
Nanopore sequencing technology and tools for genome

assembly: computational analysis of the current state,

bottlenecks and future directions

Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan and Onur Mutlu

Corresponding author: Can Alkan, Department of Computer Engineering, Bilkent University, Engineering Building, EA-509, Bilkent, 06800 Ankara, Turkey.

Email: calkan@cs.bilkent.edu.tr; Onur Mutlu, Systems Group, Department of Computer Science (D-INFK), ETH Zürich, CAB F 74.2, Universitätstrasse 6, 8092

Zürich, Switzerland. Email: onur.mutlu@inf.ethz.ch

Abstract

Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to

generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating ac-

curate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome

the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for

nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to

understand where the current tools do not performwell to develop better tools. To this end, we (1) analyze the multiple steps

and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for deter-

mining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for

basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap

finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lowermemory usage,

and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate

tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further

polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art

polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polish-

ing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, perform-

ance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners inmaking

conscious and effective choices for each step of the genome assembly pipeline using nanopore sequence data. Also, with the

help of bottlenecks we have found, developers can improve the current tools or build new ones that are both accurate and fast,

to overcome the high error rates of the nanopore sequencing technology.

Key words: nanopore sequencing; genome sequencing; genome analysis; assembly; mapping

Damla Senol Cali is a PhD student in the Department of Electrical and Computer Engineering at Carnegie Mellon University. Her research interests are in

computational methods for the analysis of NGS and nanopore sequencing data, and computer architecture.

Jeremie S. Kim is a PhD student in the Department of Electrical and Computer Engineering at Carnegie Mellon University and in the Department of

Computer Science at ETH Zürich. His research interests are in computer architecture and hardware accelerators for bioinformatics applications.

Saugata Ghose is a Systems Scientist in the Department of Electrical and Computer Engineering at Carnegie Mellon University. His research interests are

in several aspects of computer architecture, with a significant focus on designing architecture-aware and systems-aware memory and storage.

Can Alkan is an Assistant Professor in the Department of Computer Engineering at Bilkent University. His research interests are in combinatorial algo-

rithms for bioinformatics and computational biology.

Onur Mutlu is a Professor in the Department of Computer Science at ETH Zürich. He is also an Adjunct Professor in the Department of Electrical and

Computer Engineering at Carnegie Mellon University. His research interests are in computer architecture, systems, security and bioinformatics.

Submitted: 20 November 2017; Received (in revised form): 6 February 2018

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved.

For Permissions, please email: journals.permissions@oup.com

1542

, 20(4), 2019, 1542–1559

doi: 10.1093/bib/bby017

Advance Access Publication Date: 2 April 2018

Review Article

Briefings in Bioinformatics

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/

Introduction

Next-generation sequencing (NGS) technologies have revolu-

tionized and dominated the genome sequencing market since

2005, because of their ability to generate massive amounts of

data at a faster speed and lower cost [1–3]. The existence of suc-

cessful computational tools that can process and analyze such

large amounts of data quickly and accurately is critically im-

portant to take advantage of NGS technologies in science, medi-

cine and technology.

As the whole genome of most organisms cannot be

sequenced all at once, the genome is broken into smaller frag-

ments. After each fragment is sequenced, small pieces of DNA

sequences (i.e. reads) are generated. These reads can then be

analyzed following two different approaches: read mapping and

de novo assembly. Read mapping is the process of aligning the

reads against the reference genome to detect variations in the

sequenced genome. De novo assembly is the method of combin-

ing the reads to construct the original sequence when a refer-

ence genome does not exist [4]. Owing to the repetitive regions

in the genome, the short-read length of the most dominant NGS

technologies (e.g. 100–150 bp reads) causes errors and ambigu-

ities for read mapping [5, 6], and poses computational chal-

lenges and accuracy problems to de novo assembly [7].

Repetitive sequences are usually longer than the length of a

short read, and an entire repetitive sequence cannot be spanned

by a single short read. Thus, short reads lead to highly frag-

mented, incomplete assemblies [7–9]. However, a long read can

span an entire repetitive sequence and enable continuous and

complete assemblies. The demand for sequencing technologies

that can produce longer reads has resulted in the emergence of

even newer alternative sequencing technologies.

Nanopore sequencing technology [10] is one example of

such technologies that can produce long read lengths.

Nanopore sequencing is an emerging and a promising single-

molecule DNA sequencing technology, which exhibits many at-

tractive qualities, and in time, it could potentially surpass cur-

rent sequencing technologies. Nanopore sequencing promises

high sequencing throughput, low cost and longer read length,

and it does not require an amplification step before the

sequencing process [11–14].

Using biological nanopores for DNA sequencing was first

proposed in the 1990s [15], but the first nanopore sequencing

device, MinION [16], was only recently (in May 2014) made com-

mercially available by Oxford Nanopore Technologies (ONT).

MinION is an inexpensive, pocket-sized, portable, high-

throughput sequencing apparatus that produces data in real

time. These properties enable new potential applications of

genome sequencing, such as rapid surveillance of Ebola, Zika or

other epidemics [17], near-patient testing [18] and other applica-

tions that require real-time data analysis. In addition, the

MinION technology has two major advantages. First, it is cap-

able of generating ultra-long reads (e.g. 882 kilobase pairs or

longer [19, 20]). MinION’s long reads greatly simplify the genome

assembly process by decreasing the computational require-

ments [8, 21]. Second, it is small and portable. MinION is named

as the first DNA sequencing device used in outer space to help

the detection of life elsewhere in the universe with the help of

its size and portability [22]. With the help of continuous updates

to the MinION device and the nanopore chemistry, the first

nanopore human reference genome was generated by using

only MinION devices [19].

Nanopores are suitable for sequencing because they:

• do not require any labeling of the DNA or nucleotide for detec-

tion during sequencing,
• rely on the electronic or chemical structure of the different nu-

cleotides for identification,
• allow sequencing long reads and
• provide portability, low cost and high throughput.

Despite all these advantageous characteristics, nanopore

sequencing has one major drawback: high error rates. In May

2016, ONT released a new version of MinION with a new nano-

pore chemistry called R9 [23], to provide higher accuracy and

higher speed, which replaced the previous version R7. Although

the R9 chemistry improves the data accuracy, the improve-

ments are not enough for cutting-edge applications. Thus,

nanopore sequence analysis tools have a critical role to over-

come high error rates and to take better advantage of the tech-

nology. Also, faster tools are critically needed to (1) take better

advantage of the real-time data production capability of MinION

and (2) enable real-time data analysis.

Our goal in this work is to comprehensively analyze current

publicly available tools for nanopore sequence analysis to

understand their advantages, disadvantages and bottlenecks. It

is important to understand where the current tools do not per-

form well, to develop better tools. To this end, we analyze the

tools associated with the multiple steps in the genome assem-

bly pipeline using nanopore sequence data in terms of accuracy,

speed, memory efficiency and scalability.

We note that our manuscript presents a checkpoint of the

state-of-the-art tools at the time the manuscript was submitted.

This is a fast moving field, but we hope that our analysis is use-

ful, and we expect that the fundamental conclusions and rec-

ommendations we make are independent of the exact versions

of the tools.

Genome assembly pipeline using nanopore
sequence data

We evaluate the genome assembly pipeline using nanopore se-

quence data. Figure 1 shows each step of the pipeline and lists

the associated existing tools for each step that we analyze.

The output of MinION is raw signal data that represents

changes in electric current when a DNA strand passes through

nanopore. Thus, the pipeline starts with the raw signal data. The

first step, basecalling, translates this raw signal output of MinION

Figure 1. The analyzed genome assembly pipeline using nanopore sequence

data, with its five steps and the associated tools for each step.

Computational analysis of nanopore sequencing tools | 1543

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

into bases (A, C, G, T) to generate DNA reads. The second step

computes all pairwise read alignments or suffix–prefix matches

between each pair of reads, called read-to-read overlaps.

Overlap-layout-consensus (OLC) algorithms are used for the as-

sembly of nanopore sequencing reads, as OLC-algorithms per-

form better with longer error-prone reads [24]. OLC-based

assembly algorithms generate an overlap graph, where each

node denotes a read, and each edge represents the suffix–prefix

match between the corresponding two nodes. The third pipeline

step, genome assembly, traverses this overlap graph, producing

the layout of the reads and then constructing a draft assembly.

To increase the accuracy of the assembly, further polishing, i.e.

postassembly error correction, may be required. The fourth step

of the pipeline is mapping the original basecalled reads to the

generated draft assembly from the previous step (i.e. read map-

ping). The fifth and final step of the pipeline is polishing the as-

sembly with the help of mappings from the previous step.

We next introduce the state-of-the-art tools used for each

step.

Basecalling

When a strand of DNA passes through the nanopore (which is

called the translocation of the strand through the nanopore), it

causes drops in the electric current passing between the walls of

the pore. The amount of change in the current depends on the

type of base passing through the pore. Basecalling, the initial step

of the entire pipeline, translates the raw signal output of the

nanopore sequencer into bases (A, C, G, T) to generate DNA reads.

Most of the current basecallers divide the raw current signal into

discrete blocks, which are called events. After event-detection,

each event is decoded into a most-likely set of bases. In the ideal

case, each consecutive event should differ by one base. However,

in practice, this is not the case because of the non-stable speed of

the translocation. Also, determining the correct length of the

homopolymers (i.e. repeating stretches of one kind of base, e.g.

AAAAAAA) is challenging. Both of these problems make dele-

tions the dominant error of nanopore sequencing [25, 26]. Thus,

basecalling is the most important step of the pipeline that plays a

critical role in decreasing the error rate.

We analyze five state-of-the-art basecalling tools in this art-

icle (Table 1). For a detailed comparison of these and other base-

callers (including Albacore [32], which is not freely available,

and Chiron [33]), we refer the reader to an ongoing basecaller

comparison study [34]. Note that this ongoing study does not

capture the accuracy and performance of the entire genome as-

sembly pipeline using nanopore sequence data.

Metrichor

Metrichor [27] is ONT’s cloud-based basecaller, and its source

code is not publicly available. Before the R9 update, Metrichor

was using hidden Markov models (HMMs) [35] for basecalling

[23]. After the R9 update, it started using recurrent neural net-

works (RNN) [36, 37] for basecalling [23].

Nanonet

Nanonet [28] has also been developed by ONT, and it is available

on Github [38]. As Metrichor requires an Internet connection

and its source code is not available, Nanonet is an offline and

open-source alternative for Metrichor. Nanonet is implemented

in Python. It also uses RNN for basecalling [28]. The tool sup-

ports multithreading by sharing the computation needed to call

each single read between concurrent threads. In other words,

only one read is called at a time.

Scrappie

Scrappie [29] is the newest proprietary basecaller developed by

ONT. It is named as the first basecaller that explicitly addresses

basecalling errors in homopolymer regions. To determine the

correct length of homopolymers, Scrappie performs transducer-

based basecalling [25]. For versions R9.4 and R9.5, Scrappie can

perform basecalling with the raw current signal, without requir-

ing event detection. It is a C-based local basecaller and is still

under development [25].

Nanocall

Nanocall [30] uses HMMs for basecalling, and it is independently

developed by a research group. It was released before the R9 up-

date when Metrichor was also using an HMM-based approach

for basecalling, to provide the first offline and open-source al-

ternative for Metrichor. However, after the R9 update, when

Metrichor started to perform basecalling with a more powerful

RNN-based approach, Nanocall’s accuracy fell short of

Metrichor’s accuracy [39]. Thus, although Nanocall supports R9

and upper versions of nanopore data, its usefulness is limited

[39]. Nanocall is a Cþþ-based command-line tool. It supports

multithreading where each thread performs basecalling for dif-

ferent groups of raw reads.

DeepNano

DeepNano [31] is also independently developed by a research

group before the R9 update. It uses an RNN-based approach to

perform basecalling. Thus, it is considered to be the first RNN-

based basecaller. DeepNano is implemented in Python. It does

not have multithreading support.

Read-to-read overlap finding

Previous genome assembly methods designed for accurate and

short reads (i.e. de Bruijn graph approach [40, 41]) are not suit-

able for nanopore reads because of the high error rates of the

current nanopore sequencing devices [9, 26, 42, 43]. Instead,

OLC algorithms [44] are used for nanopore sequencing reads, as

they perform better with longer, error-prone reads. OLC-based

assembly algorithms start with finding the read-to-read over-

laps, which is the second step of the pipeline. Read-to-read

overlap is defined to be a common sequence between two reads

[43]. GraphMap [45] and Minimap [46] are the commonly used

state-of-the-art tools for this step (Table 2).

Table 1. State-of-the-art nanopore basecalling tools

Tool Strategy Multithreading support Source Reference

Metrichor RNN (Cloud-based) https://metrichor.com/ [27]

Nanonet RNN With -jobs parameter https://github.com/nanoporetech/nanonet [28]

Scrappie RNN With export OMP_NUM_THREADS command https://github.com/nanoporetech/scrappie [29]

Nanocall HMM With –threads parameter https://github.com/mateidavid/nanocall [30]

DeepNano RNN No support; split data set and run it in parallel https://bitbucket.org/vboza/deepnano [31]

1544 | Senol Cali et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://metrichor.com/
https://github.com/nanoporetech/nanonet
https://github.com/nanoporetech/scrappie
https://github.com/mateidavid/nanocall
https://bitbucket.org/vboza/deepnano

GraphMap

GraphMap first partitions the entire read data set into k-length

substrings (i.e. k-mers), and then creates a hash table.

GraphMap uses gapped k-mers, i.e. k-mers that can contain in-

sertions or deletions (indels) [45, 47]. In the hash table, for each

k-mer entry, three pieces of information are stored: (1) k-mer

string, (2) the index of the read and (3) the position in the read

where the corresponding k-mer comes from. GraphMap detects

the overlaps by finding the k-mer similarity between any two

given reads. Owing to this design, GraphMap is a highly sensi-

tive and accurate tool for error-prone long reads. It is a

command-line tool written in Cþþ. GraphMap is used for both

(1) read-to-read overlap finding with the graphmap owler com-

mand and (2) read mapping with the graphmap align

command.

Minimap

Minimap also partitions the entire read data set into k-mers, but

instead of creating a hash table for the full set of k-mers, it finds

the minimum representative set of k-mers, called minimizers,

and creates a hash table with only these minimizers. Minimap

finds the overlaps between two reads by finding minimizer

similarity. The goals of using minimizers are to (1) reduce the

storage requirement of the tool by storing fewer k-mers and (2)

accelerate the overlap finding process by reducing the search

span. Minimap also sorts k-mers for cache efficiency. Minimap

is fast and cache-efficient, and it does not lose any sensitivity

by storing minimizers, as the chosen minimizers can represent

the whole set of k-mers. Minimap is a command-line tool writ-

ten in C. Like GraphMap, it can both (1) find overlaps between

two read sets and (2) map a set of reads to a full genome.

Genome assembly

After finding the read-to-read overlaps, OLC-based assembly al-

gorithms generate an overlap graph. Genome assembly is per-

formed by traversing this graph, producing the layout of the

reads and then constructing a draft assembly. Canu [48] and

Miniasm [46] are the commonly used error-prone long-read as-

semblers (Table 3).

Canu

Canu performs error-correction as the initial step of its own

pipeline. It finds the overlaps of the raw uncorrected reads and

uses them for the error-correction. The purpose of error-

correction is to improve the accuracy of the bases in the reads

[48, 49]. After the error-correction step, Canu finds overlaps be-

tween corrected reads and constructs a draft assembly after an

additional trimming step. However, error-correction is a compu-

tationally expensive step. In its own pipeline, Canu implements

its own read-to-read overlap finding tool such that the users do

not need to perform that step explicitly before running Canu.

Most of the steps in the Canu pipeline are multi-threaded. Canu

detects the resources that are available in the computer before

starting its pipeline and automatically assigns number of

threads, number of processes and amount of memory based on

the available resources and the assembled genome’s estimated

size.

Miniasm

Miniasm skips the error-correction step, as it is computationally

expensive. It constructs a draft assembly from the uncorrected

read overlaps computed in the previous step. Although

Miniasm lowers computational cost and thus accelerates and

simplifies assembly by doing so, the accuracy of the draft as-

sembly depends directly on the accuracy of the uncorrected

basecalled reads. Thus, further polishing may be necessary

for these draft assemblies. Miniasm does not support

multithreading.

Read mapping and polishing

To increase the accuracy of the assembly, especially for the

rapid assembly methods like Miniasm, which do not have the

error-correction step, further polishing may be required.

Polishing, i.e. postassembly error-correction, improves the ac-

curacy of the draft assembly by mapping the reads to the as-

sembly and changing the assembly to increase local similarity

with the reads [26, 50, 51]. The first step of polishing is mapping

the basecalled reads to the generated draft assembly from the

previous step. One of the most commonly used long-read map-

pers for nanopore data is BWA-MEM [52]. Read-to-read overlap

finding tools, GraphMap and Minimap (‘Read-to-read overlap

finding’ section), can also be used for this step, as they also

have a read mapping mode (Table 4).

After aligning the basecalled reads to the draft assembly, the

final polishing of the assembly can be performed with

Nanopolish [50] or Racon [51] (Table 5).

Nanopolish

Nanopolish uses the raw signal data of reads along with the

mappings from the previous step to improve the assembly base

quality by evaluating and maximizing the probabilities for each

base with a HMM-based approach [50]. It can increase the accur-

acy of the draft assembly by correcting the homopolymer-rich

parts of the genome. Although this approach can increase the

Table 2. State-of-the-art read-to-read overlap finding tools

Tool Strategy Multithreading support Source Reference

GraphMap k-mer similarity With –threads parameter https://github.com/isovic/graphmap [45]

Minimap Minimizer similarity With -t parameter https://github.com/lh3/minimap [46]

Note: Both GraphMap and Minimap also have read mapping functionality.

Table 3. State-of-the-art assembly tools

Tool Strategy Multithreading support Source Reference

Canu OLC with error correction Auto-configuration https://github.com/marbl/canu [48]

Miniasm OLC without error correction No support https://github.com/lh3/miniasm [46]

Computational analysis of nanopore sequencing tools | 1545

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://github.com/isovic/graphmap
https://github.com/lh3/minimap
https://github.com/marbl/canu
https://github.com/lh3/miniasm

accuracy significantly, it is computationally expensive, and

thus time-consuming. Nanopolish developers recommend

BWA-MEM as the read mapper before running Nanopolish [53].

Racon

Racon constructs partial order alignment graphs [51, 54] to find

a consensus sequence between the reads and the draft assem-

bly. After dividing the sequence into segments, Racon tries to

find the best alignment to increase the accuracy of the draft as-

sembly. Racon is a fast polishing tool, but it does not promise a

high increase in accuracy as Nanopolish promises. However,

multiple iterations of Racon runs or a combination of Racon and

Nanopolish runs can improve accuracy significantly. Racon de-

velopers recommend Minimap as the read mapper to use before

running Racon, as Minimap is both fast and sensitive [51].

Experimental methodology

Data set

In this work, we use Escherichia coli genome data as the test case,

sequenced using the MinION with an R9 flowcell [55].

MinION sequencing has two types of workflows. In the 1D

workflow, only the template strand of the double-stranded DNA

is sequenced. In contrast, in the 2D workflow, with the help of a

hairpin ligation, both the template and complement strands

pass through the pore and are sequenced. After the release of

R9 chemistry, 1D data became usable in contrast to previous

chemistries. Thus, we perform the analysis of the tools on 1D

data.

MinION outputs one file in the fast5 format for each read.

The fast5 file format is a hierarchical data format, capable of

storing both raw signal data and basecalled data returned by

Metrichor. This data set includes 164 472 reads, i.e. fast5 files.

As all these files include both raw signal data and basecalled

reads, we can use this data set for both (1) using the local base-

callers to convert raw signal data into the basecalled reads and

(2) using the already basecalled reads by Metrichor.

Evaluation systems

In this work, for accuracy and performance evaluations of dif-

ferent tools, we use three separate systems with different speci-

fications. We use the first computer in the first part of the

analysis, accuracy analysis. We use the second and third com-

puters in the second part of the analysis, performance analysis,

to compare the scalability of the analyzed tools in the two ma-

chines with different specifications (Table 6).

We choose the first system for evaluation, as it has a larger

memory capacity than a usual server, and with the help of a

large number of cores, the tasks can be parallelized easily to get

the output data quickly. We choose the second system, called

Table 4. State-of-the-art read mapping tools

Tool Strategy Multithreading support Source Reference

BWA-MEM Burrows–Wheeler Transform With -t parameter http://bio-bwa.sourceforge.net [52]

GraphMap k-mer similarity With –threads parameter https://github.com/isovic/graphmap [45]

Minimap Minimizer similarity With -t parameter https://github.com/lh3/minimap [46]

Table 5. State-of-the-art polishing tools

Tool Strategy Multithreading support Source Reference

Nanopolish HMM With –threads and -P parameters https://github.com/jts/nanopolish [50]

Racon Partial order alignment graph With –threads parameter https://github.com/isovic/racon [51]

Table 6. Specifications of evaluation systems

Name Model CPU specifications Main memory

specifications

NUMA* specifications

System 1 40-core IntelVR

XeonVR E5-2630

v4 CPU @

2.20GHz

20 physical cores 2

threads per core 40 lo-

gical cores with

hyper-threading**

128GB DDR4 2 channels,

2 ranks/channel

Speed: 2400MHz

2 NUMA nodes, each with 10 physical

cores, 64 GB of memory and an 25

MB of LLC

System 2

(desktop)

8-core IntelVR

Core i7-2600

CPU @ 3.40GHz

4 physical cores 2

threads per core 8 lo-

gical cores with

hyper-threading**

16GB DDR3 2 channels, 2

ranks/channel Speed:

1333MHz

1 NUMA node, with 4 physical cores,

16 GB of memory and an 8 MB of

LLC

System 3

(big-mem)

80-core IntelVR

XeonVR E7-4850

CPU @ 2.00GHz

40 physical cores 2

threads per core 80 lo-

gical cores with

hyper-threading**

1TB DDR3 8 channels, 4

ranks/channel Speed:

1066MHz

4 NUMA nodes, each with 10 physical

cores, 256 GB of memory and an 24

MB of LLC

*NUMA (Non-Uniform Memory Access) is a computer memory design, where a processor accesses its local memory faster (i.e. with lower latency) than a nonlocal

memory (i.e. memory local to another processor in another NUMA node). A NUMA node is composed of the local memory and the CPU cores (see Observation 6 in

Section 4.1 for detail).

**Hyper-threading is Intel’s SMT implementation (See Observation 5 in Section 4.1 for detail).

1546 | Senol Cali et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://bio-bwa.sourceforge.net
https://github.com/isovic/graphmap
https://github.com/lh3/minimap
https://github.com/jts/nanopolish
https://github.com/isovic/racon

desktop, as it represents a commonly used desktop server. We

choose the third system, called big-mem, because of its large

memory capacity. This big-mem system can be useful for those

who would like to get results more quickly.

Accuracy metrics

We compare each draft assembly generated after the assembly

step and each improved assembly generated after the polishing

step with the reference genome, by using the dnadiff command

under the MUMmer package [56]. We use six metrics to measure

accuracy, as defined in Table 7: (1) number of bases in the as-

sembly, (2) number of contigs, (3) average identity, (4) coverage,

(5) number of mismatches and (6) number of indels.

Performance metrics

We analyze the performance of each tool by running the associ-

ated command-line of each tool with the/usr/bin/time -v com-

mand. We use four metrics to quantify performance as defined

in Table 8: (1) wall clock time, (2) CPU time, (3) peak memory

usage and (4) parallel speedup.

Results and analysis

In this section, we present our results obtained by analyzing the

performance of different tools for each step in the genome as-

sembly pipeline using nanopore sequence data in terms of ac-

curacy and performance, using all the metrics we provide in

Tables 7 and 8. Additionally, Table 9 shows the tool version, the

executed command and the output of each analyzed tool. We

divide our analysis into three main parts.

In the first part of our analysis, we examine the first three

steps of the pipeline (cf. Figure 1). To this end, we first execute

each basecalling tool (i.e. one of Nanonet, Scrappie, Nanocall or

DeepNano). As Metrichor is a cloud-based tool and its source

code is not available, we cannot execute Metrichor and get the

performance metrics for it. After recording the performance

metrics for each basecaller run, we execute either GraphMap or

Minimap followed by Miniasm, or Canu itself, and record the

performance metrics for each run. We obtain a draft assembly

for each combination of these basecalling, read-to-read overlap

finding and assembly tools. For each draft assembly, we assess

its accuracy by comparing the resulting draft assembly with the

existing reference genome. We show the accuracy results in

Table 10. We show the performance results in Table 11. We will

refer to these tables in sections ‘Basecalling tools’, ‘Read-to-read

overlap finding tools’ and ‘Assembly tools’.

In the second part of our analysis, we examine the last two

steps of the pipeline (cf. Figure 1). To this end, for each obtained

draft assembly, we execute each possible combination of differ-

ent read mappers (i.e. BWA-MEM or Minimap) and different pol-

ishers (i.e. Nanopolish or Racon), and record the performance

metrics for each step (i.e. read mapping and polishing). We ob-

tain a polished assembly after each run, and assess its accuracy

by comparing it with the existing reference genome. For these

two analyses, we use the first system, which has 40 logical

cores, and execute each tool using 40 threads, which is the pos-

sible maximum number of threads for that particular machine.

We show the accuracy results in Table 12. We show the per-

formance results in Table 13. We will refer to these tables in sec-

tion ‘Read mapping and polishing tools’.

In the third part of our analysis, we assess the scalability of

all of the tools that have multithreading support. For this pur-

pose, we use the second and third systems to compare the scal-

ability of these tools on two different system configurations. For

each tool, we change the number of threads and observe the

corresponding change in speed, memory usage and parallel

speedup. These results are depicted in Figures 2–6, and we will

refer to them throughout ‘Basecalling tools’, ‘Read-to-read over-

lap finding tools’, ‘Assembly tools’ and ‘Read mapping and pol-

ishing tools’ sections.

‘Basecalling tools’, ‘Read-to-read overlap finding tools’,

‘Assembly tools’ and ‘Read mapping and polishing tools’ sec-

tions describe the major observations we make for each of the

five steps of the pipeline (cf. Figure 1) based on our extensive

evaluation results.

Table 7. Accuracy metrics

Metric name Definition Preferred values

Number of bases Total number of bases in the assembly ’ Length of reference genome

Number of contigs Total number of segments in the assembly Lower (’1)

Average identity Percentage similarity between the assembly and the reference genome Higher (’100%)

Coverage Ratio of the number of aligned bases in the reference genome to the

length of reference genome

Higher (’100%)

Number of mismatches Total number of single-base differences between the assembly and

the reference genome

Lower (’0)

Number of indels Total number of insertions and deletions between the assembly and

the reference genome

Lower (’0)

Table 8. Performance metrics

Metric name Definition Preferred values

Wall clock time Elapsed time from the start of a program to the end Lower

CPU time Total amount of time the CPU spends in user mode (i.e. to run the program’s code)

and kernel mode (i.e. to execute system calls made by the program)*

Lower

Peak memory usage Maximum amount of memory used by a program during its whole lifetime Lower

Parallel speedup Ratio of the time to run a program with one thread to the time to run it with N threads Higher

*If wall clock time < CPU time for a specific program, it means that the program runs in parallel.

Computational analysis of nanopore sequencing tools | 1547

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

Basecalling tools

As we discuss in section ‘Basecalling’, ONT’s basecallers

Metrichor, Nanonet and Scrappie, and another basecaller de-

veloped by Boza et al. (2017), DeepNano, use RNNs for basecall-

ing, whereas Nanocall developed by David et al. (2016) uses

HMMs for basecalling.

Accuracy

Using RNNs is a more powerful basecalling approach than using

HMMs, as an RNN 1) does not make any assumptions about se-

quence length [57] and (2) is not affected by the repeats in the se-

quence [30, 31, 57]. However, it is still challenging to determine

the correct length of the homopolymers even with an RNN.

To compare the accuracy of the analyzed basecallers, we

group the accuracy results by each basecalling tool and compare

them according to the defined accuracy metrics.

According to this analysis and the accuracy results shown in

Table 10, we make the following key observation.

Observation 1: The pipelines that start with Metrichor,

Nanonet or Scrappie as the basecaller have similar identity and

coverage trends among all of the evaluated scenarios (i.e. tool

combinations for the first three steps), but Scrappie has a lower

number of mismatches and indels. However, Nanocall and

DeepNano cannot reach these three basecallers’ accuracies:

they have lower identity and lower coverage.

As Nanonet is the local version of Metrichor, Nanonet and

Metrichor’s similar accuracy trends are expected. In addition to

the power of the RNN-based approach, Scrappie tries to solve

the homopolymer basecalling problem. Although Scrappie is in

an early stage of development, it leads to a smaller number of

indels than Metrichor or Nanonet. Nanocall’s poor accuracy re-

sults are because of the simple HMM-based approach it uses.

Although DeepNano performs better than Nanocall with the

help of its RNN-based approach, it results in a higher number of

indels and a lower coverage of the reference genome.

Performance

RNN and HMM are computationally intensive algorithms. In

HMM-based basecalling, the Viterbi algorithm [58] is used for

decoding. The Viterbi algorithm is a sequential technique, and

its computation cannot currently be parallelized with multi-

threading. However, in RNN-based basecalling, multiple threads

can work on different sections of the neural network, and thus,

RNN computation can be parallelized with multithreading.

To measure and compare the performance of the selected

basecallers, we first compare the recorded wall clock time, CPU

time and memory usage metrics of each scenario for the first

step of the pipeline. Based on the results provided in Table 11,

we make the following key observation.

Observation 2: RNN-based Nanonet and DeepNano are 2.6x

and 2.3x faster than HMM-based Nanocall, respectively.

Although Scrappie is also an RNN-based tool, it is 5.7x faster

than Nanonet because of its C implementation as opposed to

Nanonet’s Python implementation.

Table 9. Versions, commands to execute and outputs for each analyzed tool

Command* Output

Basecalling tools

Nanonet–v2.0 nanonetcall fast5_dir/–jobs N –chemistry r9 reads.fasta

Scrappie–v1.0.1 (1)export OMP_NUM_THREADS¼N

(2)scrappie events –segmentation Segment_Linear: split_hairpin

(2)fast5_dir/. . .

reads.fasta

Nanocall–v0.7.4 nanocall -t N fast5_dir/ reads.fasta

DeepNano-e8a621e python basecall.py –directory fast5_dir/–chemistry r9 reads.fasta

Read-to-read overlap finding tools

GraphMap–v0.5.2 graphmap owler -L paf -t N -r reads.fasta -d reads.fasta overlaps.paf

Minimap–v0.2 minimap -Sw5 -L100 -m0 -tN reads.fasta reads.fasta overlaps.paf

Assembly finding tools

Canu–v1.6 canu -p ecoli -d canu-ecoli genomeSize¼4.6m -nanopore-raw reads.fasta draftAssembly.fasta

Miniasm–v0.2 miniasm -f reads.fasta overlaps.paf draftAssembly.gfa –>

draftAssembly.fasta

Read mapping tools

BWA-MEM–0.7.15 (1)bwa index draftAssembly.fasta (2)bwa mem -x ont2d -t

N draftAssembly.fasta reads.fasta

mappings.sam –> mappings.bam

Minimap–v0.2 minimap -tN draftAssembly.fasta reads.fasta mappings.paf

Polishing tools

Nanopolish–v0.7.1 (1)python nanopolish_makerange.py draftAssembly.fasta—parallel -P M

(2)nanopolish variants –consensus polished.1.fa -w 1 (2)-r reads.fasta -b

mappings.bam -g draftAssembly.fasta -t N

(3)python nanopolish_merge.py polished.*.fa polished.fasta

Racon–v0.5.0 racon (–sam) –bq -1 -t N reads.fastq mappings.paf/(mappings.sam)

draftAssembly.fasta

polished.fasta

*N corresponds to the number of threads and M corresponds to the number of parallel jobs.

1548 | Senol Cali et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

For a deeper understanding of these tools’ advantages, dis-

advantages and bottlenecks, we also perform a scalability ana-

lysis for each basecaller by running it on the desktop server and

the big-mem server separately, with 1, 2, 4, 8 (maximum for the

desktop server), 16, 32, 40, 64 and 80 (maximum for the big-

mem server) threads, and measuring the performance metrics

for each configuration. Metrichor and DeepNano are not

included in this analysis because Metrichor is a cloud-based

tool and its source code is not available for us to change its

number of threads, and DeepNano does not support multi-

threading. Figure 2 shows the speed, memory usage and parallel

speedup results of our evaluations. We make four observations.

Observation 3: When we compare desktop’s and big-mem’s

single-thread performance, we observe that desktop is approxi-

mately 2x faster than big-mem (cf. Figure 2A and B).

This is mainly because of desktop’s higher CPU frequency

(see Table 6). It is an indication that all of these three tools

are computationally expensive. Larger memory capacity or

larger Last-Level Cache (LLC) capacity of big-mem cannot make

up for the higher CPU speed in desktop when there is only one

thread.

Observation 4: Scrappie and Nanocall have a linear increase

in memory usage when number of threads increases. In con-

trast, Nanonet has a constant memory usage for all evaluated

thread units (cf. Figure 2C and D).

In Scrappie and Nanocall, each thread performs the basecall-

ing for different groups of raw reads. Thus, each thread allo-

cates its own memory space for the corresponding data. This

causes the linear increase in memory usage when the level of

parallelism increases. In Nanonet, all of the threads share the

Table 11. Performance analysis results for the first three steps of the pipeline

*We cannot get the performance metrics for Metrichor, as its source code is not available for us to run the tool by ourselves.

Table 10. Accuracy analysis results using different tools for the first three steps of the pipeline

Computational analysis of nanopore sequencing tools | 1549

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

computation of each read, and thus, memory usage is not af-

fected by the amount of thread parallelism.

Observation 5: When the number of threads exceeds the

number of physical cores, the simultaneous multithreading

(SMT) overhead prevents continued linear speedup of Nanonet,

Scrappie and Nanocall (cf. Figure 2E and F).

SMT (i.e. running more than one thread per physical core

[59–66]), or more specifically Intel’s hyper-threading (i.e. as we

use Intel’s hyper-threading enabled machines (see Table 6))

helps to decrease the total runtime, but it does not provide a lin-

ear speedup with the number of threads because of the CPU-

intensive workload of Scrappie, Nanocall and Nanonet. If the

threads executed are CPU-bound and do not wait for the mem-

ory or I/O requests, hyper-threading does not provide linear

speedup because of the contention it causes in the shared re-

sources for the computation. This phenomenon has been ana-

lyzed extensively in other application domains [59–61].

Observation 6: Data sharing between threads degrades the

parallel speedup of Nanonet when cores from multiple NUMA

nodes take role in the computation (cf. Figure 2F).

In Nanonet, data are shared between threads, and each

thread performs different computations on the same data.

There are four NUMA nodes in big-mem (cf. Table 6), and when

data are shared between multiple NUMA nodes, this negatively

affects the speedup of Nanonet because accessing the data

located in another node (i.e. non-local memory) require longer

latency than accessing the data located in local memory. When

multiple NUMA nodes start taking role in the computation,

Nanocall performs better in terms of scalability, as it does not

require data sharing between different threads.

Summary. Based on the observations we make about the

analyzed basecalling tools, we conclude that the choice of the

tool for this step plays an important role to overcome the high

error rates of nanopore sequencing technology. Basecalling

with RNNs (e.g. Metrichor, Nanonet, Scrappie) provides higher

accuracy and higher speed than basecalling with HMMs, and

the newest basecaller of ONT, Scrappie, also has the potential to

overcome the homopolymer basecalling problem.

Read-to-read overlap finding tools

As we discuss in ‘Read-to-read overlap finding’ section,

GraphMap and Minimap are the commonly used tools for this

step. GraphMap finds the overlaps using k-mer similarity,

whereas Minimap finds them by using minimizers instead of

the full set of k-mers.

Accuracy

As done in GraphMap, finding the overlaps with the help of full

set of k-mers is a highly sensitive and accurate approach.

However, it is also resource-intensive. For this reason, instead

of the full set of k-mers, Minimap uses a minimum representa-

tive set of k-mers, which are called minimizers, as an alterna-

tive approach for finding the overlaps.

To compare the accuracy of these two approaches, we cat-

egorize the results in Table 10 based on read-to-read overlap

A B

C D

E F

Figure 2. Scalability results of Nanocall, Nanonet and Scrappie. Wall clock time (A, B), peak memory usage (C, D) and parallel speedup (E, F) results obtained on the

desktop and big-mem systems. The left column (A, C, E) shows the results from the desktop system, and the right column (B, D, F) shows the results from the big-mem

system.

1550 | Senol Cali et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

finding tools. In other words, we look at the rows with the same

basecaller (i.e. red-labeled tools) and same assembler (i.e. green-

labeled tools) but different read-to-read overlap finder (i.e. blue-

labeled tools). After that, we compare them according to the

defined accuracy metrics. We make the following major

observation.

Observation 7: Pipelines with GraphMap or Minimap end up

with similar values for identity, coverage, number of indels and

mismatches. Thus, either of these read-to-read overlap finding

tools can be used in the second step of the nanopore sequencing

assembly pipeline to achieve similar accuracy.

Minimap and GraphMap do not have a significantly different

effect on the accuracy of the generated draft assemblies. This is

because Minimap does not lose any sensitivity by storing min-

imizers instead of the full set of k-mers.

Performance

To compare the performance of GraphMap and Minimap, we cat-

egorize the results in Table 11 based on read-to-read overlap find-

ing tools, in a similar way we describe the results in Table 10 for

the accuracy analysis. We also perform a scalability analysis for

each of these tools by running them on the big-mem server with

1, 2, 4, 8, 16, 32, 40, 64 and 80 threads, and measuring the per-

formance metrics. Because of the high memory usage of

GraphMap, data necessary for the tool do not fit in the memory

of the desktop server, and the GraphMap job exits because of a

bad memory allocation exception. Thus, we could not perform

the scalability analysis of GraphMap in the desktop server.

Figure 3 depicts the speed, memory usage and parallel

speedup results of the scalability analysis for GraphMap and

Minimap. We make the following three observations according

to the results from Table 11 and Figure 3.

Observation 8: The memory usage of both GraphMap and

Minimap is dependent on the hash table size but independent

of number of threads. Minimap requires 4.6x less memory than

GraphMap, on average.

This is mainly because Minimap stores only minimizers in-

stead of all k-mers. Storing the full set of k-mers in GraphMap

requires a larger hash table, and thus higher memory usage

than Minimap. The high amount of memory requirement

causes GraphMap to not run on our desktop system for none of

the selected number of thread units.

Observation 9: Minimap is 2.5x faster than GraphMap, on

average, across different scenarios in Table 11.

As GraphMap stores all k-mers, GraphMap needs to scan its

large data set while finding the overlaps between two reads.

However, in Minimap, the size of data set that needs to be scanned

is greatly shrunk by storing minimizers, as we describe in

Observation 8. Thus, Minimap performs much less computation,

leading to its 2.5x speedup. Another indication of the different

memory usage and its effect on the speed of computation is the

LLC miss rates of these two tools. The LLC miss rate of Minimap is

36%, whereas the LLC miss rate of GraphMap is 55%. As the size of

data needed by GraphMap is much larger than the LLC size,

GraphMap experiences LLC misses more frequently. As a result,

GraphMap stalls for longer, waiting for data accesses from main

memory, which negatively affects the speed of the tool.

Observation 10: Minimap is more scalable than GraphMap.

However, after 32 threads, there is a decrease in the parallel

speedup of Minimap (cf. Figure 3C).

Because of its lower computational workload and lower mem-

ory usage, we find that Minimap is more scalable than

GraphMap. However, in Minimap, threads that finish their work

wait for the other active threads to finish their workloads, before

starting new work, to prevent higher memory usage. Because of

this, when the number of threads reaches a high number (i.e. 32

in Figure 3C), synchronization overhead greatly increases, caus-

ing the parallel speedup to reduce. GraphMap does not suffer

from such a synchronization bottleneck and hence does not ex-

perience a decrease in speedup. However, GraphMap’s speedup

saturates when the number of threads reaches a high number be-

cause of data sharing between threads.

Summary. According to the observations we make about

GraphMap and Minimap, we conclude that storing minimizers

instead of all k-mers, as done by Minimap, does not affect the

overall accuracy of the first three steps of the pipeline.

Moreover, by storing minimizers, Minimap has a much lower

memory usage and thus much higher performance than

GraphMap.

Assembly tools

As we discuss in section ‘Genome assembly’, Canu and

Miniasm are the commonly used tools for this step (In addition,

we attempted to evaluate MECAT [67], another assembler. We

were unable to draw any meaningful conclusions from MECAT,

A

B

C

Figure 3. Scalability results of Minimap and GraphMap. Wall clock time (A), peak

memory usage (B) and parallel speedup (C) results obtained on the big-mem

system.

Computational analysis of nanopore sequencing tools | 1551

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

as its memory usage exceeds the 1 TB available in our big-mem

system.).

Accuracy

To compare the accuracy of these two tools, we categorize the

results in Table 10 based on assembly tools. We make the fol-

lowing observation.

Observation 11: Canu provides higher accuracy than

Miniasm, with the help of the error-correction step that is pre-

sent in its own pipeline.

Performance

To compare the performance of Canu and Miniasm, we categor-

ize the results in Table 11 based on assembly tools, in a way

similar to what we did in Table 10 for the accuracy analysis. We

could not perform a scalability analysis for these tools, as Canu

has an auto-configuration mechanism for each sub-step of its

own pipeline, which does not allow us to change the number of

threads, and Miniasm does not support multithreading. We

make the following observation according to the results in

Table 11.

Observation 12: Canu is much more computationally inten-

sive and greatly (i.e. by 1096.3x) slower than Miniasm because of

its expensive error-correction step.

Summary. According to the observations we make about

Canu and Miniasm, there is a trade-off between accuracy and

performance when deciding on the appropriate tool for this

step. Canu produces highly accurate assemblies, but it is re-

source intensive and slow. In contrast, Miniasm is a fast assem-

bler, but it cannot produce as accurate draft assemblies as

Canu. We suggest that Miniasm can potentially be used for fast

initial analysis and then further polishing can be applied in the

next step to produce higher-quality assemblies.

Read mapping and polishing tools

As we discuss in section ‘Read mapping and polishing’, further

polishing may be required for improving the accuracy of the

low-quality draft assemblies. For this purpose, after aligning the

reads to the generated draft assembly with BWA-MEM or

Minimap (We do not discuss these tools in great detail here, as

they perform read mapping, which is commonly analyzed and

relatively well understood [68–86]), one can use Nanopolish or

Racon to perform polishing and obtain improved assemblies

(i.e. consensus sequences).

Nanopolish accepts mappings only in sequence alignment/

map (SAM) format [88], and it works only with draft assemblies

generated with the Metrichor-basecalled reads. On the other

hand, Racon accepts both pairwise mapping format (PAF) map-

pings [46] and SAM-format mappings, but it requires the input

reads and draft assembly files to be in fastq format [89], which

includes quality scores. However, by using the -bq -1 parameter,

it is possible to disable the filtering used in Racon, which re-

quires quality scores. As our basecalled reads are in fasta format

[90], in our experiments, we convert these fasta files into fastq

files and disable the filtering with the corresponding parameter.

BWA-MEM generates mappings in SAM format, whereas

Minimap generates mappings in PAF format. As Nanopolish re-

quires SAM format input, we generate the mappings only with

BWA-MEM and use them for Nanopolish polishing, in our ana-

lysis. On the other hand, as Racon accepts both formats, we

generate the mappings and the overlaps with both BWA-MEM

and Minimap, respectively, and use them for Racon polishing,

in our analysis.

Accuracy

Table 12 presents the accuracy metrics results for Nanopolish

(i.e. Rows 1–3) and Racon (i.e. Rows 4–23) pipelines. Based on

these results, we make two observations.

Table 12. Accuracy analysis results for the full pipeline with a focus on the last two steps

1552 | Senol Cali et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

Observation 13: Both Nanopolish and Racon significantly in-

crease the accuracy of the draft assemblies.

For example, Nanopolish increases the identity and coverage

of the draft assembly generated with the MetrichorþMinimapþ

Miniasm pipeline from 87.71 and 94.85% (Row 2 of Table 10), re-

spectively, to 92.33 and 96.31% (Row 2 of Table 12). Similarly,

Racon increases them to 97.70 and 99.91% (Rows 6–7 of Table 12),

respectively.

Observation 14: For Racon, the choice of read mapper does

not affect the accuracy of the polishing step.

We observe that using BWA-MEM or Minimap to generate

the mappings for Racon results in almost identical accuracy

metric results. For example, when we use BWA-MEM before

Racon for the draft assembly generated with the

MetrichorþCanu pipeline (Row 4 of Table 12), Racon results

with 98.46% identity, 100.00% coverage, 18 036 mismatches

and 51 482 indels. When we use Minimap, instead (Row 5 of

Table 12), Racon results with 98.45% identity, 100.00% cover-

age, 17 096 mismatches and 52 168 indels, which is almost

identical to the BWA-MEM results.

Performance

In the first part of the performance analysis for Nanopolish, we

divide the draft assemblies into 50kb segments and polish 4 of

these segments in parallel with 10 threads for each segment.

For Racon, each draft assembly is polished using 40 threads, but

the tool, by default, divides the input sequence into windows of

20kb length. Table 13 presents the performance results for

Nanopolish (i.e. Rows 1–3) and Racon (i.e. Rows 4–23) pipelines.

Based on these results, we make the following two

observations.

Observation 15: Nanopolish is computationally much more

intensive and thus greatly slower than Racon.

Nanopolish runs take days to complete, whereas Racon runs

take minutes. This is mainly because Nanopolish works on each

base individually, whereas Racon works on the windows. As

each window is much longer (i.e. 20 kb) than a single base, the

computational workload is greatly smaller in Racon. Also,

Racon only uses the mappings/overlaps for polishing, whereas

Nanopolish uses raw signal data and an HMM-based approach

to generate the consensus sequence, which is computationally

more expensive.

Observation 16: BWA-MEM is computationally more expen-

sive than Minimap.

Although the choice of BWA-MEM and Minimap for the read

mapping step does not affect the accuracy of the polishing step,

these two tools have a significant difference in performance

(Minimap2 [87] is a recently released successor to Minimap. We

compare Minimap2 to BWAMEM and to Minimap, and make

two observations. First, Minimap2 significantly outperforms

BWA-MEM. As Minimap2 can produce SAM alignments (which

BWA-MEM produces), we can replace BWA-MEM with

Minimap2 in future genome assembly pipelines. Second,

Minimap2 has similar accuracy and performance compared

with Minimap. This is because Minimap2 and Minimap use sim-

ilar indexing and seeding algorithms [87], and the new features

of Minimap2 (more accurate chaining, base-level alignment,

support for spliced alignment) are not used in the pipeline we

analyze. As a result, our findings for Minimap generally remain

the same for Minimap2.).

For a deeper performance analysis of these read mapping

and polishing tools, we perform a scalability analysis for each

Table 13. Performance analysis results for the full pipeline with a focus on the last two steps

Computational analysis of nanopore sequencing tools | 1553

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

read mapper and each polisher by running them on the desktop

system and the big-mem system separately, with 1, 2, 4, 8 (max-

imum for desktop server), 16, 32, 40, 64 and 80 (maximum for

big-mem server) threads, and measuring the performance met-

rics. Figure 4 shows the the speed, memory usage and parallel

speedup of BWA-MEM and Minimap. We make two

observations.

Observation 17: On both systems, Minimap is greatly faster

than BWA-MEM (cf. Figure 4A and B). However, when the num-

ber of threads reaches high value, Minimap’s performance de-

grades because of the synchronization overhead between its

threads (cf. Figure 4F).

On the desktop system, Minimap is 332.0x faster than BWA-

MEM, on average (see Figure 4A). On the big-mem system,

Minimap is 294.6x and 179.6x faster than BWA-MEM, on aver-

age, when the number of threads is <32 and >32, respectively.

This is because of the synchronization overhead that increases

with the number of threads used in Minimap (see Observation

10). As we also show in Figure 4F, Minimap’s speedup reduces

when the number of threads exceeds 32, which is another indi-

cation of the synchronization overhead that causes Minimap to

slow down.

Observation 18: Minimap’s memory usage is independent of

the number of threads and stays constant. In contrast, BWA-

MEM’s memory usage increases linearly with the number of

threads (cf. Figure 4C and D).

In Minimap, memory usage is dependent on the hash table

size and is independent of number of threads (see Observation 8).

In contrast, in BWA-MEM, each thread separately performs com-

putation for different groups of reads (as in Scrappie and

Nanocall, see Observation 4). This causes the linear increase in

memory usage of BWA-MEM when the number of threads

increases.

Figure 5 shows the scalability results for Racon on the big-

mem system. We obtain the results on both of the systems.

However, we only show the results for the big-mem system, as

the results for both of the systems are similar. We separately

test the tool by using PAF mappings and SAM mappings. Based

on the results, we make the following observation.

Observation 19: Racon’s memory usage is independent of

the number of threads for both PAF mode and SAM mode.

However, the memory usage of PAF mode is 1.86x higher than

the memory usage of SAMmode, on average (cf. Figure 5B).

The memory usage of Racon depends on the number of

mappings received from the fourth step, as Racon performs pol-

ishing by using these mappings. Racon’s memory usage is

higher for the PAF mode because the number of mappings

stored in the PAF files is greater than the number of mappings

stored in the SAM files (i.e. 1.4x). However, using PAF mappings

or SAM, mappings do not significantly affect the speed (see

Figure 5A) and the parallel speedup (see Figure 5C) of Racon.

Figure 6 shows the scalability results for Nanopolish. We test

the tool by separately using a 25 kb and a 50 kb segment length

to assess the scalability of the tool with respect to the segment

length, in addition to the scalability with respect to the number

of threads. We measure the performance metrics. We only

show the results for the big-mem system, as the results for both

of the systems are similar. Based on the results, we make the

following observation.

Observation 20: Nanopolish’s memory usage is independent

of the number of threads. However, its memory usage in de-

pendent on the segment length (cf. Figure 6B).

A B

C D

E F

Figure 4. Scalability results of BWA-MEM and Minimap. Wall clock time (A, B), peak memory usage (C, D) and parallel speedup (E, F) results obtained on the desktop

and big-mem systems. The left column (A, C, E) shows the results from the desktop system, and the right column (B, D, F) shows the results from the big-mem system.

1554 | Senol Cali et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

The memory usage of Nanopolish is not affected by the

number of threads. However, it is dependent on the segment

length. Nanopolish uses more memory for longer segments.

When the segment length is doubled from 25 to 50kb, the in-

crease in the memory usage (i.e. 2.7x) is >2.0x. This is because

the memory usage of Nanopolish depends both on the length of

the segment and the number of read mappings that map to this

segment. For both of the segments, the memory usage also af-

fects the speed. The Nanopolish run for the 25kb segment is

2.7x faster than the run for the 50kb segment (see Figure 6A).

Observation 21: Nanopolish’s performance greatly degrades

when the number of threads exceeds the number of physical

cores (cf. Figure 6C).

Hyper-threading causes a slowdown for Nanopolish because

of the CPU-intensive workload of Nanopolish and the resulting

high contention in the shared resources between the threads

executing on the same core, as we discuss in Observation 5.

Summary. Based on the observations we make about tools

for the optional last two steps of the pipeline, we conclude that

further polishing can significantly increase the accuracy of the

assemblies. As BWA-MEM and Nanopolish are more resource-

intensive than Minimap and Racon, pipelines with Minimap

and Racon can provide a significant speedup compared with the

pipelines with BWA-MEM and Nanopolish while resulting with

high-quality consensus sequences.

Recommendations

Recommendations for tool users

Based on the results we have collected and observations we have

made for each step of the genome assembly pipeline using nano-

pore sequence data and the associated tools, we make the follow-

ing major recommendations for the current and future tool users.

• ONT’s basecalling tools, Metrichor, Nanonet and Scrappie, are the

best choices for the basecalling step in terms of both accuracy and

performance. Among these tools, Scrappie is the newest, fastest

and most accurate basecaller. Thus, we recommend using Scrappie

for the basecalling step (see analysis in section ‘Basecalling tools’).
• For the read-to-read overlap finding step, Minimap is faster than

GraphMap, and it requires low memory. Also, it has similar ac-

curacy to GraphMap. Thus, we recommend Minimap for the

read-to-read overlap finding step (see analysis in section ‘Read-

to-read overlap finding tools’).
• For the assembly step, if execution time is not an important con-

cern, we recommend using Canu, as it produces much more ac-

curate assemblies. However, for a fast initial analysis, we

recommend using Miniasm, as it is fast and its accuracy can be

increased with an additional polishing step. If Miniasm is used

A

B

C

Figure 5. Scalability results of Racon. Wall clock time (A), peak memory usage (B)

and parallel speedup (C) results obtained on the big-mem system.

A

B

C

Figure 6. Scalability results of Nanopolish. Wall clock time (A), peak memory

usage (B) and parallel speedup (C) results obtained on the big-mem system.

Computational analysis of nanopore sequencing tools | 1555

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

for assembly, we definitely recommend further polishing to in-

crease the accuracy of the final assembly (see analysis in section

‘Assembly tools’). Even though polishing takes a similar amount

of time if we use Miniasm or Canu, the accuracy improvements

are much smaller for a genome assembled using Canu. We hope

that future work can improve the performance of polishing

when the assembled genome already has high accuracy, to re-

duce the execution time of the overall assembly pipeline.
• For the polishing step, we recommend using Racon, as it is much

faster than Nanopolish. Racon also produces highly-accurate assem-

blies (see analysis in section ‘Readmapping and polishing tools’).
• In the future, laptops may become a popular platform for running

genome assembly tools, as the portability of a laptop makes it a

good fit for in-field analysis. Compared with the desktop and ser-

ver platforms that we use to test our pipelines, a laptop has even

greater memory constraints and lower computational power, and

we must factor in limited battery life when evaluating the tools.

Based on the scalability studies we perform using our desktop and

server platforms, we would likely recommend using Minimap fol-

lowed by Miniasm for the assembly step, and Minimap followed

by Racon for the polishing step, when performing assembly on a

laptop. These three tools use relatively low amounts of memory,

and execute quickly, which we expect would make the tools a

good fit for the various constraints of a laptop. Despite their low

memory usage and fast execution, our recommended pipeline can

produce high-quality assemblies that are suitable for fast initial

in-field analyses. We leave it to future work to quantitatively study

the genome assembly pipeline using nanopore sequence data on

laptops and other mobile devices.

Recommendations for tool developers

Based on our analyses, we make the following recommenda-

tions for the tool developers.

• The choice of language to implement the tool plays a crucial role

regarding the overall performance of the tool. For example, al-

though the basecallers Scrappie and Nanonet belong to the same

family (i.e. they both use the more accurate RNNs for basecall-

ing), Scrappie is significantly faster than Nanonet, as Scrappie is

implemented in C whereas Nanonet is implemented in Python

(see analysis in section ‘Basecalling tools’).
• Memory usage is an important factor that greatly affects the per-

formance and the usability of the tool. While developing new

tools or improving the current ones, the developers should be

aware of the memory hierarchy. Data structure choices that can

minimize the memory requirements and cache-efficient algo-

rithms have a positive impact on the overall performance of the

tools. Keeping memory usage in check with the number of

threads can enable not only a usable (i.e. runnable on machines

with relatively small memories) tool but also a fast one. For ex-

ample, we find that GraphMap cannot even run with a single-

thread in our desktop machine because of excessively high

memory usage (see analyses in ‘Basecalling tools’, ‘Read-to-read

overlap finding tools’, ‘Assembly tools’ and ‘Read mapping and

polishing tools’ sections).
• Scalability of the tool with the number of cores/threads is an im-

portant requirement. It is important to make the tool efficiently

parallelized to decrease the overall runtime. Design choices should

bemade wisely while considering the possible overheads that par-

allelization can add. For example, we find that the parallel

speedup of Minimap reduces when the number of threads reaches

a high number because of a large increase in the overhead of

synchronization between threads (see analyses in ‘Basecalling

tools’, ‘Read-to-read overlap finding tools’, ‘Assembly tools’ and

‘Read mapping and polishing tools’ sections).
• As parallelizing the tool can increase the memory usage, dividing

the input data into batches, or limiting the memory usage of

each thread, or dividing the computation instead of dividing the

data set between simultaneous threads can prevent large in-

creases in memory usage, while providing performance benefits

from parallelization. For example, in Nanonet, all of the threads

share the computation of each read, and thus, memory usage is

not affected by the amount of thread parallelism. As a result,

Nanonet’s usability is not limited to machines with relatively

larger memories (see analyses in ‘Basecalling tools’, ‘Read-to-

read overlap finding tools’, ‘Assembly tools’ and ‘Read mapping

and polishing tools’ sections).

Conclusion

We analyze the multiple steps and the associated state-of-the-

art tools in the genome assembly pipeline using nanopore se-

quence data in terms of accuracy, speed, memory efficiency and

scalability (We leave it to future work to quantitatively study

tools for different applications of nanopore sequencing, such as

variant calling, detection of base modifications (i.e. methylation

studies [91]) and pathogen detection.). We make four major con-

clusions based on our experimental analyses of the whole pipe-

line. First, the basecalling tools with higher accuracy and

performance, like Scrappie, can overcome the major drawback of

nanopore sequencing technology, i.e. high error rates. Second,

the read-to-read overlap finding tools, Minimap and GraphMap,

perform similarly in terms of accuracy. However, Minimap per-

forms better than GraphMap in terms of speed and memory

usage by storing only minimizers instead of all k-mers, and

GraphMap is not scalable when running on machines with rela-

tively small memories. Third, the fast but less accurate assembler

Miniasm can be used for a fast initial assembly, and further pol-

ishing can be applied on top of it to increase the accuracy of the

final assembly. Fourth, a state-of-the-art polishing tool, Racon,

generates high-quality consensus sequences while providing a

significant speedup over another polishing tool, Nanopolish.

We hope and believe that our observations and analyses will

guide researchers and practitioners to make conscious and ef-

fective choices while deciding between different tools for each

step of the genome assembly pipeline using nanopore sequence

data. We also hope that the bottlenecks or the effects of design

choices we have found and exposed can help developers in

building new tools or improving the current ones.

Key Points

To our knowledge, this is the first work that analyzes

state-of-the-art tools associated with each step of the

genome assembly pipeline using sequence data generated

with nanopore sequencing, a promising new sequencing

technology.

The key contributions are:

1. We analyze the tools in multiple dimensions that are

important for both developers and users/practitioners:

accuracy, performance, memory usage and scalability.

1556 | Senol Cali et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

2. We reveal new bottlenecks and trade-offs that different

combinations of tools lead to, based on our extensive

experimental analyses.

3. We provide guidelines for both practitioners, such that

they can determine the appropriate tools and tool com-

binations that can satisfy their goals, and tool devel-

opers, such that they can make design choices to

improve current and future tools.

4. We show that tools that are aware of the memory hier-

archy have a better overall performance and scalability,

and they are more usable than the tools that do not

keep memory usage in check with the number of

threads.

5. We show that basecalling is the most important step of

the pipeline to overcome the high error rates of nano-

pore sequencing technology.

6. We show that there is a trade-off between accuracy and

performance when choosing the tool for the assembly

step. Miniasm, coupled with an additional polishing

step, can lead to faster overall assembly than using

Canu itself while producing high-quality assemblies.

Acknowledgments

The authors thank Jared Simpson and David Matei for their

feedback and help with the questions about the tools.

Posters describing earlier stages of the work in this article

were presented at PSB 2017 and ISMB-ECCB 2017. The au-

thors thank the poster session attendees for their feedback

on the works. The authors especially thank Adam M.

Phillippy and Mile �Siki�c for their feedback during the poster

sessions. The authors also thank developers of Nanonet and

Racon for answering our questions on GitHub.

Funding

This work was supported by a grant from the National

Institutes of Health to O.M. and C.A. (grant number

HG006004); an installation grant from the European

Molecular Biology Organization to C.A. (grant number

EMBO-IG 2521); and gifts from Google, Intel, Samsung

and VMware.

References

1. Van Dijk EL, Auger H, Jaszczyszyn Y. Ten years of next-

generation sequencing technology. Trends Genet 2014;30(9):

418–26.

2. Hongyi X, Donghyuk L, Farhad H, et al. Accelerating readmap-

ping with FastHASH. BMC Genomics 2013;14(Suppl 1):S13.

3. Shendure J, Balasubramanian S, Church GM, et al. DNA

sequencing at 40: past, present and future. Nature 2017;

550(7676):345–53.

4. Steinberg KM, Schneider VA, Alkan C, et al. Building and im-

proving reference genome assemblies. Proc IEEE 2017;105(3):

422–35.

5. Treangen TJ, Salzberg SL. Repetitive DNA and next-

generation sequencing: computational challenges and solu-

tions.Nat Rev Genet 2011;13(1):36–46.

6. Firtina C, Alkan C. On genomic repeats and reproducibility.

Bioinformatics 2016;32(15):2243–7.

7. Alkan C, Sajjadian S, Eichler EE. Limitations of next-

generation genome sequence assembly. Nat Methods 2011;

8(1):61–5.

8. Lu H, Giordano F, Ning Z. Oxford Nanopore MinION sequenc-

ing and genome assembly. Genomics Proteomics Bioinformatics

2016;14(5):265–79.

9. Magi A, Semeraro R, Mingrino A, et al. Nanopore sequencing

data analysis: state of the art, applications and challenges.

Brief Bioinform 2017, in press.

10.Clarke J, Wu HC, Jayasinghe L, et al. Continuous base identifi-

cation for single-molecule nanopore DNA sequencing. Nat

Nanotechnol 2009;4(4):265–70.

11.Marx V. Nanopores: a sequencer in your backpack. Nat

Methods 2015;12(11):1015–18.

12.Branton D, Deamer DW, Marziali A, et al. The potential and

challenges of nanopore sequencing. Nat Biotechnol 2008;

26(10):1146–53.

13.Laver T, Harrison J, O’neill PA, et al. Assessing the perform-

ance of the Oxford Nanopore Technologies MinION. Biomol

Detect Quantif 2015;3:1–8.

14. Ip CLC, Loose M, Tyson JR, et al. MinION analysis and refer-

ence consortium: phase 1 data release and analysis. F1000Res

2015;4:1075.

15.Kasianowicz JJ, Brandin E, Branton D, et al. Characterization

of individual polynucleotide molecules using a membrane

channel. Proc Natl Acad Sci USA 1996;93(24):13770–3.

16.MinION, Oxford Nanopore Technologies. 2017 https://nano

poretech.com/products/minion.

17.Quick J, Loman NJ, Duraffour S, et al. Real-time, portable gen-

ome sequencing for Ebola surveillance. Nature 2016;

530(7589):228–232.

18.Quick J, Quinlan AR, Loman NJ. A reference bacterial genome

dataset generated on the MinIONTM portable single-molecule

nanopore sequencer. Gigascience 2014;3(1):22.

19. Jain M, Koren S, Miga KH, et al. Nanopore sequencing and as-

sembly of a human genome with ultra-long reads. Nat

Biotechnol 2018, in press.

20.Loman NJ. Thar she blows! Ultra long read method for nano-

pore sequencing. 2017. http://lab.loman.net/2017/03/09/ultra

reads-for-nanopore/.

21.Madoui MA, Engelen S, Cruaud C, et al. Genome assembly

using Nanopore-guided long and error-free DNA reads. BMC

Genomics 2015;16(1):327.

22. First DNA sequencing in space a game changer. 2017. https://

www.nasa.gov/mission_pages/station/research/news/dna_

sequencing.

23.Update: New R9 nanopore for faster, more accurate sequenc-

ing, and new ten minute preparation kit. 2017. https://nano

poretech.com/about-us/news/update-new-r9-nanopore-

faster-more-accurate-sequencing-and-new-ten-minute-

preparation.

24.Pop M. Genome assembly reborn: recent computational chal-

lenges. Brief Bioinform 2009;10(4):354–66.

25.Clive Brown Technical Update: GridION X5—The Sequel.

2017. https://nanoporetech.com/resource-centre/videos/grid

ion-x5-sequel.

26.de Lannoy C, de Ridder D, Risse J. A sequencer coming of age:

de novo genome assembly using MinION reads. F1000Res

2017;6:1283.

27.Metrichor. Oxford Nanopore Technologies. 2017. https://nano

poretech.com/products/metrichor.

28.Nanonet. Oxford Nanopore Technologies. 2017. https://

github.com/nanoporetech/nanonet.

Computational analysis of nanopore sequencing tools | 1557

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://nanoporetech.com/products/minion
https://nanoporetech.com/products/minion
http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/
http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/
https://www.nasa.gov/mission_pages/station/research/news/dna_sequencing
https://www.nasa.gov/mission_pages/station/research/news/dna_sequencing
https://www.nasa.gov/mission_pages/station/research/news/dna_sequencing
https://nanoporetech.com/about-us/news/update-new-r9-nanopore-faster-more-accurate-sequencing-and-new-ten-minute-preparation
https://nanoporetech.com/about-us/news/update-new-r9-nanopore-faster-more-accurate-sequencing-and-new-ten-minute-preparation
https://nanoporetech.com/about-us/news/update-new-r9-nanopore-faster-more-accurate-sequencing-and-new-ten-minute-preparation
https://nanoporetech.com/about-us/news/update-new-r9-nanopore-faster-more-accurate-sequencing-and-new-ten-minute-preparation
https://nanoporetech.com/resource-centre/videos/gridion-x5-sequel
https://nanoporetech.com/resource-centre/videos/gridion-x5-sequel
https://nanoporetech.com/products/metrichor
https://nanoporetech.com/products/metrichor
https://github.com/nanoporetech/nanonet
https://github.com/nanoporetech/nanonet

29.Scrappie. Oxford Nanopore Technologies. 2017. https://

github.com/nanoporetech/scrappie.

30.David M, Dursi LJ, Yao D, et al. Nanocall: an open source base-

caller for Oxford Nanopore sequencing data. Bioinformatics

2017;33(1):49–55.

31.Bo�za V, Brejová B, Vina�r T. DeepNano: deep recurrent neural

networks for base calling in MinION nanopore reads. PLoS One

2017;12(6):e0178751.

32. New basecaller now performs ’raw basecalling’, for improved

sequencing accuracy. 2017. https://nanoporetech.com/about-

us/news/new-basecaller-now-performs-raw-basecalling-im

proved-sequencing-accuracy.

33.Teng H, Hall MB, Duarte T, et al. Chiron: translating nanopore

raw signal directly into nucleotide sequence using deep

learning. bioRxiv 2017;179531.

34.Wick RR, Judd LM, Holt KE. Comparison of Oxford Nanopore

basecalling tools. 2017. https://github.com/rrwick/

Basecalling-comparison.

35.Eddy SR. Hidden markov models. Curr Opin Struct Biol 1996;

6(3):361–5.

36.Schuster M, Paliwal KK. Bidirectional recurrent neural net-

works. IEEE Trans Signal Process 1997;45(11):2673–81.

37.Pearlmutter BA. Learning state space trajectories in recurrent

neural networks. Neural Computation 1989;1(2):263–69.

38. Nanonet: First Generation RNN Basecaller. https://github.

com/nanoporetech/nanonet.

39. Nanocall: An Oxford Nanopore Basecaller. 2017. https://

github.com/mateidavid/nanocall.

40.Pevzner PA, Tang H, Waterman MS. An Eulerian path ap-

proach to DNA fragment assembly. Proc Natl Acad Sci USA

2001;98(17):9748–53.

41.Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn

graphs to genome assembly. Nat Biotechnol 2011;29(11):

987–91.

42.Koren S, Harhay GP, Smith TPL, et al. Reducing assembly com-

plexity of microbial genomes with single-molecule sequenc-

ing. Genome Biol 2013;14(9):R101.

43.Chu J, Mohamadi H, Warren RL, et al. Innovations and chal-

lenges in detecting long read overlaps: an evaluation of the

state-of-the-art. Bioinformatics 2017;33(8):1261–70.

44.Li Z, Chen Y, Mu D, et al. Comparison of the twomajor classes

of assembly algorithms: overlap–layout–consensus and de-

bruijn-graph. Brief Funct Genomics 2012;11(1):25–37.

45.Sovi�c I, �Siki�c M, Wilm A, et al. Fast and sensitive mapping of

nanopore sequencing reads with GraphMap. Nat Commun

2016;7:11307.

46.Li H. Minimap and Miniasm: fast mapping and de novo as-

sembly for noisy long sequences. Bioinformatics 2016;32(14):

2103–10.

47.Burkhardt S, Kärkkäinen J. Better filtering with gapped

q-grams. Fundam Inform 2003;56(1–2):51–70.

48.Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accur-

ate long-read assembly via adaptive k-mer weighting and re-

peat separation. Genome Res 2017;27(5):722–36.

49. Canu Tutorial. 2017. http://canu.readthedocs.io/en/latest/tu

torial.html.

50.Loman NJ, Quick J, Simpson JT. A complete bacterial genome

assembled de novo using only nanopore sequencing data. Nat

Methods 2015;12(8):733–5.

51.Vaser R, Sovi�c I, Nagarajan N, et al. Fast and accurate de novo

genome assembly from long uncorrected reads. Genome Res

2017;27(5):737–46.

52.Heng L. Aligning sequence reads, clone sequences and assem-

bly contigs with BWA-MEM. arXiv Preprint arXiv 1303.3997, 2013.

53. Nanopolish. https://github.com/jts/nanopolish.

54.Lee C, Grasso C, Sharlow MF. Multiple sequence alignment

using partial order graphs. Bioinformatics 2002;18(3):452–64.

55.Loman NJ. Nanopore R9 rapid run data release. 2017. http://

lab.loman.net/2016/07/30/nanopore-r9-data-release/.

56. MUMmer 3.x. 2017. https://github.com/garviz/MUMmer.

57.Sutskever I, Vinyals O, Le QV. Sequence to sequence learning

with neural networks. In: Proceedings of the Advances in Neural

Information Processing Systems. Neural Information Processing

Systems Foundation, La Jolla, CA, 2014, 3104–12.

58.Forney GD. The Viterbi algorithm. Proc IEEE 1973;61(3):268–78.

59.Marr D, Binns F, Hill D. Hyper-threading technology in the

NetBurstV
R

microarchitecture. In: Proceedings of the 14th Hot

Chips Symposium, 2002.

60.Magro W, Petersen P, Shah S. Hyper-threading technology:

impact on compute-intensive workloads. Intel Technol J 2002;

6(1):1–9.

61.Tuck N, Tullsen DM. Initial observations of the simultaneous

multithreading Pentium 4 processor. In: Proceedings of the 12th

International Conference on Parallel Architectures and Compilation

Techniques, PACT. IEEE Computer Society, Washington, DC,

2003.

62.Tullsen DM, Eggers SJ, Levy HM. Simultaneous multithread-

ing: Maximizing on-chip parallelism. In: Proceedings of the

22nd Annual International Symposium on Computer Architecture,

ISCA. ACM, New York, NY, 1995.

63.Eggers SJ, Emer JS, Levy HM, et al. Simultaneous multithread-

ing: a platform for next-generation processors. IEEE Micro

1997;17(5):12–19.

64.Tullsen DM, Eggers SJ, Emer JS, et al. Exploiting choice:

Instruction fetch and issue on an implementable simultan-

eous multithreading processor. In: Proceedings of the 23rd

Annual International Symposium on Computer Architecture, ISCA.

ACM, New York, NY, 1996, 191–202.

65.Yamamoto W, Nemirovsky M. Increasing superscalar per-

formance through multistreaming. In: Proceedings of the

Working Conference on Parallel Architectures and Compilation

Techniques, PACT. IFIP Working Group on Algol, Manchester,

UK, 1995, 49–58.

66.Hirata H, Kimura K, Nagamine S. et al. An elementary proces-

sor architecture with simultaneous instruction issuing from

multiple threads. In: Proceedings of the 19th Annual International

Symposium on Computer Architecture, ISCA. ACM, New York,

NY, 1992, 136–45.

67.Xiao CL, Chen Y, Xie SQ, et al. MECAT: fast mapping, error cor-

rection, and de novo assembly for single-molecule sequenc-

ing reads.Nat Methods 2017;14(11):1072–74.

68.Li H, Durbin R. Fast and accurate short read alignment with

Burrows–Wheeler transform. Bioinformatics 2009;25(14):

1754–60.

69.Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-

efficient alignment of short DNA sequences to the human

genome. Genome Biol 2009;10(3):R25.

70.Alkan C, Kidd JM, Marques-Bonet T, et al. Personalized copy

number and segmental duplication maps using next-

generation sequencing. Nat Genet 2009;41(10):1061–7.

71.Hach F, Hormozdiari F, Alkan C, et al. mrsFAST: a cache-

oblivious algorithm for short-read mapping. Nat Methods

2010;7(8):576–7.

72.Schatz MC. CloudBurst: highly sensitive read mapping with

MapReduce. Bioinformatics 2009;25(11):1363–9.

73.Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads

and calling variants using mapping quality scores. Genome

Res 2008;18(11):1851–8.

1558 | Senol Cali et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://github.com/nanoporetech/scrappie
https://github.com/nanoporetech/scrappie
https://nanoporetech.com/about-us/news/new-basecaller-now-performs-raw-basecalling-improved-sequencing-accuracy
https://nanoporetech.com/about-us/news/new-basecaller-now-performs-raw-basecalling-improved-sequencing-accuracy
https://nanoporetech.com/about-us/news/new-basecaller-now-performs-raw-basecalling-improved-sequencing-accuracy
https://github.com/rrwick/Basecalling-comparison
https://github.com/rrwick/Basecalling-comparison
https://github.com/nanoporetech/nanonet
https://github.com/nanoporetech/nanonet
https://github.com/mateidavid/nanocall
https://github.com/mateidavid/nanocall
http://canu.readthedocs.io/en/latest/tutorial.html
http://canu.readthedocs.io/en/latest/tutorial.html
https://github.com/jts/nanopolish
http://lab.loman.net/2016/07/30/nanopore-r9-data-release/
http://lab.loman.net/2016/07/30/nanopore-r9-data-release/
https://github.com/garviz/MUMmer

74.Kim JS, Senol Cali D, Xin H, et al. GRIM-Filter: Fast seed loca-

tion filtering in DNA read mapping using Processing-in-

Memory technologies. BMC Genomics 2018, in press.

75.Xin H, Greth J, Emmons J, et al. Shifted Hamming distance: a fast

and accurate SIMD-friendly filter to accelerate alignment verifi-

cation in readmapping. Bioinformatics 2015;31(10):1553–60.

76.Alser M, Hassan H, Xin H, et al. GateKeeper: a new hardware

architecture for accelerating pre-alignment in DNA short

readmapping. Bioinformatics 2017;33(21):3355–63.

77.Alser M, Mutlu O, Alkan C. MAGNET: understanding and im-

proving the accuracy of genome pre-alignment filtering. IPSI

Trans Internet Res 2017;13(2):33–42.

78.Weese D, Emde AK, Rausch T, et al. RazerS-fast read mapping

with sensitivity control. Genome Res 2009;19(9):1646–54.

79.Lee WP, Stromberg MP, Ward A, et al. MOSAIK: a hash-based

algorithm for accurate next-generation sequencing short-

readmapping. PLoS One 2014;9(3):e90581.

80.Rumble SM, Lacroute P, Dalca AV, et al. SHRiMP: accurate

mapping of short color-space reads. PLoS Comput Biol 2009;

5(5):e1000386.

81.David M, Dzamba M, Lister D, et al. SHRiMP2: sensitive yet

practical short read mapping. Bioinformatics 2011;27(7):

1011–12.

82.Hatem A, Bozda�g D, Toland AE, et al. Benchmarking short se-

quencemapping tools. BMC Bioinformatics 2013;14(1):184.

83.Olson CB, KimM, Clauson C, et al. Hardware acceleration of short

read mapping. In: Proceedings of the 20th Annual International

Symposium on Field-Programmable Custom Computing Machines,

FCCM. IEEE Computer Society,Washington, DC, 2012, 161–8.

84.Fonseca NA, Rung J, Brazma A, et al. Tools for mapping high-

throughput sequencing data. Bioinformatics 2012;28(24):

3169–77.

85.Li H, Durbin R. Fast and accurate long-read alignment with

Burrows–Wheeler transform. Bioinformatics 2010;26(5):589–95.

86.Siragusa E, Weese D, Reinert K. Fast and accurate read map-

ping with approximate seeds and multiple backtracking.

Nucleic Acids Res 2013;41(7):e78.

87.Li H. Minimap2: fast pairwise alignment for long DNA

sequences.arXiv:1708.01492, 2017.

88.Li H, Handsaker B, Wysoker A, et al. The sequence alignment/

map format and SAMtools. Bioinformatics 2009;25(16):2078–9.

89.Cock PJA, Fields CJ, Goto N, et al. The Sanger FASTQ file format

for sequences with quality scores, and the Solexa/Illumina

FASTQ variants.Nucleic Acids Res 2010;38(6):1767–71.

90.Pearson WR, Lipman DJ. Improved tools for biological se-

quence comparison. Proc Natl Acad Sci USA 1988;85(8):

2444–8.

91.Simpson JT, Workman RE, Zuzarte PC, et al. Detecting DNA

cytosine methylation using nanopore sequencing. Nat

Methods 2017;14(4):407–10.

Computational analysis of nanopore sequencing tools | 1559

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

0
/4

/1
5
4
2
/4

9
5
8
7
5
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

	bby017-TF1
	bby017-TF2
	bby017-TF3
	bby017-TF4
	bby017-TF5
	bby017-TF6

