and its oxide cladding , it has a high vertical refractive

indexcontrast. Inaddition,both thesiliconandtheoxidearetrans-

parent at telecom wavelengths of 1.3 and 1.55 m.

To reduce leakage of the guided mode in the top layer to the

silicon substrate, we chose an oxide thickness of 1 m [7]. The

thickness of the core was chosen to be 220 nm in order to keep

the slab waveguide single mode for the transverse-electric (TE)

polarization.

C. Photonic Crystals

Photonic crystals are periodic structures with periods of the

order of the wavelength of the light and a very high refractive

index contrast within each period [2], [6]. For telecommunica-

tions, where infrared light with wavelengths in the range 1.3–1.6

m are used, the photonic-crystal period is typically 0.5 m

or less. The periodicity can extend in one, two, or three dimen-

sions. Because of this high refractive index contrast, light will

be scattered very strongly throughout the structure, and the scat-

tered waves from each period can either add up or cancel out,

depending on the wavelength of the light. For a well-chosen ge-

ometry and a unit cell with sufficiently high refractive index con-

trast, the scattering from each cell can interfere in such a way

that all light inside the crystal within a certain wavelength range

is canceled out, so no propagation is possible in the structure [1],

creating a PBG.

As already mentioned, a defect can introduce localized states

in the PBG, binding the light in a specific location in the crystal.

In a line defect, light has no other option than to follow the de-

fect, which defines a perfect waveguide. The light cannot leak

away through the surrounding photonic crystal because of the

PBG. Therefore, if reflection is controlled, bends in such pho-

tonic-crystal waveguides can, in principle, be very abrupt.

Although three-dimensional (3-D) photonic crystals can con-

trol light in all directions, they are very difficult to fabricate for

optical and infrared wavelengths. An alternative to full 3-D pho-

tonic crystals is the combination of a conventional waveguide

structure and a photonic crystal. Here, a two-dimensional (2-D)

photonic crystal is created by etching holes or rods in a semicon-

ductor layer structure. In the horizontal direction, the photonic

crystal controls the flow of light, while in the vertical direction

the light is confined in the layer with the higher refractive index.

These photonic crystal slabs also provide 3-D control of light

while they are much easier to fabricate, using lithography and

etching techniques. The bottom row of Fig. 1 shows examples

of a single-line-defect waveguide (a so-called W1 waveguide)

in a photonic-crystal slab made in SOI. Unlike 3-D photonic

crystals, the confinement in the vertical direction is not neces-

sarily perfect, which can result in out-of-plane scattering and

can cause leakage of light [8], [9].

When the concept of photonic-crystal waveguides was intro-

duced, the design of a waveguide seemed as simple as removing
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Fig. 1. Nanophotonic waveguides in SOI. Top: Photonic wires. Bottom: W1
photonic-crystal waveguide. Left: Deep ething. Right: Silicon-only etch.

a row of holes, creating a so-called W1 waveguide. While this

design has indeed a guided-waveguide mode, its properties are

ill-suited for pure waveguiding. A simple W1 waveguide in SOI

is not a very good waveguide. It is not single mode, and the

guided modes have a narrow bandwidth below the light line.

However, by removing the oxide cladding in SOI, and thus cre-

ating a membrane, the light line of the cladding is shifted to

higher frequencies. In this way, a W1 waveguide with sufficient

bandwidth is possible, and waveguides with very low propaga-

tion losses (less than 1 dB/mm) have been demonstrated both in

silicon membranes [10], [11] and in GaAs membranes [12].

Without oxide removal, Notomi et al. have already demon-

strated low propagation losses by reducing the optical volume

of the core. In such a W0.7 waveguide, the width of the wave-

guide has been decreased by shifting the lattice regions on both

sides [11], [13], making the waveguide single mode. However,

the shifted lattice makes it more difficult to implement bends

or splitters. Alternative ways to reduce the optical volume of

the waveguide core without shifting the lattice, like introducing

defect holes or a defect trench, or increasing the size of the

border holes, invariably introduce additional sidewall surface,

increasing the possibility of scattering at sidewall roughness [3].

Apart from pure waveguiding, photonic-crystal slabs can also

be used for other purposes. One significant aspect of periodic

structures is the appearance of wavelength regions with a very

flat dispersion curve, and therefore a low group velocity, espe-

cially near the band edges [14]. In these regions, light is coupled

strongly between the backward- and forward-propagating direc-

tion and travels slowly through the waveguide. If the waveguide

has active properties, like gain or nonlinear effects, the interac-

tion time of the light with the material is significantly enhanced

when using slow waves.

D. Photonic Wires

The principle of photonic wires is the same as of conventional

optical waveguides: light is confined in a narrow core of high

index material surrounded by a cladding of lower index mate-

rial. For photonic wires, the index contrast between core and

cladding is very high. This gives rise to very strong confinement,

which makes it possible to make very sharp bends without radi-

ation losses in the bend. However, there is no PBG to stop light

from radiating away once it escapes the confinement of the wire.

Photonic wires are not periodic, and therefore their disper-

sion relation is far less exotic than photonic crystals. This makes

them more predictable and easy to design. Moreover, they are

broad-band with a fairly linear dispersion, making them very

well suited for waveguiding.

E. Deep or Shallow Etching

When we want to fabricate nanophotonic components in SOI,

we can choose between two etch procedures, each with its merits

and drawbacks. Fig. 1 illustrates both procedures for a photonic-

crystal slab and a photonic wire. When we etch both the top sil-

icon and the underlying oxide, we increase the refractive index

contrast even more, because we replace the oxide

with air . In addition, the bottom of the photonic-crystal

holes are far removed from the guided mode, eliminating a pos-

sible source of scattering. An additional advantage is that the

vertical layer structure becomes more symmetric, reducing the

interaction between TE and transverse-magnetic (TM) modes.

However, as we will illustrate in Section III, this approach in-

troduces significantly more sidewall roughness, which is a prin-

cipal source of propagation losses.

When listing all these advantages of deep etching, is there any

reason to etch only the silicon, as illustrated in the right part of

Fig. 1? When we etch only the silicon, the sidewall roughness

due to etching can be significantly reduced. In addition, in order

to eliminate the interaction between TE and TM, oxide can be

deposited on top of the silicon core after etching. This deposi-

tion, briefly discussed in Section III, works better with shallow

holes than with deep holes.

A third option is to remove the oxide substrate altogether.

This lowers the refractive index of the lower cladding signifi-

cantly, and increases the design flexibility for photonic-crystal

waveguides. However, this membrane approach has a major

drawback. Because the waveguide structure has to be free-

standing, this can only be used on a limited area. Photonic

crystals, with their interconnected network, are much better

suited for this approach than photonic wires.

F. Conclusion

The reduced size and the high index contrast make the design

of nanophotonic waveguides a nontrivial issue. While photonic

crystals offer a wide selection of strong dispersive properties,

it is not straightforward to design a simple waveguide. On

the other hand, the dispersive properties, together with the

strong confinement, make the structures very promising for

wavelength-selective functionality.

For simple waveguides, photonic wires are better suited.

Their behavior is very predictable, and it is easy to make

compact elementary waveguide components, like bends and

splitters. However, wires are sensitive to sidewall roughness,

more so than photonic crystals. Therefore, very good fabrica-

tion quality is needed.
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III. FABRICATION WITH ADVANCED CMOS PROCESSES

In this section, we will describe the fabrication of nanopho-

tonic waveguides with deep UV lithography and dry etching.

These techniques are based on advanced CMOS processes, like

the ones used in the high-end semiconductor industry.

A. Differences Between CMOS and Nanophotonic Structures

While deep UV lithography is capable of printing features

with the dimensions of photonic wires and photonic crystals,

there are some significant differences between nanophotonic

components and typical CMOS components: CMOS compo-

nents are layered structures. Each layer contains only critical

structures of a certain type (transistor gates, contact holes, etc.),

so the process can be optimized for each layer individually. In

planar nanophotonics, all structures are fabricated on the same

level, and small alignment tolerances require that all structures

are fabricated in the same lithography step. Photonic crystals

and photonic wires are very different structures, and the optimal

process conditions differ between them. Therefore, process op-

timization for nanophotonic components will have to make dif-

ferent compromises than for CMOS structures. As we will see

further, it is not straightforward to fabricate both photonic wires

and photonic crystals on target at the same time.

In addition, the types of structures can differ significantly. For

example, the optimal photonic-crystal lattice for TE polariza-

tion is a triangular lattice of air holes where the holes have a

large fill factor, i.e., the hole diameter is a significant fraction of

the pitch [2]. We call these superdense lattices, i.e., where the

hole diameter is larger than the spacing in between. This type

of structure is not used in electronics, where the best equivalent

in CMOS is a 1:1 dense (i.e., hole diameter equal to the spacing

in between) array of contact holes used to connect the different

metal interconnect layers. However, these contact holes are typ-

ically arranged in a square lattice, and the hole diameter never

exceeds half of the pitch.

In addition, the requirements for sidewall roughness are very

different in nanophotonics and in CMOS. In the former, all

sidewalls should be kept smooth to reduce scattering, while in

CMOS structures, the effect of line-edge roughness is felt only

in narrow lines in the electrical resistance of the line. This has

only recently become an issue for CMOS fabrication.

B. SOI Wafers

Apart from being a good material for photonic waveguides,

SOI is also compatible with CMOS processes and commer-

cially available in 200 mm wafers. High-quality SOI wafers

are typically fabricated using wafer bonding. For our experi-

ments, we used commercial wafers from SOITEC fabricated

with the UNIBOND process [15]. First, a wafer is oxidized to

create the buried oxide layer. Then, hydrogen ions are implanted

at a well-controlled depth, creating a Smart Cut. This wafer is

bonded to a clean silicon wafer. The substrate of the first wafer

can now be separated along the Smart Cut interface and then

annealed and polished.

First experiments with standard UNIBOND wafers (a buried

oxide of 400 nm and a top silicon layer of 205 nm) showed that

the oxide was too thin, causing optical leakage to the substrate

Fig. 2. Process flow for the fabrication of nanophotonic structures in SOI. The
third and fourth row illustrate two options for the etching of the structures, either
through both silicon and oxide, or only the silicon layer. (a) Bare wafer, (b)
resist coating and soft bake, (c) top AR coating, (d) exposure, (e) postexposure
bake, (f) development, (g) silicon etch, (h) oxide etch, (i) resist strip, (g’) resist
hardening, (h’) silicon etch, and (i’) resist strip.

[7]. Therefore, we switched to custom-made wafers with a sil-

icon thickness of 220 nm and an oxide layer of 1 m. This buffer

thickness provides adequate isolation from the substrate for the

TE polarization.

C. Overview of the Fabrication Process

The fabrication process with deep UV lithography is sim-

ilar to that of conventional optical projection lithography. The

basic process flow is illustrated in Fig. 2. First, the photoresist

is coated on top of a 200-mm SOI wafer and then prebaked. On

top of the resist, an antireflective (AR) coating is spun to elimi-

nate reflections at the interface between the air and the photore-

sist. These reflections could give rise to standing waves in the

photoresist, and therefore inhomogeneous illumination. Then,

the wafer is sent to the stepper, which illuminates the photore-

sist with the pattern on the mask. As a 200-mm wafer can con-

tain many structures, the die with the pattern is repeated across

the wafer. This can be done with varying exposure conditions,

which makes it possible to do detailed process characterization.

After lithography, the resist goes through a postexposure bake

and is then developed. For our experiments, we used Shipley

UV3 resist.

Depending on whether we want the bottom oxide-etched or

not, we can use different processes. If we want to etch the un-

derlying oxide, the developed photoresist can be used directly



BOGAERTS et al.: NANOPHOTONIC WAVEGUIDES IN SOI 405

as an etch mask (third row of Fig. 2). The top silicon layer and

the oxide are then etched subsequently in different etch cham-

bers but without exposing the structures to the atmosphere in

between the etch processes.

However, to reduce the sidewall roughness, our optimized

fabrication process does not include the oxide etch (bottom row

of Fig. 2). Instead, an additional plasma treatment of the devel-

oped photoresist is needed, called resist hardening, before the

etching (see Section V). Then, the photoresist is used directly

as a mask for the silicon etch. In addition, a number of postpro-

cessing steps are possible, including thermal oxidation or oxide

deposition.

IV. DEEP UV LITHOGRAPHY

For research purposes, e-beam lithography is the workhorse

for the fabrication of photonic nanostructures. Unfortunately,

this technique is not suitable for commercial application. There-

fore, we explored the possibilities of using deep UV lithog-

raphy. For our experiments, we had access to the CMOS fabrica-

tion equipment of IMEC (the Inter University Microelectronics

Center), Leuven, Belgium. Because lithography at a wavelength

of 248 nm is now the mainstream fabrication tool for high-end

CMOS, we chose this wavelength for the majority of our fabri-

cation runs. We used an ASML PAS5500/750 stepper connected

to an automated track for preprocessing (coating and baking)

and postprocessing (baking and developing).

A. Resolution

In optical projection lithography, like deep UV lithography,

the resolution is largely determined by the illumination wave-

length and the numerical aperture (NA) of the projection

system [16]. The most critical structures are the dense periodic

ones, where the smallest period that can be imaged is

given by

NA
(1)

when the first diffraction order of the periodic structure is still

passed through the projection system. The loss of the higher

diffraction orders will result in a fuzzy image. The final quality

of the resist patterns is therefore determined by the threshold

of the photoresist and the exposure dose. For example, when

printing holes, the hole diameter will increase when a larger

exposure energy is used in the stepper. In practice, this means

that with 248-nm lithography and an NA , we can make

structures with a period down to 400 nm.

B. Lithography of Nanophotonic Structures

Early experiments with CMOS masks, discussed in [7], show

how we can use this exposure dose to print holes larger than

originally designed. Using this overexposure, we could print

superdense lattices with a mask containing just 1:1 dense pat-

terns. After these successful tests, masks were designed with

nanophotonic test structures and components. Fig. 3 shows the

feature size of typical nanophotonic waveguide structures as a

function of exposure dose. As we can see, the hole diameters of

Fig. 3. Size of nanophotonic structures as a function of exposure dose. Top:
Triangular lattices of holes with different design pitches and diameters (on the
mask). Designed diameter: Pitch ratio is 0.4 (circles), 0.6 (squares), and 0.8
(triangles). Bottom: Isolated lines with different design linewidth.

the triangular lattices increases with the exposure dose, while

the linewidth of a photonic wire decreases. The range of expo-

sure energies where the structure is still within specification is

called the exposure latitude.

On the other hand, with a given feature size on the mask,

we can print a wide range of feature sizes on the wafer. As the

exposure conditions can be changed by the stepper from die to

die, we can fabricate a wealth of different features on a single

wafer.

C. Combining Lines and Holes

One of the difficulties of fabricating nanophotonic compo-

nents is the requirement to print both photonic wires (isolated

lines) and photonic crystals (superdense lattices of holes) to-

gether in the same lithography step. As we can deduce from the

graphs in Fig. 3, the dose-to-target for lines and holes is quite

different. Therefore, when targeting to fabricate a lattice of holes

correctly, there will always be a bias on the isolated lines, which

will be overexposed and therefore too narrow.

In order to print the lines correctly, a bias needs to be ap-

plied in the design to either the holes or the lines to print both

together on target [7]. Because it is easier to change the design

size of an isolated structure, the bias is best applied to the lines.

For example, at the dose of 25 mJ, where 300-nm holes with

500-nm pitch print correctly, a 50-nm bias needs to be applied

to a 500-nm line to print it correctly. This correction should be

known in advance, because it needs to be applied directly on
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Fig. 4. Example of optical proximity effects. The holes near the
photonic-crystal defect are printed smaller than the holes in the bulk of
the lattice. The lattice pitch is 530 nm.

the mask. With detailed process characterization, we could es-

tablish the correct bias and apply it successfully to subsequent

mask design.

D. Optical Proximity Effects

Photonic crystals are superdense periodic structures with fea-

ture sizes close to the illumination wavelength. This causes the

images of neighboring holes to overlap during lithography. Be-

cause of this, holes in a photonic crystal may interfere construc-

tively and print larger or interfere destructively and print smaller

than semi-isolated holes. In uniform lattices, this effect is not

noticeable, as the illumination energy will be chosen to print

the holes in the lattice on target. However, at the boundaries

of the lattice, or near defects like a waveguide or cavity, some

holes lack neighbors and will therefore print differently than

their counterparts in the bulk of the lattice. This phenomenon

is called optical proximity effect (OPE). An example is given in

Fig. 4: the holes near the line defect are 40 nm smaller than the

holes in the bulk, and in the corner this effect is even worse, with

the corner hole being 70 nm smaller.

The functionality of photonic-crystal waveguides and related

components is largely determined by the holes near the (line)

defects. Fig. 5 illustrates the effect of OPE on the guided mode

of a simple W1 photonic-crystal waveguide. It shows a detail of

the band diagrams of a W1 photonic-crystal slab waveguide in

SOI, with a hexagonal lattice with a 500-nm period and a bulk

hole size of 300 nm. In the left part of Fig. 5, there are no prox-

imity effects at the border holes. The middle and the right part of

the figure show the band diagram of the same structure, but with

the border hole size increased by 10 and 20 nm, respec-

tively. Even for such a small change, the characteristics of the

guided mode change considerably. This can be easily noticed by

the position of the mini-stop band (MSB) between the vertically

odd and even mode. For a change of 10 nm in the border hole,

the MSB center wavelength shifts by almost 20 nm.

Note that proximity effects are not only a problem of optical

lithography. With e-beam lithography, scattering electrons will

also cause proximity effects in closely packed structures. How-

ever, because e-beam lithography is a serial writing process, the

proximity effects just add up, and are therefore easier to model

[17]. With optical lithography and deep UV lithography, the ef-

fect is coherent and more difficult to predict.

As with the line-hole bias, to correct for OPE, the features on

the mask should be altered. This is illustrated in Fig. 6. Holes

Fig. 5. Impact of OPE on the band diagram of a W1 waveguide: The increase
in the diameter of the border hole� causes a significant shift of the guided
modes, which can be observed in the position of the MSB.

Fig. 6. Principle of OPCs for photonic-crystal structures. When uncorrected,
(a) the design on the mask will print the defect holes differently than the bulk
holes (b) due to optical proximity effects. (c) To correct this, the design on
the mask should be altered in advance. The effect in the scanning electron
microscope (SEM) is exaggerated.

near a lattice defect are printed smaller and are therefore en-

larged on the mask. It is evident that a good understanding of

the OPE is necessary to design the structures with optical prox-

imity correction (OPC).

To characterize optical proximity effects and the needed

corrections in photonic crystals, we have designed a mask with

structures consisting of various photonic-crystal waveguides

along with a large number of bends, cavities, and other possible

components. We then repeated this structure on a mask with

many variations of bulk hole sizes, and corrections on corners

and borders. This makes it possible for us to measure the OPEs

and the required corrections directly. Fig. 7 shows the OPEs for

the holes in a 60 bend in a W1 waveguide. Such graphs are an

interpolation from the OPE measured on our test structures and

allow us to apply the necessary OPC on future mask designs.

In practice, this is done numerically instead of visually on the

graph. For new structures, similar data can be measured on our

test structures as the need arises.

V. ETCHING

Following lithography, the structures defined in photoresist

should be transferred to the underlying SOI substrate. As we

have seen, keeping the refractive index of the bottom cladding

as low as possible by etching the holes deep into the buried oxide
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Fig. 7. OPEs for a hexagonal lattice of holes with a pitch of 500 nm. Design
size of the bulk holes is 300 nm, overexposed to 320 nm. The graph shows the
hole size for the border and inner corner holes when a bias (OPC) is applied on
the mask.

yields better optical properties. Another rationale for deeply

etched holes is that the light in the top silicon layer will hardly

feel the bottom of the holes and will not be scattered. However,

as we will show, this deep etching causes substantial sidewall

roughness. After trying several techniques for roughness reduc-

tion, we found that the best results could be achieved by not

etching the oxide altogether.

The etching for the top silicon layer and the underlying

oxide is performed in two separate steps: first the top silicon

layer is etched, and then the underlying oxide. The equipment

used for etching is a LAM A6 platform with four process

modules. For the silicon etch, a TCP9400 module is used with a

Cl /O /He/HBr chemistry. The etch recipe consists of a break-

through etch and a main etch, with different chemistry. After

the silicon etch, the wafer is transferred to an Exelan module

without exposure to the atmosphere. The oxide etch is done

with a CF /O chemistry. The etch depth can be controlled

with the etch time.

First, etching experiments with SOI wafers with a top silicon

layer of 205 nm and an oxide of 400 nm are described in [7].

Because of the limited oxide thickness, we can completely etch

through the oxide cladding, while the sidewalls stay relatively

smooth, even with the deep etch [7].

A. Deep Etching

We then developed a deep-etch process for the wafers with

a thicker oxide buffer. Because the resist is used directly as an

etch mask, only a limited etch depth is possible before the re-

maining resist breaks down. In addition, such deep-etch pro-

cesses for small features in a multilayer substrate are seldom

required in CMOS devices. This made the process development

a difficult task. The left column of Fig. 8 shows structures fabri-

cated with a deep-etch process. The main significant side effect

Fig. 8. Structures fabricated with deep UV lithography. Left: With deep
etching. Right: With silicon-only etch. Top: W1 photonic-crystal waveguide.
Middle: W1 photonic-crystal waveguide with a center trench. Bottom: Detail
of the coupling section between a photonic wire and a ring resonator.

of the deep etching is the appearance of sidewall roughness. For

deeply etched structures, as the photonic wires illustrated in the

bottom left of Fig. 8, the sidewall becomes very irregular. Be-

cause sidewall roughness causes scattering of light as it propa-

gates through the waveguide, this has to be avoided.

B. Roughness Reduction

To reduce the sidewall roughness, one can partially oxidize

the top silicon layer to smooth the roughness. It has already been

shown that thermal oxidation of SOI waveguides can smooth

the sidewalls of both photonic-crystal waveguides [18] and pho-

tonic wires [19]. As the rate of oxidation is well documented and

can be controlled quite accurately with the temperature, this is

a reliable way of reducing roughness.

In Fig. 9 we see an example of a photonic-crystal hole with

different amounts of oxidation. The first impression is that the

oxidation increases the amount of roughness on the sidewalls,

blowing up the existing irregularities. However, because the new

roughness is on an oxide–air interface instead of on a silicon–air

interface, the impact is less dramatic. Although this is hard to

establish experimentally, we can assume that the underlying sil-

icon–oxide interface is smoother, due to the diffuse nature of the

oxidation process. We can also see that the volume of the top

layer increases after oxidation, creating a rounded core layer in

cross section.

While oxidation can improve the roughness in the top silicon

layer, it has little or no effect on the underlying oxide layer.

Therefore, light will still be scattered by the roughness in the

cladding. A solution to that problem would be to remove the

cladding layer, creating a freestanding membrane. While this is

a valid option for small areas of photonic-crystal structures, it is

more difficult to achieve for photonic wires, as the line waveg-

uides are unsupported by the substrate.
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Fig. 9. Photonic-crystal holes with roughness reduction through oxidation.
Top to bottom: with 10, 30, and 50 nm of oxidized silicon. Note that the visible
roughness is now on the interface between the oxide and the air.

C. Silicon-Only Etch

The most obvious approach is to abandon deep etching

altogether and only etch the top silicon layer. By leaving out

the second etch step, the sidewall roughness was drastically

reduced. This can be seen in the right-hand side of Fig. 8. The

residual sidewall roughness of the photonic wire is of the order

of 5 nm or less.

D. Resist Hardening

The silicon-only etch process, however, gives rise to a consid-

erable bias between lithography and etch, i.e., the etched holes

were typically 50–70 nm smaller in diameter than the holes after

lithography. This can be compensated by lithographic overex-

posure for isolated structures, but with the densely packed pho-

tonic-crystal holes, this bias is too large. Experiments with a

resist-hardening plasma treatment showed that we could suc-

cessfully reduce the bias to less than 30 nm. This is sufficiently

small to be compensated by overexposure during lithography.

E. Oxide Deposition

While etching only the silicon can reduce the roughness,

we end up with an asymmetric layer structure. However, we

can make the layer structure symmetric again by adding a

Fig. 10. Cross section of photonic-crystal holes with 500-nm pitch after 5-nm
oxidation and oxide deposition. Note that there are no voids in the deposited
oxide and that the top surface is completely planarized.

top cladding with the same refractive index as the underlying

oxide. After a silicon-only etch, which causes little sidewall

roughness of its own, we do a short thermal oxidation. Then,

we deposit oxide, which makes the structure symmetric in the

vertical direction. This is beneficial as it reduces the coupling

between TE and TM modes.

We used a chemical vapor deposition technique with a

chemistry based on SiO (C H ) (TEOS). With an optimized

process, even deep and narrow holes can be filled without cre-

ating voids. An example is shown in Fig. 10. We can see that the

oxide deposition creates a smooth, planar top cladding and no

artefacts, like voids, in the photonic-crystal holes. A side effect

of this technique is that the SOI structure is sealed from the

outside world. While this can be advantageous for commercial

components, for research purposes it makes close inspection

of the structures with a scanning electron microscope (SEM)

impossible.

VI. CHARACTERIZING PROPAGATION LOSS

To characterize the propagation losses of nanophotonic

waveguides, we measure the transmission of light through

the component as a function of wavelength. The most used

technique for this purpose is the cutback method with end-fire

incoupling.

As a light source, we use a computer-controlled tunable laser

with a wavelength range of 1500–1640 nm. Light is launched

into optical waveguides through a cleaved facet using a lensed

fiber, and the transmitted light is collected at the opposite side

of the sample by an objective.

To facilitate the coupling through a cleaved facet, we used

a standard 3- m-wide (and therefore multimode) ridge wave-

guide. This waveguide is tapered down using a linear adiabatic

taper down to 500 nm, filtering out the spurious higher order

modes. For outcoupling, the reverse structure is used, and the

relevant nanophotonic waveguide is located in between.

The propagation losses can be calculated by measuring the

loss of the light for various lengths of the waveguide. When this

loss (in decibels) is plotted as a function of waveguide length (in

millimeters), the measured points should be on a straight line,

of which the slope is the propagation loss of the waveguide in

deciebels per millimeter.

The loss of a single waveguide can be determined directly

(by measuring the transmitted power), but this approach is sen-

sitive to fluctuations in incoupling and outcoupling. Moreover,
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Fig. 11. Extraction of wire losses from the transmission of a Fabry–Pérot
cavity formed by the incoupling and outcoupling facet. The cavity loss was
measured for different wire lengths. From the slope of the fitted line, the
propagation loss of the wire can be extracted. We did this for different wire
widths w . Top to bottom: w = 400 nm, w = 450 nm, and
w = 500 nm.

the transmission can be wavelength dependent due to cavity ef-

fects in the sample or the measurement setup.

Instead, one can use these cavity effects to extract the losses.

With the end-fire method, a Fabry–Pérot cavity is formed by the

two reflecting cleaved facets of the sample. The transmission

of this cavity will be a periodically peaked function (so-called

fringes). From the ratio between the maximum and the min-

imum of this oscillating function, the losses inside the cavity

can be extracted [20]. The cavity is larger when the nanopho-

tonic waveguide section is longer. This method is independent

of the incoupling efficiency but is only suitable when the losses

inside the cavity are not very high.

VII. MEASUREMENT RESULTS

A. Photonic Wires

Because of their small core and high confinement, photonic

wires are an ideal structure to test the fabrication quality. For the

deeply etched photonic wires, we measured propagation losses

of 34 dB/mm for 500-nm-wide wires and 6 dB/mm for 600-nm-

wide wires. At that width, however, the wires become multi-

mode and unsuitable for nanophotonic ICs.

When we etch only the silicon, matters improve dramatically.

Fig. 11 shows the cavity loss as a function of wire length of

the Fabry-Perot cavity between the incoupling and outcoupling

facet, and this for three different wire widths. The slope of the

fitted line gives us the propagation loss of the photonic wires.

Fig. 12. Mode mixer to excite asymmetric photonic-crystal modes. At the 11
tilt, the ground mode is converted into a 50%=50% combination of the ground
mode and the asymmetric first-order mode.

For 500-nm-wide wires, we now measure 0.24 dB/mm, an im-

provement of 25 times with respect to the deeply etched struc-

tures. When the wire gets narrower, losses increase exponen-

tially, with 0.74 dB/mm for 450-nm wires and 3.4 dB/mm for

400-nm wires. We expect to reduce the losses even more when

we apply a thermal oxidation step to smooth the sidewalls.

B. Photonic-Crystal Waveguides

Photonic-crystal waveguides are more difficult to charac-

terize. There is the additional reflection at the interface with the

wire, and they are more dispersive and sometimes multimode.

In addition, many waveguide designs also have a first-order

guided mode in the PBG. To excite these antisymmetric modes

with our symmetric incoupling spot from the lensed fiber,

we have designed a mode converter. Fig. 12 shows how an

11 abrupt bend in the broad ridge waveguide mixes the even

ground mode into a 50% 50% combination of the ground

mode and the first-order mode. Of course, the incoupling wire

should also be somewhat broader to support both modes.

We have implemented a large number of photonic-crystal

waveguide designs, with different defect size and geometry.

These were implemented with straight incoupling waveguides

to excite the ground mode, and with the 50% mode mixer.

Measurement on the deeply etched structures yielded propa-

gation losses as low as 21 dB/mm for a simple W1 waveguide.

The dominant loss mechanism is sidewall roughness, as the etch

quality of the deeply etched structures is rather poor. Waveg-

uides with different defect geometries invariably had a larger

sidewall surface area, which resulted in even higher propaga-

tion losses.

For the structures with a silicon-only etch, the sidewall rough-

ness is strongly reduced, with a positive effect on the propaga-

tion losses. Fig. 13 shows the propagation losses of a W1 pho-

tonic-crystal waveguide with a lattice pitch 500 nm and

holes of 320 nm. Around 1525 nm, the odd mode is guided and

has a propagation loss of 7.5 dB/mm, which is much lower than

the propagation losses of the deeply etched structures.

Fig. 14 shows another photonic-crystal waveguide, this time

a W1 with little defect holes with a diameter 200

nm. Again, we used the mode mixer for incoupling. For this

structure, we have simulated the exact band structure, and we

can match the regions of low propagation losses exactly to the

guided modes in the band diagram. However, the lowest losses

in this structure are still of the order of 40 dB/mm. This larger

propagation loss is consistent with scattering at the sidewall
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Fig. 13. Propagation losses of a W1 photonic-crystal waveguide with
silicon-only etch. The lattice has a pitch of 500 nm, and the holes a diameter of
320 nm. Around 1525 nm, the asymmetric first-order mode has a propagation
loss of approximately 7.5 dB/mm.

Fig. 14. Propagation losses of a W1 waveguide with small defect holes
matched to the calculated band diagram. We can see that the regions of low
propagation loss match exactly the guided modes below the light line. The
lattice constant a = 500 nm, the hole diameter � in the bulk of the lattice is
320 nm, and the defect hole diameter � = 200 nm.

roughness, as the total amount of sidewall surface is larger due

to the additional defect holes.

VIII. OTHER FABRICATED NANOPHOTONIC STRUCTURES

Apart from straight waveguides, we have made a large va-

riety of components. As an example, we briefly discuss ring res-

onators in photonic wires [21] and surface gratings for coupling

to fibers [22], [23].

A. Ring Resonators

Ring resonators can provide building blocks for a large

number of functional components on a photonic IC, including

various types of filters [5]. A fabricated example of a ring

resonator and a racetrack resonator (i.e., a ring resonator with

a longer coupling section) is shown in Fig. 15. We fabricated

ring and racetrack resonators, symmetrically coupled to straight

input and output waveguides.

Fig. 15. Racetrack and ring resonator with silicon-only etch.

Fig. 16. Fiber coupler gratings in SOI fabricated with a two-step process. The
fiber couplers need another etch depth than the nanophotonic waveguides.

The racetrack resonator in Fig. 15 with a radius 5 m

and a coupling section of 3 m has a quality factor

3000 and an add–drop crosstalk of around 20 dB [21].

The coupling section in a ring resonator is much shorter than

in a racetrack resonator, so the coupling efficiency of the wire

to the ring will be much lower. This translates into a higher

(because the ring loses less light to the wire) but a lower overall

coupling efficiency to the drop port. We have measured ring

resonators with a of 8000 but a drop efficiency of only 1%.

This is discussed in detail in [21].

The most critical feature of these structure is the narrow gap

in the coupling section, which has a very strong impact on the

coupling efficiency. This gap has to be fabricated with very high

precision. However, because of the proximity of the ring and the

straight waveguide, there will be optical proximity effects which

have to be corrected.

B. Waveguide Gratings for Fiber Coupling

Apart from waveguide components, we have also fabricated

gratings on top of waveguides with the purpose of coupling light

from a fiber into a nanophotonic waveguide and back out [22].

Unlike photonic crystals and photonic wires, the fiber couplers

are not etched completely through the top silicon layer. De-

pending on the type of grating and the duty cycle, the optimal

etch depth is between 40 nm and 80 nm. To use the fiber cou-

plers with deeply etched waveguides, the gratings should be fab-

ricated in a separate step, as shown in Fig. 16.

Because deeply etched structures can cause a problem for the

lithography (as the wafer will have too much topography and
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the resist layer will not have a homogeneous thickness), the shal-

lowly etched fiber couplers should be fabricated first. In order to

align both types of structures, we can rely on the alignment tools

available in the deep UV stepper. Instead of providing alignment

features on the individual dies, the stepper takes care of aligning

the dies to alignment markers on the wafer. Knowing the abso-

lute position of the different structures on the reticle, it carries

out the necessary alignment with submicrometer accuracy. This

is much faster than die-based alignment, as alignment needs to

be done only once per wafer. We have demonstrated such fiber

couplers with a coupling efficiency of over 20% [22], [23].

IX. CONCLUSION

It has been shown that advanced CMOS technology, and

more specificly, deep UV lithography, is capable of fabricating

nanophotonic structures. However, the need to fabricate all

structures in a single lithographic step can introduce a consid-

erable mismatch between the different types of components,

as the dose-to-target for holes, lines, and other structures can

vary. Therefore, detailed process characterization is required to

determine the correct bias for each individual structure. In ad-

dition, the dense nature of photonic crystals gives rise to optical

proximity effects that are difficult to model. Test structures have

been fabricated to experimentally measure optical proximity

effects and the necessary corrections to apply on the mask.

For the fabrication, photoresist was used as the etch mask.

Because the deep etching, through both the silicon and the

oxide layer, caused a large amount of sidewall roughness,

roughness reduction techniques were needed. In the end, the

most promising proved to be not to etch the oxide, but only the

top silicon layer.

This process has made nanophotonic waveguides of very high

quality. For the photonic wires, this translates directly into low

propagation losses, as low as 0.24 dB/mm for single-mode wires

of 500-nm width. Photonic-crystal waveguides are still consid-

erably more lossy than photonic wires, but 7.5 dB/mm loss in a

W1 photonic-crystal waveguide has also been shown.
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