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ABSTRACT 

We present a general strategy for generating full atomistic models of nanopolycrystalline materials 

including bulk and thin film. In particular, models for oxide nanoparticles were constructed using 

simulated amorphisation and crystallisation and used to populate a library of oxide nanoparticles 

(amorphous and crystalline) with different radii. Nanoparticles were then taken from this library and 

positioned, within a specific volume, using Monte Carlo techniques, to facilitate a tight-packed 

structure. The grain size distribution of the polycrystalline material was controlled by selecting 

particular sized nanoparticles from the library. The (randomly oriented) grains facilitated a 

polycrystalline oxide, which comprised a network of general grain-boundaries. To help validate the 

model, gas diffusion through the (polycrystalline) oxide material was then simulated and the activation 

energy calculated directly. Specifically, we explored He transport in UO2, which is an important 

material with respect to both civilian and military applications. We found that He transport 

proceeds much faster through the grain-boundary and grain-junction network compared with 

intracrystalline UO2 regions, in accord with experiment. 

 



INTRODUCTION 

The properties of a material are influenced profoundly by its microstructure, which includes, for 

example, grain-boundaries, dislocations and point defects. Accordingly, if we are to generate 

atomistic models, which are sufficiently realistic in that they can be used to directly calculate properties 

or simulate processes with sufficient accuracy to be of benefit to experiment, then a strategy for 

introducing such microstructures into a model is required. Here, we present a general strategy for 

constructing full atomistic models of polycrystalline materials with controllable grain-size distributions 

and defect concentration. Our atomistic model comprises general grain-boundaries, dislocations (screw, 

edge and mixed) and point defects. Moreover, all the microstructural features are introduced into a 

single atomistic model such that the model can be used to calculate properties or simulate process 

directly. In particular, the synergistic interactions between microstructural features and how much this 

modifies the individual microstructures, is captured within the model. For example, the misfit strain 

energy associated with (near coincident [1]) matching of two misaligned oxide grains to form a general 

grain-boundary and how this impacts upon the atomistic structure of a neighbouring dislocation will be 

implicit within the model. We develop the method for polycrystalline UO2 as a model system and 

explore how the microstructure influences He diffusion. This will help validate the model because 

experimental data pertaining to He diffusion in polycrystalline UO2 is available. 

 

Uranium is an important material with respect to both civilian and military applications. However, a 

major challenge for this material is to ensure its safe storage. In particular, water (vapour) in the 

surrounding air can adsorb onto the uranium surface forming hydrogen when it oxidises the 

uranium. This hydrogen forms uranium hydride UH3 which is pyrophoric [2,3]. When open to the 

atmosphere, this reaction is an intermediate for the formation of UO2, recycling the hydrogen. 

Conversely, when stored in a sealed canister, the uranium will consume all the oxygen (from air or 

vapour) for its oxidation, producing hydrogen gas, which can diffuse through the oxide layer, and 

reach the underlying metal, forming hydride. Without oxygen available, the system remains stable. 

Conversely, the opening of the canister furnishes a large quantity of oxygen, which can react 

catastrophically with the accumulated UH3 [
4,5] causing a safety hazard. Clearly, an understanding 

of the structure and gas diffusion in UO2 is key to predict long-term storage properties. The diffusion 

of gas along grain boundaries can be many orders of magnitude higher compared with diffusion in 

the bulk materials. Accordingly, if one is to calculate accurately gas diffusion, the atomistic model 

must include structural defects including: grain-boundaries, dislocations, point defects.  

Experiments, performed on uranium and its oxides, are expensive, dangerous and difficult and 

therefore atomistic computer simulation offers a comparatively inexpensive and safe alternative. 

Indeed, UO2 has enjoyed much attention. Specifically, Catlow and co-workers explored the diffusion 

of neutral gas species, helium or xenon, which are sub-products from nuclear reactions, in the 



defective form of the oxide UO2-x [
6,7,8,9,10]. More recently, Price et al. explored diffusion along 

high-symmetry perfect grain-boundaries and calculated the diffusion coefficient along (110)/(221) 

[11]. 

 

Early studies of polycrystalline oxide materials considered high symmetry (twist/twin) grain-

boundaries in isolation [12,13,14,15], which were generated using symmetry operators acting upon the 

crystal structure. The models were used to calculate diffusion coefficients and activation energies of 

(ionic) transport through boundary regions compared with mobility inside the grain. Model 

polycrystalline structures comprising general grain boundaries can also be generated using a 

Voronoi Construction, for example see ref. [16] This method also has the potential to control the size 

distribution of grains by careful choice of grain centres. Later, approaches used by Philpot and co-

workers considered generating polycrystalline materials (bulk and thin film) using seeded 

crystallization [17]. This approach also enabled a degree of control over the grain-size distribution and 

relative orientation of the grains. Specifically, the grains were rotated about an axis normal to the 

surface enabling the atomic planes to be parallel. Such “evolutionary" simulations [18] promise to 

deliver more realistic models because they have the potential to capture within the model structural 

features that evolve during a real crystallization. Similar to the seeded crystallisations performed by 

Phillpot and co-workers a “Simulated amorphisation and crystallisation" strategy was developed to 

facilitate “spontaneous" crystallization [19]. Specifically, the strategy does not require (or indeed 

allow) the simulator to initiate or template the crystallisation using a precrystallised (artificial) 

nucleating seed; rather, the nucleating seed is allowed to spontaneously evolve, which was argued to be 

more realistic than using an “artificial" nucleating seed. A drawback of this method is that the 

nucleating seed can take a long time to evolve or indeed may never evolve and therefore this method 

is computationally expensive. A strategy for generating models of nanomaterials by positioning 

(model) nanobuilding blocks at “crystallographic positions” can be found in reference [20] and a 

review of nanocrystalline materials in ref. [21] A definitive text exploring interfaces in crystalline 

materials is available [22]. 

 

Our aim is to generate general models of polycrystalline materials (bulk and thin film). To achieve 

this we extended previous models. We generated oxide nanoparticles using simulated amorphisation 

and crystallisation. This was used to populate a library of oxide nanoparticles (amorphous and 

crystalline) spanning various radii. Nanoparticles were then taken from this library and positioned 

within a specific volume using Monte Carlo (MC) techniques to facilitate a tight-packed structure. 

The (randomly oriented) grains facilitated a polycrystalline oxide, which comprised a network of 

general grain-boundaries. Gas diffusion through the (polycrystallise) oxide material was then 

simulated and the activation energy calculated. Specifically, helium transport in UO2 was used as a 



model system. The chosen approach enables one to define the grain size distribution and defect 

concentrations of the model, the latter includes for example, dislocations, grain-boundaries and point 

defects. The approach comprises three steps: 

 

• Generate a library of model nanobuilding blocks; 

• Construct a nanopolycrystalline oxide with a pre-determined grain-size and defect distribu-

tion by selecting specific nanobuilding blocks from the library; 

• Validate the method and test the structural model by simulating He diffusion in UO2.  

 

METHOD 

In this section, we describe the potential models used to represent the interactions between atoms; 

the strategy used to generate models of the UO2 nanoparticles that include microstructural features 

such as grain-boundaries, dislocations and point defects; the population of a database with atomistic 

models of UO2 nanoparticles and finally the packing of nanoparticles, taken from the library, to 

formulate models for a nanopolycrystalline bulk or thin film. 

 

Atomic Potentials 

We used the DL_POLY code, which implements three-dimensional periodic boundary conditions, to 

perform all the molecular dynamical simulations in this study [23]. Effectively, the model for the 

crystalline bulk extends infinitely in all three spatial directions. However a gap was introduced to 

represent the free surface associated with the nanopolycrystalline thin film. 

 

To describe the interaction between oxygen and uranium atoms, a rigid-ion model based upon a 

fully ionic description developed by Walker and Catlow [Error! Bookmark not defined.], was used; 

parameters to describe He - UO2 interactions were taken from Grimes [9]. All the potential 

parameters used in this study are presented in table 1. We note that pseudo gas atoms (distinct 

from He and notated as PseudoGas in the present work) was used to impart pressure upon the 

system to promote crystallisation and therefore an arbitrary potential was employed. ‘PseudoGas’ atoms 

were described wholly by a repulsive model, avoiding any possibility of the gas crystallising. 

 

Table 1 

Generating Nanoparticles 

In this section, we develop a procedure for simulating the atomistic structure of UO2 nanoparticles. We 

then use the method to populate a library of nanoparticles with different diameters; Nanoparticles 

of uranium oxides have been synthesised experimentally [24]. 



 

Generating the full atomistic structure of a model nanoparticle is not trivial - realistic atomistic 

structures cannot easily be cut from the parent bulk material. For example, the morphological 

structure will comprise many low-energy surfaces. And although there are many simulation codes 

that use the crystal symmetry to generate an individual surface, for a nanoparticle one also needs to 

consider the structure of edges (where a pair of surfaces meet) and vertices (where three or more 

surfaces meet) together with the implications of dipolar surfaces and surface steps, corners and 

niche sites. In addition, for nanoparticles in excess of 10,000 atoms, the nanoparticles will likely 

comprise dislocations or (general) grain-boundaries [25,26]. Simulation strategies, to generate the 

structure of an individual dislocation or grain-boundary [27] within the bulk (perfect) material, are 

available. However, introducing a dislocation into the polyhedral structure of a nanoparticle is more of 

a challenge: Fabrication of a material experimentally inevitably involves some kind of crystallisation 

process. Indeed, crystallisation processes control the (micro) structure and hence the properties of the 

material. Moreover, by modifying the crystallisation process (whether crystallisation from solution, 

vapour deposition, molecular beam epitaxy, ball milling etc.) one can exact some control over the 

microstructure and hence the properties of the material. We propose therefore that the easiest way of 

capturing, within a single atomistic model, all the microstructural features observed experimentally, is to 

simulate the crystallisation process itself. Indeed, there are many theoretical studies that attempt to 

simulate the crystallization process. For example Piana and Gale performed some highly detailed MD 

simulations on the growth and dissolution of urea crystals [28]. Similarly, Hamad et al. used MD to 

explore the embryonic stages of ZnS nanobubbles [29]. These elegant dynamical atomistic 

simulations capture many of the important structural features associated with the nucleation, growth 

and dissolution processes. Indeed, these approaches would prove ideal in generating models for 

nanoparticles. Unfortunately, these approaches would also prove computationally too expensive (at 

present) to use to generate models for oxide nanoparticles comprising, for example, 50,000 atoms 

directly. Accordingly, we use simulated amorphisation/melting and crystallisation. This method has 

been used previously to generate realistic models of fluorite-structured oxide nanoparticles in 

quantitative agreement with experiment [30,31] and therefore we have confidence in applying the 

strategy to generate models of UO2 nanoparticles. 

 

Amorphisation 

To amorphise/melt a UO2 nanoparticle, we cut a cube comprising six {100} surfaces from the 

parent (fluorite-structured) material and tensioned the cube by 25% to effect amorphisation [32]. 

However, upon simulating the system using MD at high temperature, the simulations failed 

catastrophically. It was determined that the surface dipoles (fluorite {100} are dipolar type III 

surfaces [33]) together with the high configuration energy associated with corners and edges resulted 



in considerable forces acting upon surface atoms. Consequently, the atoms underwent enormous 

accelerations and were subsequently vaporized from the surface. To help quench the surface 

dipoles, a simple code to cleave the (dipolar) surfaces while maintaining stoichiometry (fig. 1) was 

written. Using these cleaved nanoparticles, MD simulation, performed at high temperature, was 

successful in amorphising/melting the nanoparticles without catastrophic failure. 

 

Fig. 1 

 

Crystallisation  

The next step was to crystallise the nanoparticle. Here, we applied MD simulation, performed at 

reduced temperatures, on the amorphous/molten nanoparticles. We considered a variety of different 

temperatures together with long (in this context nanosecond) running times. However, we were 

unsuccessful in facilitating crystallisation under such conditions. Accordingly, to increase the 

probability of a nucleating seed spontaneously evolving within a nanoparticle, a high pressure was 

imposed upon the system, which facilitated the evolution of nucleating seeds. This strategy follows our 

previous study on high-pressure crystallisation of TiO2 nanoparticles [34]. Specifically, pressure was 

imparted by introducing a hard sphere gas (PseudoGas) into the simulation box; potential parameters 

are given in table 1. The nanoparticles were successfully crystallised under high-pressure. 

 

Populating a Library of Nanoparticles 

Amorphisation and crystallization was used to populate a library of UO2 nanoparticles comprising seven 

nanoparticle sizes: 110,571 atoms (14 nm), 26,364 atoms (9 nm), 8,748 atoms (6 nm), 6,144 atoms (5 

nm), 2,592 atoms (4 nm), 1,500 atoms (3 nm) and 768 atoms (2.5 nm). The next step was to use the 

nanoparticles as (secondary) building blocks and aggregate them together to form 

nanopolycrystalline structures. 

 

Generating atomistic models for nanopolycrystalline bulk and thin film 

Simulating (atomistically) the aggregation of several nanoparticles, each comprising up to 110,000 

atoms, proved computationally prohibitive using available computational facilities. Consequently, to 

reduce computational expense, each nanoparticle was represented by a sphere, which was centered 

on the geometrical centre of the nanoparticle with a radius adjusted to enclose all the atoms 

comprising the nanoparticle within a minimum volume. The spheres were then represented using a 

simplified pair-potential, following equations (1), to reduce considerably the computational cost of 

simulating the aggregation: 
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where U (d) is the interaction energy, d is the interatomic separation between spheres 1 and 2, � is 

an empirical coefficient, which was used to help increase the speed of the simulation and in this study 

was set to 0.1. R1 and R2 are the radii of spheres 1 and 2 respectively. The numerator contains the 

product of the radii of the two spheres involved in this pair-potential, which was designed to reduce the 

attraction between small spheres. 

 

To achieve a high packing density, spheres with particular sizes to effect a particular grain-size 

distribution, were introduced randomly at the top or bottom of the simulation cell. Once inside the 

box, the spheres feel the attractive influence of one another and MC was used to direct them into low 

energy configurations. An additional potential, equation (2), was included to attract the spheres to a 

plane in the centre of the simulation cell: 

 

V(x,y,z) = -�|z|                                                                                     (2) 

 

where V(x,y,z) is the potential at a point (x,y,z) and � an emprirical parameter. Here, we used �=4, 

which was sufficient to draw the nanoparticles close to the plane at the centre of the cell relatively 

quickly, but not too strong as to deleteriously influence the packing. When generating a model for a 

polycrystalline bulk, the simulation was stopped when the box was full, fig. 2. Similarly, when 

simulating a model for a polycrystalline thin film, the simulation stopped and no further nanoparticles 

were added upon reaching the desired film thickness. MC simulations were run typically, for about a 

million steps to facilitate close packed configurations. The spheres were then replaced by the 

corresponding nanoparticles to obtain an atomistic model of a polycrystalline thin-film and 

polycrystalline bulk. A final, fully atomistic, MD simulation was performed on each system; pressure 

was imposed to compact further the nanocrystals and help fill void space. For the polycrystalline thin-

film pressure was imparted using PseudoGas atoms. 

 

Fig. 2 

 

He diffusion in Nanopolycrystalline UO2 

The final step was to validate the atomistic models by simulating helium diffusion in polycrystalline 



UO2 using the model structures and comparing with experiment. To this end, He atoms were 

introduced into the polycrystalline UO2 matrix. However, He atoms cannot be positioned at 

random into the matrix because they could inadvertently locate too close to oxygen or uranium 

positions, which would result in catastrophic failure of the MD simulation. To prevent this, we designed 

a simple algorithm to position the gas atoms into the UO2 matrix. In particular, the algorithm searches 

for a suitable space to position the gas atoms. To achieve this, a position was chosen at random and the 

nearest-neighbour atoms (as determined by a distance less than a predefined value) surrounding this 

position are listed. The code then calculates the barycentre of these atoms. If all the atoms in the 

UO2 matrix and previously introduced He atoms are sufficiently far away from this point, a He 

atom is added. By adjusting two parameters (nearest neighbour and distance from barycentre to 

nearest neighbour) we were able to control the introduction of the He into grain-boundary regions 

and/or bulk crystalline regions. For example, inter-crystalline (grain boundary) regions are generally 

less dense than intra-crystalline regions. Once all the He atoms were introduced into the oxide matrix, 

molecular dynamics (MD) was used to simulate the diffusion. The first step was a pseudo energy 

minimization; constant pressure MD was performed at 300 K, followed by equilibration to the desired 

temperature. Specifically, NPT (constant Number of atoms, Pressure and Temperature) MD simulation  

with a Hoover barostat and thermostat was performed, for 10 ps at zero pressure; a small timestep (0.1 

fs) was needed to facilitate system stability, which was followed by equilibration for 50 ps with a 3 fs 

timestep. Once the potential energy associated with introducing the He had transformed to kinetic 

energy and extracted by the thermostat, NVT (constant Number of particles, Volume, Temperature) 

MD simulations were performed at different temperatures to facilitate data points which could be 

fitted to an Arrhenius relationship. We note that the MD system was stable using a maximum 

timestep of 3fs. 

 

RESULTS 

In this section we describe a typical simulation that facilitated the successful generation of models of 

oxide nano-crystals, we then present the atomistic structure of a range of nanocrystals. 

 

Amorphisation/Melting 

A cube of fluorite-structured UO2, was cut (with {100} surfaces) from the parent bulk material and 

tensioned by 25%. This cube was then placed into a simulation box, with three-dimensional 

periodic boundaries, which were sufficiently large to prevent any interaction between the atoms and 

their periodic images. The corners of the cube were cleaved to help reduce the surface dipoles (fig. 

3(a)). The nanoparticle comprised 8,788 uranium and 17,576 oxygen atoms. A PseudoGas was then 

introduced to impart pressure upon the nanoparticle. Constant pressure MD simulation was performed at 

6,000 K under 20 GPa pressure for 500 ps, which resulted in an amorphous/molten nanoparticle (figs. 



3(b) & 3(c)). Constant pressure and temperature was maintained using a Hoover thermostat and 

barostat [35] with 1.0 ps relaxation times.  

 

Fig. 3 

 

Crystallisation 

To facilitate the crystallisation, the temperature was reduced to 3,000 K and constant pressure 

MD simulation was performed under 20 GPa pressure for 800 ps. The nanoparticle was then 

cooled; NVT MD simulation was performed at zero pressure (gas removed) at 300 K for 800 

ps, followed by NVT MD at 0 K; the latter acts effectively as a pseudo energy minimisation. The 

final model structure is shown in Figs. 3(d) & 3(e). This general procedure was then used to populate 

the library of UO2 nanoparticles. 

 

Heat of Crystallisation 

The configuration energy, calculated as a function of time during the crystallisation, is reported in Fig. 

4. Initially, the energy, associated with the amorphous configuration, drops as the nanoparticle 

crystallises. Nucleating seeds spontaneously evolve within the amorphous nanoparticle and facilitate 

crystallisation of the amorphous ions surrounding the seed, emanating radially from each seed. After 

all the amorphous ions have been consumed (fully crystallised), the gradient reduces. The energy 

difference between the start and final configuration reflects, in part, the heat of crystallisation. We note 

the sudden drop in energy near 200 ps was attributed the annihilation of grain boundary where two 

neighbouring grains sinter into a single grain. This was determined by observing an animation of the 

process, which was generated using molecular graphical techniques. We note that the energy 

associated with the heat of crystallization was extracted via a thermostat to prevent the seed, which 

spontaneously evolves, from re-amorphising.  

 

Fig. 4 

 

U-U and O-O Radial Distribution Functions (RDF) calculated for the starting, amorphous and final 

UO2 nanoparticle structure are shown in fig. 5. Inspection of the RDF trace reveals a crystalline 

starting configuration, which then broadens, indicating no long range order - indicative of an 

amorphous or molten material. The final RDF are much sharper than the amorphous material 

although not as sharp as the starting configuration. This is because the final structure includes: 

surface (interface) relaxation, defects (vacancies/interstitials) and extended defects including disloca-

tions and grain-boundaries. The calculated RDF thus shows that the nanoparticle had amorphised 

completely with no residual crystallinity and successfully crystallised into the fluorite structure. The 



lattice parameter, captured from the RDF, is 5.34 Å, which is within 3% of experiment (5.47 Å at 

298 K) [36]). We note that the O-O RDF is consistent with Catlow [Error! Bookmark not defined.] and more 

recent work [37] who predicted that UO2 was superionic. Molecular graphical techniques were then 

used to examine in more detail, the structural features. 

 

Fig. 5 

 

Atomistic Structure 

Analysis of the atomistic structures revealed that the UO2 had crystallised into the fluorite structure; 

experimentally, crystalline UO2 nanoparticles with fluorite structure have been observed [38]. The 

structures of a variety of nanoparticles as a function of size are shown in table 2. Fig. 6 shows the 

morphological structure and microstructural features of four UO2 nanoparticles, which are about 9 

nm in diameter. Inspection of these nanoparticles reveal morphologies similar to the ’truncated 

octahedral’ morphology of CeO2 nanoparticles [31,32]. Specifically, {111} surfaces, which are the 

lowest energy surface [39], dominate the morphology, and are truncated by {100} surfaces, which, for 

fluorite-structured materials, are dipolar type (III). Here the surface dipole has been quenched via a 

rearrangement of atoms at the surface [33], fig. 6. Similar reconstructions have been observed previously 

in CeO2 nanocrystals [32], Some nanoparticles present only {111} surfaces, fig. 7, although we 

note that they are not monocrystals. 

 

Table 2 

 

Fig. 6 

 

Fig. 7 

 

We note that the nanocrystals in fig. 6 are structurally non-identical yet were generated using identical 

simulation methodologies. This illustrates the random nature associated with the structure and 

evolution of nucleating seeds that spontaneously evolve. Specifically, the simulator does not have any 

influence over the structure; rather they evolve in a ‘natural’ way, which is a designed feature of the 

simulation strategy to help to generate more realistic models. In particular, the amorphisation & 

crystallisation strategy can be used to simulate structural distributions of nanoparticles that one would 

expect to observe experimentally. In addition, the model nanoparticles generated present several types 

of grain boundary and defect including: twin grain boundaries, fig. 8, fig. 9, screw dislocations, fig. 9, 

edge dislocations, fig. 8 and pinning defects, fig. 10. 

 



Fig. 8 

 

Fig. 9 

 

Fig. 10 

 

We also examined nucleating seed growth using molecular graphics. In particular, we observed that 

the nucleating seeds evolved at the surface of the nanocrystal exposing {111}. The seed then 

facilitated crystallisation, which emanated radially from the core, fig. 11. The figure also reveals two 

crystalline seeds, which evolve during the same time frame. It is interesting to note that the two 

grains reorient themselves prior to grain boundary formation, presumably to facilitate a higher 

symmetry twin boundary resulting in an energetically more stable structure. Specifically a twin 

boundary is energetically more stable than a lower symmetry general grain boundary because the 

latter is necessarily associated with a lattice misfit. 

 

Molecular graphics was then used to examine the structure of the grain-boundary between two 

miss-oriented grains within a 9 nm nanoparticle and is shown in fig. 12(a). The grain boundary is 

clearly visible in the middle of the structure. To aid understanding, the volume occupied by the 

atoms have been calculated using a Connoly surface algorithm and reveals a reduced density of ions 

near the grain boundary in accord with grain-boundaries observed experimentally. We propose that a 

reduced ion density at boundary regions facilitates facile diffusion of helium, thus providing a 

pathway for helium transport. In the final section of this study, we will test this hypothesis by 

simulating He diffusion and linking He transport pathways with the atomistic structure and local 

ionic densities at boundary regions. 

 

Nanopolycrystalline Structure 

Once the library of nanoparticle models had been populated, the nanoparticle models were used to 

generate models for a nanopolycrystalline UO2 thin film and a nanopolycrystalline UO2 bulk. 

Computational facility limitations prevented us from using nanoparticles larger than 5 nm. However, 

the ability to explore polycrystalline materials with distributions comprising larger grain-sizes will be 

met in the future as computational facilities increase. 

 

For the thin film, thirteen nanoparticles were introduced into the simulation cell, table 3. 

PseudoGas atoms were also introduced into the simulation cell to conduct the pressure. NPT MD 

simulation was then performed at 3,000 K for 392 ps at 5 GPa pressure. A segment of the thin film 

with surrounding gas atoms is shown in fig. 13. For the bulk system, twenty one nanoparticles filled 



the simulation cell and NPT MD simulation was performed under 5 GPa pressure at 2000 K for 733 

ps. The system was then cooled to room temperature; zero pressure MD simulation was performed 

for 50 ns at 300 K. 

 

Table 3 

 

Fig. 11 

 

Fig. 12 

 

Fig. 13 

Thin Film 

Inspection of the final nanopolycrystalline thin film structure, figs. 13, 14, reveals that it is similar 

to the starting configuration, but with the voids between the nanoparticles compacted. One can 

observe, fig. 13, that the larger grains are still present. However, some of the smaller grains have been 

consumed by sintering into a larger grain. It is also clear from the models that the intersection of 

multiple (miss-oriented) nanoparticles facilitates models of general grain-boundaries, which are 

important features. In particular, it is likely that He will diffuse predominantly along general grain-

boundaries. We also note that some of the gas atoms are trapped inside the polycrystalline slab, fig. 

13(c). This is a valuable feature of our model because nanopolycrystalline materials, such as UO2 

incorporate voids within their structure and will likely influence the transport of gas atoms. Our 

strategy therefore facilitates the introduction of such voids into the atomistic model.  

 

Fig. 14 

 

Bulk 

Similar to the thin film, the model for polycrystalline bulk UO2, fig. 15, comprises a variety of 

miss-oriented grains, separated by general grain boundaries and grain junctions, fig. 16. In addition, 

microstructural features include dislocations and point defects including vacancies. 

 

Fig. 15 

 

Diffusion 

The models of polycrystalline structures, generated above, enable the activation energy for gas 

diffusion in a material containing a rich variety of defects to be calculated directly. In this section, 

we simulate He diffusion using the model of the polycrystalline bulk, fig. 15. The trajectories of the 



He atoms, calculated during MD simulation performed at 1200 K, are presented in Fig. 17. 

Inspection of the data, reveals fast moving He ions, which traverse through the structure along grain-

boundary regions. Conversely, those He ions within UO2 crystalline grain interiors are comparatively 

immobile and remain trapped throughout the duration of the MD simulation.  

 

Fig. 16 

 

Fig. 17 

 

The activation energy, associated with He diffusion, was calculated to be 0.2 eV and was extracted 

from the MSD data by fitting to a Arrhenius relationship following ref. [40] 

 

Discussion 

As the grain size increases, so the grain/grain-boundary (volume) ratio decreases [41]. Transport 

processes such as diffusion can be influenced by many factors including: grain boundaries, voids, 

defects, dislocations. Accordingly, if one is to calculate diffusion through a polycrystalline material 

directly, then the atomistic model needs to include all these structural features, including their 

synergy of interaction. Here, our atomistic models, fig. 15, are similar to those observed in 

polycrystalline UO2 by Roudil and co-workers [42] although we note that the individual grain sizes 

within our models are smaller than experiment. 

 

Previously Kadau and co-workers have generated polycrystalline materials by assembling spherical 

nanoparticles and compressing them into a close packed configuration [43]. Our study extends 

this approach to include oxide nanoparticles. In addition, the nanoparticles used in this present 

study are more realistic in that they comprise a variety of microstructural features including dis-

locations, point defects, grain-boundaries, surface morphology including dipolar surface recon-

structions. Accordingly, our strategy enables one to fine-tune the defect character. For example, 

if one desired a polycrystalline material with a high dislocation content, one could select nanoparticles 

from the library, which comprised dislocations traversing through their structure, rather than choosing 

from the library single crystal nanoparticles. 

 

Computational limitations preclude simulating microscopic grains. Typically we would need to 

include billions of atoms. Nevertheless, we have captured, within a single structural model, all the 

important structural features observed experimentally including: miss-oriented crystalline grains 

separated by grain-boundaries and triple junctions, dislocations and point defects, which enables us to 

simulate He diffusion directly. As computational resources continue to increase in the future, it will be 



possible to construct models of polycrystalline materials with wider grain size distributions and 

comprising larger grains. Specifically, in this study we were not able to use 6, 9 and especially 14 

nm UO2 nanoparticles.  

 

We used a rigid ion model to simulate the diffusion of He in UO2, which includes transport through, 

for example, grain-boundary regions and in close proximity to vacancies and dislocations. Clearly, 

such defects will impact upon the polarisation of the He and therefore it is desirable to use the shell 

model [44]. However, accommodating all the important microstructural features within a single sim-

ulation cell including their synergy of interactions to enable He transport to be simulated directly, 

necessitated a large simulation cell. Typically each diffusion simulation required 7 days using 128 

processors (Intel® Xeon® 5160 (3.0 Ghz) Quad-Cores). Introducing the shell model would, we 

estimate, require one to two orders of magnitude more cpu, which is prohibitive at present; rather the 

focus of this present study was the development of a simulation strategy to explore gas diffusion directly 

in a full microstructural model together with model validation using the He/UO2 system. Moreover, the 

activation energy barrier associated with He migration between interstitial sites via an oxygen or 

uranium vacancy was calculated to be 0.38 and 0.24 eV respectively using a shell-model description 

[9], which are similar to 0.2 eV calculated in this present study.  

 

The calculated activation energy barriers are about ten times lower than that measured by Roudil 

and coworkers, who determined a value of 2 eV [42]. However, we note that Helium diffusion is 

measured using nuclear reaction analysis [45], which is not instantaneous and therefore cannot be 

conducted immediately after Helium implantation. Accordingly, only intragranular He would be 

measured experimentally using this technique because He present in grain-boundary regions would be 

lost owing to the (expected) much higher diffusion rate in these regions. Indeed, Guilbert and co-

workers, in developing mathematical models to describe the diffusion, required the introduction of 

an additional component into the model to account for a ‘fast’ diffusion process. In particular, they 

proposed two hypotheses to explain the data: the influence of surface pores or intergranular diffusion. 

The latter, grain-boundary diffusion, ‘would proceed at a far greater rate than (intragranular) 

diffusion’ [46]. The work of Sauvage and co-workers [47] also highlights the importance of grain 

boundaries in the diffusion. Their analysis of the UO2 system is compatible with the fast release of 

He through grain boundaries, together with slow intragranular diffusion. 

 

Intragranular diffusion of He in UO2 was calculated by Catlow and co-workers in 1990 to be 

3.8 eV [9] using atomistic simulation and more recently 2.97 eV using density functional theory [48]; a 

value of 2.09 eV was determined using the thermally expanded lattice parameter of UO2 at 1200K. 

Price calculated He diffusion along [321]-[221] Grain boundaries [11] and although this represented a 



valuable extension to intergranular diffusion, ‘real’ diffusion will involve He mobility along a 

variety of (general) grain-boundaries. Our model better captures this behaviour because our 

calculated activation energy barrier is a sum over all the He atoms, which diffuse along various 

(dissimilar) general grain-boundaries.  

 

CONCLUSION 

We have developed a general strategy for simulating gas diffusion in nanopolycrystalline materials 

including bulk and thin film. In particular, we generated models for UO2 nanoparticles using 

simulated amorphisation and crystallisation. Specifically, a nanoparticle is first amorphised and at a 

particular instance in time during the MD simulation, an amorphous crystalline seed spontaneously 

evolves in the amorphous nanocrystal, which nucleates crystallisation. In this study we crystallised the 

nanoparticles at high pressure to increase the probability of a nucleating seed evolving. This resulted 

in several nucleating seeds evolving within a single nanoparticle. Accordingly, as each seed 

propagated crystallisation, the crystallisation fronts impinged upon one another facilitating the 

evolution of grain-boundaries within the (single) nanoparticle. 

 

This amorphisation and crystalisation strategy enables a variety of important microstructural features 

to be introduced into the model including, for example: (general) grain-boundaries, screw, edge and 

mixed screw-edge dislocations, point defects, including vacancies which pin the dislocations, 

nanocrystal morphologies including surfaces exposed (we observe UO2{111}, UO2{100}) the 

atomistic structures of edges and corners, together with surface steps, ledges and niche sites. Such 

microstructural features are difficult to introduce into a structural model using alternative means, for 

example with symmetry operators.  

 

This method was then used to populate a library of UO2 nanoparticles with different radii. 

Nanoparticles were taken from this library and positioned, within a specific volume using  Monte 

Carlo techniques, to facilitate tight-packed structures. The (randomly oriented) nanoparticles 

facilitated a polycrystalline UO2 matrix, which comprised a network of general grain-boundaries. 

 

This general strategy facilitates the generation of atomistic models of (nano)polycrystalline 

materials with a predefined grain size distribution by taking the component grains from a library of 

model nanocrystals. The model of polycrystalline UO2 was then used to simulate He transport through 

the material. The simulations enabled a direct calculation of the activation energy for gas diffusion in a 

material comprising a large range of defects. 

 

Animations (ion trajectories during the MD simulation) of the He diffusing through the UO2 matrix 



revealed that He transport through the material proceeds fastest via (general) grain-boundary regions 

rather than intragranular regions and is associated with an activation energy barrier of 0.2eV. 

 

Acknowledgement 

This work was supported by AWE. We acknowledge the Cambridge-Cranfield High Performance 

Computing Facility for computational resources and EPSRC (GR/S4843 1/1, GR/S48448/0 1, and 

GR/S84415/01) for funding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Sphere model representation of the atom positions comprising the UO2 nanoparticle 

illustrating the truncation of a perfect cube of UO2 used to help quench the surface dipole. (a) Perfect 

truncated cube in the simulation box together with the pseudo gas, at the start of the simulation. (b) 

shows the nanoparticle without the gas atoms to improve clarity of the figure and is enlarged in (c). 

(a) (b) (c) 

(d) 



(d) is a schematic showing cleavage of two rows of atoms when the surfaces are different (top left 

corner) or one row when it connects two surfaces of the same atom type (top right corner). U is 

coloured blue and O is red. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic illustrating the nanoparticle assembly strategy using four nanosphere sizes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Stages corresponding to the amorphisation and crystallisation of a nanoparticle 

(PseudoGas not shown). (a) Perfect fluorite-structured cube of UO2, with cleaved edges. (b) and 

(c) show a molten nanoparticle. (d) and (e) show the crystallised nanoparticle. (c) and (e) 

comprise a thin slice cut through the nanoparticle; only uranium atoms are shown to improve 

clarity. U is coloured blue and O is red. 

(a) 

(b) (c) 

(d) (e) 



 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Configuration energy, calculated as a function of time. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Radial Distribution Functions (RDF), calculated at various stages during the simulation.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Atomistic structures of UO2 nanoparticles, each about 9 nm in diameter and comprising 

26,364 atoms. U is coloured blue and O is red. (a) four nanoparticles, taken from the library, showing 

a clear (statistical) structural distribution of nanoparticles. Figures to the left are shown using a sphere 

model representation of the atom positions, while the corresponding structures to the right show a 

slice cut through the nanoparticle to reveal more clearly that the nanoparticles are not single crystals; 

rather they comprise many miss-oriented grains. (b) enlarged nanoparticle revealing more clearly the 

surface facets – particularly {111} surfaces; the colours of the lower figure (b) label the different 

grains comprising the nanoparticle.  

(a) (b) 

{100} 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Sphere model representation of the atom positions of a (near perfect) icosahedral UO2 

nanoparticle, which comprises 6,144 atoms and is about 5 nm in diameter. Colour notation is used 

to label the individual grains. The spheres represent the U atom positions; O atoms are not 

shown. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Representation of a 9 nm UO2 nanoparticle that comprises five grains, which orient 

around a central core. Only uranium atom positions are shown to improve clarity. (a) Ball and 

stick model of the atom positions comprising a thin slice cut through the nanocrystals, the lines 

show the grain boundaries which terminate at the core. (b) Oriented and cut away view of the 

nanocrystal revealing the grain-boundaries and the structure of the central core region. The lines 

highlight an edge dislocation within one of the miss-oriented crystallites. 

(a) (b) 



 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 9: Representation of the atom positions comprising a slice cut through a 9 nm UO2 nanopar-

ticle, which comprises a mixed screw-edge dislocation. (a) Edge component to the dislocation is 

indicated by the lines; the arrows locate the grain boundary. (b) Shows more clearly the screw 

(clockwise) character of the dislocation. Only uranium atoms are shown to improve clarity of the 

figure. 

(a) (b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Ball and stick model of the atom positions comprising a slice cut through a 9 nm UO2 

nanoparticle. The arrow indicates a uranium vacancy, which pins a dislocation. 
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Figure 11: Atomistic structure of a 14 nm UO2 nanoparticle during crystallisation. Only the uranium 

atoms are shown for clarity. The lines indicate atomic planes comprising the grains, and the arrows 

show the growth direction. (a) After 135 ps; (b) 152 ps; (c) 450 ps. 

 

 

 

(a) (b) (c) 
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Figure 12: Atomistic structure of a grain boundary. (a) Sphere model representation of the atom 

positions; U is coloured blue and O is red. (b) Slice through the atomic density (calculated using a 

Connoly surface algorithm); light grey indicates low density. On the right, a schematic of the channel 

of low density that can be found between the two grains is shown.  

 

(b) (a) 
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Figure 13: Simulation cell at the start of the simulation, and after 392 ps of MD simulation. (a) 

Vertical slice cut through the simulation cell revealing the individual nanoparticles. (b) After 392 ps; 

the arrows indicate the final positions of the nanoparticles shown in (a). (c) Perspective view of the 

simulation cell after 392 ps; a quarter of the cell has been cut away for clarity. The arrow in (c) 

highlights the position of trapped PseudoGas atoms, which facilitate void space in the thin film. 

(a) (b) (c) 
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Figure 14: Nanopolycrystalline UO2 thin film (3 × 3 simulation cells); perspective view looking at 

the surface of the film. Only uranium atoms are shown to preserve clarity 
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Figure 15: Ball and stick model of the atom positions within a slice cut through the polycrystalline UO2 

bulk. The individual miss-oriented grains are shaded. Only the uranium atoms are shown to improve 

clarity. 
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Figure 16: Microstructural features within the polycrystalline UO2 model. (a) Atomistic structure of 

a grain-boundary. (b) Atomistic structure of an edge dislocation (arrow). The uranium atom 

positions are shown using a ball and stick representation; oxygen ions are not shown to preserve 

clarity. 
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Figure 17: Helium diffusion profile in the polycrystalline UO2 matrix. The trajectories of different He 

atom trajectories are shown using grey-scale. The arrows in the middle of (a) indicate two He atoms, 

which are trapped inside a UO2 grain. The other atoms diffuse faster and are associated with longer 

trails. The lines in (b) indicate the positions of the grain boundaries. We note that the images are three 

dimensional and therefore the trajectories can be above or below the plane of the page.  
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