
Citation: Guo, L.; Tang, H.; Wang, X.;

Yuan, Y.; Zhu, C. Nanoporous

Ag-Decorated Ag7O8NO3

Micro-Pyramids for Sensitive

Surface-Enhanced Raman Scattering

Detection. Chemosensors 2022, 10, 539.

https://doi.org/10.3390/

chemosensors10120539

Academic Editor: Brian Cullum

Received: 25 October 2022

Accepted: 14 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

chemosensors

Article

Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids for
Sensitive Surface-Enhanced Raman Scattering Detection
Linfan Guo 1, Haibin Tang 2 , Xiujuan Wang 3, Yupeng Yuan 1 and Chuhong Zhu 1,*

1 School of Chemistry and Chemical Engineering, School of Materials Science and Engineering,
Anhui University, Hefei 230601, China

2 Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China

3 School of Microelectronics, Hefei University of Technology, Hefei 230009, China
* Correspondence: chzhu@ahu.edu.cn or chzhu@issp.ac.cn

Abstract: Porous noble metal nanomaterials can be employed to construct sensitive surface-enhanced
Raman scattering (SERS) substrates, because the plasmonic nanopores and nanogaps of the porous ma-
terials can provide a larger number of hotspots, and can also serve as containers of analyte molecules.
However, the fabrication processes of nanoporous noble metal are generally complicated. Here, a
facile method is presented to prepare nanoporous Ag nanoparticles-decorated Ag7O8NO3 micro-
pyramids, which are fabricated through the chemical reduction of the electrodeposited Ag7O8NO3

micro-pyramids using NaBH4. The Ag7O8NO3 micro-pyramids are fabricated by electrodeposi-
tion by using a simple aqueous solution of AgNO3 as electrolyte. Then, porous Ag-decorated
Ag7O8NO3 micro-pyramids are achieved by the chemical reduction of the surface of the electrode-
posited Ag7O8NO3 micro-pyramids with NaBH4. The high-density nanopores and nanogaps of the
fabricated nanoporous Ag can provide plenty of hot spots for Raman enhancement. Additionally,
the nanopores have an effective capacity to trap and enrich analytes. Using rhodamine 6G (R6G) as
a probe molecule, the SERS performance of the fabricated SERS substrate has been investigated. It
is found that a limit of detection (LOD) ~1.0 × 10−15 M can be achieved for R6G. Then, the SERS
substrates are employed to detect dye molecule (crystal violet) and pesticide (thiram), and their LODs
are calculated down to 9.6 × 10−13 M and 1.3 × 10−15 M, respectively. The enhancement factor of
the fabricated SERS substrate is estimated to be as high as 5.6 × 108. Therefore, the nanoporous
Ag-decorated Ag7O8NO3 micro-pyramids have shown promising application in the sensitive SERS
detection of organic molecules.

Keywords: surface-enhanced Raman scattering; detection; porous silver; pesticide; chemical reduction

1. Introduction

Surface-enhanced Raman scattering (SERS) spectra can provide fingerprint informa-
tion of molecular vibration with high sensitivity. Therefore, SERS can serve as an effective
and convenient analytical tool, and has been utilized substantially in the rapid, sensitive,
and nondestructive detection of chemical and biological agents [1–8]. A major driving force
for achieving sensitive response to a substance’s adsorption on a metal surface is localized
surface plasmon resonance (LSPR). In particular, the collective plasmon resonance arising
from the LSPR interaction of Ag and Au [9,10] is utilized by SERS. However, LSPR energies
are dependent on the local dielectric environment, the size, shape, and composition of these
metal nanostructures [11–14]. The methods for creating noble metal nanoparticles with
sharp tips [7,14–16] or nano-gaps [17,18], as well as nanostars [19,20], nanoflowers [21,22],
and porous nanoparticles [23–25], have been the subject of studies in recent years. For
example, highly ordered arrays of solid gold and silver nanopyramids have been devel-
oped for reproducible and sensitive SERS detection [26–29]. Porous nanostructures have
garnered a lot of attention as compared to other structures (e.g., the above-mentioned
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arrays of solid gold and silver nanopyramids) because of their enormous relative surface
area, high internal “hot spot” density, and optical properties linked to porosity [30–32]. In
addition to having a high surface area, high gas permeability, and low density in a variety
of porous materials, porous noble metal materials also possess surface plasmon resonance
properties that have numerous uses in the optical field [32–35]. The fascinating networks of
interconnected structures that make up the nanoporous metal structures have a morphol-
ogy with tunable open pores and ligament sizes ranging from nanometers to micrometers,
producing a significant amount of specific surface area [36,37]. Porous metal nanomaterials
have so far been prepared using a variety of physical and chemical techniques, such as the
template method [38–41], galvanic replacement [42–44], and dealloying method [45–47].
These methods make the preparation process extra intricate and expensive. Therefore,
there is still a critical need to develop a facile and inexpensive approach for fabrication of
nanoporous plasmonic structures with the capability to tailor the structural parameters for
optimized performance.

Here, we present a rapid and cost-effective method to fabricate nanoporous Ag-
decorated Ag7O8NO3 micro-pyramids. By chemically reducing the Ag7O8NO3 micro-
pyramids, which had been prepared in advance by electrodeposition, nanoporous Ag-
decorated Ag7O8NO3 micro-pyramids with dense nanopores have been fabricated without
using any organic chemicals or etching agents. As shown in Scheme 1a, the Ag7O8NO3
micro-pyramids are firstly formed by electrodeposition. Then, the as-prepared Ag7O8NO3
micro-pyramids are immersed in an aqueous solution of NaBH4 (Scheme 1b). Using NaBH4
as a reducing agent, nanoporous Ag-decorated Ag7O8NO3 micro-pyramids are achieved
by optimizing experimental conditions (Scheme 1c). Furthermore, we used the nanoporous
Ag-decorated Ag7O8NO3 micro-pyramids as SERS substrate to detect chemical molecules
such as R6G, crystal violet (CV), and thiram. The nanoporous Ag-decorated Ag7O8NO3
micro-pyramids showed excellent SERS performance with the capability to sensitively
detect and identify organic pollutants. Therefore, the fabricated nanoporous Ag-decorated
Ag7O8NO3micro-pyramids have promising applications in SERS-based detection.
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Scheme 1. Schematic diagram of preparation process for the nanoporous Ag-decorated Ag7O8NO3

micro-pyramids. (a) Ag7O8NO3 micro-pyramids are fabricated using electrodeposition in a pure aque-
ous AgNO3 solution with a two-electrode system. (b,c) Ag7O8NO3 micro-pyramids are transformed
into nanoporous Ag-decorated Ag7O8NO3 micro-pyramids by NaHB4 reduction. (d) Nanoporous
Ag-decorated Ag7O8NO3 micro-pyramids are used as SERS substrates to detect organic molecules.
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2. Experimental
2.1. Materials

Silver nitrate (AgNO3) was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Sodium borohydride (NaBH4), Rhodamine 6G (C28H31ClN2O3), crystal
violet (C25H30ClN3), and thiram (C6HN2S4) were purchased from Aladdin Bio-Chem Tech-
nology Co., Ltd. (Shanghai, China). Indium tin oxide (ITO) glasses were bought from Hua-
nanxiangcheng Technology Co., Ltd. (Shenzhen, China). Deionized water (18.25 MΩ cm−1)
was obtained from a Millipore water purification.

2.2. Electrochemical Fabrication of Ag7O8NO3 Micro-Pyramids

Electrochemical deposition was carried out using a two-electrode system, as shown
schematically in Scheme 1a. A rectangular graphite sheet was used as an anode, an ITO
glass (2 cm × 0.5 cm) was used as a cathode, and an aqueous solution of AgNO3 (0.01 M)
was employed as the electrolyte. At room temperature, the potentiostatic mode was applied
for the electrodeposition of Ag7O8NO3 micro-pyramids. By regulating electrodeposition
voltage from 1.5 V to 10 V or deposition duration from 1 s to 300 s, Ag7O8NO3 materials
with different micro-structures were achieved. Then the ITO glass coated with the as-
prepared Ag7O8NO3 micro-pyramids was taken out, rinsed with deionized water, and
dried by flowing Ar gas.

2.3. Formation of Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids

An ITO glass covered with Ag7O8NO3 micro-pyramids was vertically immersed into
an aqueous solution of NaBH4 (10 mL) with different concentrations for 2 min to reduce
silver ion on the surface of the Ag7O8NO3 micro-pyramids into Ag atoms for formation of
nanoporous Ag-decorated Ag7O8NO3 micro-pyramids. After the reduction process, the
ITO glass coated with the fabricated nanoporous Ag-decorated Ag7O8NO3 micro-pyramids
was taken out, rinsed with deionized water, and dried by flowing Ar gas.

2.4. Characterization and SERS Measurements

The resultant compact Ag7O8NO3 micro-pyramids and nanoporous Ag-decorated
Ag7O8NO3 micro-pyramids were characterized by using X-ray diffraction (XRD, Rigaku
SmartLab, Beijing Co, Beijing, China), X-ray photoelectron spectroscopy (XPS, Thermo
ESCALAB 250Xi, Waltham, MA, USA) scanning electron microscope (SEM, Hitachi S-4800,
Hitachi, Tokyo, Japan), and transmission electron microscope (TEM, JEM-2100F, JEOL,
Tokyo, Japan). SERS measurement was conducted on a confocal microprobe Raman system
(inVia, Renishaw, London, UK) with a 532 nm excitation laser. The laser power was ~1 mW,
and the integration duration was 10 s.

2.5. Preparation of SERS Sample

To ensure good adsorption of analyte molecule, nanoporous Ag-decorated Ag7O8NO3
micro-pyramids on an ITO glass (0.5 cm × 0.5 cm, Figure S1) were immersed in an aqueous
solution (10 mL) of R6G, CV or an ethanol solution (10 mL) of thiram with different
concentrations for 2 h, then taken out and dried with flowing Ar gas. During SERS
measurement, 10 different points were randomly selected on each substrate to analyze the
SERS-spectral reproducibility of the substrate.

3. Results and Discussion
3.1. Characteristics of Ag7O8NO3 Micro-Pyramids

Ag7O8NO3 micro-pyramids are firstly fabricated by electrodeposition in a simple aque-
ous electrolyte of AgNO3. All the diffraction peaks observed in the X-ray diffraction pattern
(XRD) of the as-prepared sample (Figure S2) correspond to an Ag7O8NO3 crystal (JCPDS:
06-0434); these diffraction peaks are assigned to the (2 2 2), (4 0 0), (4 4 0), and (6 2 2) planes,
indicating that Ag7O8NO3 micro-pyramids have been successfully prepared [48]. The EDX
mapping was conducted to confirm Ag and O distributions of Ag7O8NO3 micro-pyramids
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(Figure S3), which are consistent with those reported previously [48]. The morphology of
the fabricated Ag7O8NO3 micro-pyramids could be regulated by tuning the deposition
voltage and deposition duration [49–52]. Firstly, the morphological evolution of the pyra-
mids was investigated by gradually increasing the deposition voltage from 1.5 to 10 V
while the deposition time was kept unchanged (Figure S4). Sparsely distributed Ag7O8NO3
micro-pyramids were preliminarily formed at 1.5 V with an average edge length of 650 nm
(Figure S4a). With the increase of deposition voltage, the density of Ag7O8NO3 micro-
pyramids was increased accordingly (Figure S4b–d). Under a deposition voltage of 3 V,
pyramids with an average edge of ~1.5 µm were formed and uniformly distributed on an
ITO glass (Figure S4b). Nevertheless, with further increase of deposition voltage from 3 V to
5 V or even 10 V, arrowhead-like particles with a smaller size were achieved (Figure S4c,d),
due to the presence of the electrocarving process at high deposition voltages. The change
in pyramid size can be explained by the fact that more Ag7O8NO3 nuclei produced during
the same deposition time at higher deposition voltages (>5 V). High deposition voltages
produce more Ag7O8NO3 species than low deposition voltages, but because of the large
number of nuclei, only a limited number of Ag7O8NO3 species that can be consumed at
once. As a result, smaller Ag7O8NO3 pyramids are formed at high deposition voltages.
This is can proved by the number density of Ag7O8NO3 pyramid (Figure S4c,d), which
increases quickly as the deposition voltage enhanced [48]. In this work, we focus on the
pyramid-like structures, therefore the voltage used for deposition was set as 3 V in the
following experiments.

Then, we further studied the growth process of the pyramids under different duration
of electrodeposition by keeping the deposition voltage (3 V) unchanged (Figure S5). Quasi-
pyramid-like nanoparticles with a rough surface were formed in a very short time (1 s)
(Figure S5a). As the deposition duration increased, more regular pyramid structures
with larger size were gradually formed (Figure S5b–d). Larger plasmonic particle has a
larger surface area, which can provide more adsorption sites for analyte molecules [53,54].
Therefore, the Ag7O8NO3 micro-pyramids with largest size were used to fabricate SERS-
active structures since they can provide more hotspots in the excitation laser beam for SERS
detection. Hence, the samples achieved under the voltage of 3 V and electrodeposition
duration of 300 s were employed for SERS detection in the following experiments.

3.2. Fabrication of Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids

Figure 1a shows the scanning electron microscope (SEM) image of the as-prepared
Ag7O8NO3 micro-pyramids. The Ag7O8NO3 micro-pyramids have a smooth surface with
an average edge length of ~3.2 µm. It can be found that the electrodeposited Ag7O8NO3
micro-structure tends to form an octahedral shape. After fabrication of Ag7O8NO3 micro-
pyramids, we decorate SERS-active material on their surfaces by an in situ reduction
method [21,55]. After being reduced by NaBH4, porous Ag was formed and uniformly
modified on the surface of each Ag7O8NO3 micro-pyramid (Figure 1b). The reduced Ag
was uniformly assembled on the surface of Ag7O8NO3 micro-pyramids and formed a
nanoporous Ag shell coated on the micro-pyramids (Figure 1b). Transmission electron
microscopy (TEM) observation indicates that the Ag nanostructures on the Ag7O8NO3
micro-pyramids are well crystallized (Figure 1c). The spacing between adjacent lattice
fringes was 0.237 nm for Ag (inset in Figure 1c), which agree well with the interpla-
nar distance of the (1 1 1) plane of metallic Ag (JCPDS: 04-0783). The nanoporous Ag
shell is composed of many cross-linked ellipsoidal and/or rod-shaped Ag nanostructures
(Figure 1d,e). The EDX mapping was conducted to confirm the element distributions of
nanoporous Ag-decorated Ag7O8NO3 micro-pyramids (Figure S6), which is consistent
with that reported previously [48]. Then, X-ray diffraction spectrum measurement was
further performed to investigate the crystal structure of the nanoporous Ag-decorated
Ag7O8NO3 micro-pyramids (Figure 1f). The XRD pattern confirms that the sample are
composed of two crystallized components: Ag and Ag7O8NO3. The XRD spectrum display
the peaks around 38.1◦, 44.3◦ and 64.4◦ correspond to the diffractions from the (1 1 1),
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(2 0 0) and (2 2 0) planes of the face-centered-cubic (fcc) phase, respectively (upper curve
in Figure 1f), confirming that the resultant sample contains abundant Ag crystals. These
results demonstrate that nanoporous Ag has been successfully decorated on the surfaces
of Ag7O8NO3 micro-pyramids by NaBH4 reduction. Such nanoporous Ag-decorated
Ag7O8NO3 micro-pyramids can be employed as three-dimensional SERS substrates for
sensitive detection [13,14].
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Figure 1. (a) SEM image of the Ag7O8NO3 micro-pyramids fabricated by electrodeposition at 3 V for
300 s. The inset is a magnified image. (b) SEM image of the nanoporous Ag-decorated Ag7O8NO3

micro-pyramids prepared by reducing the surface of Ag7O8NO3 in a NaBH4 solution. The inset is a
magnified image. (c) TEM image of nanoporous Ag, and the inset is the corresponding high-resolution
transmission electron microscopy (HRTEM) image marked in the yellow box in (c). (d) TEM image of
Ag nanostructure peeled off from a nanoporous Ag-decorated Ag7O8NO3 micro-pyramid through
ultrasonic. (e) Corresponding elemental mapping of Ag collected form the area shown in (d). (f) XRD
patterns of (upper curve) the prepared nanoporous Ag-decorated Ag7O8NO3 micro-pyramids and
(lower curve) an ITO glass.

During the process of decorating nanoporous Ag on the Ag7O8NO3 micro-pyramids,
the concentration of the reducing agent (i.e., NaBH4) plays an important role on the mor-
phology of the reduction-produced Ag nanostructures. When the concentration of NaBH4
is very low, only a few Ag nanoparticles were anchored on the surface of the Ag7O8NO3
micro-pyramids (Figure 2a) after the Ag7O8NO3 micro-pyramids being immersed in an
aqueous solution of NaBH4 (1 mM) for 2 min. When the concentration of NaBH4 increased
to a moderate level (e.g., 5 mM), a larger amount of Ag plenty of nanopores were decorated
on the surfaces of the Ag7O8NO3pyramids (Figure 2b). If the NaBH4 concentration con-
tinued to increase to a much higher value (e.g., 10 mM or 25 mM), the Ag nano-ligaments
constantly cumulated, and the number of pores in the Ag nanofilm decreased remark-
ably (Figure 2c,d). The disappearance of nanometer-sized ligaments and pores would
decrease the number of hotspots, and thus lower the SERS activity of the fabricated hy-
brid micro/nanostructures. To optimize SERS performance, the R6G (10−6 M) was used
as a probe molecule for Raman measurement. The SERS activity of the Ag-decorated
Ag7O8NO3 micro-pyramids achieved under different concentrations of NaBH4 solution
changed obviously (Figure S7a). In order to observe the variation trend of Raman intensity
more intuitively, Raman intensities at 1648 cm−1 peak obtained by using different samples
prepared under different concentrations of NaBH4 are shown in Figure S7b. It can be found
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that the optimized SERS performance was obtained at NaBH4 concentration of 5 mM.
The silver ligaments of the resultant nanoporous Ag are composed of numerous irregular
cross-linked ellipsoidal and/or rod-shaped Ag nanostructures (Figure S8a), and the pores
and ligaments sizes of the nanoporous Ag-decorated Ag7O8NO3micro-pyramids were
around 41.6 nm and 48.8 nm (Figure S8b,c), respectively. The high-density nanopores (with
an average diameter of ~40 nm) and nanogaps in the fabricated nanoporous Ag can provide
plenty of hot spots for Raman enhancement. Additionally, the nanopores have an effective
capacity to trap and enrich analyte molecules, resulting in further improvement of SERS
sensitivity [56–58]. Therefore, the nanoporous Ag-decorated Ag7O8NO3 micro-pyramids
reduced using 5 mM NaBH4 solution will be used as for sensitive SERS detection in the
following tests.
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3.3. SERS Performance

Sensitivity is an important criterion for the performance of SERS substrates. For
exploring the SERS activity of the nanoporous Ag-decorated Ag7O8NO3 micro-pyramids,
a frequently used organic substance, R6G, was used as a probe molecule. In order to
understand the origin of Raman signal enhancement, the SERS activities of Ag7O8NO3
micro-pyramids before and after being decorated with nanoporous Ag were measured. It is
found that the Ag7O8NO3 micro-pyramids do not possess SERS activity (Curve II in Figure
S9) and the nanoporous Ag decorated on the Ag7O8NO3 microstructures has remarkable
SERS activity (Curve I in Figure S9). Therefore, the SERS activity is contributed by the
nanoporous Ag. The most pronounced bands of R6G molecules appear at 612 (C-C-C ring
in-plane vibration), 775 (C-C-C-ring out-of-plane bending), 1362 (aromatic C-C stretching),
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1508 (aromatic C-C stretching), and 1648 (aromatic C-C stretching) cm−1 [59]. Additionally,
a linear relationship between the logarithmic concentrations of R6G and the fingerprint
peaks (1648 cm−1) was discovered (Figure 3b) as shown below:

logI = 5.49 + 0.27logC (1)

where I is the peak intensity of the SERS spectra of R6G, and C is the concentration of
R6G. The linear fitting result shows that the R2 value of R6G is 0.983, which proves that
the nanoporous Ag-decorated Ag7O8NO3 micro-pyramids have the ability of quantitative
detection of R6G. According to the Formula (1), the limit of detection (LOD) of R6G could be
calculated. The SERS signal intensity at the LOD is equivalent to three times of the standard
deviation of Raman signal intensity from the blank sample [60–64]. The LOD of R6G was
calculated to be 10−15 M, demonstrating that the fabricated nanoporous Ag-decorated
Ag7O8NO3 micro-pyramids substrate has excellent sensitivity for R6G. Compared with
the LODs of R6G achieved by using the other SERS substrates reported in the previous
literatures, our nanoporous Ag-decorated Ag7O8NO3 micro-pyramids have a comparable
or superior LOD (Supplementary Table S1 [65–72]).
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peak and the concentrations of R6G. (c) SERS spectra of R6G (10−6 M) at 10 randomly selected
sites on the SERS substrate made of nanoporous Ag-decorated Ag7O8NO3 micro-pyramids. (d) The
1648 cm−1 band intensities of R6G (10−6 M) recorded from 10 randomly selected sites.

As a significant parameter for quantitatively comparing SERS performance, the en-
hancement factor (EF) of the nanoporous Ag-decorated Ag7O8NO3micro-pyramids was
determined by computing the ratio of SERS to normal Raman scattering (NRS) of R6G
(Figure S10) using the following expression:
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EF =
ISERSNRef
IRefNSERS

=
ISERSCRe f VRe f SSERS

IRe f CSERSVSERSSRe f
(2)

where ISERS and INRS correspond to the SERS and NRS intensities, respectively. For esti-
mation of EF, a 10 µL 10−11 M and two 10 µL R6G ethanol solutions with concentration of
10−11 M and 10−2 M were dropped on the substrates (2 × 2 mm2) and polyvinyl chloride
film (π × 12 mm2), respectively. The EF for the band at 1648 cm−1 was calculated to be
5.6 × 108 (detailed calculation process can be found in the first part of the Supplemental
Material), revealing the high SERS activity of the fabricated SERS substrate.

In addition to SERS sensitivity, uniformity of Raman signals is another crucial indicator
for SERS substrates. As shown in Figure 3c, SERS spectra were collected from 10 random
points on the fabricated SERS substrate. It can be found that the characteristic spectral
peaks’ intensities of R6G at 1648 cm−1 collected from 10 random points on the fabricated
SERS substrate are very similar, and the RSD value was calculated to be 10.72% (Figure 3d).
The point-to-point RSD of substrates that are eligible for quantitative analysis is typically
thought to need to be less than 20% [73]. Thus, the nanoporous Ag-decorated Ag7O8NO3
micro-pyramids have also shown outstanding uniformity for SERS measurements besides
high sensitivity.

In order to ulteriorly demonstrate the practical applicability of the SERS substrate,
crystal violet (CV) was chosen as another probe molecules. CV, an alkaline dye, is an
excellent dye. It is widely used when dying leather, paper, and other materials. Addi-
tionally, reagent goods, pharmaceutical intermediates, and industry all make extensive
use of CV. As dosage is increased, a substantial amount of CV is emitted into wastewater,
causing visible color changes in water bodies in terms of chromaticity. It seriously harms
people, animals, and plants, and this harm could be long-lasting and dangerous due to
its carcinogenicity, mutagenicity, and reproductive toxicity [74,75]. Before it may be dis-
charged, waste water that contains CV must be treated to meet regulations. Therefore, it is
essential to monitor the concentration of them. The characteristic peaks of CV are clearly
observed and can be attributed to phenyl ring breathing mode (914 cm−1), C-phenyl, C-H
in-plane antisymmetric stretching (1176 cm−1), C-phenyl in-plane antisymmetric stretching
(1585 cm−1 and 1618 cm−1) [76,77]. Additionally, the linear fitting result show that the R2

value are 0.99 (Figure 4b) for CV. The LOD were calculated down to 9.6 × 10−13 M. It could
be observed that Raman signals of CV collected from different points on the nanoporous
Ag-decorated Ag7O8NO3 micro-pyramids are consistent (Figure S11a), and the RSD values
are evaluated to be 10.55% (CV, 1618 cm−1) (Figure S11b). Those results indicate that the
fabricated substrate has high SERS sensitivity and superior uniformity again.

The applicability of the SERS substrate was also tested towards the detection of
pesticide (thiram). As a low toxicity fungicide, thiram is widely used in the elimination
of agricultural pests. The relatively strong Raman peaks of thiram were assigned to S-S
stretching mode (560 cm−1), CN stretching mode and the symmetric CH3 deformation
mode (1384 cm−1), and CN stretching vibrations and CH3 rocking mode (1517 cm−1) [7,78].
The linear fitting result shows that the R2 value is 0.99 (Figure 4d). The LOD was calculated
down to 1.3 × 10−15 M (3.12 × 10−10 ppm), which is below the maximal residue limit (MRL)
of 7 ppm in fruit prescribed by the U.S. Environmental Protection Agency (EPA) [79–81].
Additionally, it was showed that relatively consistent Raman intensities were found in all
SERS active points (Figure S11c). Through statistical calculation, the RSD of the Raman
intensity at 1384 cm−1 was ~13.93% (Figure S11d). Such experimental results indicate
that the nanoporous Ag-decorated Ag7O8NO3 micro-pyramids can serve as effective SERS
substrates for sensitive detection of pesticide molecules.
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4. Conclusions

A facile method is presented to prepare nanoporous Ag nanoparticles-decorated
Ag7O8NO3 micro-pyramids through the chemical reduction of the as-electrodeposited
Ag7O8NO3 micro-pyramids using NaBH4. By regulating the concentration of NaBH4, the
nanoporous Ag-decorated Ag7O8NO3 micro-pyramids with highly accessible surfaces
were obtained, and a larger number of Ag nanopores were formed on the surfaces of the
Ag7O8NO3 pyramids. The nanoporous with an average diameter of 40 nm can serve as
analyte containers, which efficiently trap and enrich analytes, and also provide high density
SERS hotspots giving rise to outstanding SERS performance. For the analyte molecules
such as rhodamine 6G, crystal violet and thiram, the fabricated nanoporous Ag-decorated
Ag7O8NO3 micro-pyramids substrates can realize sensitive and uniform detection. The
fabricated nanoporous Ag-decorated Ag7O8NO3 micro-pyramids have potential applica-
tions in the rapid, sensitive, and direct detection of dyes and pesticides, and the method
may also be extended to fabrication of other nanoporous materials. Consequently, the
easy and time-saving fabrication process and the outstanding SERS performance ensure
the nanoporous Ag-decorated Ag7O8NO3 micro-pyramids have promising applications in
trace detection of harmful pollutants.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors10120539/s1, 1. Estimation of enhancement factor.
Figure S1: The fabricated nanoporous Ag-decorated Ag7O8NO3 micro-pyramids on ITO glass
(2 cm × 0.5 cm) (left) and the actual substrate cut down for SERS detection (0.5 cm × 0.5 cm)
(right). Figure S2: The X-ray diffraction pattern of the electrodeposited materials. Figure S3: Energy-
dispersive X-ray (EDX) mapping images of electrodeposited materials. Figure S4: SEM images of the
Ag7O8NO3 micro-pyramids’ morphology evolution under the different electrodeposition voltage.
Figure S5: SEM images of the Ag7O8NO3 micro-pyramids’ morphology evolution under different
electrodeposition time. Figure S6: Energy-dispersive X-ray (EDX) mapping images of nanoporous
Ag-decorated Ag7O8NO3 micro-pyramids. Figure S7: SERS signals of R6G (10−6 M) collected
from nanoporous Ag-decorated Ag7O8NO3 micro-pyramids reduced by using NaBH4 solution
with different concentrations. Figure S8: Morphology of nanoporous Ag-decorated Ag7O8NO3
micro-pyramids reduced using 5 mM NaBH4 solution. Figure S9: SERS signals of R6G (10−7 M)
collected from Ag7O8NO3 micro-pyramids and Ag7O8NO3 micro-pyramids by chemical reduction.
Figure S10: SERS spectrum of 10−11 M R6G absorbed on the nanoporous Ag-decorated Ag7O8NO3
micro-pyramids, and the normal Raman spectrum of R6G polyvinyl chloride film. Figure S11: Raman
spectra of CV (10−5 M) and thiram (10−5 M), and the RSD values of 1618 cm−1 (CV) and 1384 cm−1

(thiram) peaks, respectively. Table S1: Comparison of LODs between various SERS substrates
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